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Premise

This book collects the results of a research activity developed by the first au-
thor with the aim to provide a modern presentation of the basics of Continuum
Mechanics. Our variational approach is based on the paradigmatic assumption
that kinematics provides the primary description of the mathematical model
while statics stems out by duality. To develop a sufficiently general formulation
a differential geometric approach is compelling. Since a knowledge of this fasci-
nating field of mathematics is not in the tool box of most graduated engineers
and applied mathematicians, we have tried to provide a sufficiently exhaustive
presentation of the subject in the first chapter. The treatment is however lim-
ited to foundational concepts and to results and methods that have found more
direct application in the presentation of Continuum Mechanics. Many original
results contributed in the course of this research activity have been included
in the book. Some of them concern the geometric preliminaries and among
them we quote the noteworthy general derivation of the curvature formula for
a general nonlinear connection in a fibre bundle. Another chapter in which the
geometric method has a primary role is the one dedicated to Dynamics and
Geometric Optics. New results provided in this field include the very formu-
lation of the geometric action principle, in which the fixed end condition has
been ruled out, a new, more general, formulation of Fermat principle of least
optical lenght and of Maupertuis’ least action priciple which are considered
as the prototypes of variational formulations in Mathematical Physics. A pre-
cise on some statements concerning the Hamilton-Jacobi equation for non
differentiable Lagrangians is also contributed. The subsequent chapters of the
book include the treatment of some basic issues in Continuum Mechanics that
have been investigated in greater detail by the first author. The collaboration
of the second author has been valuable and fruitful on the whole of the topics
dealt with and this book would not have been written without his precious as-
sistance. The first more or less complete edition may be fixed around 2007 but
much material may be dated much earlier and some is still under construction.
Any comments, suggestions and corrections are very welcome.

Naples, March 2009
Giovanni Romano
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Chapter 1

Calculus on manifolds

1.1 Introduction
In this chapter we introduce basic elements and results of differential geometry
which provide the essential tools for the analysis of continuous bodies whose
kinematics is defined on submanifolds of a larger ambient manifold. In the me-
chanics of continuous bodies the kinematical aspects are the fundamental issues
on which the subsequent theoretical developments are built up by introducing
dual quantities such as force systems and stress fields. Duality means that the
interaction is a virtual work. The material behavior is also described in terms
of kinematical quantities, which provide a suitable geometric measure of the
deformation, and of their dual counterparts.

A general approach to the geometric description of the kinematics in terms
of differentiable manifolds is of the utmost importance to deal with continu-
ous models even for the classical Cauchy 3D-continuum. Lower dimensional
continuous models have been formulated for the analysis of cables, membranes
and shells, whose placements in the ambient eucldean space are described by
one or two-dimensional differentiable submanifolds. Other important and use-
ful models, mainly adopted for computational purposes, are the polar models
of beams, shells, and 3D-polar continua, whose placements are described by a
special kind of manifold, a fibre bundle. The analysis of these models requires a
deeper knowledge of the elements of differential geometry. We present here an
organized collection of items in differential geometry for subsequent reference in
the development of mechanical models.
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The treatment begins with the introduction of the concept of a differentiable
manifolds, which generalizes the classical idea of a regular curve or surface, and
of the relevant tangent and cotangent vector bundles. We then introduce the
push forward and pull back transformations of scalar, vector, co-vector and
tensor fields, according to a diffeomorphic correspondence between manifolds,
and the notion of the flow generated by a vector field on a manifold.

Existence,uniqueness and continuous dependence on the initial condition is
proven by relying on two classical tools of the theory of ordinary differential
equations, the Picard-Banach’s fixed point method and the Grönwall in-
equality. In this context a special kind of derivative for functionals on vector
bundles is defined, the fibre-derivative. It provides a connection between tan-
gent and cotangent bundles and extends to differentiable manifolds a classical
tool in physics: the Legendre-Fenchel transform of convex potentials.

A basic kind of derivation, unfortunately not included in standard courses of
calculus, emerges as a cornerstone for a proper understanding of the kinematics
of continua: the Lie derivative, also dubbed the fisherman derivative, introduced
by Marius Sophus Lie in the last decades of the eighteenth century.

The Lie derivative or convective derivative plays a basic role in classical
physics and its magic properties will fascinate the interested reader.

Another basic kind of differentiation emerges in the study of the modern
theory of integration on manifolds: the exterior derivative of a differential form.
This notion stems out from a direct extension of the fundamental theorem of
calculus on the real line to the multidimensional case. It provides a compact
and expressive formula for the transformation of the integral of a volume form
on the boundary of a chain into an integral of a volume form on the chain, the
celebrated Gabriel Stokes fomula.

Other important and useful results of calculus on manifolds are then illus-
trated such as the Fubini’s theorem, the Poincaré lemma and the homotopy
formula, also called the Henri Cartan’s magic formula, which provides a re-
lation between the Lie derivative and the exterior derivative of a differential
form. It is also shown how Stokes fomula generates all the classical integral
transformation formulas and how the notion of exterior derivative is an effective
tool to get the expressions of gradient, curl and divergence in general curvilinear
coordinates. Last but not least, general formulations of Osborne Reynolds
transport theorem for flowing manifolds are provided.

The basic notion of a connection on a manifold is then introduced and illus-
trated in the general setting of fibre bundles due to Charles Ehresmann who
introduced it in 1950 . Here a third basic kind of derivative is introduced: the
covariant derivative.
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In this context an original proof, of the result which provides the expression
of curvature of a connection on a fibre bundle in terms of covariant derivatives,
is contributed.

The special properties of connections and of covariant derivatives on vector
bundles and on tangent bundles are then illustrated and the notion of torsion
is introduced.

The treatment then turns to a presentation of the wonderful idea conceived
by Bernhard Riemann who, in his dissertation for Habilitation Über die Hy-
pothesen welche der Geometrie zu Grunde liegen (On the hypotheses that lie
at the foundations of geometry), delivered on 10 June 1854, at the presence
of Gauss, introduced the notion of a differential geometric object, a differen-
tiable manifold, endowed with a regular field of metric tensors providing length
measurements of the vectors of each of its tangent spaces.

This is in fact the basic concept for the general description and the investi-
gation of the deformation of continuous bodies. The end of the chapter is then
devoted to illustrate a generalization of the euclidean translation to differen-
tiable manifold: the connection between the tangent spaces.

The most effective representation of this concept is due to Gregorio Ricci-
Curbastro and Tullio Levi-Civita who, at the very beginning of the nine-
teenth century, introduced the idea of the parallel transport on a Riemann
manifold. The Levi-Civita connection between tangent spaces of a Riemann
manifold enjoys peculiar properties that provide a relation between the Lie
derivative and the covariant derivative.

The Riemann-Christoffel curvature tensor field yields the test to discover
if a 3D Riemann manifold can be embedded in the euclidean space and provides
the answer to the question of the kinematic compatibility of the metric changes
induced by elastic and anelastic strains in a continuous body. Comprehensive
treatments of differentiable and Riemann manifolds can be found in [100], [101]
[221], [3], [127], [171], [99], [110] and in the references therein.

1.1.1 Duality and metric tensor
The response of a continuous material body to given actions (such as force
systems or temperature changes) is locally described by the changes in length
between the material line-elements at the points of a reference placement and
the corresponding ones at the corresponding points of the current placement.
Material line-elements are geometrically described by tangent vectors to material
lines drawn in the body thru the point of interest.
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To define tangent vectors at a point we have to consider an arbitrary regular
parametric representation of material lines and take the derivative at that point.
The result will depend on the orientation of material lines so induced and on the
travel speed along the lines at that point induced by the parametrization. Since
orientation and speed are arbitrarily choosen, the mechanical interpretations of
the geometrical construct should be checked to be independent of the choice.

A continuous body is described, in geometrical terms, as a fibre bundle
having as base manifold the placement of the material particles of the body and
as fibres the tangent spaces at each point.

Then the placement of a body is described by a tangent bundle whose ele-
ments are pairs made of a point and of a tangent vector at that point.

The proper geometrical tool, in measuring the length of material lines at a
point, is a metric tensor. For completeness sake, we provide hereafter a summary
of the basic properties of a metric tensor and of related issues.

Although it could seem not appropriate to present these concepts and def-
initions in a course on classical continuum mechanics, since them should be
familiar to anyone sufficiently trained in geometry, the lack of precision and the
introduction of undefined geometrical objects is often a main source of troubles
in theoretical treatments. Indeed the mathematical modelling of the deforma-
tion of a continuous body requires a clear definition of the suitable geometrical
tools and a precise statement of their basic properties.

1.1.2 Linear metric spaces
Mathematics tells us that, in a linear space V of dimension n , the knowledge
of the length of the vectors leads to the definition of the inner product between
vectors. In turn the symmetry and the bilinearity of the inner product reveals
that a finite number of length information suffices to have a complete metric
description of the linear space: we need Cn2 = (n + 1)n/2 independent length
information. To be precise, we know that the norm (or length) of a vector meets
the classical axioms

i) ‖a‖ ≥ 0 , ‖a‖ = 0 ⇐⇒ a = 0 ,

ii) ‖a + b‖ ≤ ‖a‖+ ‖b‖ , subadditivity ,

iii) ‖αa‖ = |α|‖a‖ ,

for any a,b ∈ V and α ∈ < . A real valued function on a linear space V
fulfilling only properties ii) and iii) above, is a semi-norm on V . A linear
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space V , even non finite dimensional, endowed with a norm is also a metric
space and the induced distance function, defined by

dist(a,b) := ‖a− b‖ , ∀a,b ∈ V ,
fulfils the standard axioms
i) dist(a,b) ≥ 0 , dist(a,b) = 0 ⇐⇒ a = b , ∀a,b ∈ V

ii) dist(a,b) ≤ dist(a, c) + dist(b, c) , ∀a,b, c ∈ V , triangle inequality ,

iii) dist(a,b) = dist(b,a) , ∀a,b ∈ V , symmetry ,

A Banach space is a normed space which is complete as a metric space, that
is any Cauchy sequence in it converges to an element of the space.

Figure 1.1: Maurice René Fréchet (1878 - 1973)

Figure 1.2: Pascual Jordan (1902 - 1980)

A noteworthy theorem by M. Fréchet, J. von Neumann and P. Jordan
(see [240], theorem I.5.1) states that, if the norm fulfills the parallelogram law

‖a + b‖2 + ‖a− b‖2 = 2 (‖a‖2 + ‖b‖2) ,
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Figure 1.3: John von Neumann (1903 - 1957)

the polarization formula

g(a,b) :=
1

4
(‖a + b‖2 − ‖a− b‖2) ,

defines a symmetric, bilinear and positive definite function g ∈ BL (V 2 ;<)
which is then an inner product of a,b ∈ V (a metric tensor).

By eliminating ‖a + b‖ or ‖a− b‖ between the parallelogram law and the
polarization formula, we may rewrite the latter as

g(a,b) :=
1

2
(‖a + b‖2 − ‖a‖2 − ‖b‖2) =

1

2
(‖a‖2 + ‖b‖2 − ‖a− b‖2) .

The converse implication is trivial. Indeed it is clear that, if a metric tensor
g ∈ BL (V 2 ;<) is given, the norm defined by ‖a‖2 = g(a,a) fulfils the paral-
lelogram law.

The metric tensor g ∈ BL (V 2 ;<) provides the information concerning the
length of any vector and the cosinus of the angle between any two (non-zero)
vectors, according to the definition

cos(a,b) := g(a,b)/(‖a‖‖b‖) .

By virtue of the Cauchy-Schwarz inequality:

‖a + λb‖ ≥ 0 , ∀λ ∈ < ⇐⇒ |g(a,b)| ≤ ‖a‖‖b‖ ,

the absolute value of the cosinus is not greater than unity and equal to unity
if and only if the two vectors are proportional one another. A non finite dimen-
sional linear space V with a metric tensor is called a pre-Hilbert space. If
complete with respect to the induced topology, it is said a Hilbert space.
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In n dimensional spaces the knowledge of the Cn+1
2 = (n+ 1)n/2 indepen-

dent components of the metric in a local frame is all that one needs to get a
complete information on the geometric properties of the tangent space. If only
length measurements are allowed, the complete information about the metric
requires the knowledge of the length of the sides of a nondegenerated simplex at
the point of interest.

Definition 1.1.1 (Simplex) A p-simplex in a n-dimensional vector space is
the convex envelope of p + 1 vectors, the vertices, {v0, . . . ,vp} , with p ≤ n ,
defined in terms of the p+ 1 barycentric coordinates λi , i = 0, . . . , p , by

∆p(v0, . . . ,vp) :=

{
p∑
i=0

λi vi |
p∑
i=0

λi = 1 , λi ∀ i ≥ 0

}
.

A simplex is nondegenerated if its volume is non zero. Any simplex spanned by
a proper subset of {v0, . . . ,vp} is called a face of ∆p(v0, . . . ,vp) .

In the euclidean three-space length measurements of the sides of a tetrahe-
dron suffice while in a two-dimensional space the sides of a triangle, and in one
dimension the two end points of an interval, make the job. In a n-dimensional
linear space we need again Cn+1

2 = (n+ 1)n/2 length measurements.
Indeed the edges of a nondegenerated simplex are formed by a basis of the n-

dimensional linear space and by the differences between any (non-ordered) pair
of basis vectors. The number of edges is thus again n+n (n−1)/2 = (n+1)n/2 .
If, for any pair of basis vector we know the lengths ‖a‖ , ‖b‖ and ‖a− b‖ , by
the parallelogram law we may compute

‖a + b‖2 = 2 (‖a‖2 + ‖b‖2)− ‖a− b‖2 ,

and hence g(a,b) := 1
4 (‖a + b‖2 − ‖a− b‖2) by the polarization formula.

1.1.3 Volume forms and invariants
Once a metric tensor g is at hand, related volume measurements can be per-
formed by evaluating the inner product between the sides {ei}, i, j = 1, . . . , n
of an oriented parallelepiped, forming the corresponding Gram matrix with en-
tries Gramij := g(ei, ej) with i, j = 1, . . . , n , and taking the square root
of its determinant. This formula for the n-linear alternating volume form
µg ∈ BL (V n ;<) induced by the metric can be deduced by considering the
Gram operator which to any metric tensor g relates a matrix-valued map-
ping Gram(g) acting on pairs of n-tuples {ai}, {bj}, i, j = 1, . . . , n , which is

9
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n-linear and alternating separately in the two n-tuples:

det Gram(g) · {a1, . . . ,an} · {b1, . . . ,bn} := det g(ai,bj)

=µg{a1, . . . ,an}µg{b1, . . . ,bn} .

Setting ai = bi, i = 1, . . . , n , we write det Gram(g) = µ2
g . The sign of the

volume form is taken depending on the chosen positive orientation of the space.
If a standard signed volume form is fixed, all the others are proportional to

it, as is easily verified. In a 3-dimensional space V , once the standard volume
form has been chosen, the signed area of the parallelogram of sides a,b ∈ V is
given by µg(n,a,b) with n of unit length and orthogonal to a,b ∈ V .

The sinus of the angle between any two (non-zero) vectors a,b ∈ V is then
computed according to the relation

sin(a,b) :=
µg(n,a,b)

‖a‖‖b‖ .

From the definition of the volume form it follows that

µg(n,a,b)2 = ‖a‖2‖b‖2 − g(a,b)2 ,

and we recover the well-known Pythagoras’s theorem

sin(a,b)2 + cos(a,b)2 = 1 .

To any (bounded) linear operator A ∈ BL (V ;V ) we may associate n in-
dependent invariants which, for any volume form µ on V , provide the ratios
of the volumes of n sets of parallelepipeds in V , with respect to the volume of
a given one, generated according to the rule (we set n = 3 ):

J1(A)µ(e1, e2, e3) := µ(Ae1, e2, e3) + µ(e1,Ae2, e3) + µ(e1, e2,Ae3) ,

J2(A)µ(e1, e2, e3) := µ(e1,Ae2,Ae3) + µ(Ae1, e2,Ae3) + µ(Ae1,Ae2, e3) ,

J3(A)µ(e1, e2, e3) := µ(Ae1,Ae2,Ae3) .

The volume ratios are called the linear invariant or trace, the quadratic
invariant and the cubic invariant or determinant respectively, so that trA :=
J1(A) and det A := J3(A) .

10
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For any linear isomorphism ϕ ∈ BL (V ;W ) , between two n-dimensional
linear spaces, we have:

Jk(A) = Jk(ϕAϕ−1) , k = 1, 2, 3 ,

which can be seen by choosing in W the volume form (we set n = 3 ):

µϕ(ϕ e1, ϕ e2, ϕ e3) = µ(e1, e2, e3) ,

and observing that (we consider only J3 ):

(det A)µ(e1, e2, e3) = µ(Ae1,Ae2,Ae3) = µϕ(ϕAe1, ϕAe2, ϕAe3)

= det(ϕAϕ−1)µϕ(ϕe1, ϕe2, ϕe3)

= det(ϕAϕ−1)µ(e1, e2, e3) .

Then the invariants of a linear operator A ∈ BL (V ;V ) are scalar val-
ued homogeneous functions of A of degree 1, . . . , n , which are invariant with
respect to the choice of a volume form and with respect to linear isomorphic
transformations of the linear space. The following properties are readily verified:

tr(A ◦B ◦C) = tr(B ◦C ◦A) = tr(C ◦A ◦B) ,

det(A ◦B) = (det A)(det B) ,

J2(A) = 1
2 (J1(A)2 − J1(A ◦A)) ,

J3(A) = 1
6 [J1(A)3 − 3 J1(A)J1(A ◦A) + 2 J1(A ◦A ◦A)] .

1.1.4 Transposition, isomorphisms and duality pairing
In the sequel, BL ( ) means bounded linear. Let V be a Banach space and V ∗

the dual space of bounded linear functions from V in < .

Definition 1.1.2 (Tensors) A (p, q)-tensor on a linear space V is multilinear
map from the cartesian product of p copies of V and q copies of V ∗ into a
Banach space E .

Most often the spaces V and V ∗ are finite dimensional and the space E is
simply the real field < . The following are useful identifications.

A (2, 0)-tensor α ∈ BL (V 2 ;<) may be represented as an operator α ∈
BL (V ;V ∗) by setting:

α(a,b) = 〈α(a),b〉 , ∀a,b ∈ V ,

11
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By the reflexivity of the finite dimensional space V , we may identify the bi-
dual linear space V ∗∗ with V . It follows that a tensor α∗ ∈ BL (V ∗2 ;<) is
identified with the operator α∗ ∈ BL (V ∗ ;V ) by setting:

α∗(a∗,b∗) = 〈α∗(a∗),b∗ 〉 , ∀a∗,b∗ ∈ V ∗ .

A basic duality exists between the linear spaces of covariant and contravariant
second order tensors on a vector space V .

Definition 1.1.3 The duality pairing between two tensors α∗ ∈ BL (V ∗2 ;<)
and β ∈ BL (V 2 ;<) is defined by:

〈α∗,β 〉 := tr(α∗ ◦ β) ,

and is well-posed since α∗ ◦ β ∈ BL (V ;V ) .

A metric tensor g ∈ BL (V 2 ;<) provides a one-to-one correspondence between
a tensor α ∈ BL (V 2 ;<) and a pair of linear operators, A,AT ∈ BL (V ;V ) ,
one the g-transpose of the other, according to the relation

α(a,b) = g(A a,b) = g(a,ATb) , ∀a,b ∈ V .

The g-transposition is an involutive relation, i.e. (AT )T = A and transposed
linear operators have the same invariants: Jk(AT ) = Jk(A) for k = 1, . . . , n .

Note however that, by changing the metric, the pair A,AT ∈ BL (V ;V )
and the invariants change too, so that invariants cannot be associated with a
tensor α ∈ BL (V 2 ;<) , unless a metric tensor is specified.

To a linear operator A ∈ BL (V ;V ) there corresponds a dual operator
A∗ ∈ BL (V ∗ ;V ∗) defined by the identity:

〈A∗a∗,b〉 = 〈a∗,Ab〉 , ∀a∗ ∈ V ∗,b ∈ V .

Setting a∗ = g ◦ a , we get

〈A∗a∗,b〉 = g(a,Ab) = g(ATa,b) = 〈gATg∗a∗,b〉 ,

and hence the relations

A∗ = gATg∗ , AT = g∗A∗g .

A metric tensor g ∈ BL (V 2 ;<) induces a linear isomorphism between the
space V and its dual V ∗ . Indeed to any vector a ∈ V we may associate
uniquely the covector a∗ ∈ V ∗ defined by

a∗ = g a ⇐⇒ 〈a∗,b〉 = g(a,b) , ∀b ∈ V ,

12
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where 〈·, ·〉 denotes the duality pairing between vectors and covectors, that is
the value taken by the covector on the vector. We shall denote by the same
symbol g ∈ BL (V ;V ∗) the linear isomorphism that associates the covector
g a ∈ V ∗ with the vector a ∈ V . Conversely to any given covector a∗ ∈ V ∗
there corresponds a unique vector g−1a∗ which is the unique solution of the
linear problem g a = a∗ . In fact the linear operator g ∈ BL (V ;V ∗) has a
degenerated kernel and hence is surjective.

These isomorphisms are often denoted by the musical symbols flat : [ = g
and sharp: ] = g−1 but we will not follow this aesthetically pleasant symbolism
because it doesn’t keep track of the underlying metric.

The isomorphism between V and V ∗ becomes an isometry by endowing
the dual space V ∗ with the metric tensor g∗ ∈ BL (V ∗2 ;<) defined as

g∗(g a,g b) := g(a,b) , ∀a,b ∈ V .

Given a tensor γ ∈ BL (V 2 ;<) and a linear operator A ∈ BL (V ;V ) we
define the tensor γA ∈ BL (V 2 ;<) by the formula

(γA)(a,b) := γ(Aa,b) = 〈(γ[ ◦A)a,b〉 , ∀a,b ∈ V ,

so that the metric-induced correspondence between the tensor α ∈ BL (V 2 ;<)
and the linear operator A ∈ BL (V ;V ) may be written simply as

α[ = g A ⇐⇒ A = g−1α[ .

For any L ∈ BL (V ;V ) is the following relation holds:

〈(ga) ◦L,b〉 = 〈ga,Lb〉 = g(a,Lb) = g(LTa,b) = 〈g(LTa),b〉 , ∀a,b ∈ V ,

so that
(ga) ◦ L = g(LTa) , ∀a ∈ V .

The metric tensor g∗ ∈ BL (V ∗2 ;<) may be identified with the linear iso-
morphism g∗ ∈ BL (V ∗ ;V ) which is in fact g−1 ∈ BL (V ∗ ;V ) . Indeed, by
definition:

g∗(g a,g b) = 〈g∗(g a),g b〉 = g(a,b) = 〈a,g b〉 , ∀a,b ∈ V ,

⇐⇒ g∗(g a) = a , ∀a ∈ V ⇐⇒ g∗ = g−1 .

To tensors α∗ ∈ BL (V ∗2 ;<) = BL (V ∗ ;V ) and β ∈ BL (V 2 ;<) = BL (V ;V ∗)
we may associate the linear operators A ∈ BL (V ;V ) and B ∈ BL (V ;V )

13
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according to the correspondences:

α∗ ◦ g = A⇐⇒ α∗ = A ◦ g∗

g∗ ◦ β = B⇐⇒ β = g ◦B .

The metric tensor g induces a metric 〈·, ·〉g in the linear space BL (V ;V ) of
(bounded) linear operators by setting

〈A,B〉g := tr(ATB) ,

and the following properties hold:

〈A,B〉g = tr(BAT ) = 〈BT ,AT 〉g = tr(BTA) = 〈B,A〉g ,

〈A,A〉g = tr(ATA) > 0 if A 6= 0 ,

〈ABC,D〉g = 〈B,ATDCT 〉g .
The definition of the duality pairing is well-posed since, according to the next
proposition, it is independent of the choice of the metric tensor.

Proposition 1.1.1 Given two metric tensors g ∈ BL (V 2 ;<) , ḡ ∈ BL (V 2 ;<) ,
the transposed of the operators associated with a tensor α∗ ∈ BL (V ∗2 ;<) , meet
the relation: (α∗ḡ)T̄ = (α∗g)TG where ḡ = g G and (·)T , (·)T̄ denote g and
ḡ-transpositions. Hence 〈α∗ḡ, ḡ−1β 〉ḡ = 〈α∗g,g−1β 〉g .

Proof. A direct computation shows that

ḡ(α∗ḡ a,b) = ḡ(α∗g G a,b) = g(Gα∗g G a,b)

= g(α∗g G a,G b) = g(G a, (α∗g)T G b) = ḡ(a, (α∗g)T G b) ,

and hence

〈α∗ḡ, ḡ−1β 〉ḡ = J1((α∗ḡ)T̄ ḡ−1β) = J1((α∗g)T G G−1g−1β) = 〈α∗g,g−1β 〉g .

�

The metric tensor g induces an isomorphism between twice contravariant
tensors α∗ ∈ BL (V ∗ ;V ) and and twice covariant tensors α ∈ BL (V ;V ∗)
defined by α = g ◦α∗ ◦ g . Anyway, we have that the duality pairing

〈α∗,β 〉 = 〈g−1αg−1,β 〉 = 〈Ag−1,gB〉 = tr(Ag−1gB) = tr(AB) ,

14



Introduction Giovanni Romano

is not necessarily equal to the inner product 〈A,B〉g := tr(ATB) , unless A,B
are g-symmetric.

Let us now consider two Hilbert spaces {V ,gV } and {W ,gW } and their
duals V ∗ and W ∗ . The bounded linear operator A ∈ BL (V ;W ) and its dual
A∗ ∈ BL (W ∗ ;V ∗) , are related by

〈w∗,Av〉 = 〈A∗w∗,v〉 ,
{∀v ∈ V ,
∀w∗ ∈W ∗ ,

and the operator A ∈ BL (V ;W ) and its transpose AT ∈ BL (W ;V ) , are
related by

gW (w,Av) = gV (ATw,v) ,

{ ∀v ∈ V ,
∀w ∈W .

Then, being gV ∈ BL (V ;V ∗) and gW ∈ BL (W ;W ∗) , it is:

〈A∗gWw,v〉 = 〈gWw,Av〉 = gW (w,Av) = gV (ATw,v) .

Then we have the commutative diagrams

W
AT

−−−−→ V

gW

y ygV

W ∗
A∗−−−−→ V ∗

⇐⇒ A∗ ◦ gW = gV ◦AT ,

and
W

AT

−−−−→ V

g−1
W

x g−1
V

x
W ∗

A∗−−−−→ V ∗

⇐⇒ g−1
V ◦A∗ = AT ◦ g−1

W ,

so that A∗ = gV ◦AT ◦ g−1
W .

1.1.5 Derivative and gradient of tensor functions
Let f ∈ C1(BL (V ∗2 ;<) ;<) be a potential on the linear space of twice con-
travariant tensors on V and let fg ∈ C1(BL (V ;V ) ;<) be the associated po-
tential on the linear space of linear operators on V , according to the relation:

fg(α∗g) := f(α∗) , ∀α∗ ∈ BL (V ∗2 ;<) ,

where α∗g ∈ BL (V ;V ) .

15
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We then have that
〈Tf(α∗), τ ∗ 〉= 〈Tfg(α∗g), τ ∗g〉 = 〈grad fg(α∗g), τ ∗g〉g

= 〈g (grad fg(α∗g))T , τ ∗ 〉 , ∀ τ ∗ ∈ BL (V ∗2 ;<) .

The derivative Tf(α∗) ∈ BL (V ∗2 ;<)∗ = BL (V 2 ;<) is a twice covariant tensor
on V and the gradient grad fg(α∗g) ∈ BL (V ;V ) is a linear operator on V .

They are related by:

Tf(α∗) = g ◦ (grad fg(α∗g))T .

An analogous result holds for a potential h ∈ C1(BL (V 2 ;<) ;<) on the linear
space of twice covariant tensors and the associated potential on the linear space
of linear operators on V , according to the relation:

hg(g−1α) := h(α) , ∀α ∈ BL (V 2 ;<) ,

being
Th(α) = (gradhg(g−1α))T ◦ g−1 ,

with Th(α) ∈ BL (V 2 ;<)∗ = BL (V ∗2 ;<) and gradhg(g−1α) ∈ BL (V ;V ) .

1.1.6 Categories, Morphisms and Functors
The concepts of category was introduced in modern geometry to provide a unify-
ing framework for many basic concepts [110]. The category theory was founded
by Eilenberg and MacLane about 1945 .

Definition 1.1.4 A category Cat is a family of objects {A,B, . . .} such that
to any ordered pair {A ,B} of objects there corresponds a set Mor(A,B) of
morphisms and for any ordered triplet {A,B,C} there corresponds an associa-
tive law of composition:

Mor(A,B)×Mor(B,C) 7→Mor(A,C) ,

expressed as

f ∈Mor(A,B) , g ∈Mor(B,C) =⇒ f ◦ g ∈Mor(A,C) ,

fulfilling the properties:

A = A and B = B =⇒ Mor(A,B) = Mor(A,B) ,

A 6= A or B 6= B =⇒ Mor(A,B) ∩Mor(A,B) = ∅ ,
where A,A,B,B ∈ Cat .

16
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Moreover for each A ∈ Cat there is an identity morphism

idA ∈Mor(A,A) .

Figure 1.4: Saunders MacLane (1909 - 2005)

Figure 1.5: Samuel Eilenberg (1913 - 1998)

Definition 1.1.5 (Covariant and contravariant functors) A covariant func-
tor F : Cat 7→ Cat is a map which associates with each object A ∈ Cat an ob-
ject F (A) ∈ Cat and with each morphism f ∈Mor(A,B) , with A,B ∈ Cat ,
a morphism F (f) ∈ Mor(F (A), F (B)) which preserves the identity and the
composition law:

F (idA) = idF (A) , F (g ◦ f) = F (g) ◦ F (f) ,

17
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so that the following is a commutative diagram

A
F−−−−→ F (A)

f

y yF (f)

B
F−−−−→ F (B)

g

y yF (g)

C
F−−−−→ F (C)

In contravariant functors the arrows are reversed so that the morphism f ∈
Mor(A,B) transforms into F (f) ∈Mor(F (B), F (A)) and the transformation
of the composition law becomes F (g ◦ f) = F (f) ◦F (g) , so that the following is
a commutative diagram

A
F−−−−→ F (A)

f

y xF (f)

B
F−−−−→ F (B)

g

y xF (g)

C
F−−−−→ F (C)

The functors F : Cat 7→ Cat of the same variance from a category Cat to a
category Cat are themselves the objects of a category Fun{Cat ,Cat} .
Definition 1.1.6 (Functor morphism) A functor morphism or natural trans-
formation is a morphism of the category Fun{Cat ,Cat} and is defined as fol-
lows. For any pair of covariant functors F1, F2 ∈ Fun{Cat ,Cat} a natural
transformations Nat : F1 7→ F2 is a collection of morphisms

NatA : F1(A) 7→ F2(A) ,

with A ranging in Cat , such that for any f ∈Mor(A,B) , with A,B ∈ Cat ,
we have the commutative diagram:

A
F1−−−−→ F1(A)

NatA−−−−→ F2(A)
F2←−−−− A

f

y F1(f)

y yF2(f) f

y
B

F1−−−−→ F1(B)
NatB−−−−→ F2(B)

F2←−−−− B

18
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Definition 1.1.7 (Isomorphism)

An isomorphism in a category Cat is a morphism f ∈ Mor(A,B) with the
property that there exists a morphism g ∈ Mor(B,A) such that f ◦ g ∈
Mor(B,B) and g ◦ f ∈Mor(A,A) are identities.

Definition 1.1.8 (Section of a morphism)

A section of a morphism f ∈ Mor(A,B) in a category Cat is a morphism
s ∈Mor(B,A) such that f ◦ s ∈Mor(B,B) is the identity.

1.1.7 Flows
Evolution problems defined on a manifold are of the utmost importance in
physics. They emerge, for example, in dynamics when studying the motion
of a body subject to holonomic nonlinear kinematical contraints.

Motions are described by a two-parameter family of diffeomorphisms of the
ambient manifold into itself. The two scalar parameters are the initial (or start)
time and the final (or current) time and the diffeomorphisms of the family are
called flows. When the start and the current times coincide the flow is the
identity map. As we shall see, composed flows fulfill a determinism law.

The tangents to the trajectories of the flows provide a vector field of velocities
on the manifold, and vice versa any assigned regular vector field is the velocity
field of a flow that can be evaluated by a time integration. If the vector field is
dependent on scalar parameters, the flow also will depend on these parameters.

The next section provides some basic results in the theory of ordinary differ-
ential equations, concerning existence, uniqueness and continuous dependence
of the solution on the inital data.

These results are essential to get a proper definition of a flow associated with
a velocity vector field and to illustrate its main properties.

1.1.8 Ordinary differential equations
Let M be a Ck differentiable manifold modeled on the Banach space E .

• A vector field v ∈ C0(E ;E) is said to be Lipschitz continuous if there
is a constant Lip > 0 such that

‖v(x)− v(y)‖ ≤ Lip ‖x− y‖ , ∀x, y ∈ E .
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• To a vector field v ∈ Ck(M ;TM) we may associate, in a local way, a
vector field v ∈ Ck(E ;E) in the model space by taking a chart {U,ϕ}
and pushing it forward according to ϕ ∈ C1(M ;E) :

v := ϕ↑v .

Figure 1.6: Rudolf Otto Sigismund Lipschitz (1832 - 1903)

To any Lipschitz continuous vector field v ∈ C0(M ;TM) there corre-
sponds (at least locally) a unique integral curve c ∈ C1(I ; M) thru a point
x ∈M , solution of the differential equation

∂µ=λ c(µ) = v(c(λ)) , λ ∈ I = [−ε,+ε] , ε > 0 ,

under the initial condition c(0) = x .
The solution depends with continuity on the initial condition. If the vector

field v is time-dependent, the Lipschitz continuity is to be fulfilled uniformly
in time, that is:

sup
λ∈I
‖v(x, λ)− v(y, λ)‖ ≤ Lip ‖x− y‖ , ∀x, y ∈ E ,

with Lip > 0 independent of time. The differential equation then writes

∂µ=λ c(µ) = v(c(λ), λ) , λ ∈ I = [−ε,+ε] , ε > 0 .

To prove this assertion we must rely upon two fundamental results in ordinary
differential equation theory.

The former, presented in Proposition 1.1.2 and referred to in the literature as
Banach’s fixed point theorem, the contraction lemma or the shrinking lemma,
provides existence and uniqueness of the solution.

The latter, known as the Grönwall’s lemma, is presented in Proposition
1.1.4 and ensures continuous dependence of the solution on the initial condition.
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Figure 1.7: Stefan Banach (1892 - 1945)

Proposition 1.1.2 (Banach’s fixed point theorem) Let {X ,dist} be a
complete metric space and T : X 7→ X a contraction mapping:

dist(T(x),T(y)) ≤ α dist(x,y) , α < 1 , ∀x,y ∈ X .

Then the fixed point problem

T(x) = x , x ∈ X ,

admits a unique solution.

Proof. The contraction property implies that the map T is continuous. Setting
xo ∈ X we may define by induction the sequence

xn+1 = T(xn) ⇐⇒ xn+1 = Tn(xo) ,

where Tn is the n-th iterate of T .
By induction we get

dist(xn,xn+1) ≤ αn dist(xo,x1) .

By the triangle inequality it follows that

dist(xn,xn+k)≤ dist(xn,xn+1) + . . .+ dist(xn+k−1,xn+k)

≤ (αn + . . .+ αn+k−1) dist(xo,x1) .

Being α < 1 the series
∑∞
n=0 α

n is convergent and therefore the partial sum
αn + . . . + αn+k−1 tends to zero as n → ∞ . The sequence {xn} is then a
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Cauchy sequence and the completeness of the space X ensures the existence
of x ∈ X such that

lim
n→∞

xn = x .

Hence, by the continuity of T , we get

T(x) = lim
n→∞

T(xn) = lim
n→∞

xn+1 = x ,

and the existence is proven. Uniqueness follows by observing that T(y) = y
with y ∈ X implies that

‖x− y‖ = ‖T(x)−T(y)‖ ≤ α ‖x− y‖ =⇒ x = y ,

since α < 1 . �

The next result is based on a method of successive approximations due to
Emile Picard and extended by Lindelöf and by Banach.

Figure 1.8: Charles Emile Picard (1856 - 1941)

Figure 1.9: Ernst Leonard Lindelöf (1870 - 1946)
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Proposition 1.1.3 (Existence and uniqueness) The differential equation

∂µ=λ c(µ) = v(c(λ), λ) , λ ∈ I ,

with the initial condition c(0) = x , admits a unique solution in a neighborhood
of x ∈M .

Proof. By a local chart {U,ϕ} around x ∈M we may set

v := ϕ↑v , c := ϕ ◦ c ,

and write the differential equation in the model Banach’s space as

∂µ=λ c(µ) = v(c(λ), λ) , µ, λ ∈ I ,

with the initial condition c(0) = x . An equivalent formulation is provided by
the integral equation

c(λ) = x+

∫ λ

0

v(c(s), s) ds .

Let X = C0(I ;E)∩B(I ;E) be the Banach space of bounded continuous maps
with the uniform convergence topology induced by the norm

‖c‖X = sup
λ∈I
‖c(λ)‖E ,

and T : X 7→ X the map defined pointwise by

(T ◦ c)(λ) = T (c(λ)) := x+

∫ λ

0

v(c(s), s) ds .

Then the solution of the differential equation is a fixed point of T . Now, by
the uniform Lipschitz continuity of the vector field, we have that

‖T (c2)− T (c1)‖X = sup
λ∈I
‖
∫ λ

0

v(c2(s), s)− v(c1(s), s) ds‖E

≤ sup
λ∈I

∫ λ

0

‖v(c2(s), s)− v(c1(s), s)‖E ds

≤ sup
λ∈I

∫ λ

0

Lip ‖c2(s)− c1(s)‖E ds

≤ Lip
∫
I

sup
s∈I
‖c2(s)− c1(s)‖E ds ≤ Lip ·meas (I) ‖c2 − c1‖X .
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Taking I such that Lip·meas (I) < 1 , the map T : X 7→ X has the contraction
property in the Banach space X and we may apply Proposition 1.1.2 to get
existence and uniqueness. �

Figure 1.10: Thomas Hakon Grönwall (1877 - 1932)

Proposition 1.1.4 (Grönwall’s lemma) Let f, g ∈ C0(I ;<) be continuous
and nonnegative on I = [a, b] . If for some constant k > 0 it is:

f(λ) ≤ k +

∫ λ

a

f(s) g(s) ds ∀λ ∈ I ,

then the following inequality holds

f(λ) ≤ k exp (

∫ λ

a

g(s) ds) ∀λ ∈ I .

Proof. Setting

α(λ) := k +

∫ λ

a

f(s) g(s) ds ,

we have that α(λ) > 0 and α′(λ) = g(λ) f(λ) for all λ ∈ I .
By assumption f(λ) ≤ α(λ) so that α′(λ) ≤ g(λ)α(λ) . Since α(a) = k ,

integrating we get

α(λ) ≤ k exp (

∫ λ

a

g(s) ds) ∀λ ∈ I ,

and hence the result. �
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Proposition 1.1.5 (Continuous dependence on the initial conditions)
Let us denote by Fλ(x0) the flow of the vector field v ∈ C0(E ;E) passing thru
x0 ∈ E , that is the solution of the differential equation

∂µ=λ c(µ) = v(c(λ), λ) , λ ∈ I ,

with the initial condition c(0) = x0 . Then there exists a neighborhood U(x0)
and a time interval I = [−ε,+ε] such that

‖Fλ(y)− Fλ(x)‖E ≤ exp (λ t) ‖y − x‖E , ∀λ ∈ I .

Proof. The flow fulfils the integral equation

Fλ(x) = x+

∫ λ

0

v(Fs(x), s) ds .

Hence, setting f(λ) := ‖Fλ(y)−Fλ(x)‖E , by the uniform Lipschitz continuity
of the vector field, we have that

f(λ) ≤ ‖y − x‖E + Lip
∫ λ

0

f(s) ds ,

and the result follows by Grönwall’s lemma. �

1.2 Differentiable manifolds
We provide here some basic facts and definitions about differentiable manifolds.

• Let M be a set and E be a Banach space. A chart {U,ϕ} on M is a
pair with ϕ : U 7→ E bijection between the subset U ⊂M and an open
set in E . A Ck-atlas A on M is a family of charts {{Ui, ϕi} | i ∈ I}
such that {∪Ui | i ∈ I} is a covering of M and that the overlap maps are
Ck-diffeomorfisms.

• Two atlases are equivalent if their union is still a Ck-atlas. The union
of all the atlases equivalent to a given one A is called the differentiable
structure generated by A .

• A Ckdifferentiable manifold modeled on the Banach space E is a pair
{M,D} where D is an equivalence class of Ck-atlases on M . The space
E is called the model space.
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• A subset O of a differentiable manifold M is said to be open if for each
x ∈ O there is a chart {U,ϕ} such that x ∈ U and U ⊂ O .

• A submanifold P ⊂M is a manifold such that for each x ∈ P there is a
chart {U,ϕ} in M , with x ∈ U , fulfilling the submanifold property :

ϕ : U 7→ E = E1 × E2 , ϕ(U ∩ P) = ϕ(U) ∩ (E1 × {0}) ,

that is, the restriction of the chart to a submanifold maps locally the
submanifold into a component space of the model space. Every open
subset of a manifold M is a submanifold.

• A finite dimensional differentiable manifold is a manifold modeled on a
finite dimensional normed linear space. All the tangent spaces to a finite
dimensional differentiable manifold are of the same dimension.

• Tangent vectors at x ∈ M are most simply defined by considering a
regular curve c(λ) ∈M , with λ ∈ I ⊂ < an open interval of the real line
containing the zero, such that x = c(0) . We then define a tangent vector
{x ,v} = c′(0) as an equivalence class of the curves thru x = c(0) which
share, in the model space E , a common tangent vector (ϕ ◦ c)′(0) to the
corresponding curves (ϕ ◦ c)(λ) , generated by a local chart {U,ϕ} such
that x ∈ U .

The set of tangent vectors at x ∈M is a linear space, said the tangent space
and denoted by TM(x) = TxM = TM(x) .

Tangent vectors {x ,v} ∈ TM(x) may also be uniquely defined by requiring
that they fulfil the formal properties of a point derivation:

(v1 + v2) f = v1 f + v2 f , additivity

v(a f) = a (v f) , a ∈ < , homogeneity

 <-linearity

v(fg) = (vf) g + f (vg) , Leibniz rule

where f , g ∈ Cr(x, U) and vf denotes the scalar field result of the operation
v on the scalar field f . This point of view, that identifies the tangent vectors
at a point of a differentiable manifold with the directional derivatives of smooth
scalar functions at that point, is the most convenient to get basic results of
differential geometry. Accordingly we may define the tangent space TM(x) at
a point x ∈ M as the linear space of tangent vectors {x ,v} : Cr(x, U) 7→
Cr−1(x, U) where Cr(x, U) is the germ of scalar functions which are r-times
continuously differentiable in a neighborhood U of x ∈M .
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1.2.1 Tangent and cotangent bundles
The tangent bundle TM to the manifold M is the disjoint union of the pairs
{x , TxM} with x ∈ M . An element {x ,v} ∈ {x , TxM} is called a tangent
vector applied at the base point x ∈M .

The manifols M is called the base manifold of the tangent bundle TM and
each tangent space TxM is called the fibre over x ∈M . The characteristic op-
eration on the tangent bundle is the projection on base points τ ∈ C1(TM ; M)
defined by τ ({x ,v}) = x ∈M . The tangent bundle TM to a manifold M is
itself a manifold whose atlas of charts is induced by the differentiable structure
of M by taking the differential of its charts.

• A Ck-vector field is a map v ∈ Ck(M ;TM) which to any point x ∈M
assigns a vector {x ,v(x)} ∈ {x , Tx(M)} based at x ∈ M . A vector
field is therefore characterized by the property that its left composition
τ ◦ v ∈ C1(M ; M) , with the projection τ ∈ C1(TM ; M) , is the identity
map on M :

τ ◦ v = idM ∈ C1(M ; M) .

According to the definition in section 1.1.6, a vector field is a section of the
morphism τ ∈ C1(TM ; M) .

The cotangent bundle T ∗M to the manifold M , also denoted as TM∗ , is
the disjoint union of the pairs {x , T ∗x (M)} with T ∗x (M) topological dual space
of Tx(M) . The elements of the cotangent bundle are called covectors.

A Ck-covector field is a map v∗ ∈ Ck(M ;T ∗M) which to any point x ∈M
assigns a covector {x ,v∗(x)} ∈ {x , T ∗x (M)} based at x ∈M .

A covector field is therefore characterized by the property that the left com-
position τ ∗ ◦ v∗ ∈ C1(M ; M) with the projection τ ∗ ∈ C1(T ∗M ; M) is the
identity map.

We will denote by TM(P) ⊆ TM the disjoint union of pairs {x , TxM}
with x ∈ P ⊆M .

Higher order tangent and cotangent bundles can be conceived by regarding
the starting tangent and cotangent bundles as base manifolds.

1.2.2 Tensor fields
Definition 1.2.1 (Multilinear forms and Tensor fields) A multilinear form
on a manifold M is a map M : M 7→ < which depends in a multilinear way
on a set of p vector fields and q covector fields, taken according to any chosen
ordering. A (q, p) tensor field on a manifold M is a map with the property
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that its point-values depend only on the corresponding point-values of the vector
and covector fields. A (q, p) tensor field is said to be p times covariant and q
times contravariant.

The standard tensoriality criterion is provided by the following statement
enunciated, for simplicity, with reference to a (0, p) multilinear form (for the
proof see [221] or [99] Lemma 7.3 or [110] Lemma 2.3 of Ch. VIII).

Lemma 1.2.1 (Tensoriality criterion) A multilinear form M : M 7→ < ,
which is linear on the space C∞(M) , in the sense that

M(v1, . . . , f vi, . . . ,vp) = fM(v1, . . . ,vp) , ∀ i = 1, . . . , p , ∀ f ∈ C∞(M) ,

can be pointwise represented by a unique tensor field TM on M , i.e.:

M(v1 . . .vp)(x) := TM(x)(v1(x), . . . ,vp(x)) , ∀x ∈M .

1.2.3 Manifold morphisms
• A Ck-morphism between two Ck-differentiable manifolds M1 and M2 is

a Ck-differentiable map ϕ ∈ Ck(M1 ; M2) . Differentiability means that
the composition of the map with local charts on M1 and M2 defines a
differentiable map from the model space E1 of M1 to the model Banach
space E2 of M2 .

• If M1 = M2 the morphism is called an endomorphism.

• A Ck-diffeomorphism ϕ ∈ Ck(M1 ; M2) is a Ck-morphism which is in-
vertible with a smooth inverse ϕ−1 ∈ Ck(M2 ; M1) .

• The differential Txϕ ∈ BL (TxM ;Tϕ(x)N) of a morphism ϕ ∈ C1(M ;N)
at the point x ∈M is the linear map defined by

Txϕ · v(x) = ∂λ=0 (ϕ ◦ c)(λ) ∈ Tϕ(x)N ,

for any curve c ∈ C1(I ; M) with 0 ∈ I , c(0) = x and velocity at
x ∈ M given by v(x) = ∂λ=0 c(λ) ∈ TxM or, equivalently, defined for
any f ∈ C1(N ;<) by the derivation rule

(Txϕ · v(x))f = v(x)(f ◦ϕ) .
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Definition 1.2.2 (Immersion) An immersion ϕ ∈ C1(M ;N) is a morphism
whose differential Txϕ ∈ BL (TxM ;Tϕ(x)N) is injective, i.e.

ker(Txϕ) = {0} , ∀x ∈M .

Definition 1.2.3 (Submersion) A submersion ϕ ∈ C1(M ;N) is morphism
whose differential Txϕ ∈ BL (TxM ;Tϕ(x)N) is surjective, i.e.

im(Txϕ) = Tϕ(x)N , ∀x ∈M .

Definition 1.2.4 (Immersed submanifold) An immersed submanifold of N
is the range ϕ(M) of an injective immersion ϕ ∈ C1(M ;N) .

Definition 1.2.5 (Embedding) An embedding ϕ ∈ C1(M ;N) is an injective
immersion which is a homeomorphism between M and ϕ(M) , that is ϕ ∈
C1(M ;ϕ(M)) is one to one and continuous with its inverse, the topology on
ϕ(M) being the one induced by N .

A detailed treatment of these notions of calculus on manifolds is given in [3] .

1.2.4 Tangent and cotangent functors
The tangent map Tϕ ∈ C0(TM ;TN) is pointwise defined by

(Tϕ · v)(x) = Txϕ · v(x) , ∀v ∈ C0(M ;TM) ,

which may also be written Tϕ · v = Tπ(v)ϕ · v .
Two basic examples of covariant and contravariant functors are provided by

the tangent functors and cotangent functors. In the category of differentiable
manifolds morphisms are smooth maps from one manifold to another one.

Definition 1.2.6 (Tangent functor) The tangent functor, between the cat-
egory of differentiable manifolds and the category of tangent bundles, is the
covariant functor defined by associating with each manifold its tangent bundle
and with each morphism ϕ ∈ C1(M ;N) its tangent map Tϕ ∈ C0(TM ;TN) .

The tangent map Tf ∈ C0(TM ;T<) of a scalar-valued function f ∈ C1(M ;<)
is defined by:

Tf · v = (f ,vf) ∈ C0(M ;<× <) , ∀v ∈ C0(M ;TM) ,

where we have canonically identified T< and <× < .
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Given a morphism ϕ ∈ C1(M ;N) and a function f ∈ C1(N ;<) , according
to chain rule the tangent map of the composition f ◦ϕ ∈ C1(M ;<) is given by

Tf · Tϕ · v = T (f ◦ϕ) · v , ∀v ∈ C0(M ;TM) .

An equivalent definition of Tϕ ∈ C0(TM ;TN) can be given by requiring the
relation above to hold for any f ∈ C1(N ;<) . The tangent functor is covariant
since

T idM = idTM , T (g ◦ f) = Tg ◦ T f ,

for all f ∈ C1(M ;N) and g ∈ C1(N ;Y) .

Lemma 1.2.2 The action of the tangent functor on a morphism ϕ ∈ C1(M ;N)
generates the commutative diagram

TM
Tϕ−−−−→ TN

τM

y τN

y
M

ϕ−−−−→ N

⇐⇒ τN ◦ Tϕ = ϕ ◦ τM ∈ C0(TM ;N) .

Proof. Let c ∈ C1(< ; M) be a curve with c(0) = x and hx = ∂λ=0 c(λ) .
Then the vector

∂λ=0 (ϕ ◦ c)(λ) = Txϕ · hx ,

is based at the point (ϕ ◦ c)(0) = ϕ(x) . �

The diagram in Lemma 1.2.2 states that taking a base point of a vector and
then mapping it into another manifold by a morphism, provides the base point
of the vector transformed by the tangent morphism. As a direct corollary we get
the commutative diagram relating a tangent vector field and its tangent map

TM
Tv−−−−→ T 2M

τM

y τTM

y
M

v−−−−→ TM

⇐⇒ τTM ◦ Tv = v ◦ τM ∈ C0(TM ;TM) .

Remark 1.2.1 By acting with the tangent functor on a map v ∈ C1(M ;TM)
we get a map Tv ∈ C1(TM ;T 2M) which is not a section of the bundle
τTM ∈ C1(T 2M ;TM) . Indeed, for any section u ∈ C1(M ;TM) , we have
that τM ◦ u = idM and hence τTM ◦ Tv · u = v ◦ τM ◦ u = v so that
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τTM ◦ Tv 6= idTM . This was to be expected since otherwise we would have
τTM ◦Tv = v◦τM = idTM and this is impossible since by acting with the pro-
jection τM ∈ C1(TM ; M) all information on a tangent vector is lost, except its
base point. Acting again with v ∈ C1(M ;TM) all information is overwritten
by that pertaining to the image of this map. Concerning this issue, see Lemma
1.3.7.

Definition 1.2.7 (Cotangent map) Given a morphism ϕ ∈ C1(M ;N) , the
cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M) at a point x ∈ M is the linear map
T ∗xϕ = (Txϕ)∗ ∈ BL (T ∗ϕ(x)N ;T ∗xM) which is the dual of the tangent map
Txϕ ∈ BL (TxM ;Tϕ(x)N) , according to the relation:

〈T ∗xϕ · ωϕ(x),vx 〉 = 〈ωϕ(x), Txϕ · vx 〉 ,

where vx ∈ TxM and ωϕ(x) ∈ T ∗ϕ(x)N . If the morphism ϕ ∈ C1(M ;N)

is surjective and invertible, the cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M) can be
pointwise defined, for all ω ∈ T ∗N , by the relation

T ∗ϕ · ω := T ∗ϕ−1(τ∗N(ω))ϕ · (ω ◦ϕ) .

Definition 1.2.8 (Cotangent functor) The cotangent functor, between the
category of differentiable manifolds and the category of cotangent bundles, is the
contravariant functor defined by associating with each manifold its cotangent
bundle and, with any invertible morphism ϕ ∈ C1(M ;N) the cotangent map
T ∗ϕ ∈ C0(T ∗N ;T ∗M) .

The cotangent functor is contravariant, being

T ∗idM = idT∗M , T ∗(g ◦ f) = T ∗f ◦ T ∗g .

for all invertible morphisms f ∈ C1(M ;N) and g ∈ C1(N ;Y) . An invertible
morphism ϕ ∈ C1(M ;N) and its cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M) are
related by the commutative diagram

T ∗M
T∗ϕ←−−−− T ∗N

τ∗M

y τ∗N

y
M

ϕ−1

←−−−− N

⇐⇒ ϕ−1 ◦ τ ∗N = τ ∗M ◦ T ∗ϕ ∈ C0(T ∗N ;N) ,

where τ ∗ ∈ C1(T ∗M ; M) and τ ∗N ∈ C1(T ∗N ;N) are the projection from the
cotangent bundles to the base manifolds.
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The above diagram and formula are quoted in [3, p.566] with a reversed
(misprinted) arrow.

In the same way, the cotangent map T ∗ϕ ∈ C0(ϕ(T ∗M) ;T ∗M) may be
associated with any injective morphism ϕ ∈ C1(M ;N) . A new general defini-
tion of the cotangent map associated with any morphism ϕ ∈ C1(M ;N) will
be provided later in Section 1.3, Definition 1.3.7.

1.2.5 Relatedness, Pull back and Push forward
A morphism ϕ ∈ C1(M ;N) between two manifolds M and N induces, under
suitable regularity assumptions, a transformation of scalar, vector and that
tensor fields defined on N into corresponding fields on M .

These transformations are called push and pull operations, or direct and
inverse images, associated with the morphism ϕ ∈ C1(M ;N) .

For scalar fields the push forward by a morphism simply consists in a change
of the base point which leaves invariant the value of the scalar field.

For vector fields the push forward by a morphism changes the base point
and is accompanied by a linear transformation which describes the modification
of the tangent space due to the action of the morphism.

The push forward transformation of covector and tensor fields, which are lin-
ear and multilinear forms, is defined so that their scalar values remain invariant.
Let us provide the basic definitions.

• The pull back of a scalar field f ∈ C0(N ;<) according to a morphism
ϕ ∈ C0(M ;N) is the field ϕ↓f ∈ C0(M ;<) which takes at a point
x ∈M the value taken by f ∈ C0(ϕ(M) ;<) at the point ϕ(x) ∈ N :

ϕ↓f := f ◦ϕ .

• The push forward ϕ↑f ∈ C0(ϕ(M) ;<) of a scalar field f ∈ C0(M ;<) ,
according to an injective morphism ϕ ∈ C0(M ;N) , is the scalar field
which takes, at the point y ∈ ϕ(M) , the value taken by f ∈ C0(M ;<)
at the unique point x ∈M such that y = ϕ(x) :

ϕ↑f ◦ϕ := f , on ϕ(M) .

Definition 1.2.9 (Relatedness) Given a morphism ϕ ∈ C1(M ;N) , the vec-
tor field X ∈ C0(N ;TN) is said to be ϕ-related to the vector field v ∈ C0(M ;TM)
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if the following diagram commutes

TM
Tϕ−−−−→ TN

v

x X

x
M

ϕ−−−−→ N

⇐⇒ X ◦ϕ = Tϕ · v ∈ C0(M ;TN) .

We underline that neither X ∈ C0(N ;TN) nor v ∈ C0(M ;TM) is univocally
determined by the other one, unless further assumptions are made on the mor-
phism ϕ ∈ C1(M ;N) . If the correspondence is univocally determined, in one
way or the other, we say that X is the push forward of v under ϕ or that v
is is the pull back of of X under ϕ .

Given an endomorphism ϕ ∈ C1(M ; M) , a vector field v ∈ C0(M ;TM)
is said to be ϕ-invariant if it is ϕ-related to itself.

• The push forward ϕ↑v ∈ C0(ϕ(M) ;TN) of a vector field v ∈ C0(M ;TM)
according to an injective morphism ϕ ∈ C1(M ;N) is defined on ϕ(M)
by the commutative diagram:

TM
Tϕ−−−−→ TN

v

x ϕ↑v
x

M
ϕ−−−−→ N

⇐⇒ (ϕ↑v) ◦ϕ := Tϕ · v ∈ C0(M ;TN) .

Being τN ◦ Tϕ = ϕ ◦ τ and τ ◦ v = idM , it is:

τN ◦ϕ↑v ◦ϕ = τN ◦ Tϕ · v = ϕ ◦ τ ◦ v = ϕ .

The push ϕ↑v ∈ C0(ϕ(M) ;TN) is also called the image of v ∈ C0(M ;TM)
according to ϕ ∈ C1(M ;N) . The pull back ϕ↓w ∈ C0(M ;TM) of a vec-
tor field w ∈ C0(N ;TN) according to a diffeomorphism ϕ ∈ C1(M ;N)
is the push along the inverse map ϕ−1 ∈ C1(N ; M) and is called the
inverse image.

• The pull back ϕ↓ω ∈ C1(M ;T ∗M) of a co-vector field ω ∈ C0(N ;T ∗N) ,
according to a morphism ϕ ∈ C1(M ;N) , is defined by requiring that the
evaluation 〈ϕ↓ω,v〉 be equal to the pull-back of the evaluation 〈ω,ϕ↑v〉 :

〈ϕ↓ω,v〉 := ϕ↓〈ω,ϕ↑v〉 = 〈ω,ϕ↑v〉 ◦ϕ , ∀v ∈ C0(M ;TM) .

Pull back and push forward of tensor fields according to diffeomorphisms, are
defined in a similar way.
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Proposition 1.2.1 Let ϕ ∈ C1(M ;N) be an invertible morphism. Then the
pull back ϕ↓ω ∈ C0(M ;T ∗M) of a covector field ω ∈ C0(N ;T ∗N) is given by

T ∗M
T∗ϕ←−−−− T ∗N

ϕ↓ω
x ω

x
M

ϕ−−−−→ N

⇐⇒ ϕ↓ω := T ∗ϕ · ω ◦ϕ ∈ C0(M ;TM) .

Proof. Recalling that ϕ↑v ◦ϕ = Tϕ · v for any v ∈ C0(M ;TM) , we have:

〈ϕ↓ω,v〉 :=ϕ↓〈ω,ϕ↑v〉 = 〈ω,ϕ↑v〉 ◦ϕ

= 〈ω ◦ϕ, Tϕ · v〉 = 〈T ∗ϕ · ω ◦ϕ,v〉 ,
and the statement is proved. �

In the literature it is customary to denote push-forward and pull-back oper-
ations according to a diffeomorphism ϕ ∈ C1(M ;N) by the symbols ϕ∗ and
ϕ∗ but then too many stars do appear in the geometrical sky (duality, Hodge
operator). So we decided to adopt a new, more expressive and peculiar notation.

The push forward and the pull back according to a diffeomorphism ϕ ∈
C1(M ;N) are related by

ϕ↓ = (ϕ−1)↑
so that ϕ↓ ◦ ϕ↑ = IM , ϕ↑ ◦ ϕ↓ = IN , where IM and IN are identity maps
acting on scalar, vector, co-vector and tensor fields on M and N respectively.
Let us prove this property for scalar and vector fields.

• For scalar fields f : M 7→ < and g : N 7→ < we have that

ϕ↑f ◦ϕ = f , ϕ↓g = g ◦ϕ ,
and hence

ϕ↓(ϕ↑f) = ϕ↑f ◦ϕ = f ,

ϕ↑(ϕ↓g) = ϕ↓g ◦ϕ−1 = g .

• For vector fields u : M 7→ TM and v : N 7→ TN we have that
(ϕ↑u) ◦ϕ := Tϕ · u ,

(ϕ↓v) ◦ϕ−1 := Tϕ−1 · v ,
and hence

ϕ↓ϕ↑u = Tϕ−1 · (ϕ↑u) ◦ϕ = Tϕ−1 · Tϕ · u = u ,

ϕ↑ϕ↓v = Tϕ · (ϕ↓v) ◦ϕ−1 = Tϕ · Tϕ−1 · v = v .

34



Differentiable manifolds Giovanni Romano

Proposition 1.2.2 Given two morphisms ϕ ∈ C1(M ;N) and φ ∈ C1(N ; Q) ,
the push forward of a vector field v ∈ C0(M ;TM) fulfils the direct chain rule:

(φ ◦ϕ)↑v = (φ↑ ◦ϕ↑)v .
Proof. Being ϕ↑v ◦ϕ = Tϕ ◦ v , we have that

(φ ◦ϕ)↑v ◦ (φ ◦ϕ) = T (φ ◦ϕ) · v = Tφ · Tϕ · v

= φ↑(ϕ↑v) ◦ϕ) ◦ φ = (φ↑ ◦ϕ↑)v ◦ (φ ◦ϕ) ,

and the rule is proven. �

Proposition 1.2.3 Given two morphisms ϕ ∈ C1(M ;N) and φ ∈ C1(N ; Q) ,
the pull back of a scalar field f ∈ C0(Q ;<) and of a covector field v∗ ∈
C0(Q ;T ∗Q) fulfill the reverse chain rules:

(φ ◦ϕ)↓f = (ϕ↓ ◦ φ↓)f

(φ ◦ϕ)↓v∗= (ϕ↓ ◦ φ↓)v∗ .
Proof. Being ϕ↓f = f ◦ϕ and ϕ↓v∗ = T ∗ϕ ◦ v ◦ϕ , we have that

(φ ◦ϕ)↓f = f ◦ (φ ◦ϕ) = (f ◦ φ) ◦ϕ

= ϕ↓(φ↓f) = (ϕ↓ ◦ φ↓)f ,
(φ ◦ϕ)↓v∗= T ∗(φ ◦ϕ) · v∗ ◦ (φ ◦ϕ) = T ∗ϕ · T ∗φ · v∗ ◦ (φ ◦ϕ)

= ϕ↓(φ↓v∗) = (ϕ↓ ◦ φ↓)v∗ ,
and the rules are proven. �

If ϕ ∈ C1(M ;N) and φ ∈ C1(N ; Q) are diffeomorphisms, we have that:

(φ ◦ϕ)↓ = ((φ ◦ϕ)−1)↑ = (ϕ−1 ◦ φ−1)↑ = ϕ↓ ◦ φ↓ .
The next proposition states that the directional derivative is natural with respect
to the push. A more general result concerning the Lie derivative will be provided
in Proposition 1.4.4.

Proposition 1.2.4 (Push of the directional derivative) Let ϕ ∈ C1(M ;N)
be a diffeomorphism, f ∈ C1(M ;<) , g ∈ C1(N ;<) be scalar functions and
v : M 7→ TM , u : N 7→ TN be vector fields. Then we have that

ϕ↑(v f) = (ϕ↑v) (ϕ↑f) , ∀v : M 7→ TM ,

ϕ↓(u g) = (ϕ↓u) (ϕ↓g) , ∀u : N 7→ TN .
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Proof. The former equality is proven as follows

(ϕ↑v) (ϕ↑f) ◦ϕ = v (ϕ↑f ◦ϕ) = v f = ϕ↑(v f) ◦ϕ .

The latter equality is obtained in an analogous way. �

The definition of the push forward of a covector field and Proposition 1.2.4
imply that

(ϕ↑Tf) ·ϕ↑v := ϕ↑(Tf · v) = ϕ↑(v f) = T (ϕ↑f) ·ϕ↑v , ∀v : M 7→ TM ,

that is ϕ↑(Tf) = T (ϕ↑f) . Analogously we get that ϕ↓(Tg) = T (ϕ↓g) .
Another useful formula is

ϕ↑(f v) = (ϕ↑f) (ϕ↑v) .

The proof follows from the relations

(ϕ↑(f v))k ◦ϕ= (f v)(k ◦ϕ) = f (v(k ◦ϕ))

= (f ◦ϕ−1 ◦ϕ) ((ϕ↑v)k ◦ϕ)

= (ϕ↑f) (ϕ↑v)k ◦ϕ .
Despite of its resemblance to the formula in Proposition 1.2.4, it is to be stressed
that here the field f v is simply the product between the scalar field f and the
vector field v . In greater generality, we have:

Proposition 1.2.5 (Pull-back of a contraction) Let µ · v be the contrac-
tion of a tensor µ ∈ BL (TN2 ;<) with a vector v ∈ TN , defined by

〈µ · v,w 〉 := µ(v,w) , ∀w ∈ TN .

Then the pull-back of the contraction by means of a morphism ϕ ∈ C1(M ;N) ,
is equal to the contraction of the pull-backs:

ϕ↓(µ ·ϕ↑a) = (ϕ↓µ) · a .

Proof. For any b ∈ TM we have that:

〈ϕ↓(µ · a),b〉= ϕ↓〈µ · a,ϕ↑b〉 = ϕ↓(µ(a,ϕ↑b))

= (ϕ↓µ)(ϕ↓a,b) = 〈ϕ↓µ ·ϕ↓a,b〉 ,
and this provides the result. �
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Proposition 1.2.6 (Pull-back of a tensor product) Let ω⊗α be the ten-
sor product of two co-vectors ω,α ∈ T ∗N , defined by

(ω ⊗α)(v ,w) := ω(v)α(w) , ∀v,w ∈ TM .

Then the pull-back of the tensor product by means of a morphism ϕ ∈ C1(M ;N) ,
is equal to the tensor product of the pull-backs:

ϕ↓(ω ⊗α) = ϕ↓ω ⊗ϕ↓α .

Proof. For any a,b ∈ TM we have that:

(ϕ↓(ω ⊗α))(a ,b)= ϕ↓((ω ⊗α)(ϕ↑a ,ϕ↑b))

= ϕ↓(ω(ϕ↑a))ϕ↓(α(ϕ↑b)) = (ϕ↓ω)(a) (ϕ↓α)(b)

= (ϕ↓ω ⊗ϕ↓α)(a ,b) ,

and this provides the result. �

1.2.6 Push and metric isomorphism
Let us consider a morphism ϕ ∈ C1(M ;N) between the manifolds M and N
which are embedded in a larger Riemann manifold S , i.e. a manifold endowed
with a field g ∈ C1(S ;BL (TS2 ;<)) of metric tensors.

We put the question: which is the vector associated with the push-forward
of a form associated with a given vector? A direct computation provides the
answer. Indeed, being:

Tϕ(m) ∈ C1(TmM ;Tϕ(m)N) ,

TϕT (ϕ(m)) ∈ C1(Tϕ(m)N ;TmM) ,

Tϕ−1(ϕ(m)) ∈ C1(Tϕ(m)N ;TmM) ,

Tϕ−T (m) ∈ C1(TmM ;Tϕ(m)N) ,

we have that:

〈ϕ↑(gma),w〉 = 〈gma, Tϕ−1·w〉◦ϕ−1 = gϕ(m)(Tϕ
−T ·a,w) ,

∀a ∈ TmM ,

∀w ∈ Tϕ(m)N ,

which can be written: ϕ↑(gma) = gϕ(m)(Tϕ
−Ta) .
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The pull-back of β ∈ BL (Tϕ(m)N2 ;<) is computed as follows:

(ϕ↓β)(a,b) = β(Tϕ · a, Tϕ · b) = gϕ(m)(g
−1
m β Tϕ · a, Tϕ · b)

= gm(TϕTg−1
ϕ(m)β Tϕ · a,b) , ∀a,b ∈ TmM ,

so that g−1
m (ϕ↓β) = TϕT (g−1

ϕ(m)β)Tϕ .

The pull-back of α∗ ∈ BL (T ∗ϕ(m)N
2 ;<) is evaluated as:

(ϕ↓α∗)(gma,gmb) = α∗(ϕ↑(gma),ϕ↑(gmb))

= α∗(gϕ(m)(Tϕ
−Ta),gϕ(m)(Tϕ

−Tb))

= 〈(α∗gϕ(m)) · Tϕ−Ta,gϕ(m)(Tϕ
−Tb)〉

= gϕ(m)((α
∗gϕ(m)) · Tϕ−Ta, Tϕ−Tb)

= gm(Tϕ−1(α∗gϕ(m))Tϕ
−Ta,b) , ∀a,b ∈ TmM ,

and hence (ϕ↓α∗) gm = Tϕ−1(α∗gϕ(m))Tϕ
−T and the invariance property:

〈ϕ↓α∗,ϕ↓β 〉= 〈Tϕ−1(α∗gϕ(m))Tϕ
−T , TϕT (g−1

ϕ(m)β)Tϕ〉g

= 〈α∗gϕ(m),g
−1
ϕ(m)β 〉g ◦ϕ = 〈α∗,β 〉 ◦ϕ .

1.2.7 Flows and vector fields
Let us first consider the case of time independent vector fields.

The integral curve of a vector field v ∈ C0(M ;TM) passing thru x ∈ M
for λ = 0 is the unique curve c ∈ C1(I ; M) solution of the differential equation

∂µ=λ c(µ) = v(c(λ)) , λ ∈ I ,

under the initial condition c(0) = x ∈M .

• The flow associated with the vector field v ∈ C0(M ;TM) is the appli-
cation

Flv : M× I 7→M ,

such that ∂λ=0 Flvλ = v equivalent to

∂µ=λ Flvµ = v ◦ Flvλ , λ ∈ I .
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Then c(λ) = Flvλ(x) is the integral curve of the vector field v ∈ C0(M ;TM)
passing thru x ∈M for λ = 0 .

By uniqueness of the integral curve, the following group property holds:

Flvµ ◦ Flvλ = Flvλ ◦ Flvµ = Flvλ+µ .

Since:
Flvλ ◦ Flv−λ = Flv−λ ◦ Flvλ = Flv0 ∈ C1(M ; M) ,

is the identity map, we infer that:

Flv−λ = (Flvλ)−1 .

Proposition 1.2.7 (Flows of morphism-related vector fields) The vector
fields vM ∈ C1(M ;TM) and vN ∈ C1(N ;TN) are related by the morphism
ϕ ∈ C1(M ;N) , according to the commutative diagram

TM
Tϕ // TN

M
ϕ //

vN

OO

N

vM

OO
⇐⇒ vN ◦ϕ = Tϕ · vM ∈ C0(M ;TN) ,

if and only if the flows FlvM

λ ∈ C1(M ; M) and FlvN
λ ∈ C1(N ;N) fulfil the

commutative diagram

M
ϕ // N

M
ϕ //

Fl
vM
λ

OO

N

Fl
vN
λ

OO
⇐⇒ ϕ ◦ FlvM

λ = FlvN
λ ◦ϕ ∈ C1(M ;N) .

Proof. Taking the derivatives:

∂λ=0 ϕ ◦ FlvM

λ = Tϕ · vM ,

∂λ=0 FlvN
λ ◦ϕ = vN ◦ϕ ,

we see that the speed of the flow FlvN
λ at the point ϕ(x) ∈ N is equal to the

speed of the flow ϕ ◦ FlvM

λ at x ∈ M . The converse result follows from the
uniqueness of the solution of the differential equation defining the flow. �

39



Differentiable manifolds Giovanni Romano

If ϕ ∈ C1(M ;N) is a diffeomorphism, it is natural to give the following
definition (see fig 1.11).

• The push of the flow Flvλ ∈ C1(M ; M) thru ϕ ∈ C1(M ;N) is the flow
ϕ↑Flvλ ∈ C1(N ;N) defined by

ϕ↑Flvλ := ϕ ◦ Flvλ ◦ϕ−1 .

The result of Proposition 1.2.7 can then be stated as follows.

• The flow of the push is equal to the push of the flow:

Flϕ↑vλ = ϕ↑Flvλ ∈ C1(N ;N) .

Figure 1.11: Push of a flow

In the special case N = M we get the following.

Corollary 1.2.1 (Drag and commutation) The push induced by an invert-
ible morphism ϕ ∈ C1(M ; M) drags a vector field v ∈ C1(M ;TM) if and
only if the morphism commutes with the flow of the field, that is

v = ϕ↑v ⇐⇒ ϕ ◦ Flvλ = Flvλ ◦ϕ .

We underline that the equality v = ϕ↑v , expressing the property that the
morphism ϕ ∈ C1(M ; M) drags the vector field v ∈ C1(M ;TM) , means that
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the push forward ϕ↑v of a point value {x ,v} at x ∈M of the vector field v
is equal to the point value {ϕ(x) ,v} at ϕ(x) ∈M of the vector field v .

Setting ϕ = Flvµ , from the group property Flvµ ◦Flvλ = Flvλ ◦Flvµ we obtain
that:

• A tangent vector field is dragged by its flow, i.e. v = Flvµ↑v .

1.2.8 Time dependent diffeomorphisms
The result of Proposition 1.2.7 can be extended to flows of time dependent
diffeomorphisms, as illustrated in Proposition 1.2.8.

Proposition 1.2.8 (Flows of time dependent pushes) Given a time depen-
dent diffeomorphism ϕt ∈ C1(M ;N) , let us consider the evolution operator

Flvt,s := ϕt ◦ϕ−1
s ∈ C1(N ;N) ,

and let vt = ∂τ=tϕτ ◦ϕ−1
t ∈ C1(N ;TN) be the relevant time dependent velocity

vector field:

∂τ=t Flvτ,s = vt ◦ Flvt,s , Flvs,s(x) = x , ∀x ∈ N .

Moreover let ut ∈ C1(M ;TM) and wt ∈ C1(N ;TN) be time dependent vector
fields. The following equivalence then holds

wt = vt +ϕt↑ut ⇐⇒ ϕt ◦ Flut,s = Flwt,s ◦ϕs .

Proof. By differentiating the expression ϕt ◦Flut,s = Flwt,s ◦ϕs with respect to
t , Leibniz rule gives

∂τ=t (ϕτ ◦ Fluτ,s) = (∂τ=t ϕτ ) ◦ Flut,s + Tϕt ◦ (∂τ=t Fluτ,s)

= vt ◦ϕt ◦ Flut,s + Tϕt ◦ ut ◦ Flut,s ,

= vt ◦ϕt ◦ Flut,s + (ϕt↑ut) ◦ϕt ◦ Flut,s ,

∂τ=t (Flwτ,s ◦ϕs)= ∂τ=t Flwτ,s ◦ϕs = wt ◦ Flwt,s ◦ϕs
= wt ◦ϕt ◦ Flut,s .
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By equating the two expressions above we get that vt+ϕt↑ut = wt . Vice versa
if this equality holds, we have that

∂τ=t (ϕτ ◦ Fluτ,s) = wt ◦ (ϕt ◦ Flut,s) .

Hence the curve (ϕτ ◦Fluτ,s)(x) with x ∈M is the integral curve of the vector
field wt passing thru ϕs(x) ∈ N at the time s . The uniqueness of the integral
curve implies that ϕt ◦ Flut,s = Flwt,s ◦ϕs . �

The result of Proposition 1.2.8 can be expressed as follows

• The velocity of a pushed flow is equal to the velocity of the pushing flow
plus the push of the velocity of the flow.

1.3 Fibred manifolds and bundles
A comprehensive treatment of fibred manifolds can be found in [216]. Basic
definitions and some results will be summarized hereafter.

Definition 1.3.1 A fibred manifold is a triple {E,p,M} where E and M are
manifolds and p ∈ C1(E ; M) is an surjective submersion called the projection.
The manifold E is called the total space and M the base space. For each
m ∈M the subset p−1(m) is called the fibre over m and is denoted by Em .

A fibred manifold may also be denoted by its projection p ∈ C1(E ; M) . In a
fibred manifold the fibres over points of the base space may have quite different
topological properties. In most applications it is however natural to require
that fibres be related by diffeomorphic relations. This leads to the definition of
a fibre bundle.

Definition 1.3.2 A fibre bundle {E,p,M,F} with typical fibre F is a fibred
manifold, with total space E and projection p ∈ C1(E ; M) on the base space
M , which is locally a cartesian product.

This precisely means that the Ck-manifold M has an open atlas

{{U i, ϕi} | i ∈ I} ,

such that for each i ∈ I there is a Ck-diffeomorphism φi : p−1(U i) 7→ U i × F
with πi ◦ φi = p , being πi : U i × F 7→ U i the canonical projection on the first
element.
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• A manifold E which is a cartesian product E = M× F is called a trivial
fibre bundle.

• A vector bundle is a fibre bundle in which the fibre F is a vector space.

The tangent bundle TM to a manifold M is a vector bundle, with projection
τ ∈ C1(TM ; M) , whose fibres are the tangent spaces to M .

• A fibre bundle morphism χ : E 7→ H between two fibre bundles pM ∈
C1(E ; M) and pN ∈ C1(H ;N) is a morphism which is fibre preserving :

pM(a) = pM(b) =⇒ (pN ◦ χ)(a) = (pN ◦ χ)(b) , ∀a,b ∈ E .

A fibre bundle morphism χ : E 7→ H induces a base morphism ϕ : M 7→ N
according to the commutative diagram:

E χ−−−−→ H

pM

y ypN

M
ϕ−−−−→ N

with pN ◦ χ = ϕ ◦ pM .

It is also said that χ : E 7→ H is a fibre bundle morphism over the base
morphism ϕ : M 7→ N . More precisely it is the pair (χ ,ϕ) , fulfilling the
commutativity property above, which defines a fibre bundle morphism from
pM to pN [216].

• A fibre bundle morphism from a fibre bundle p ∈ C1(E ; M) to itself is
called an endomorphism.

• A fibre bundle automorphism is an invertible endomorphism.

• A vector bundle homomorphism χ : E 7→ H between two vector bundles
pM ∈ C1(E ; M) and pN ∈ C1(H ;N) is a fibre bundle morphism which
is fibre linear.

• A vector bundle isomorphism is an invertible homomorphism.

• A section of the fibre bundle (E ,p ,M) is a map s ∈ C1(M ;E) which is
a right-inverse of the fibration p ∈ C1(E ; M) , i.e. such that:

p ◦ s = idM ,

where idM ∈ C1(M ; M) is the identity map.
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Tangent vector fields v ∈ C1(M ;TM) are sections of the tangent vector
bundle τ ∈ C1(TM ; M) since they meet the property τ ◦ v = idM .

• A section along a map f ∈ C1(N ; M) of the fibre bundle p ∈ C1(E ; M)
is a map s ∈ C1(N ;TE) such that:

p ◦ s = f .

Let p ∈ C1(E ; M) be a fibre bundle and Tp ∈ C1(TE ;TM) the lifted fibre
bundle by the tangent functor. The manifold TE has also the vector bundle
structure of a tangent bundle denoted by τE ∈ C1(TE ;E) .

Definition 1.3.3 (Projectable vector fields) A vector field X ∈ C1(E ;TE)
tangent to a fibre bundle p ∈ C1(E ; M) is said to be projectable if there exists
a vector field v ∈ C1(M ;TM) which completes the commutative diagram:

E X−−−−→ TE

p

y yTp

M
v−−−−→ TM

⇐⇒ Tp ·X = v ◦ p ∈ C1(E ;TM) .

We underline that the map v ◦ p ∈ C1(E ;TM) is fibrewise constant in p ∈
C1(E ; M) . Then projectability means that tangent vectors X(e) ∈ TeE , whose
based points e ∈ Ex belong to the same fibre Ex , have all the same base velocity
Tp ◦X(e) = v(x) .

An equivalent definition is that a map X ∈ C1(E ;TE) is projectable if there
exists a map v ∈ C1(M ;TM) such that the pair (X ,v) is a bundle morphism
from p ∈ C1(E ; M) to Tp ∈ C1(TE ;TM) .

If the map X ∈ C1(E ;TE) is a tangent vector field, the projected map
v ∈ C1(M ;TM) is a tangent vector field too. Indeed, from Lemma 1.2.2 we
get the commutative diagram

E τE←−−−− TE

p

y yTp

M
τM←−−−− TM

⇐⇒ τM ◦ Tp = p ◦ τE .

which, recalling the projectability property Tp ◦X = v ◦ p , gives

τM ◦ v ◦ p = τM ◦ Tp ·X = p ◦ τE ◦X .

Then τE◦X = idE implies that τM◦v = idM by surjectivity of the projection
p ∈ C1(E ; M) .
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Corollary 1.3.1 (Flows of projectable vector fields) The pair (X ,v) , of
tangent vector fields X ∈ C1(E ;TE) and v ∈ C1(M ;TM) , is a bundle mor-
phism from the fibre bundle p ∈ C1(E ; M) to Tp ∈ C1(TE ;TM) if and only
if the corresponding flows FlX and Flv are related for any λ ∈ < by the com-
mutative diagram

E
FlXλ−−−−→ E

p

y yp

M
Flvλ−−−−→ M

⇐⇒ p ◦ FlXλ = Flvλ ◦ p ∈ C1(E ; M) .

Proof. This is a special case of Proposition 1.2.7 page 39. �

Lemma 1.3.1 (Naturality of projection with respect to push) Let p ∈
C1(E ; M) be a fibre bundle and X,Y ∈ C1(E ;TE) tangent vector fields which
project respectively to the tangent vector fields u,v ∈ C1(M ;TM) , so that

Tp ·X = u ◦ p , p ◦ FlXλ = Fluλ ◦ p ,

Tp ·Y = v ◦ p , p ◦ FlYλ = Flvλ ◦ p .

Then
Tp · (FlYλ ↑X) = (Flvλ↑u) ◦ p .

Proof. A direct calculation gives

Tp · TFlYλ ·X = T (p · FlYλ ) ·X = T (Flvλ ◦ p) ·X

= (TFlvλ · Tp) ·X = TFlvλ · Tp ·X = TFlvλ · u ◦ p .

Then, recalling that, by definition:

(FlYλ ↑X) ◦ FlYλ = TFlYλ ·X ,

(Flvλ↑u) ◦ Flvλ = TFlvλ · u ,

we get

Tp · (FlYλ ↑X) ◦ FlYλ = (Flvλ↑u) ◦ Flvλ ◦ p = (Flvλ↑u) ◦ p ◦ FlYλ ,

whence the result follows by invertibility of the flow. �
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1.3.1 Product bundles
A product bundle p× π ∈ C1(E×H ; M× N) is the cartesian product of two
given ones p ∈ C1(E ; M) and π ∈ C1(H ;N) . If there is some relationship
between the given bundles, other constructions may be performed. So, if the
base spaces are identical, we get the special important construction of a fibred
product bundle over the common base. On the other hand, if the total space of
the fibred product is considered but choosing a different base space, we get the
definition of pull-back bundle.

Definition 1.3.4 (Fibred product) Given two fibre bundles p ∈ C1(E ; M)
and π ∈ C1(H ; M) over the same base M , the fibred product bundle p×Mπ ∈
C1(E ×M H ; M) is the bundle whose total space E ×M H is the subset of the
cartesion product defined by

{(e ,h) ∈ E×H | p(e) = π(h)} ,

with the projection p×M π given by

(p×M π)(e ,h) = p(e) = π(h) .

The restrictions of the cartesian-product projections to the total space of a
fibred product bundle, yield two more bundle structures [216].

Definition 1.3.5 The surjective submersions p↓π ∈ C1(E×MH ;E) and π↓p ∈
C1(E×M H ; H) are fibre bundles defined by

(p↓π)(e ,h) := e , (π↓p)(e ,h) := h .

Definition 1.3.6 (Pull-back bundle) Given a fibre bundle (E ,p ,M) and a
map f ∈ C1(H ; M) the pull-back bundle (f↓E , f↓p ,H) by f is the fibre bundle
whose total space f↓E is the subset of the cartesian product E×H defined by:

{(e ,h) ∈ E×H | p(e) = f(h)} ,

with the projection f↓p defined by (f↓p)(e ,h) = h .

Lemma 1.3.2 The space of sections of the pull-back bundle f↓p ∈ C1(f↓E ; H)
is isomorphic to the space of sections of the fibre bundle p ∈ C1(E ; M) along
f ∈ C1(H ; M) .
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Proof. Let s ∈ C1(H ;E) be a section of p ∈ C1(E ; M) along f ∈ C1(H ; M)
so that p◦s = f . Then the pair (s , idH) ∈ C1(H ; f↓E) is a section of the pull-
back bundle f↓p ∈ C1(f↓E ; H) since ((f↓p) ◦ (s , idH))h = (f↓p)((s(h) ,h)) =
h . Vice versa, given a section sf ∈ C1(H ; f↓E) of the pull-back bundle with
sf (h) = (e ,h) , the map s ∈ C1(H ;E) defined by s(h) := e fulfils the relation
(p ◦ s)(h) = p(e) = f(h) . �

The pair (p↓f , f) is a fibre bundle morphism from f↓p to p :

f↓E p↓f−−−−→ E

f↓p
y yp

H
f−−−−→ M

⇐⇒ p ◦ p↓f = f ◦ f↓p ∈ C0(f↓E ; M) .

The typical fibres of p and f↓p are the same.
The total space f↓E of the pull-back bundle f↓p may be thought of as

formed by copies of the fibres of the fibre bundle p ∈ C1(E ; M) with base
points transplanted from M to H by the map f ∈ C1(H ; M) .

The notion of pull-back bundle permits to define the cotangent map of any
morphism.

Definition 1.3.7 (Cotangent map of a morphism) The cotangent map of
a morphism ϕ ∈ C1(M ;N) is the map T ∗ϕ ∈ C1(ϕ↓T ∗N ;T ∗M) defined by:

T ∗ϕ(x ,ω) := T ∗xϕ · ωϕ(x) , ∀x ∈M , ∀ω ∈ T ∗ϕ(x)N ,

with T ∗xϕ ∈ BL (T ∗ϕ(x)N ;T ∗xM) bounded linear map dual to the tangent map
Txϕ ∈ BL (TxM ;Tϕ(x)N). If the morphism ϕ ∈ C1(M ;N) is invertible, we
may set:

T ∗ϕ(ω) := T ∗ϕ(ϕ−1(π∗N(ω)) ,ω ◦ϕ) ,

thus recovering Definition 1.2.7 of the cotangent map T ∗ϕ ∈ C1(T ∗N ;T ∗M)
of an invertible morphism.

1.3.2 Whitney product of vector bundles
Definition 1.3.8 (Whitney product) The fibred product of two vector bun-
dles p ∈ C1(E ; M) and π ∈ C1(H ; M) over the same base M is called the
Whitney product of the two bundles.
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Figure 1.12: Hassler Whitney (1907 - 1989)

Definition 1.3.9 (Pull-back of a one-form by a morphism) The pull back
at the point x ∈ M of a one-form ω ∈ T ∗ϕ(x)N , according to a morphism
ϕ ∈ C1(M ;N) , is defined, in terms of the map T ∗ϕ ∈ C1(ϕ↓T ∗N ;T ∗M) , by:

(ϕ↓ω)x := T ∗ϕ(x ,ω) ∈ T ∗xM .

If the morphism ϕ ∈ C1(M ;N) is invertible, the definition above reduces to
the formula of Proposition 1.2.1.

In particular, if the morphism is the projection τ ∗ ∈ C1(T ∗M ; M) , the pull-
back bundle τ ∗↓T ∗M is the Whitney sum T ∗M×M T ∗M and the cotangent
map T ∗τ ∗ ∈ C1(τ ∗↓T ∗M ;T ∗T ∗M) is defined by the relation:

T ∗τ ∗(u∗ ,v∗) := T ∗u∗τ
∗ · v∗ , ∀u∗,v∗ ∈ T ∗xM ,

with T ∗u∗τ
∗ ∈ BL (T ∗xM ;T ∗u∗T

∗M) dual to Tu∗τ
∗ ∈ BL (Tu∗T

∗M ;TxM).

Lemma 1.3.3 (Cotangent map of the cotangent bundle projection) The
cotangent map T ∗τ ∗ ∈ C1(T ∗M×MT ∗M ;T ∗T ∗M) is a linear homomorphism
between the bundles T ∗M×MT ∗M and (T ∗T ∗M , τ ∗T∗M , T ∗M) over the iden-
tity in T ∗M which is fibrewise injective and horizontal-valued.

Proof. Fibrewise injectivity follows from the polarity relation

ker(T ∗u∗τ
∗) = (im(Tu∗τ

∗))
◦

= {0} ,
a direct consequence of the assumption that the projection is a submersion.
Horizontality of the image form T ∗u∗τ

∗ · v∗ ∈ T ∗u∗T ∗M means that it vanishes
on vertical vectors Xu∗ ∈ ker(Tu∗τ

∗) ⊂ Tu∗T
∗M (for more details see Section

1.3.10) and this follows from the duality relation:

〈T ∗u∗τ ∗ · v∗,Xu∗ 〉 = 〈v∗, Tu∗τ
∗ ·Xu∗ 〉 .

Linearity in v∗ ∈ T ∗xM for any fixed u∗ ∈ T ∗xM is clear. �
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Definition 1.3.10 (Liouville one-form) The canonical or Liouville one-
form θM ∈ C1(T ∗M ;T ∗T ∗M) is the horizontal-valued form defined by

θM := T ∗τ ∗ ◦ diag ,

with the diagonal map diag ∈ C1(T ∗M ;T ∗M×M T ∗M) given by

diag(v∗) = (v∗ ,v∗) , ∀v∗ ∈ T ∗M .

Then θM(v∗) := T ∗v∗τ
∗ · v∗ ∈ T ∗v∗T ∗M and θM(v∗) = 0 ⇐⇒ v∗ = 0 .

In a similar way, we have that:

Lemma 1.3.4 (Cotangent map of the tangent bundle projection) The
cotangent map T ∗τ ∈ C1(TM ×M T ∗M ;T ∗TM) is a linear homomorphism
between the bundles TM×M T ∗M and (T ∗TM ,π∗TM , TM) over the identity
in TM which is fibrewise injective and horizontal-valued.

Proof. If the morphism is the projection τ ∈ C1(TM ; M) , the pull-back
bundle τ↓T ∗M is equal to the Whitney product TM ×M T ∗M and the
cotangent map T ∗τ ∈ C1(τ↓T ∗M ;T ∗TM) is defined by the relation:

T ∗τ (u ,v∗) := T ∗uτ · v∗ , ∀u ∈ TxM , ∀v∗ ∈ T ∗xM ,

with T ∗uτ ∈ BL (T ∗xM ;T ∗uTM) dual to Tuτ ∈ BL (TuTM ;TxM). �

Given a bundle morphism A ∈ C1(TM ;T ∗M) we may define the map

T ∗τ (u ,A(v)) := T ∗uτ ·A(v) , ∀u,v ∈ TxM , A(v) ∈ T ∗xM ,

Definition 1.3.11 (Poincaré-Cartan one-form) The Poincaré-Cartan one-
form θA ∈ C1(TM ;T ∗TM) is the horizontal-valued form defined by

θA := T ∗τ ◦ (idTM ,A) ,

Then θA(v) := T ∗vτ ·A(v) ∈ T ∗vTM and θA(v) = 0 ⇐⇒ A(v) = 0 .

Lemma 1.3.5 The Poincaré-Cartan one-form θA ∈ C1(TM ;T ∗TM) is
the pull-back of the Liouville one-form by means of the bundle morphism A ∈
C1(TM ;T ∗M) , i.e.

θA(v) := A↓(v ,θM) ∈ T ∗vTM .
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Proof. By definition A↓(v ,θM) = T ∗A(v ,θM) = T ∗vA · θM(A(v)) . Being
θM(A(v)) = T ∗τ ∗M(A(v) ,A(v)) , we infer that

A↓(v ,θM) = T ∗vA · θM(A(v)) = T ∗vA · T ∗τ ∗M(A(v) ,A(v))

= T ∗vA · T ∗A(v)τ
∗
M ·A(v)

= T ∗v (τ ∗M ◦A) ·A(v)

= T ∗vτ ·A(v)

= (T ∗τ ◦ (idTM ,A))(v) = θA(v) ,

and the result is proved. �

The Definition 1.3.8 of Whitney product of vector bundles has the following
important special case.

Definition 1.3.12 (Whitney product of dual bundles) Let p ∈ C1(E ; M)
and p∗ ∈ C1(E∗ ; M) be dual vector bundles. Their Whitney product is the
vector bundle E ×M E∗ whose fibres are the cartesian products of the corre-
sponding dual fibres:

(E×M E∗)x = Ex × E∗x , ∀x ∈M .

On a Whitney product, the evaluation map eval ∈ C1(E×ME∗ ;<) is defined
by

eval(v ,v∗) := 〈v∗,v〉 , ∀ (v ,v∗) ∈ E×M E∗ .

The fibre derivative dfeval ∈ C0(E×M E∗ ;E∗ ×M E) is given by

dfeval(v ,v∗) · (w ,w∗) := lim
λ→0

1

λ

[
〈v∗ + λw∗,v + λw〉 − 〈v∗,v〉

]
= 〈v∗,w〉+ 〈w∗,v〉 ,

and is identified with a symmetric tensor dfeval ∈ C1(E×M E∗,E×M E∗ ;<) .
From the property dfeval(v ,v∗) · (v ,v∗) = 2 eval(v ,v∗) , we infer that, by
Euler’s theorem, the evaluation map eval ∈ C1(E×ME∗ ;<) is homogeneous
of order 2 and hence, being indefinitely derivable, quadratic. Let us define the
polar A◦ ⊂ E∗ of a set A ⊂ E by the equivalence

v∗ ∈ A◦ ⇐⇒ 〈v∗,v〉 = 0 , ∀v ∈ A .
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Assuming reflexivity, that is E∗∗ = E , the evaluation map is weakly nondegen-
erate since

〈v∗,w〉 = 0 , ∀w ∈ E =⇒ v∗ = 0 ,

〈w∗,v〉 = 0 , ∀w∗ ∈ E∗ =⇒ v = 0 .

Figure 1.13: Paul Adrien Maurice Dirac (1902 - 1984)

Definition 1.3.13 (Dirac’s structure) A Dirac’s structure is a vector sub-
bundle D ⊆ E×M E∗ such that D = D⊥ that is Dx = D⊥x for every x ∈M
where orthogonality ⊥ is intended with respect to the pairing induced by the
fibre derivative of the evaluation map dfeval ∈ C1(E×M E∗,E×M E∗ ;<) .

It follows that (v ,v∗) ∈ D implies that eval(v ,v∗) = 〈v,v∗ 〉 = 0 .

1.3.3 Tensor bundles
Definition 1.3.14 (Tensor bundle) A vector bundle (E ,p ,M) whose fiber
at x ∈M is the linear space of real valued multilinear maps defined on a finite
cartesian list of vector spaces, which are either tangent or cotangent spaces at
x ∈M , is called a tensor bundle.

A characteristic property of tensor bundles is that any diffeomorphic map ϕ ∈
C1(M ; M) on the base manifold extends naturally to an automorphism ϕ↑ ∈
C1(E ;E) on the tensor bundle. The extension is the lifting of the diffeomor-
phism by a push, which is well-defined for any tensor. It transforms, in a linear
fashion, a tensor acting on tangent and cotangent vectors at x ∈ M into a
tensor acting on their pushes at ϕ(x) ∈ M , without changing the value (see
Section 1.2.5). An application may be found in Lemma 1.8.13.
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1.3.4 Linear operations in vector bundles
In a vector bundle (E ,p ,M) the linear structure is defined by two bilinear
homomorphisms.

The fibrewise addition add (E ,p ,M) , or briefly +p , is a bilinear homomor-
phism add (E ,p ,M) ∈ C1(E ×M E ;E) over the identity idM according to the
commutative diagram

E×M E
add (E ,p ,M) //

diag−1◦(p ,p)

��

E

p

��
M

id M //M


add (E ,p ,M)(ux ,vx) := ux +p vx ,

ux,vx ∈ Ex ,

(p ◦ add (E ,p ,M))(ux ,vx) = x .

By considering the trivial vector bundle M × < with fibration map pM ∈
C1(M × < ; M) , the scalar multiplication in the vector bundle (E ,p ,M) is a
bilinear homomorphism mult (E ,p ,M) ∈ C1((M×<)×ME ;E) , briefly ·p , over
the identity idM , according to the commutative diagram:

(M×<)×M E
mult (E ,p ,M) //

diag−1◦(p ,pM)

��

E

p

��
M

id M //M


mult (E ,p ,M)(α ,ux) := α ·p ux ,

ux ∈ Ex , α ∈ < ,

(p ◦mult (E ,p ,M))(α ,ux) = x .

Two vector bundle structures may be defined on the tangent manifold TE .
The first one is the standard tangent bundle structure (TE , τE ,E) according to
which addition, denoted by add (TE ,τE ,E) or briefly +τE , is performed between
tangent vectors X,Y ∈ TeE based at the same point e = τE(X) = τE(Y) ∈ E
and the sum is X +τE Y ∈ TeE . The scalar multiplication mult (TE ,τE ,E) , or
briefly ·τE , is defined similarly.

In the second vector bundle structure (TE , Tp , TM) fibrewise addition and
multiplication, denoted by add (TE ,Tp ,TM) and mult (TE ,Tp ,TM) , or briefly
+Tp and ·Tp , are induced by acting with the tangent functor.

To provide a clearer picture of the action of the tangent functor on the ad-
dition map add (E ,p ,M) ∈ C1(E ×M E ;E) , it may be expedient to consider
two curves u ∈ C1(I ;E) and v ∈ C1(I ;E) passing through ux = u(0) and
vx = v(0) and such that points corresponding to the same value of the pa-
rameter λ ∈ I belong to the same fibre of (E ,p ,M) , see the sketch in fig.
1.14.
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Then the base curve c ∈ C1(I ; M) is defined by c(λ) := p(u(λ)) = p(v(λ))
for all λ ∈ I .

By setting (u ,v)(λ) := (u(λ) ,v(λ)) and X := ∂λ=0 u(λ) , Y := ∂λ=0 v(λ) ,
the two curves are added to give the map add (E ,p ,M)◦(u ,v) ∈ C1(I ;E) whose
velocity is provided by the chain rule:

∂λ=0 (add (E ,p ,M) ◦ (u ,v))(λ) = Tadd (E ,p ,M)(ux ,vx) · (X ,Y) .

Figure 1.14: Tangent addition

The bilinear homomorphism add (TE ,Tp ,TM) ∈ C1(TE ×TM TE ;TE) over
the identity idTM is thus defined by add (TE ,Tp ,TM) := Tadd (E ,p ,M) and
explicitly

add (TE ,Tp ,TM)(X ,Y) = Tadd (E ,p ,M)(τE(X) , τE(Y)) · (X ,Y) ,

so that

TE×TM TE
add (TE ,Tp ,TM) //

diag−1◦(Tp ,Tp)

��

TE

Tp

��
TM

idTM // TM


X +Tp Y :=

add (TE ,Tp ,TM)(X ,Y) ,

where the pair (X ,Y) ∈ TE × TE is such that Tp ·X = Tp ·Y ∈ TM and
p(τE(X)) = p(τE(Y)) ∈M .

By considering the trivial vector bundle M × < with fibration map pM ∈
C1(M×< ; M) , the scalar multiplication in the bundle (E ,p ,M) is the bilinear
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homomorphism mult (E ,p ,M) ∈ C1((M × <) ×M E ;E) and the scalar multi-
plication mult (TE ,Tp ,TM) is defined by the tangent map Tmult (E ,p ,M) ∈
C1((TM× T<)×TM TE ;TE) and explicitly

mult (TE ,Tp ,TM)(A ,X) = Tmult (E ,p ,M)(τE(X) , τM×<(A)) · (A ,X) ,

so that

(TM× T<)×TM

mult (TE ,Tp ,TM) //

diag−1◦(Tp ,TpM)

��

TE

Tp

��
TM

idTM // TM


A ·Tp X :=

mult (TE ,Tp ,TM)(A ,X) ,

where the pair (A ,X) ∈ (TM×T<)×TE is such that TpM ·A = Tp·X ∈ TM
and p(τE(X)) = pM(τM×<(A)) ∈M .

1.3.5 Exact sequences
Let Q,M,N be manifolds and f ∈ C1(Q ; M) , g ∈ C1(M ;N) be manifolds
morphisms. A sequence:

Q
f−−−−→ M

g−−−−→ N

is called exact if im(f) = ker(g) . Let us now consider a sequence of vector
bundles (E1 ,p1 ,M) , (E2 ,p2 ,M) , (E3 ,p3 ,M) over the same base manifold
M . Denoting by 0 the null vector bundle, the exact sequence

0 −−−−→ E1
f−−−−→ E2

g−−−−→ E3 −−−−→ 0

implies that f ∈ C1(E1 ;E2) is injective and g ∈ C1(E2 ;E3) is surjective.

Definition 1.3.15 (Splitting) The exact sequence above is said to admit a
splitting if there exists an injective vector bundle morphism h ∈ C1(E3 ;E2)
such that g ◦ h = idE3 . Then E2 = im(f)⊕ im(h) .

1.3.6 Second tangent bundle
Higher order tangent bundles play an important role in the geometric description
of many fundamental issues in physics. The second tangent bundle is of special
importance in dynamics on manifolds.
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Let us consider the tangent bundle τM ∈ C1(TM ; M) of a manifold M
and its second tangent bundle τTM ∈ C1(T 2M ;TM) .

The tangent map TτM ∈ C0(T 2M ;TM) of the projection τM ∈ C1(TM ; M)
provides another vector bundle structure on the base manifold TM with the
commutative diagram:

T 2M
TτM //

τTM

��

TM

τM

��
M

v // TM

⇐⇒ τM ◦ TτM = τM ◦ τTM

The relation between the two bundle structures is conveniently described in
terms of the canonical involution, as described in [99] and in the next paragraph.

1.3.7 Canonical involution
Definition 1.3.16 (Flip) The canonical involution kT 2M ∈ C1(T 2M ;T 2M)
is defined by

kT 2M (∂µ=0 ∂λ=0 c(λ, µ)) := ∂λ=0 ∂µ=0 c(λ, µ) , ∀ c ∈ C2(<× < ; M) .

In a local chart (U ,ϕ) , setting ϕ ◦ c = c , we have that

(T 2ϕ ◦ kT 2M ◦ T 2ϕ−1) (c(0, 0) , ∂λ=0 c(λ, 0) , ∂µ=0 c(0, µ) , ∂µ=0 ∂λ=0 c(λ, µ))

:= (c(0, 0) , ∂µ=0 c(0, µ) , ∂λ=0 c(λ, 0) , ∂λ=0 ∂µ=0 c(λ, µ)) .

or in terms of components:

(T 2ϕ ◦ kT 2M ◦ T 2ϕ−1)(x , u , v , ξ) := (x , v , u , ξ) .

The flip nickname underlines that the map performs an exchange in the order
of the iterated derivation.

We denote by ±τTM
and ±TτM

:= T±τM
respectively the fibrewise addi-

tion (subtraction) in the vector bundles τTM ∈ C1(T 2M ;TM) and TτM ∈
C0(T 2M ;TM) . Often ±τTM

is simply denoted by ± . Likewise ·τTM
and

·TτM
are the fibrewise multiplications, with · denoting ·τTM

by default.

Lemma 1.3.6 The flip is involutive: kT 2M ◦ kT 2M = idT 2M , is such that

τTM ◦ kT 2M = TτM , TτM ◦ kT 2M = τTM ,
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and provides a linear isomorphism between the bundles τTM ∈ C1(T 2M ;TM)
and TτM ∈ C1(T 2M ;TM) defined by{

kT 2M(X +τTM
Y) = kT 2M(X) +TτM

kT 2M(Y) , τTM(X) = τTM(Y) ,

kT 2M(α ·τTM
X) = α ·TτM

kT 2M(X) , α ∈ < .

Moreover, for any f ∈ C2(M ;N) :

kT 2N ◦ T 2f = T 2f ◦ kT 2M ,

where T 2f ∈ C0(T 2M ;T 2N) .

Proof. Involutivity is clear from the definition. The base vector of the vector
X(v) := ∂µ=0 ∂λ=0 c(λ, µ) ∈ TvTM in the bundle τTM ∈ C1(T 2M ;TM)
is v = τTM(X(v)) = ∂λ=0 c(λ, 0) ∈ TτM(v)M and the base-point velocity is
TτM ·X(v) = ∂µ=0 c(0, µ) ∈ TτM(v)M where τM(v) = c(0, 0) ∈M .

The flip involution transforms the vector X(v) into the vector kT 2M(X(v)) =
∂λ=0 ∂µ=0 c(λ, µ) ∈ TTτM·X(v)TM whose base vector is τTM(kT 2M(X(v))) =
∂µ=0 c(0, µ) = TτM ·X(v) ∈ TτM(v)M and whose base-point velocity is v =
τTM(X(v)) = ∂λ=0 c(λ, 0) ∈ TτM(v)M . The flip is a bundle morphism be-
tween the bundles τTM ∈ C1(T 2M ;TM) and TτM ∈ C0(T 2M ;TM) since
two vectors with the same base point in τTM ∈ C1(T 2M ;TM) are transformed
in vectors with the same base velocity and hence with the same base point in
TτM ∈ C0(T 2M ;TM) and vice versa. Fibrewise linearity of the flip follows
from the rules:

(x , u , v , ξ) +τTM
(x , u , w , ζ) = (x , u , v + w , ξ + ζ)

(x , v , u , ξ) +TτM
(x ,w , u , ζ) = (x , v + w , u , ξ + ζ) ,

and
α ·τTM

(x , u , v , ξ) = (x , u , αv , αξ)

α ·TτM
(x , v , u , ξ) = (x , αu , v , αξ) ,

For any f ∈ C2(M ;N) and X ∈ TuTM by definition we have: T 2f(u) ·X =
∂µ=0 ∂λ=0 (f ◦ c)(λ, µ) , with uµ = ∂λ=0 c(λ, µ) , u = u0 and X = ∂µ=0 uµ .
Then:

(T 2f(u) ◦ kT 2M) ·X = ∂λ=0 ∂µ=0 (f ◦ c)(λ, µ)

= kT 2N(∂µ=0 ∂λ=0 (f ◦ c)(λ, µ)) = (kT 2N ◦ T 2f(u)) ·X ,

and the second assertion follows. �
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Lemma 1.3.7 Acting with the tangent functor on a section v ∈ C1(M ;TM)
of the tangent bundle τM ∈ C1(TM ; M) , we get a section Tv ∈ C1(TM ;T 2M)
of the bundle TτM ∈ C1(T 2M ;TM) . The map kT 2M ◦ Tv ∈ C1(TM ;T 2M)
is a section of the bundle τTM ∈ C1(T 2M ;TM) .

Proof. Since v ∈ C1(M ;TM) is a section, we have that τM◦v = idM . Then
TτM ◦ Tv = T (τM ◦ v) = T idM = idTM and the second statement follows
since τTM ◦ kT 2M ◦ Tv = TτM ◦ Tv . �

Let us observe that the map v ◦ τM ∈ C1(TM ;TM) is fibrewise constant
in τM ∈ C1(TM ; M) and hence cannot be equal to the identity idTM ∈
C1(TM ;TM) . It follows that the diagram

TM
Tv //

τM

��

T 2M

TτM

��
M

v // TM

⇐⇒ TτM ◦ Tv 6= v ◦ τM ,

is not commutative. On the contrary, from the corollary to Lemma 1.2.2 and
from Lemma 1.3.6 we infer commutativity of the diagram

TM
kT2M◦Tv //

τM

��

T 2M

TτM

��
M

v // TM

⇐⇒ TτM ◦ kT 2M ◦ Tv = v ◦ τM .

The next result provides the relation between the vector field associated with
a flow and the one associated with the tangent map of the flow.

Lemma 1.3.8 (Velocity of the tangent flow) Let Flvλ ∈ C1(M ; M) be the
flow of the vector field v ∈ C1(M ;TM) and TFlvλ ∈ C1(TM ;TM) the rele-
vant tangent flow. Then the following formula holds

Fl
kT2M◦Tv
λ = TFlvλ ,

where Tv ∈ C1(TM ;T 2M) is the map tangent to v ∈ C1(M ;TM) and
kT 2M ∈ C1(T 2M ;T 2M) is the canonical flip.
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Proof. Let u,v ∈ C1(M ;TM) be vector fields and Fluµ,Flvλ ∈ C1(M ; M)
their flows. Then the velocity of the curve:

TFlvλ · u = ∂µ=0 Flvλ ◦ Fluµ ,

is given by

∂λ=0 TFlvλ · u = ∂λ=0 ∂µ=0 Flvλ ◦ Fluµ = kT 2M · ∂µ=0 ∂λ=0 Flvλ ◦ Fluµ

= kT 2M · ∂µ=0 (v ◦ Fluµ) = kT 2M · Tv · u .

Arbitrariness of u ∈ C1(M ;TM) implies that ∂λ=0 TFlvλ = kT 2M · Tv . �

The following result translates the classical one by L. Euler and H.A.
Schwarz on the symmetry of the iterated derivative, into a property of the
second tangent map of a scalar-valued functional on a manifold M .

Figure 1.15: Leonhard Euler (1707 - 1783)

Figure 1.16: Hermann Amandus Schwarz (1843 - 1921)
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Lemma 1.3.9 (Euler-Schwarz) For any scalar-valued functional f ∈ C2(M ;<)
and any pair of vector fields u,v ∈ C1(M ;TM) we have that

T 2f · Tv · u = kT 2< ◦ T 2f · Tv · u .
Proof. From Lemma 1.3.6 we have: T 2f · kT 2M = kT 2< · T 2f . Then, setting
fvu(λ, µ) := f ◦ Flvλ ◦ Fluµ , we get

∂µ=0 ∂λ=0 fvu(λ, µ) := ∂µ=0 ∂λ=0 f ◦ Flvλ ◦ Fluµ

= ∂µ=0 Tf · v ◦ Fluµ

= T 2f · Tv · u ,
and

∂λ=0 ∂µ=0 fvu(λ, µ) := ∂λ=0 ∂µ=0 f ◦ Flvλ ◦ Fluµ

= ∂λ=0 Tf · TFlvλ · u

= T 2f · kT 2M · Tv · u

= kT 2< · T 2f · Tv · u ,
and then the equivalence of the statement with the standard form of Euler-
Schwarz theorem is apparent. �

The Euler-Schwarz theorem may be extended [3] to any twice differen-
tiable map with range in a linear space V , even non finite dimensional, by
a recourse to the Hahn-Banach extension theorem [240]. To this end, let
ϕ ∈ C2(M ;V ), and F be any real valued linear functional on V . Then,
setting f := F ◦ϕ , we have

∂λ=0 ∂µ=0 fvu(λ, µ) = F (∂λ=0 ∂µ=0ϕvu(λ, µ)) ,

∂µ=0 ∂λ=0 fvu(λ, µ) = F (∂µ=0 ∂λ=0ϕvu(λ, µ)) ,

so that F (∂λ=0 ∂µ=0ϕvu(λ, µ)− ∂µ=0 ∂λ=0ϕvu(λ, µ)) = 0 , for any linear func-
tional F . The result then follows from the next statement. If the equality
F (a) = 0 with a ∈ V holds for any non vanishing linear functional F , then
a = 0 . In fact, reasoning per absurdum, the inequality a 6= 0 would imply that
the linear functional on Span(a) ⊂ V defined by F (αa) = α is non vanishing.
By the Hahn-Banach theorem it can be extended to a linear functional F on
V such that F (a) 6= 0 , contrary to the assumption. Then

∂λ=0 ∂µ=0ϕvu(λ, µ) = ∂µ=0 ∂λ=0ϕvu(λ, µ) .
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Figure 1.17: Hans Hahn (1879 - 1934)

1.3.8 Sprays
Let X ∈ C1(TM ;T 2M) be a section of the tangent bundle τTM ∈ C1(T 2M ;TM) ,
so that τTM ◦ X = idTM , i.e. X(v) ∈ TvTM . The associated flow FlXλ ∈
C1(TM ;TM) is defined by the differential equation

∂λ=0 FlXλ = X , FlX0 = idTM .

We give the following definition.

Definition 1.3.17 (Spray) A section X ∈ C1(TM ;T 2M) of the tangent
bundle τTM ∈ C1(T 2M ;TM) is called a spray if it is also a section of the
bundle TτM ∈ C1(T 2M ;TM) , that is if TτM ·X = τTM ◦X = idTM .

Lemma 1.3.10 A section X ∈ C1(TM ;T 2M) of the tangent bundle τTM ∈
C1(T 2M ;TM) is a spray if and only if kT 2M ·X = X .

Proof. The if part follows from Lemma 1.3.6 since

X = kT 2M ·X =⇒ TτM ·X = TτM · kT 2M ·X = τTM ·X = idTM .

The only if part amounts to prove that

TτM ·X = τTM ◦X = idTM =⇒ X = kT 2M ·X .
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Let c ∈ C2(< × < ; M) and set c(λ, µ) = Flvλ ◦ Fluµ with u,v ∈ C1(M ;TM)
vector fields, and X = ∂µ=0 ∂λ=0 c(λ, µ) . Then

X = ∂µ=0 ∂λ=0 c(λ, µ) = ∂µ=0 ∂λ=0 Flvλ ◦ Fluµ

= ∂µ=0 v ◦ Fluµ = Tv · u ∈ TvTM ,

kT 2M ◦X = ∂λ=0 ∂µ=0 c(λ, µ) = ∂λ=0 ∂µ=0 Flvλ ◦ Fluµ

= ∂λ=0 TFlvλ · u = kT 2M · Tv · u ∈ TuTM ,

and
τTM ·X = ∂λ=0 c(λ, 0) = ∂λ=0 Flvλ ◦ Flu0 = v ,

TτM ·X = ∂µ=0 c(0, µ) = ∂µ=0 Flv0 ◦ Fluµ = u .

Note that, assuming commutation of the flows, i.e. Flvλ ◦ Fluµ = Fluµ ◦ Flvλ , we
have X = kT 2M · Tu · v . Now the assumption TτM ·X = τTM ◦X implies
that u = v and hence that

X = Tu · u = kT 2M · Tu · u = kT 2M ·X ,

which was to be proved. �

The tangent map Tv ∈ C0(TM ;T 2M) of any map v ∈ C1(M ;TM) can-
not be a spray. Indeed, by Remark 1.2.1 we know that Tv ∈ C0(TM ;T 2M)
is not a section of the bundle τTM ∈ C1(T 2M ;TM) . On the contrary, the
compostion kT 2M ◦ Tv ∈ C0(TM ;T 2M) is a section of the bundle τTM ∈
C1(T 2M ;TM) , as shown by Lemma 1.3.7. By definition a spray is not a pro-
jectable vector field, see Def. 1.3.3.

1.3.9 Second order vectors
Definition 1.3.18 (Second order vectors) A bivector X ∈ TvTM is said
to be second order if the velocity of the base point τM(v) ∈M is equal to the
tangent vector v ∈ TM , i.e. if TvτM ·X(v) = τTM(X(v)) = v .

The motivation is the following. A second order bivector X ∈ TvTM is the
velocity X(v) = ∂λ=0 c(λ) of a curve c ∈ C1(I ;TM) at c(0) = v ∈ TM , such
that the projected curve τM ◦ c ∈ C1(I ; M) has velocity given by

∂λ=0 (τM ◦ c)(λ) = TτM · ∂λ=0 c(λ) = TτM ·X(v) = v .
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In a local chart the components of v(x) ∈ TM are (x , v) and the components
of X(v) are ((pr1 ◦X)(x , v) , (pr2 ◦X)(x , v)) . The defining property ensures
that

(pr1 ◦X)(x , v) = v .

Then the system of first order differential equations{
ẋ= (pr1 ◦X)(x , v) ,

v̇= (pr2 ◦X)(x , v) ,

is equivalent to the second order differential equation

ẍ = (pr2 ◦X)(x , ẋ) .

1.3.10 Vertical bundle
A fibre bundle p ∈ C1(E ; M) carries two vector bundle structures τE ∈
C1(TE ;E) and Tp ∈ C1(TE ;TM) associated with it.

The former is the vector bundle tangent to the manifold E while the latter
is the result of acting on the fibre bundle with the tangent functor.

As a special case of Lemma 1.2.2, these bundle structures are related to the
tangent bundle τM ∈ C1(TM ; M) by the commutative diagram:

TE Tp−−−−→ TM

τE

y yτM

E p−−−−→ M

⇐⇒ p ◦ τE = τM ◦ Tp ∈ C1(TE ; M) .

Definition 1.3.19 The vertical bundle is the subbundle τE ∈ C1(VE ;E) whose
fibres are the point kernels of the tangent map Tp ∈ C1(TE ;TM) , that is

VeE := ker(Tep) , e ∈ E .

Vertical vectors fields V ∈ C1(E ;VE) on a fibre bundle p ∈ C1(E ; M) are
characterized by being projectable to the zero section of τM ∈ C1(TM ; M) .

In each tangent space TeE , the subspace of vertical vectors is made of tangents
at e ∈ E to the curves c ∈ C1(I ;E) such that the velocity of the projected curve
p ◦ c ∈ C1(I ; M) vanishes at p(e) . These curves may be also be considered as
lying entirely in the fibre Ex , i.e. c ∈ C1(I ;Ex) and it is clear that vertical
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tangents vectors belong to the tangent space TeEx to the fibre Ex over x =
p(e) ∈M . Then dim VeE = dimTeEx .

Given a section s ∈ C1(M ;E) of the fibre bundle p ∈ C1(E ; M) , and a
vector X ∈ TE , the difference: X− (T s ◦ Tp) ·X is a vertical vector. Indeed

Tp · (T s · Tp) ·X = (Tp · T s · Tp) ·X = Tp ·X .

Moreover, given two sections s, s ∈ C1(M ;E) such that s(x) = s(x) and any
vector vx ∈ TxM , we have that T s · vx, T s · vx ∈ Ts(x)E . Their difference is
then meanginful and is a vertical vector:

Tp · (T s · vx − T s · vx) = vx − vx = 0 .

This simple property has far reaching consequences being at the base of the
concept of horizontal lifting and hence of connection on a fibre bundle (see
section 1.7.2, page 116).

1.3.11 Vertical lift in a vector bundle
In a vector bundle p ∈ C1(E ; M) , any fibre Ep(e) := p−1{p(e)} is a linear
space and the tangent space TeEp(e) at e ∈ E to a fibre Ep(e) over p(e) ∈M
may be identified with the fibre itself, i.e.

VeE = TeEp(e) ' Ep(e) , ∀ e ∈ E .

Accordingly, a vertical vector field in C1(M ;VE) may be identified with a
vector field in C1(M ;E) of the vector bundle.

Identifications may however be a source of a geometric misinterpretation of
the results. It is then preferable to consider in each fibre Ep(e) a straight line
through a point, say e ∈ Ep(e) , and with director η ∈ Ep(e) , represented in
parametric form by the affine map:

aff t
E×ME(e,η) := e + tη , η ∈ Ep(e) , t ∈ < .

The parallel line through the origin is represented by the linear map

lin t
E(η) := aff t

E×ME(0,η) = tη .
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Definition 1.3.20 (Vertical lift) The (full) vertical lift or canonical injection
Vl (E,p,M) ∈ C1(E ×M E ;TE) is the vector bundle isomorphism Vl (E,p,M) ∈
C1(E ×M E ;TE) between the product vector bundle E ×M E and the vertical
vector bundle τE ∈ C1(VE ;E) , defined by [99]:

Vl (E,p,M) := ∂t=0 aff t
E×ME = Taff 0

E×ME · 10 ,

and explicitly [84]:

Vl (E,p,M)(e ,η) := ∂t=0 (e + tη) ∈ VeE ,

for all (e ,η) ∈ E×M E .

The evaluation Vl (E,p,M)(e) ∈ BL (Ep(e) ;TeE) maps linearly any vector η ∈
Ep(e) into the vertical vector

Vl (E,p,M)(e) · η := Vl (E,p,M)(e ,η) ∈ VeE = TeEp(e) .

The map Vl (E,p,M)(e) ∈ BL (Ep(e) ;VeE) is a linear isomorphism since to any
vertical tangent vector X ∈ VeE there corresponds exactly one straight path,
passing though e ∈ E , whose velocity is equal to the given vertical vector.

Definition 1.3.21 (Vertical drill) In a vector bundle p ∈ C1(E ; M) , the
vertical drill Vd (E,p,M)(e) := Vl−1

(E,p,M)(e) ∈ BL (VeE ;Ep(e)) at e ∈ E is the
τE-p-linear inverse of the vertical lift at e ∈ E and is defined by:

Vd (E,p,M)(e) ·X := (e ,η) ∈ E×M E where X = ∂t=0 (e + tη) .

The vertical drill maps a vertical vector X ∈ VeE into the unique pair (e ,η) ∈
E×M E whose vertical lift is equal to X . Then we have that{

Vd (E,p,M)(e) ◦Vl (E,p,M)(e) = idEp(e)
,

Vl (E,p,M)(e) ◦Vd (E,p,M)(e) = idVeE .

Following [99] we define the small vertical lift as:

vl (E,p,M) · η := Vl (E,p,M)(0) · η = ∂t=0 lin t
E(η) ∈ V0E , ∀η ∈ E .

and the small vertical drill as the map which associates with a vertical vector
X ∈ VeE the vector η ∈ Ep(e) whose vertical lift at e ∈ E is equal to X . Then
vd (E,p,M) ◦ Vl (E,p,M)(e) = idE , for all e ∈ E , and vd (E,p,M) ◦ vl (E,p,M) =
idE . This fibrewise correspondence induces a surjective homomorphism from
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the vector bundle τE ∈ C1(VE ;E) onto the vector bundle p ∈ C1(E ; M) ,
which we call the vertical drill vd (E,p,M) ∈ C1(VE ;E) , defined by:

vd (E,p,M) ·V := vd (E,p,M)(τE(V)) ·V , ∀V ∈ VE .

Lemma 1.3.11 For any section s ∈ C1(M ;E) of a vector bundle p ∈ C1(E ; M) ,
the following diagrams commute:

TM×M TM
aff t

TM×MTM−−−−−−−−−→ TM

T s

y yT s

TE×E TE
aff t

TE×ETE−−−−−−−→ TE

⇐⇒ aff t
TE×ETE ◦ T s = T s ◦ aff t

TM×MTM ,

TM×M TM
Vl (TM,τ,M)−−−−−−−−→ VTM

T s

y yT 2s

TE×E TE
Vl (TE,τE,E)−−−−−−−→ VTE

⇐⇒ Vl (TE,τE,E) ◦ T s = T 2s ◦Vl (TM,τ ,M) ,

with the notation:

T s · (a ,b) := (T s · a , T s · b) ∈ TE×E TE , ∀ (a ,b) ∈ TM×M TM .

We have likewise the relations:

lin t
TE×ETE ◦ T s = T s ◦ lin t

TM×MTM

vlTE×ETE ◦ T s = T 2s ◦ vlTM×MTM .

Proof. It is enough to prove the former equality.

aff t
TE×ETE ◦ T s ◦ (a ,b) = aff t

TE×ETE ◦ (T s · a , T s · b)

= T s · a + t T s · b = T s · (a + tb)

= T s ◦ aff t
TM×MTM ◦ (a ,b) , ∀ (a ,b) ∈ TM×M TM .

The latter equality is the ∂t=0 derivative of the former one. �
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It is customary to identify the vertical drill with the identity map to simplify
the exposition. We adopt this point of view with some significant exceptions
where the distinction between the vertical space VeE and the linear space Ep(e)

is essential to get a clearer geometrical picture.
The following linearity Lemma will be useful to provide the properties of the

linear connections and of the covariant derivative in Sections 1.8.2 and 1.8.5.

Lemma 1.3.12 (Linearity of the vertical lift) The vertical lift in a vector
bundle p ∈ C1(E ; M) meets the properties

Vl (E,p,M) ◦ add (E ,p ,M) = add (TE ,τE ,E) ◦Vl (E,p,M) ,

Vl (E,p,M) ◦ add (E ,p ,M) = add (TE ,Tp ,TM) ◦Vl (E,p,M) ,

where the operator Vl (E,p,M) ∈ C1(E ;VE) is intended to act on pairs by acting
on each element of the pair. Analogous formulas hold for the multiplication so
that the vertical lift is both p-τE-linear and p-Tp-linear. The same property
holds for the small vertical lift.

Proof. The property of p-τE-linearity holds since, for any e,a,b ∈ Ex , we
have

Vl (E,p,M)(e) ◦ add (E ,p ,M)(a,b) = ∂t=0 (e + t(a + b))

= ∂t=0 (e + ta + tb) = ∂t=0 (e + ta) + ∂t=0 (e + tb)

= add (TE ,τE ,E)(Vl (E,p,M)(e ,a) ,Vl (E,p,M)(e ,b)) ,

where the equality on the second row holds by definition of τE-addition in the
linear space Ep(e) .

The property of p-Tp-linearity holds since, for any a,b,u,v ∈ Ex , we have

(Vl (E,p,M) ◦ add (E ,p ,M))((a ,u), (b ,v)) = ∂t=0 (a + b + t(u + v))

= ∂t=0 (a + tu + b + tv) = ∂t=0 (a + tu) +Tp ∂t=0 (b + tv)

= add (TE ,Tp ,TM) · (Vl (E,p,M)(a,u) ,Vl (E,p,M)(b,v)) ,

where the equality on the second row holds by definition of Tp-addition in the
linear space Ep(e) (see Section 1.3.4), both summand vectors being vertical and
hence with the same (vanishing) horizontal part. �
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Lemma 1.3.13 (Linearity of the vertical drill) The vertical drill in a vec-
tor bundle p ∈ C1(E ; M) meets the properties

add (E ,p ,M) ◦ vd (E,p,M) = vd (E,p,M) ◦ add (TE ,τE ,E) ,

add (E ,p ,M) ◦ vd (E,p,M) = vd (E,p,M) ◦ add (TE ,Tp ,TM) ,

where the operator vd (E,p,M) ∈ C1(VE ;E) is intended to act on pairs by acting
on each element of the pair. Analogous formulas hold for the multiplication so
that the vertical drill is both τE-p-linear and Tp-p-linear.

Proof. Let us set X := Vl (E,p,M)(e ,u) and Y := Vl (E,p,M)(e ,v) , for any
e,u,v ∈ Ex , so that u = vd (E,p,M)(X) and v = vd (E,p,M)(Y) . By p-τE-
linearity of the vertical lift stated in Lemma 1.3.12, we have

Vl (E,p,M)(e ,add (E ,p ,M)(u,v)) = add (TE ,τE ,E)(Vl (E,p,M)(e ,u) ,Vl (E,p,M)(e ,v))

= add (TE ,τE ,E)(X ,Y) .

Then, being vd (E,p,M) ◦Vl (E,p,M)(e) = idE , we get the former equality. The
second is got in the same way by relying on the p-Tp-linearity of the vertical
lift also stated in Lemma 1.3.12. �

Lemma 1.3.14 (Dual of the vertical lift) Let p ∈ C1(E ; M) be a vector
bundle and u,v ∈ Ex , that is p(u) = p(v) = x . The dual linear map
Vl∗(E,p,M)(u) ∈ BL (T ∗uE ;E∗x) of the vertical lift Vl (E,p,M)(u) ∈ BL (Ex ;TuE)
is defined by

〈Vl∗(E,p,M)(u) ·Y∗,v 〉 = 〈Y∗,Vl (E,p,M)(u) · v 〉 ,

for all v ∈ Ex and all Y∗ ∈ T ∗uE , and the following properties are met:

im(Vl (E,p,M)(u)) = VuE , ker(Vl (E,p,M)(u)) = {0} ,

im(Vl∗(E,p,M)(u)) = E∗x , ker(Vl∗(E,p,M)(u)) = (VuE)
◦
.

The dual map Vl∗(E,p,M) ∈ C1(E ; C1(T ∗E ;E∗)) is defined pointwise in E .

Proof. By the surjectivity of the linear map Vl (E,p,M)(u) , the properties of
the dual map follow from Banach’s closed range theorem [240]. �
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Lemma 1.3.15 Let Φ ∈ C1(TM ;TN) be a homomorphism of the vector bun-
dle τM ∈ C1(TM ; M) into the vector bundle τN ∈ C1(TN ;N) , so that:{

Φ(α a) = αΦ(a) ,

Φ(a + b) = Φ(a) + Φ(b) ,

for all a,b ∈ TM such that τM(a) = τM(b) . Then:

Vl (T 2N,τN,TN)(Φ(a) ,Φ(b)) = TΦ(a) ·Vl (T 2M,τM,TM)(a ,b) .

Proof. By assumption we have that:

Φ(a) + tΦ(b) = Φ(a + tb) .

The chain rule then gives:

Vl (T 2N,τN,TN)(Φ(a) ,Φ(b)) = ∂t=0 (Φ(a) + tΦ(b))

= ∂t=0 Φ(a + tb)

= TΦ(a) ·Vl (T 2M,τM,TM)(a ,b) ,

where the fibrewise linearity of Φ ∈ C1(TM ;TN) has been invoked. �

Lemma 1.3.16 (Correction flow) A flow FlXλ ∈ C1(TM ;TM) is a tangent
bundle automorphism, i.e. fibre-preserving and invertible, for any λ ∈ I , if and
only if the velocity vector field X ∈ C1(TM ;T 2M) is expressed by the sum

X = V + kT 2M · Tv ,

where v ∈ C0(M ;TM) is the projection of the vector field X ∈ C0(TM ;T 2M)
to a vector field on the base manifold according to the commutative diagram

TM
X−−−−→ T 2M

τM

y yTτM

M
v−−−−→ TM

⇐⇒ TτM ·X = v ◦ τM ,

and V ∈ C1(TM ;T 2M) is a vertical vector field according to the projection
TτM ∈ C1(T 2M ;TM) .
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Proof. For any λ ∈ I , if the map FlXλ ∈ C1(TM ;TM) is a tangent-
bundle automorphism, then the base map Flvλ ∈ C1(M ; M) is a well defined
automorphism. By acting with the tangent functor, we get the lifted map
TFlvλ ∈ C1(TM ;TM) which for each λ ∈ I is a tangent-bundle morphism
over the same base map as FlXλ ∈ C1(TM ;TM) . It follows that the correction
flow :

FlVλ := FlXλ ◦ TFlv−λ ∈ C1(TM ;TM) ,

projects to the identity: τM ◦ FlVλ = idM ◦ τM ∈ C1(TM ; M) . Taking
the derivative ∂λ=0 of the correction flow and invoking Lemma 1.3.8, we get:
V = X− kT 2M · Tv ∈ C1(TM ;T 2M) while, taking the derivative ∂λ=0 of the
projected flow, we get the verticality property:

TτM ·V = ∂λ=0 τM · FlVλ = ∂λ=0 idM ◦ τM = 0 .

The converse implication is proved by reversing the arguments’ order. From the
decomposition formula and Lemmata 1.2.2 and 1.3.6 we infer that

TτM ·X = TτM ·V + TτM · kT 2M · Tv = τTM ◦ Tv = v ◦ τM ,

and the result follows by Corollary 1.3.1. �

1.3.12 Automorphic flows
Definition 1.3.22 A flow FlXλ ∈ C1(E ;E) is said to be automorphic if for
each λ ∈ < it is a linear vector bundle automorphism, that is a fibre-preserving,
fibre-linear and invertible map from the vector bundle (E ,p ,M) onto itself.

Then the base flow Flvλ ∈ C1(M ; M) and its velocity vector field v ∈ C1(M ;TM)
are well defined by the commutative diagrams

E
FlXλ−−−−→ E X−−−−→ TE

p

y yp

yTp

M
Flvλ−−−−→ M

v−−−−→ TM

⇐⇒
{

p ◦ FlXλ = Flvλ ◦ p ,

Tp ·X = v ◦ p ,

and the vector field X ∈ C1(E ;TE) projects over the vector field v ∈ C1(M ;TM) .

69



Fibred manifolds and bundles Giovanni Romano

Lemma 1.3.17 (Automorphic flows) Let p ∈ C1(E ; M) be a vector bundle
and X ∈ C1(E ;TE) a vector field projecting over v ∈ C1(M ;TM) . Then
the pair (X ,v) is a homomorphism from the bundle (E ,p ,M) to the bundle
(TE , Tp , TM) iff the associated flow FlXλ ∈ C1(E ;E) is automorphic.

Proof. The fibrewise p-Tp-linearity of X ∈ C1(E ;TE) is expressed by

X(α ·p ex) = α ·Tp X(ex) ∈ TexE , ∀ ex ∈ Ex , α ∈ < ,

X(e1x +p e2x) = X(e1x) +Tp X(e2x) , ∀ e1x, e2x ∈ Ex ,

where X(e1x),X(e2x) ∈ (Tp)−1{vx} . By corollary 1.3.1, page 45, the flow
FlXλ ∈ C1(E ;E) projects on the flow Flvλ ∈ C1(M ; M) .

Since the map X ∈ C1(E ;TE) is fibre-respecting over v ∈ C1(M ;TM) :

e1x, e2x ∈ Ex =⇒ X(e1x),X(e2x) ∈ (Tp)−1{vx} ,

and the sum +Tp is well-defined. We must prove that:

FlXλ (α ex) = αFlXλ (ex) ∈ EFlvλ(x) , ∀ ex ∈ Ex , α ∈ < ,

FlXλ (e1x +p e2x) = FlXλ (e1x) +p FlXλ (e2x) ∈ EFlvλ(x) ∀ e1x, e2x ∈ Ex .

The result follows from the uniqueness of the solution of the differential equa-
tion defining the flow and precisely fibrewise homogeneity is inferred from the
equalities:

∂λ=0 FlXλ (α ·p ex) = ∂λ=0 (FlXλ ◦mult (E ,p ,M))(α , ex)

= X(mult (E ,p ,M)(α , ex))

= Tmult (E ,p ,M)(α , ex) · (0(α) ,X(ex))

= Tmult (E ,p ,M)(α , ex) · (0(α) , ∂λ=0 FlXλ (ex))

= ∂λ=0 (mult (E ,p ,M)(α ,FlXλ (ex))

= ∂λ=0 α ·p FlXλ (ex) ,
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and fibrewise additivity is inferred from the equalities:

∂λ=0 FlXλ (e1x +p e2x) = ∂λ=0 FlXλ (add (E ,p ,M)(e1x , e2x))

= X(add (E ,p ,M)(e1x , e2x))

= Tadd (E ,p ,M)(e1x , e2x) · (X(e1x) ,X(e2x))

= Tadd (E ,p ,M)(e1x , e2x) · ∂λ=0 (FlXλ (e1x) ,FlXλ (e2x))

= ∂λ=0 add (E ,p ,M)(FlXλ (e1x) ,FlXλ (e2x))

= ∂λ=0 (FlXλ (e1x) +p FlXλ (e2x)) .

We underline that, being p(e1x) = p(e2x) = x ∈M , by fibre-preservation it is

p(FlXλ (e1x)) = p(FlXλ (e2x)) = Flvλ(x) ,

and also Tp · X(e1x) = Tp · X(e2x) = vx ∈ TxM , by taking the derivative
∂λ=0 of the former equality. �

1.3.13 Bundles of second order tensors
We recall that BL ( ) means bounded linear. Scalar, vector and second order
tensor fields on a manifold M are sections of the following bundles with linear
fibres.

• The bundle (Fun(M) , π ,M) , with projection π ∈ C1(Fun(M) ; M) ,
whose linear fibre at x ∈M is a copy of a given normed linear space, i.e.
Fun(M)x = E . The scalar bundle is got if E = < , the space of reals.

• The tangent (cotangent) bundle (TM , τ ,M) ( (T ∗M , τ ∗ ,M) ), with
projection τ ∈ C1(TM ; M) ( τ ∗ ∈ C1(T ∗M ; M) ), whose linear fibre at
x ∈M is the tangent space TxM (cotangent space T ∗xM := BL (TxM ;<) ).

• The bundle (Cov(M) ,π ,M) , projection πCov ∈ C1(Cov(M) ; M) , whose
linear fibre at x ∈M is the space Cov(M)x = BL (TxM ;T ∗xM) of twice
covariant tensors.

• The bundle (Con(M) ,π∗ ,M) , projection πCon ∈ C1(Con(M) ; M) ,
whose linear fibre at x ∈M is the space Con(M)x = BL (T ∗xM ;TxM)
of twice contravariant tensors.
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• The bundle (Mix(M) , π̄ ,M) , with projection πMix ∈ C1(Mix(M) ; M) ,
whose linear fibre at x ∈ M is the space Mix(M)x = BL (TxM ;TxM)
of mixed tensors.

The bundle (Cov(M) ,π ,M) will also be denoted, for short, as Cov(M) and
similarly for the others.

Continuum mechanics is especially interested in the subbundles Sym(M) ⊂
Cov(M) and Sym∗(M) ⊂ Con(M) of twice covariant symmetric and twice
contravariant symmetric tensor fields and on their mixed variants.

The metric tensor field provides, between each pair of tensor bundles above,
a one-to-one correspondence which is in fact a linear bundle isomorphisms, i.e.
a fibre-respecting, fibre-linear invertible map. For instance, we have that:

α ∈ Cov(M) ⇐⇒ g∗ ◦α ∈Mix(M) ,

α∗ ∈ Con(M) ⇐⇒ α∗ ◦ g ∈Mix(M) ,

From the identities

α(a,b) = 〈(g ◦ g∗ ◦α) · a,b〉 = g((g∗ ◦α) · a,b) ,

α∗(g · a,g · b) = 〈(α∗ ◦ g) · a,g · b〉 = g((α∗ ◦ g) · a,b) ,

it follows that the symmetry of α ∈ Sym(M) is equivalent to the g-symmetry
of g∗ ◦ α ∈ Mix(M) and that the symmetry of α∗ ∈ Sym∗(M) is equivalent
to the g-symmetry of α∗ ◦ g ∈Mix(M) .

We denote by (Bun(M) ,π ,M) , the generic fibre bundle whose linear fibre
at x ∈M is {m ∈ Bun(M) : π(m) = x} .

1.4 Lie derivative
The definitions below are geometrical formalizations of standard physical no-
tions. Let idM ∈ C1(M ; M) be the identity map and prM ∈ C1(M × I ; M)
and prI ∈ C1(M× I ; I) the cartesian projections on the first and second com-
ponent.

Definition 1.4.1 (Time independent fields) A time in dependent field is a
section s ∈ C1(M ; Bun(M)) of the bundle (Bun(M) ,π ,M) whose fibre at
x ∈ M is the linear space Bun(M)x , so that s(x) ∈ Bun(M)x , according to
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the commutative diagram:

Bun(M)

π

��
M

s
::

idM //M

⇐⇒ π ◦ s = idM .

Definition 1.4.2 (Time dependent fields) A time dependent field is a sec-
tion s ∈ C1(M× I ; Bun(M)) , of the bundle (Bun(M) ,π ,M) along the pro-
jection prM ∈ C1(M×I ; M) . The value at (x , t) ∈M×I is in the linear space
Bun(M)x , i.e. s(x , t) ∈ Bun(M)x , according to the commutative diagram:

Bun(M)

π

��
M× I

s
99

prM //M

⇐⇒ π ◦ s = prM .

The Lie derivative or convective derivative at x ∈ M of a scalar, vector
or tensor field on M , along a vector field v ∈ C1(M ;TM) , is the rate of
variation of their pull back at x ∈ M along the flow Flvλ ∈ C1(M ; M) of
v ∈ C1(M ;TM) .

Figure 1.18: Marius Sophus Lie (1842 - 1899)

Then we have that:

• The Lie derivative Lvf ∈ C0(M ;T<) of a scalar field f ∈ C1(M ; Fun(M))
along the flow Flvλ ∈ C1(M ; M) of a vector field v ∈ C1(M ;TM) is de-
fined by the directional derivative in the normed linear space E .

Indeed the chain rule of differentiation shows that

Lvf := ∂λ=0 Flvλ↓f = ∂λ=0 (f ◦ Flvλ) = Tf · v ∈ C0(M ;TE) .
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Hence Lf = Tf ∈ C0(TM ;T<) with the commutative diagram:

E
τE←−−−− TE

f

x xTf
M

v−−−−→ TM

⇐⇒ f = τE ◦ Lf ◦ v ∈ C1(M ; Fun(M)) .

By the identification TxE ' E for all x ∈ E we may write Lvf ∈ C0(TM ;E) .

Definition 1.4.3 (Lie derivative) The Lie derivative Lvu of a vector field
u ∈ C0(M ;TM) along the flow Flvλ ∈ C1(M ; M) of a vector field v ∈
C1(M ;TM) is the vertical-valued vector field defined by

Lvu := ∂λ=0 (Flvλ↓u) := ∂λ=0 TFlv−λ ◦ u ◦ Flvλ ∈ VuTM .

The verticality of the Lie derivative is a direct consequence of the fact that
the curve of tangent vector fields (TFlv−λ ◦ u ◦ Flvλ)(x) ∈ TxM passes through
u(x) at λ = 0 and evolves in the linear fibre TxM . Accordingly, the base
curve (τ ◦TFlv−λ ◦u ◦Flvλ)(x) = (Flv−λ ◦ τ ◦u ◦Flvλ)(x) = (Flv−λ ◦Flvλ)(x) = x
degenerates to the point x ∈M .

Lemma 1.4.1 (Lie derivative) The Lie derivative of a tangent vector field
u ∈ C0(M ;TM) along the flow Flvλ ∈ C1(M ; M) of a tangent vector field
v ∈ C1(M ;TM) may be evaluated by the formula:

Lvu = ∂λ=0 (Flvλ↓u) = Tu · v − kT 2M ◦ Tv · u .

Proof. A direct computation, based on Leibniz and chain rules and on Lemma
1.3.8, gives the result:

Lvu = ∂λ=0 (Flvλ↓u) = ∂λ=0 TFlv−λ ◦ u ◦ Flvλ

= ∂λ=0 u ◦ Flvλ − ∂λ=0 TFlvλ ◦ u

= ∂λ=0 u ◦ Flvλ − ∂λ=0 Fl
kT2M(Tv)
λ ◦ u

= Tu · v − kT 2M ◦ Tv · u .
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Recalling that the flip commutes between the two vector bundle structures on
TM , the result can also be proved by the following computation:

Lvu = ∂λ=0 Flvλ↓u = ∂λ=0 TFlv−λ ◦ u ◦ Flvλ

= ∂λ=0 ∂µ=0 Flv−λ ◦ Fluµ ◦ Flvλ

= kT 2M · ∂µ=0 ∂λ=0 Flv−λ ◦ Fluµ ◦ Flvλ

= kT 2M · (∂µ=0 TFluµ ◦ v −TτM
∂µ=0 v ◦ Fluµ)

= kT 2M · (kT 2M · Tu · v −TτM
Tv · u)

= Tu · v −τTM
kT 2M · T · u .

The vectors (kT 2M·T ·v)(x) and (Tv·u)(x) belong to the same fibre TvxTM of
τTM ∈ C1(T 2M ;TM) and have the same base-velocity ux ∈ TM and hence
they belong also to the same fibre in the vector bundle TτM ∈ C1(T 2M ;TM) .
Their sum in this latter bundle is well-defined and is the one to be performed
to get the vector ∂µ=0 ∂λ=0 (Flv−λ ◦ Fluµ ◦ Flvλ)(x) which is based at 0x ∈ TM
in τTM ∈ C1(T 2M ;TM) with base velocity equal to ux ∈ TM . Then the
flipped vector is based at ux ∈ TM and is vertical. �

Lemma 1.4.2 (Lie-derivative vector field) The Lie-derivative vector field
Lvu ∈ C1(M ;TM) is well-defined by the relation

Vl (TM,τM,M)(u) · Lvu = Lvu = ∂λ=0 (Flvλ↓u) = Tu · v − kT 2M · Tv · u .

Equivalently we may put:

Lvu = vd (TM,τM,M)(Lvu)= vd (TM,τM,M)(∂λ=0 Flvλ↓u)

= vd (TM,τM,M)(Tu · v − kT 2M · Tv · u) .

Proof. The statement holds by injectivity of the vertical lift at ux ∈ TM ,
i.e. the linear map Vl (TM,τM,M)(ux) ∈ C1(TxM ;VuxTM) with VuxTM =
TuxTxM . �

The result of Lemma 1.4.1 and 1.4.2 are proved in a chart in [99], Lemma
8.14. It is customary to drop the vertical drill and to write Lvu = ∂λ=0 (Flvλ↓u) .

The Lie derivative of a covariant tensor field A ∈ C1(M ; Cov(M)) is the
tensor field similarly defined by:

LvA := ∂λ=0 (Flvλ↓A) .
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That is, for u,w ∈ C1(M ;TM) , we have that

(LvA)(u,w) = ∂λ=0 Flvλ↓(A(Flvλ↑u,Flvλ↑w))

= ∂λ=0 (A(Flvλ↑u,Flvλ↑w)) ◦ Flvλ .

Tensoriality is easily verified by the criterion provided by Lemma 1.2.1, being:

Flvλ↓(A(Flvλ↑(fu),Flvλ↑w)) = Flvλ↓(A((Flvλ↑f)Flvλ↑u,Flvλ↑w))

= Flvλ↓(Flvλ↑f)(A(Flvλ↑u,Flvλ↑w))

= f Flvλ↓(A(Flvλ↑u,Flvλ↑w)) .

Proposition 1.4.1 (Pull back of Lie derivative along a flow) The pull back
of the Lie derivative of a tensor field is equal to the time derivative of its pull
back, that is

Flvλ↓(LvA) = ∂µ=λ (Flvµ↓A) .

Proof. We recall that Flvλ+µ↓A =
(
Flvµ ◦Flvλ

)
↓A = Flvλ↓

(
Flvµ↓A

)
. Observing

that ∂µ=λ (Flvµ↓A) = ∂µ=0 Flvλ+µ↓A = Flvλ↓(∂µ=0 Flvµ↓A) = Flvλ↓LvA , the
result is proved. �

If the Lie derivative vanishes identically along the flow, Proposition 1.4.1
implies that

∂µ=λ (Flvµ↓A) = 0 , ∀λ ∈ I ,
that is

Flvλ↓A = Flv0↓A = A , ∀λ ∈ I .
Therefore we have that

• The Lie derivative LvA vanishes identically if and only if the tensor field
A ∈ C1(M ; Cov(M)) is dragged along the flow. In particular the Lie
derivative Lvf of a scalar field f ∈ C1(M ;<) vanishes identically if and
only if the scalar field is constant along the flow.

As a consequence of Propositions 1.2.1 (page 40) and 1.4.1 we have that

Proposition 1.4.2 (Lie derivative and commutation) The Lie derivative
of a vector field v ∈ C1(M ;TM) along a vector field u ∈ C1(M ;TM) vanishes
if and only if the flows of the two vector fields commute.
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Figure 1.19: Gottfried Wilhelm von Leibniz (1646 - 1716)

Proposition 1.4.3 (Leibniz rule) The Lie derivative fulfills Leibniz rule:

Lv(A (u,w)) = (LvA) (u,w) + A (Lvu,w) + A (u,Lvw) ,

for all vector fields v,u,w ∈ C0(M ;TM) .

Proof.
(Lv s)(x) = ∂λ=0 (Flvλ↓ ◦ s ◦ Flvλ)(x) .

∂λ=0 〈s(Flvλ(x)), (u(Flvλ(x))〉

= ∂λ=0 〈Flvλ↓s(Flvλ(x)),Flvλ↓u(Flvλ(x))〉

= 〈(Lv s)(x),u(x)〉+ 〈s(x), (Lv u)(x)〉 ,
Lv〈s,u〉 = 〈Lvs,u〉+ 〈s,Lvu〉

Alternative proof: By definition we have that

(LvA)x(ux,wx) = ∂λ=0 (Flvλ↓A)x(ux,wx))

= ∂λ=0 AFlvλ(x)(Flvλ↑ux,Flvλ↑wx) .

Note that we cannot directly apply the standard Leibniz rule in evaluating the
derivative ∂λ=0 of the scalar-valued map f ∈ C1(< ;<) defined by:

f(λ) := AFlvλ(x)(Flvλ↑ux,Flvλ↑wx) ∈ < .

Indeed the tensors AFlvλ(x) ∈ Cov(TFlvλ(x)M) and the vectors Flvλ↑ux ∈ TFlvλ(x)M
and Flvλ↑wx ∈ TFlvλ(x)M do not belong to a fixed linear space, as the parameter
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λ goes to zero, so that the differences involved in the derivative ∂λ=0 would
be undefined.

The proof may anyway be carried out by a tricky procedure consisting in
extending the vectors ux,wx ∈ TxM to vector fields by push along the flow of
the vector field v ∈ C0(M ;TM) , i.e. setting:

u(Flvλ(x)) = Flvλ↑ux , w(Flvλ(x)) = Flvλ↑wx .

The result then follows by observing that the field defined by

(LvA) (u,w) := Lv(A (u,w))−A (Lvu,w)−A (u,Lvw) ,

is tensorial in the vector fields u,w ∈ C0(M ;TM) as is readily verified by
applying the criterion provided by Lemma 1.2.1. Moreover, being the fields
defined by push along the flow Flvλ , the Lie derivatives Lvu and Lvw vanish
identically. Finally, being

Lv(A (u,w))(x) := ∂λ=0 AFlvλ(x)(u(Flvλ(x)),w(Flvλ(x)))

= ∂λ=0 AFlvλ(x)(Flvλ↑ux,Flvλ↑wx) ,

we get the result. �

Lemma 1.4.3 (A commutation property) Let ϕ ∈ C1(M ;N) be an in-
vertible morphism and v ∈ C1(< ;TM) be a differentiable one-parameter family
of tangent vectors such that ∂µ=λ v(µ) ∈ VTM . Then the following commuta-
tion property holds:

∂µ=λϕ↓v(µ) = ϕ↓∂µ=λ v(µ) .

Proof. A direct computation gives:

∂µ=λϕ↓v(µ) = T (ϕ↓)(v(λ)) · ∂µ=λ v(µ) = ϕ↓∂µ=λ v(µ) ,

where the last equality follows from the assumed verticality of ∂µ=λ v(µ) and
the fibrewise linearity of ϕ↓ . �

Proposition 1.4.4 (Lie derivative of pull and push) Let ϕ ∈ C1(M ;N)
be an invertible morphism between two manifolds M and N . Then, for any
given vector field u ∈ C0(M, TM) , scalar field f ∈ C0(N ;<) , vector field
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v ∈ C0(N ;T ∗N) and covector field v∗ ∈ C0(N ;T ∗N) , the following formulas
hold

ϕ↓(Lϕ↑uf) = Luϕ↓f ,

ϕ↑(Luv) = Lϕ↑uϕ↑v ,

ϕ↓(Lϕ↑uv∗) = Luϕ↓v∗ .
Proof. By proposition 1.2.7 we have that

Flϕ↑uλ ◦ϕ = ϕ ◦ Fluλ ,

and hence:

ϕ↓(Flϕ↑uλ ↓f) = (Flϕ↑uλ ◦ϕ)↓f = (ϕ ◦ Fluλ)↓f = Fluλ↓(ϕ↓f) ,

ϕ↑(Fluλ↓v) = ϕ↑(Flu−λ↑v) = (ϕ ◦ Flu−λ)↑v = (Flϕ↑u−λ ◦ϕ)↑v = Flϕ↑uλ ↓(ϕ↑v) ,

ϕ↓(Flϕ↑uλ ↓v∗) = (Flϕ↑uλ ◦ϕ)↓v∗ = (ϕ ◦ Fluλ)↓v∗ = Fluλ↓(ϕ↓v∗) .
The formulas in the statement are then a direct consequence of the definition of
Lie derivative and of the commutation property of Lemma 1.4.3 and the similar
one for scalar and covectors. �

The result of Proposition 1.4.4 leads to the statement:

• The Lie derivative is natural with respect to the pull or push by a diffeo-
morphism.

1.4.1 Lie bracket
The next proposition provides a basic characterization of the Lie derivative of
a vector field along a flow.

This far reaching result shows that the directional derivative of a scalar
field along a Lie derivative is equal to the gap of symmetry of the iterated
directional derivative of the scalar field. This antisymmetric gap is in fact a
first order derivation along the direction of the tangent vector detected by the
Lie derivative which is thus expressed as an antisymmetric Lie bracket of the
vector fields.

Proposition 1.4.5 (Lie bracket) For any pair of tangent vector fields u,v ∈
C1(M ;TM) , the Lie derivative is equal to the Lie bracket:

(Lv u) f = [v ,u] f := Lv Lu f − Lu Lv f , ∀ f ∈ C2(M ;<) ,
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that is: the Lie derivative is the gap of symmetry of the iterated directional
derivative of a scalar field.

Proof. Following [3] and denoting by Flvλ ∈ C1(M ; M) the flow of the vector
field v ∈ C0(M ;TM) , we have that

(Lv u) f= ∂λ=0 (Flvλ↓u) f = ∂λ=0 (L(Flvλ↓u) f)

= ∂λ=0 (L(Flvλ↓u) Flvλ↓ (Flv−λ↓f))

= ∂λ=0 (Flvλ↓Lu (Flv−λ↓f))

= Lv Lu f + ∂λ=0 (Lu (Flv−λ↓f))

= Lv Lu f + Lu ∂λ=0 (Flv−λ↓f)

= Lv Lu f + Lu ∂λ=0 (f ◦ Flv−λ)

= Lv Lu f + Lu L(∂λ=0 Flv−λ) f = (Lv Lu − Lu Lv) f ,

and the result follows. �

In the proof of Proposition 1.4.5 we have made recourse to the naturality of
the Lie derivative with respect to the pull back, stated in Proposition 1.4.4, to
the property of invariance under an exchange of the order of time derivatives
and to the formula for the derivative of the inverse which is derived hereafter.

0 = ∂µ=λ (Flv−µ ◦ Flvµ) = Flv−λ ◦ (∂µ=λ Flvµ) + (∂µ=λ Flv−µ) ◦ Flvλ

=⇒ ∂µ=λ Flv−µ = −Flv−λ ◦ (∂µ=λ Flvµ) ◦ Flv−λ

=⇒ ∂λ=0 Flv−λ = −∂λ=0 Flvλ = −v .

Proposition 1.4.5 reveals that, by exchanging the roles of the involved vector
fields, the Lie derivative just changes its sign. This basic property is put into
evidence by adopting the bracket notation of the commutators. Then any prop-
erty concerning one of the vector fields immediately holds also for the other
one.

The lack of symmetry of the iterated directional derivative along two vector
fields is strictly related to the lack of commutativity of the corresponding flows.
Indeed the Lie derivative (and hence the commutator) vanishes if and only if
the flows of the vector fields commute. The next proposition provides another
proof that the Lie derivative is a Lie bracket.
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Proposition 1.4.6 (Lie bracket bis) The Lie derivative Lvu ∈ C1(M ;TM)
of a vector field u ∈ C1(M ;TM) along a vector field v ∈ C1(M ;TM) is equal
to the Lie bracket [v ,u] ∈ C1(M ;TM) , defined by

(Lvu) f = [v ,u] f := (Lv ◦ Lu − Lu ◦ Lv) f = (vu− uv) f , ∀ f ∈ C2(M ;<) .

Proof. As for the diagram in Lemma 1.3.11 on page 65 the fibre linearity of the
tangent map Tf ∈ C1(TM ;T<) ensures the commutativity of the following
diagrams (the latter is the ∂t=0 derivative of the former):

T< aff t

←−−−− T<×< T< Vl−−−−→ TT<
Tf

x xTf xT 2f

TM
aff t

←−−−− TM×M TM
Vl−−−−→ TTM

with Tf ◦ aff t
(TM×MTM) = aff t

T<×<T< ◦ Tf ,

T 2f ◦Vl (TM,τM,M) = Vl (T<,τ<,<) ◦ Tf ,
where the operator Tf is intended to act on a pair by acting on each element
of the pair. We further recall that, by Lemma 1.3.6:

T 2f · kT 2M = kT 2< · T 2f ,

and, by Lemma 1.3.9:

kT 2< · T 2f · Tv · u = T 2f · Tv · u .
Hence

T 2f ·Vl (TM,τM,M) · (u ,Lvu) =T 2f · (Tu · v − kT 2M · Tv · u)

=T 2f · Tu · v − kT 2< · T 2f · Tv · u

=T 2f · Tu · v − T 2f · Tv · u

= Vl (T<,τ<,<) · (u , (Lv Lu f − Lu Lv f))

= Vl (T<,τ<,<) · Tf · (u , (Lv Lu − Lu Lv))

= Vl (T<,τ<,<) · Tf · (u , [v ,u])

=T 2f ·Vl (TM,τM,M) · (u , [v ,u]) ,

which implies that Lvu = [v ,u] . �
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Let us now provide the proof of a basic result which generalizes to relatedness
the second formula in Proposition 1.4.4.

Lemma 1.4.4 (Lie bracket of morphism-related vector fields) Let the vec-
tor fields X,Y ∈ C1(N ;TN) be related to the fields u,v ∈ C1(M ;TM) by a
morphism ϕ ∈ C1(M ;N) , according to the commutative diagram

TM
Tϕ−−−−→ TN

u,v

x xX,Y

M
ϕ−−−−→ N

⇐⇒
{

X ◦ϕ = Tϕ · u ∈ C0(M ;TN) ,

Y ◦ϕ = Tϕ · v ∈ C0(M ;TN) .

Then also their Lie brackets are ϕ-related:

[X ,Y] ◦ϕ = Tϕ · [u ,v] .

Proof. By Proposition 1.2.7 we have that

ϕ ◦ Fluλ = FlXλ ◦ϕ ∈ C1(M ;N) ,

and then, applying the tangent functor, also

Tϕ ◦ TFluλ = TFlXλ ◦ Tϕ ∈ C0(TM ;TN) .

Moreover T 2ϕ◦Vl (TM,τM,M) = Vl (TN,τN,N)◦Tϕ by the commutative diagram
in Lemma 1.3.11. The following equalities thus hold

Vl (TN,τN,N) ◦ (Y , [X ,Y]) ◦ϕ := ∂λ=0 TFlX−λ ◦Y · FlXλ ◦ϕ

= ∂λ=0 TFlX−λ ·Y ◦ϕ ◦ Fluλ

= ∂λ=0 TFlX−λ · Tϕ · v ◦ Fluλ

= ∂λ=0 Tϕ · TFlu−λ · v ◦ Fluλ

=T 2ϕ · ∂λ=0 (TFlu−λ · v ◦ Fluλ)

=T 2ϕ ·Vl (TM,τM,M) · (v , [u ,v])

= Vl (TN,τN,N) · Tϕ · (v , [u ,v])

= Vl (TN,τN,N) · (Tϕ · v , Tϕ · [u ,v]) .
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The result then follows by noticing the equalities

Vl (TN,τN,N) · (Y , [X ,Y]) ◦ϕ = Vl (TN,τN,N) · (Y ◦ϕ , [X ,Y] ◦ϕ)

= Vl (TN,τN,N) · (Tϕ · v , [X ,Y] ◦ϕ) .

By comparing the last terms of the former and the latter equalities above, the
ϕ-relatedness of the Lie brackets follows: [X ,Y] ◦ϕ = Tϕ · [u ,v] . �

The following simple lemma is useful.

Lemma 1.4.5 In a fibre bundle p ∈ C1(E ; M) the Lie-bracket of a pair of
tangent valued 0-forms V,X ∈ Λ0(E ;TE) , one vertical-valued and the other
one projectable, is a vertical-valued 0-form [V ,X] ∈ Λ0(E ;VE) . The Lie-
derivative of a vertical-valued 1-form K ∈ Λ1(E ;TE) , along a projectable 0-
form X ∈ Λ0(E ;TE) is a vertical-valued 1-form LXK ∈ Λ1(E ;VE) .

Proof. Let V,X,Y ∈ Λ0(E ;TE) with V vertical and X projectable. Then,
by naturality of the Lie-bracket of projectable vector fields with respect to
relatedness stated in Lemma 1.4.4, being Tp ·V = 0 , we have:

Tp · [V ,X] = [Tp ·V , Tp ·X] ◦ p = [0 , Tp ·X] ◦ p = 0 .

Being Tp ·K = 0 , from Leibniz formula: LXK ·Y = [X ,KY]+K · [X ,Y] we
infer that: Tp·LXK·Y = Tp·[X ,KY]+Tp·K·[X ,Y] = 0 , ∀Y ∈ Λ0(E ;TE)
and hence Tp · LXK = 0 . �

We have also the following naturality property of the Lie derivative with
respect to the vertical drill.

Lemma 1.4.6

Proof. �

1.4.2 Lie algebra and Jacobi’s identity
The Lie derivative Lvu is apparently <-linear in the vector field u ∈ C1(M ;TM) .
Indeed for any u1,u2 ∈ C1(M ;TM) and any α ∈ < , we have that

i) Lv(u1 + u2) = Lv(u1) + Lv(u2) ,

ii) Lv(αu) = αLv(u) .
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By Proposition 1.4.5 we infer that the Lie derivative Lv u is <-linear in v , so
that, for any v1,v2 ∈ C1(M ;TM) and any α ∈ < , we have that

i) L(v1+v2)u = Lv1
(u) + Lv2

(u) ,

ii) L(αv)(u) = αLv(u) .

It is easy to verify that properties i) and ii) still hold for the Lie derivative
of a tensor field. A result more general than ii) will be proven in Proposition
1.4.11. Due to the antisymmetry of the commutator we have that

Lv v = [v ,v] = 0 ,

a result which follows also form the definition of the Lie derivative since a vector
field is dragged by its flow.

The Lie bracket defines, in the real Banach space of indefinitely continu-
ously differentiable vector fields u ∈ C∞(M ;TM) , a Lie algebra which enjoys
the following properties:

i) [− ,−] is < -bilinear ,

ii) [u ,u] = 0 , ∀u ∈ C∞(M ;TM) ,

iii) [v , [u ,w]] + [w , [v ,u]] + [u , [w ,v]] = 0 , ∀v,u,w ∈ C∞(M ;TM) .

Figure 1.20: Carl Gustav Jacob Jacobi (1804 - 1851)

The identity iii) is named Jacobi’s identity. It can be proven by a direct
computation based on the observation that

[v , [u ,w]] = v [u ,w]− [u ,w] v = v u w − v w u− u w v + w u v .
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Then, summing up the twelve terms resulting from a cyclic permutation, we
recognize that each one appers twice with opposite signs. The Lie bracket is
also called the Lie commutator. Jacobi’s identity, rewritten as

[[v ,w] ,u] = [v , [w ,u]]− [w , [v ,u]] ,

gives:

L[v ,w] u = (LvLw − LwLv) u = [Lv ,Lw] u , ∀v ∈ C2(M ;TM) .

Toghether with the Lie bracket formula of Proposition 1.4.5

L[v ,w] f := (Lv Lw − Lw Lv) f = [Lv ,Lw] f , ∀ f ∈ C2(M ;<) ,

it implies the validity of the formula L[v ,w] T = [Lv ,Lw] T for any tensor field
T . An explicit proof will be given in Proposition 1.4.11.

Proposition 1.4.7 For any vector field v ∈ C0(M ;TM) , the Lie derivative
Lv is a derivation. Indeed

Lv(f u) = f Lvu + (Lvf) u ,

for any f ∈ C1(M ;<) and any vector field u ∈ C0(M ;TM) .

Proof. By Leibniz rule of differentiation we have that

Lv(f u) =∂λ=0 Flvλ↓(f u) = ∂λ=0 (Flvλ↓f) Flvλ↓u = f Lvu + (Lvf) u ,

and hence the result. By rewriting the Jacobi identity as

[v , [u ,w]] = [[v ,u] ,w] + [u , [v ,w]] ,

we see that the adjoint field Adjv := [v , · ] is a Lie-algebra derivation since

Adjv([u ,w]) = [Adjv(u) ,w] + [u ,Adjv(w)] .

1.4.3 Frames and coordinate systems
Frames and coordinate systems are respectively named repére mobile and repére
naturel in the french literature [34].

• A local frame on an n-dimensional manifold M is a set of n vector fields
Ei : M 7→ TM, i = 1, . . . , n whose values Ei(x) at any point x ∈ UM of
a neighborhood UM ⊂M form a basis of the tangent space TM(x) .
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• A local coordinate system on a n-dimensional manifold M is a local frame
whose vector fields Ei ∈ C1(M ;TM), i = 1, . . . , n are the velocities of a
local coordinate map ϕ ∈ C1(UE ;UM) .

From Proposition 1.4.2 on page 76, we infer the following results.

Proposition 1.4.8 A local frame is a local coordinate system if and only if the
Lie bracket of any pair of vector fields of the local frame vanishes:

[Ei ,Ej ] = 0 , ∀ i, j ∈ {1, . . . , n} .

The commutativity of the flows ensures that to any point x ∈ M there corre-
sponds a unique set of coordinates.

This property is preserved under a diffeomorphism ϕ ∈ C1(M ;N) since the
transformation rule of a flow ϕ↑χ = ϕ ◦ χ ◦ ϕ−1 pushed by ϕ ∈ C1(M ;N)
implies that

ϕ↑χ ◦ϕ↑ψ = ϕ ◦ χ ◦ϕ−1 ◦ϕ ◦ψ ◦ϕ−1 = ϕ ◦ χ ◦ψ ◦ϕ−1 ,

and hence commutativity interchanges with the push:

ϕ↑χ ◦ϕ↑ψ = ϕ↑ψ ◦ϕ↑χ ⇐⇒ χ ◦ψ = ψ ◦ χ .

The next simple corollary of Proposition 1.4.8 will be recalled in sections ??
and 1.14.6 in defining the coordinate components of the torsion tensor and of
the Riemann-Christoffel curvature tensor.

Proposition 1.4.9 Any n-tuple of tangent vectors vi(x) ∈ TM(x) with i =
1, . . . , n can be extended to an n-tuple of tangent vector fields vi : M 7→ TM
such that

[vi ,vj ] = 0 , i, j = 1, . . . , n .

Proof. It is sufficient to observe that an n-tuple of tangent vectors vi(x) ∈
TM(x) is diffeomorphically transformed by a local chart into an n-tuple of
vectors (ϕ↑vi)(x) ∈ E where E is the model space of M .

Then each vector (ϕ↑vi)(x) ∈ E defines a straight line-flow thru any point
in the linear space E and these commuting flows are mapped by the inverse
local charts to flow on M which still commute. �
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Given two vector fields X,Y ∈ C1(E ;E) in a Banach space E , the second
directional derivative of a scalar field f ∈ C2(E ;<) is the twice covariant tensor
field defined according to the Leibniz formula

∂2
XY f := ∂X ∂Y f − ∂(∂X Y ) f .

Tensoriality is easily verified by the criterion provided by Lemma 1.2.1.
If the vector fields X,Y ∈ C1(E ;E) are constant in E , the derivatives

∂X Y and ∂Y X vanish identically and the Lie bracket [X ,Y ] vanishes too
since the flows of constant vector fields commute. This in accordance with the
fact that the second directional derivative of any scalar field is symmetric:

∂2
XY f = ∂2

Y X f .

For arbitrary vector fields X,Y ∈ C1(E ;E) we have that

[X ,Y ] f := ∂X ∂Y f − ∂Y ∂X f = ∂(∂XY ) f − ∂(∂YX) f ,

and the Lie bracket takes the expression: [X ,Y ] = ∂XY − ∂YX .
We may then state that

Proposition 1.4.10 In terms of local coordinates {U , ϕ} the Lie bracket [v ,u]
may be written as

[v ,u] = (Y i/j X
j −Xi

/j Y
j) Ei .

Proof. Denoting by X = ϕ↑u and Y = ϕ↑v the expression of u and v in
coordinates, by Proposition 1.4.4 we have that:

[v ,u] = ϕ↓[Y ,X] = ϕ↓(∂YX − ∂XY )

= (Xi
/j Y

j − Y i/j Xj)ϕ↓ei = (Xi
/j Y

j − Y i/j Xj) Ei .

where ϕ↓ei = Ei , i.e. ei is the base vector, in the model space E , correspond-
ing to the coordinate vector Ei . �
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1.4.4 Properties of the Lie derivative
Proposition 1.4.11 The Lie derivative fulfills the relations

i) L(g v) f = gLvf ,

ii) L(f v) u = −[u , f v] = f [v ,u]− (Luf) v = f Lv u− (Luf) v ,

iii) [f u , g v] = f g [u ,v] + (Lug) f v − (Lvf) g u ,

iv) L(f v)α = f Lvα+ (df ?α)v ,

v) (Lvf)µ = df ∧ µv ,

vi) L(f v) µ = Lv(f µ) ,

vii) Lv(df) = d(Lvf) ,

viii) Lv(α⊗ β) = (Lvα⊗ β) + (α⊗ Lvβ) ,

ix) Lu (αv) = (Luα)v +α (Luv) ,

x) [Lu , iv] := Lu ◦ iv − iv ◦ Lu = i[u ,v] , Lv ◦ iv = iv ◦ Lv ,

xi) L[u ,v] = [Lu ,Lv] = (Lu ◦ Lv − Lv ◦ Lu) ,

where f , g ∈ C1(M ;<) and v,u ∈ C1(M ;TM) are scalar and tangent vector
fields, α,β ∈ C1(M ;TMk) are tensor fields and µ ∈ C1(M ;TM(dim M)) is a
volume form. The operator ? is defined in the proof of formula iv) .

Proof. Property i) follows from the definition of partial derivative. Property
ii) follows from Propositions 1.4.5 and 1.4.7. Indeed by virtue of the antisym-
metry of the Lie bracket we infer that

[f v ,u] = −[u , f v] = −Lu(f v) = −f Lu(v)− (Luf) v

= f [v ,u]− (Luf) v .

From i) and ii) we obtain formula iii) as follows

[f v , g u] = f [v , g u]− (L(g u)f) v = f [v , g u]− (Luf) g v

= −f [g u ,v]− (Luf) g v

= f g [v ,u] + (Lvg) f u− (Luf) g v .
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Formula iv) is inferred as follows. From property i) , the Leibniz rule of
Proposition 1.4.3 and Proposition 1.4.5 we get.

(L(f v)α) (v1, . . .vi, . . .vk) =

= L(f v) (α(v1, . . .vi, . . .vk))−
k∑
i=1

α(v1, . . .L(f v)vi, . . .vk)

= f Lv (α(v1, . . .vi, . . .vk)) +

k∑
i=1

α(v1, . . .Lvi(f v), . . .vk) .

Then, observing that

α(v1, . . .Lvi (f v), . . .vk) =

= α(v1, . . . (Lvif) v, . . .vk) +α(v1, . . . f Lviv, . . .vk)

= α(v1, . . . (Lvif) v, . . .vk)−α(v1, . . . f Lvvi, . . .vk) ,

and that

f (Lv (α(v1, . . .vi, . . .vk))−
k∑
i=1

α(v1, . . .Lvvi, . . .vk)) =

= f (Lv α)(v1, . . .vi, . . .vk)) ,

we may conclude that

(L(f v)α)(v1, . . .vi, . . .vk) =

= f (Lv α)(v1, . . .vi, . . .vk)) +

k∑
i=1

(Lvif)α(v1, . . . ,v, . . .vk)

= (f Lv α+ (df ?α)v)(v1, . . .vi, . . .vk) .

Denoting by A1i the operator which exchanges the first and the i-th element
of a list, the ? operation is defined by

(df ?α)v :=

k∑
i=1

((df ⊗α) ◦ A1i) v .

A simpler proof of property iv) for k-forms is based on the homotopy formula
and will be given in section 1.9.11.
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To get formula v) , let {v1, . . .vi, . . .vn} be a frame and {v1, . . .vi, . . .vn} be
the dual co-frame. Then v =

∑n
i=1 〈vi,v〉vi so that:

(df ∧ µv)(v1, . . .vi, . . .vn) =

=

n∑
i=1

(Lvif)µ(v1, . . . ,v, . . .vn) =

n∑
i=1

(Lvif) 〈vi,v〉µ(v1, . . . ,vi, . . .vn)

= (Lvf)µ(v1, . . .vi, . . .vn) .

Formula vi) then follows from formulas iv) and v) :

L(f v) µ = f Lv µ+ df ∧ µv = f Lv µ+ (dvf)µ = Lv (f µ) .

Formula vii) , stating that the Lie derivative commutes with the derivation of a
scalar function, can be inferred from Proposition 1.2.4 by exchanging the order
of derivation with respect to time and position, indeed:

Lv(df) = ∂λ=0ϕλ↓(df) = ∂λ=0 d(ϕλ↓f) = d(∂λ=0ϕλ↓f) = d(Lvf) .

This result is a special case of a more general property, concerning the com-
mutativity between the Lie derivative and the exterior derivative, that will be
proved in Proposition 1.9.2.

Formulas viii) and ix) can be inferred from Propositions 1.2.5 and 1.2.6,
by exchanging the pull-back with the contraction and with the tensor product,
and applying Leibniz rule.

In x) the first formula is just a rewriting of ix) and the second is a simple
corollary of the first formula, since Lv v = [v ,v] = 0 .

Formula xi) for scalar fields is just the definition of the Lie bracket, for
vector fields follows from Jacobi’s identity, as seen in section 1.4.2, and for
tensor fields is inferred form the former two by Leibniz rule, as shown below.

Lu(Lv(T(a,b))) = Lu(LvT(a,b)) +Lu(T(Lva,b) + T(a,Lvb))

= (LuLvT)(a,b) +LvT(Lua,b) + LvT(a,Lub)

+LuT(Lva,b) + LuT(a,Lvb)

+T(Lua,Lvb) + T(Lva,Lub)

+T(LuLva,b) + T(a,LuLvb) ,

where u,v,a,b are vector fields and T a twice covariant tensor field. By
exchanging u and v , subtracting and taking into account that the terms sym-
metric in u,v cancel each other, we get

[Lu ,Lv](T(a,b)) = ([Lu ,Lv]T)(a,b) +T([Lu ,Lv]a,b) + T(a, [Lu ,Lv]b) .
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Formula xi) for scalar and vector fields gives

L[u ,v](T(a,b)) = ([Lu ,Lv]T)(a,b) +T(L[u ,v]a,b) + T(a,L[u ,v]b) ,

and hence Leibniz formula yields the result [Lu ,Lv]T = L[u ,v]T . It follows
that formula xi) holds also for covector fields and hence for tensors of general
kind. �

Remark 1.4.1 The linear isomorphism g ∈ BL (TM ;T ∗M) induced by a met-
ric tensor field doesn’t commute in general with the convective derivative, since
by Leibniz rule:

Lv(gu) = (Lvg)u + g(Lvu) .

However from the formula above we infer that

Lvg = 0 ⇐⇒ Lv ◦ g = g ◦ Lv .

1.4.5 Method of characteristics
The properties of the Lie derivative enunciated in Propositions 1.4.1 and 1.4.4
provide a powerful tool for the solution of a class of partial differential equations
by computing the flow of a vector field.

Let us consider on a manifold M a time independent scalar field v ∈
C0(M ;TM) which is Lipschitz continuous:

‖v(x)− v(b)‖ ≤ Lip ‖x− b‖ , Lip > 0 ,

and the partial differential equation:

∂τ=t f(x, τ) = Lvf(x, t) ,

under the initial condition f(x, 0) = g(x) .
Denoting by Flvt the flow of v , the solution is given by f(x, t) = (Flvt ↓g)(x) =

(g ◦ Flvt )(x) . Indeed we have that

∂τ=t (Flvτ ↓g)(x) = (Flvt ↓Lvg)(x) = Lv(Flvt ↓g)(x) .

The solution is then obtained by dragging the initial condition along the flow
associated with the vector field v ∈ C0(M ;TM) . The integral curves of the
vector field are called the characteristic curves and the solution methodology is
called the method of characteristics.

91



Lie derivative Giovanni Romano

1.4.6 Time dependent fields
Let us now consider the general case of time dependent vector fields which,
denoting by pri the projection on the i-th component of a cartesian product,
are defined as follows.

• A time dependent vector field is a mapping v ∈ C0(M × I ;TM) with
τ ◦ v = pr1 and I = [−ε,+ε , ], ε > 0 .

The integral curve of v ∈ C0(M× I ;TM) passing thru x ∈M at time t = 0
is the unique curve c ∈ C1(I ; M) solution of the differential equation

∂τ=t c(τ) = v(c(t), t) , t ∈ I ,

under the initial condition c(0) = x ∈M .

• The evolution operator or time dependent flow associated with the time
dependent vector field v ∈ C0(M × I ;TM) is the smooth map Flv ∈
C1(M× I × I ; M) such that Flvt,s(x) = c(t) is the integral curve of the
vector field v ∈ C0(M× I ;TM) passing thru x ∈M at time s ∈ I .

To a time dependent vector field v ∈ C0(M × I ;TM) on M we may
associate a time independent tangent vector field on the product manifold M×
I , denoted by v̄ ∈ C0(M×I ;TM×TI) , with τM×I ◦v̄ = idM×I , and defined
by the relation:

v̄(x, t) := {v(x, t) , 1t} ∈ TxM× TtI .
Then it is

Flv̄t−s(x, s) = {Flvt,s(x) , t} .
The uniqueness of the integral curves implies the validity of the Chapman-
Kolmogorov law of determinism:

Flvτ,t ◦ Flvt,s = Flvτ,s .

Since Flvs,t ◦Flvt,s = Flvs,s is the identity map idM ∈ C1(M ; M) , we have that
Flvs,t = Flvt,s

−1 and, by differentiating with respect to time, we get the relation

∂τ=t (Flvs,τ ◦ Flvτ,s) = (∂τ=t Flvs,τ ) ◦ Flvt,s + TFlvs,t ◦ ∂τ=t Flvτ,s = 0 .

Being ∂τ=t Flvτ,s = vt ◦ Flvt,s , we get that

∂τ=t Flvs,τ = −TFlvs,t ◦ vt = −(Flvs,t↑vt) ◦ Flvs,t ,
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or equivalently:
∂τ=t Flvt,τ = −vt ,

i.e. the velocity of the inverse evolution is the opposite of the velocity of the
direct evolution.

1.4.7 Convective time derivative
The result of Proposition 1.4.4 can be extended to flows of time dependent
diffeomorphisms, as illustrated in Proposition 1.4.13.

Definition 1.4.4 (Convective time derivative) The convective time deriva-
tive of a time-dependent tensor field At on M , along the evolution Flv as-
sociated with a time-dependent vector field v ∈ C0(M × I ;TM) is defined,
according to Leibniz rule, by

Lv,tA := ∂τ=t Flvτ,t↓Aτ = ∂τ=t Aτ + ∂τ=t Flvτ,t↓At .

It is then the sum of two terms:

• the partial time-derivative
∂τ=t Aτ

which takes account only of the changes induced by time on the tensor
field Aτ , by considering the evolution as frozen-in at time t ,

• the Lie derivative or convective derivative

Lv,tAt := ∂τ=t Flvτ,t↓At ,

which takes account only of the changes induced by the evolution on the
tensor field At considered as frozen-in at time t .

The next proposition extends the result stated in Proposition 1.4.1 to time
dependent fields.

Proposition 1.4.12 (Pull back of Lie derivative along the evolution) Bu
pulling back along the evolution Flv ∈ C1(M× I × I ; M) of a time dependent
vector field v ∈ C0(M× I ;TM) , we have that

Flvt,s↓Lv,tAt = ∂τ=t (Flvτ,s↓Aτ ) .
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Proof. Recalling the expression

Flvτ,s↓Aτ = (Flvτ,t ◦ Flvt,s)↓Aτ = Flvt,s↓(Flvτ,t↓Aτ ) ,

we have that

∂τ=t (Flvτ,s↓Aτ ) = Flvt,s↓(∂τ=t (Flvτ,t↓Aτ )) = Flvt,s↓Lt,vAt ,

which is the result. �

If Lt,vAt vanishes identically on the temporal domain of the flow, by Propo-
sition 1.4.12 we infer that ∂τ=t (Flvτ,s↓Aτ ) = 0 and then

Flvt,s↓At = Flvs,s↓As = As , ∀ t ∈ I ,
that is Flvt,s↑As = At , ∀ t ∈ I . We may then state that

• The convective time derivative Lt,vAt vanishes identically if and only
if the time dependent tensor field At ∈ BL (TM, T ∗M ;<) is dragged
along the flow. In particular the Lie derivative Lt,vft of a scalar field
ft ∈ C1(M ;<) vanishes identically if and only if the time dependent
scalar field is constant along the flow.

Proposition 1.4.13 (Lie derivative of a time dependent push) Let At :
M 7→ BL (TM, T ∗M ;<) be a tensor field and ut : M 7→ TM be a vector field
on the manifold M . For each diffeomorphism ϕt = Flvt : M 7→ N the following
formula then holds

Lw,t (ϕt↑At) = ϕt↑(Lu,tAt) ,

where wt = vt +ϕt↑ut is the velocity of the flow Flwt,s = ϕt ◦ Flut,s ◦ϕ−1
s .

Proof. By Proposition 1.2.8 we have that

Flwt,s↓(ϕt↑At) = (ϕt ◦ Flut,s ◦ϕ−1
s )↓(ϕt↑At)

= (ϕs ◦ Flut,s
−1 ◦ϕ−1

t )↑(ϕt↑At)

= ϕs↑(Flut,s↓At) .

The result then follows from the definition of Lie derivative, by taking the
derivative ∂t=s . Indeed we have that

Lw,s (ϕs↑As) := ∂t=s Flwt,s↓(ϕt↑At) ,

ϕs↑(Lu,sAs) := ∂t=s ϕs↑(Flut,s↓At) ,

which proves the result at time s ∈ I . �
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The formula in Proposition 1.4.13 has important applications in mechanics
for the definition of objective time derivatives of the stress tensor [127], [200].

1.4.8 Generalized Lie derivative
Let us now introduce, by making reference to the treatment in [99], a more
general definition of the Lie derivative proposed in [231]. The definition of
the Lie derivative of a cross section of a fibre bundle will soon be useful in
introducing the concept of a connection in a fibre bundle (see section 1.7).

Let τ ∈ C1(TM ; M) and πN ∈ C1(TN ;N) be tangent bundles, and let
f ∈ C1(M ;N) be a smooth map with tangent map T f ∈ C1(TM ;TN) .

Definition 1.4.5 The generalized Lie derivative of f ∈ C1(M ;N) along the
pair of vector fields v ∈ C1(M ;TM) and X ∈ C1(N ;TN) is the gap of com-
mutativity of the diagram:

TM
T f−−−−→ TN

v

x xX

M
f−−−−→ N

that is L(X ,v) f := T f ◦ v −X ◦ f .

The definition is well-posed since (T f◦v)(x), (X◦f)(x) ∈ Tf(x)N for all x ∈M .

From the definition it follows that L(X ,v) f ∈ C1(M ;TN) vanishes if and only
if the vector fields X and v are f -related. Moreover L(X ,v) f ∈ C1(M ;TN)
is a vector field along f ∈ C1(M ;N) . Indeed

πN ◦ T f ◦ v = f ◦ τ ◦ v = f

πN ◦X ◦ f = f

}
=⇒ πN ◦ L(X ,v) f = f .

A direct computation shows that the previous definition is equivalent to:

L(X ,v) f := ∂λ=0 (FlX−λ ◦ f ◦ Flvλ) .

Section of fibre bundles

An important special case is met when the manifold N is the total space of
a fibre bundle p ∈ C1(E ; M) and the map s ∈ C1(M ;E) is a section of the
fibre bundle so that p ◦ s = idM . Indeed, let X ∈ C1(E ;TE) be a vector field
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which admits a projected vector field v ∈ C1(M ;TM) . This means that the
following diagram is commutative:

E X−−−−→ TE

p

y yTp

M
v−−−−→ TM

with Tp ◦X = v ◦ p ∈ C1(E ;TM) ,

i.e. that the vector fields v ∈ C1(M ;TM) and X ∈ C1(E ;TE) are p-related.
Then the Lie derivative is defined by

L(X ,v)s := ∂λ=0 (FlX−λ ◦ s ◦ Flvλ) ∈ C1(M ;TE) .

By Proposition 1.2.7 it is p ◦FlX−λ = Flv−λ ◦ p and hence, being p ◦ s = idM ,
we have that p ◦ FlX−λ ◦ s = Flv−λ which may be written

p ◦ FlX−λ ◦ s ◦ Flvλ = idM .

Taking the derivative ∂λ=0 we get:

Tp ◦ L(X ,v)s = 0 .

Then the Lie derivative L(X ,v)s ∈ C1(M ;VE) is a section of the vertical fibre
bundle p ◦ τE ∈ C1(VE ; M) over the bundle p ∈ C1(E ; M) , with VE :=
ker(Tp) ⊂ TE .

We quote the following result which will be referred to in Lemma 1.8.4.

Proposition 1.4.14 (Pull back along related flows) In a vector bundle p ∈
C1(E ; M) let us consider a vector field X ∈ C1(E ;TE) which projects on a vec-
tor field v ∈ C1(M ;TM) and is p-Tp-linear. Then the Lie derivative of a
cross section s ∈ C1(M ;E) has the property

Fl
(X ,v)
λ ↓(L(X ,v)s) = ∂µ=λ (Fl(X ,v)

µ ↓s) ,

with the pull back defined by

Fl
(X ,v)
λ ↓s := FlX−λ ◦ s ◦ Flvλ .
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Proof. From the definition of pull back given in the statement we get

Fl
(X ,v)
λ ↓(∂µ=0 (FlX−µ ◦ s ◦ Flvµ)) = FlX−λ ◦ ∂µ=0 (FlX−µ ◦ s ◦ Flvµ) ◦ Flvλ

= TFlX−λ ◦ ∂µ=0 (FlX−µ ◦ s ◦ Flvµ) ◦ Flvλ

= ∂µ=0 FlX−λ ◦ FlX−µ ◦ s ◦ Flvµ ◦ Flvλ

= ∂µ=λ FlX−µ ◦ s ◦ Flvµ .

The second equality holds since the vector ∂µ=0 (FlX−µ◦s◦Flvµ)(x) is tangent to
the fibre Ex and hence we may change FlXλ into TFlXλ by virtue of the fiber
linearity of the flow FlXλ which follows from the p-Tp-linearity of the vector
field X , according to Lemma 1.3.17. �

Section of vector bundles

In a vector bundle p ∈ C1(E ; M) the elements of the vertical space VeE :=
ker(Tep) ⊂ TeE at a point e ∈ E may be identified with vectors of the linear
fibre Ee := p−1(e) . Accordingly, the fibre bundle p ◦ τE ∈ C1(VE ; M) may
be identified with the vector bundle p ∈ C1(E ; M) and the Lie derivative
L(X ,v)s ∈ C1(M ;VE) may be regarded as a section L(X ,v)s ∈ C1(M ;E) of
the vector bundle p ∈ C1(E ; M) .

Section of tangent bundles

The Lie derivative of a section s ∈ C1(M ;TM) of the tangent bundle τ ∈
C1(TM ; M) is recovered from the definition of the generalized Lie derivative
by setting X = kT 2M ◦ Tv so that

M
s−−−−→ TM

s←−−−− M

τ

x ykT2M◦Tv

yv

TM
T s−−−−→ T 2M

Tτ−−−−→ TM

with Tτ ◦ kT 2M ◦ Tv ◦ s = v ,

and we have that
Lv s := ∂λ=0 (Fl

kT2M◦Tv
−λ ◦ s ◦ Flvλ)

= ∂λ=0 (TFlv−λ ◦ s ◦ Flvλ)

= T s ◦ v − kT 2M ◦ Tv ◦ s .
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Scalar functions

The Lie derivative of a scalar function f ∈ C1(M ;<) on the manifold M
is recovered from the definition of the generalized Lie derivative by setting
X ∈ C1(< ;T<) equal to the sero section of < so that FlX−λ = Fl0−λ = id< :

M
f−−−−→ <

τ

x y{id< ,0}
TM

Tf−−−−→ T<
and we have that

Lv f := ∂λ=0 (Fl0−λ ◦ f ◦ Flvλ)

= ∂λ=0 (f ◦ Flvλ) = Tf ◦ v .

Morphism of fibre bundles

Let us consider two fibre bundles p ∈ C1(E ; M) and q ∈ C1(Z ; M) over
the same base manifold M and two vector fields u ∈ C1(E ;TE) and w ∈
C1(Z ;TZ) which project on the same base vector field v ∈ C1(M ;TM) :

Tp ◦ u = v ◦ p , Tq ◦w = v ◦ q ,

that is v = p↑u = q↑w .
Let f ∈ C1(E ;Z) be a base preserving morphism: q ◦ f = p .
Then we have the following commutative diagram:

TE u←−−−− E f−−−−→ Z w−−−−→ TZyTp

yp

yq

yTq

TM
v←−−−− M

id M−−−−→ M
v−−−−→ TM

The generalized Lie derivative of f along the pair {u ,w} is defined as

L{u ,w} f := T f ◦ u−w ◦ f ∈ C1(E ;VZ) ,

with VZ := ker(Tq) ⊂ TZ . Indeed, the Lie derivative is also defined by

L{u ,w} f := ∂λ=0 (Flw−λ ◦ f ◦ Fluλ) ∈ C1(E ;TZ) .
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We claim that q ◦ Flw−λ ◦ f ◦ Fluλ = p .

M
q←−−−− q←−−−− Z

id M

x id E

x id Z

x
M

p←−−−− E f−−−−→ Z

Flvλ

x xFluλ

yFlw−λ

M
p←−−−− E f−−−−→ Z

Indeed q ◦ Flw−λ = Flq↑wλ ◦ q = Flp↑uλ ◦ q , so that

q ◦ Flw−λ ◦ f ◦ Fluλ = Flp↑u−λ ◦ q ◦ f ◦ Fluλ

= Flp↑u−λ ◦ p ◦ Fluλ

= Flp↑u−λ ◦ Flp↑uλ ◦ p = p .

Taking the derivative ∂λ=0 we infer that Tq ◦ L{u ,w} f = 0 . Then the Lie
derivative takes values into the vertical bundle over the bundle q ∈ C1(Z ; M) ,
defined by VZ := ker(Tq) ⊂ TZ .

1.5 Lie groups and algebras
A group G is a set endowed with an operation µ : G ×G 7→ G called group
multiplication, which is associative and admits a unit or neutral element e ∈ G
with the property that µ(e,g) = µ(g, e) = g for all g ∈ G , and a bijective
map ν : G 7→ G , the reversion, such that

µ(ν(g),g) = µ(g, ν(g)) = e .

The unit element is unique since, if e1, e2 ∈ G are unit elements, it follows
that: e1 = µ(e1, e2) = e2 . Moreover we have that ν(e) = µ(ν(e), e) = e . It is
customary to write simply g1.g2 for µ(g1,g2) .

By the associativity of the group multiplication, the reversion map ν : G 7→
G is uniquely defined and we have that ν ◦ ν = idG and ν(a.b) = ν(b).ν(a) .
Indeed, if ν : G 7→ G is another reversion map, we have that

ν(g).g = e = ν(g).g =⇒ (ν(g).g).ν(g) = (ν(g).g).ν(g) =⇒ ν(g) = ν(g) .
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Moreover
e = ν(a.b).(a.b) = (ν(a.b).a).b =⇒

ν(b) = ν(a.b).a =⇒ ν(b).ν(a) = ν(a.b) ,

and by the uniqueness of the reversion map we have also that

(ν ◦ ν)(g).ν(g) = e = ν(g).g = g.ν(g) =⇒ (ν ◦ ν)(g) = g ,

which may be written as ν = ν−1 . It is customary to write g−1 for ν(g) , so
that (g−1)−1 = g .

If the group multiplication µ : G ×G 7→ G is commutative, the group G
is said to be commutative.

• The left and right translations are the diffeomorphic maps λa ∈ C1(G ; G)
and ρa ∈ C1(G ; G) defined by{

λag = a.g ,

ρag = g.a ,
g ∈ G , ∀a ∈ G .

Then λa ◦ λb = λab and ρa ◦ ρb = ρba so that λa−1 = λ−1
a and ρa−1 = ρ−1

a .
Moreover ρb ◦ λa = λa ◦ ρb .

1.5.1 Lie groups
• A Lie group G is a differentiable manifold endowed with a differentiable

group operation µ ∈ C1(G2 ; G) .

By the chain rule, the tangent map Tµ ∈ C1(TG2 ;TG) is given by

T{a ,b}µ · {Xa ,Yb} = Taρb ·Xa + Tbλa ·Yb ,

where a,b ∈ G and Xa ∈ TaG , Yb ∈ TbG . The reversion map is also
differentiable as stated by the next proposition.

Proposition 1.5.1 The tangent map Tν ∈ C1(TG ;TG) of the reversion map
ν : G 7→ G is given by

Taν = −(Tν(a)ρa)−1 · Taλν(a) .
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Proof. Let g ∈ C1(I ; G) be a curve such that g(0) = a and ∂t=0 g(t) = Xa .
Then, differentiating µ(ν(g(t)),g(t)) = e we get

0 = ∂t=0 µ(ν(g(t)),g(t)) = Tν(a)ρa · Taν ·Xa + Taλν(a) ·Xa ,

and hence the result. In particular we have that Teν = −idTeG . �

1.5.2 Left and right invariant vector fields
• A vector field v ∈ C1(G ;TG) on G is left invariant if λg↑v = v for all

g ∈ G , with the push given by λg↑v = Tλg ◦ v ◦ λg−1 .

• A vector field v ∈ C1(G ;TG) on G is right invariant if ρg↑v = v for
all g ∈ G , with the push given by ρg↑v = Tρg ◦ v ◦ ρg−1 .

For a left invariant vector field v we have that

v(g) = (λa↑v)(g) = (Tλa ◦ v ◦ λa−1)(g) .

Hence, setting b = a−1.g , so that g = a.b , we get

v(a.b) = (λa↑v)(a.b) = (Tλa ◦ v ◦ λa−1)(a.b) = (Tλa ◦ v)(b) = Tbλa · v(b) .

A left invariant vector field v is thus uniquely determined by its value at the
unit of the group.

More precisely, between the tangent space TeG and the subgroup of left
invariant vector fields on G , there is a linear isomorphism defined by

LX(a) := Teλa ·X , ∀X ∈ TeG .

Clearly we have that LX(e) = X and hence LX(a) = Teλa · LX(e) . The
property of being left invariant may be equivalently expressed by requiring that
the vector field is λ-related to itself

Tλ · LX = LX ◦ λ .

Since the Lie bracket [u ,v] of two vector fields on G is natural with respect
to the push, the space of left invariant vector fields is a subalgebra of the Lie
bracket algebra on G :

λg↑u = u ,

λg↑v = v ,

}
=⇒ [u ,v] = [λg↑u , λg↑v] = λg↑[u ,v] .
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In turn this subalgebra defines the Lie algebra Lie (G) in the linear space TeG
by setting

[X ,Y] := [LX ,LY](e) , ∀X,Y ∈ TeG .

Then
L[X ,Y] = L[LX ,LY ](e) = [LX ,LY] .

Analogous results hold for right invariant vector fields, which are generated by
vectors of the tangent space TeG according to the linear isomorphism

RX(a) := Teρa ·X , ∀X ∈ TeG .

The property of being right invariant may be equivalently expressed by requiring
that the vector field is ρ-related to itself

Tρ ·RX = RX ◦ ρ .

If v is a left (right) invariant vector field on G , then the vector fields ν↓v and
ν↑v are right (left) invariant. Indeed from the relations

ρa ◦ ν = ν ◦ λa−1 ⇐⇒ g−1.a = (a−1.g)−1 ,

ν ◦ ρa = λa−1 ◦ ν ⇐⇒ (a.g)−1 = g−1.a−1 ,

we get that

ρa↑(ν↑v) = (ρa ◦ ν)↑v = (ν ◦ λa−1)↑v = ν↑(λa−1↑ · v) = ν↑v ,

ρa↓(ν↓v) = (ν ◦ ρa)↓v = (λa−1 ◦ ν)↓v = ν↓(λa−1↓ · v) = ν↓v .

Recalling that Teν = −idTeG ∈ BL (TeG ;TeG) is a linear isomorphism, the
formula ν↓v := Tν ◦ v ◦ ν , tells us that

(ν↓v)(e) = Teν · v(e) = −v(e) .

To any X ∈ TeG there correspond a left invariant vector field LX ∈ C1(G ;TG)
and a right invariant vector field R−X := ν↓LX ∈ C1(G ;TG) so that

R[Y ,X] = R−[X ,Y] = ν↓L[X ,Y] = ν↓[LX ,LY] = [ν↓LX , ν↓LY] = [R−X ,R−Y] ,

and hence, by the bilinearity of the bracket [X ,Y] ∈ TeG :

[RX ,RY] = R[−Y ,−X] = R[Y ,X] .

We summarize with the following statement.
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Proposition 1.5.2 The Lie bracket of left and right invariant vector fields
fulfill the properties:

[LX ,LY] = L[X ,Y]

[RX ,RY] = R[Y ,X] .

Proposition 1.5.3 The Lie bracket between a left and a right invariant vector
field vanishes identically:

[LX ,RY] = 0 ,

so that the flows of left and right invariant vector fields commute.

Proof. From the chain expression of the tangent map Tµ ∈ C1(TG2 ;TG)
provided on page 100, we get:

T{a ,b}µ · {0a ,LX(b)} = Taρb · 0a + Tbλa · LX(b) ,

and by the left invariance it is

Tbλa · LX(b) = LX(a.b) = (LX ◦ µ)(a,b) ,

so that we have the µ relatedness:

Tµ · {0 ,LX} = LX ◦ µ .

In the same way we may prove that Tµ · {RY , 0} = RY ◦µ . Hence, by Lemma
1.4.4:

Tµ · [{0 ,LX} , {RY , 0}] = [LX ,RY] ◦ µ ,
and the result follows since [{0 ,LX} , {RY , 0}] = 0 . �

Proposition 1.5.4 Let ϕ ∈ C1(G ; G) be a homomorphism of Lie groups, so
that ϕ ◦ λx = λϕ(x) ◦ ϕ and e = ϕ(e) . Then Teϕ ∈ C1(TeG ;Te G) is a
homomorphism of Lie algebras:

Teϕ · [X ,Y] = [Teϕ ·XTeϕ ·Y , ], ∀X,Y ∈ TeG .
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Proof. We have that
Txϕ · LX(x) = Txϕ · Teλx ·X = Te(ϕ ◦ λx) ·X

= Te(λϕ(x) ◦ϕ) ·X = Teλϕ(x) · Teϕ ·X

= LTeϕ·X(ϕ(x)) .

Then LX is ϕ-related to LTeϕ·X , i.e.:

Txϕ · LX = LTeϕ·X ◦ϕ .
From Lemma 1.4.4 it follows that the bracket [LX ,LY] is ϕ-related to the
bracket [LTeϕ·X ,LTeϕ·Y] . Hence

Tϕ ◦ L[X ,Y] = L[Teϕ·X ,Teϕ·Y] ◦ϕ ,
and the result follows by evaluating at e . �

1.5.3 One parameter subgroups
Given a Lie group G and the associated Lie algebra Lie (G) a one parameter
subgroup c ∈ C1({< ,+} ; G) is a Lie group homomorphism from the addition
group {< ,+} and the Lie group G . In other terms, a one parameter subgroup
is a smooth curve in G with c(0) = e and c(s+ t) = c(s).c(t) .

Proposition 1.5.5 If c ∈ C1(< ; G) is a curve with c(0) = e , setting X =
∂t=0 c(t) ∈ TeG , the following assertions are equivalent, [99]:

1) c is a one parameter subgroup ,

2) c(t) = FlLX
t (e) ,

3) c(t) = FlRX
t (e) ,

4) g.c(t) = FlLX
t (g) ⇐⇒ FlLX

t = ρc(t) ,

5) c(t).g = FlRX
t (g) ⇐⇒ FlRX

t = λc(t) .

Proof. Indeed the velocity of the flows ρc(t) ∈ C1(G ; G) and λc(t) ∈ C1(G ; G)
are given by

∂t=0 ρc(t)(g) = ∂t=0 µ(g, c(t)) = Teλg ·X = LX(g) ,

∂t=0 λc(t)(g) = ∂t=0 µ(c(t),g) = Teρg ·X = RX(g) ,

so that ρc(t) = FlLX
t and λc(t) = FlRX

t . �

104



Lie groups and algebras Giovanni Romano

1.5.4 Exponential mapping
The exponential mapping exp ∈ C1(Lie (G) ; G) of a Lie group G is the map
defined by

exp (X) := FlLX
1 (e) = FlRX

1 (e) = αX(1) , ∀X ∈ Lie (G) ,

where αX ∈ C1({< ,+} ; G) is the one parameter subgroup of G such that
∂t=0α(t) = X .

Proposition 1.5.6 The exponential map enjoyces the following properties:

1) exp (tX) = FlLtX1 (e) = FltLX
1 (e) = FlLX

t (e) = αX(t) ,

2) g.exp (tX) = FlLX
t (g) ⇐⇒ FlLX

t = ρexp (tX) ,

3) exp (tX).g = FlRX
t (g) ⇐⇒ FlRX

t = λexp (tX)

4) exp (0) = e ,

5) Texp (0) = idLie (G) .

Proof. The first three properties are a consequence of Proposition 1.5.5. It is
clear that exp (0) = e . Moreover, we have that

Texp (0) ·X = ∂t=0 exp (tX) = ∂t=0 FlLX
t (e) = LX(e) = X ,

so that Texp (0) = idLie (G) . �

1.5.5 Adjoint representation
• A representation of a Lie group G on a linear space V is an homomor-

phism of Lie groups ρ ∈ C1(G ; GL(V )) , where GL(V ) is the general
linear group of linear invertible maps on V .

According to Proposition 1.5.4, the tangent map Teρ ∈ C1(Lie (G) ;BL (V ;V ))
is a homomorphism of Lie algebras, [99]. An injective representation of a Lie
group G is said to be faithful.

A representation of a Lie group G may be provided by defining first, for
every a ∈ G , the conjugation conja ∈ C2(G ; G) by

conja(g) = a.g.a−1 ,
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that is
conja := λa ◦ ρa−1 = ρa−1 ◦ λa .

The conjugations fulfill the properties
conja.b = conja ◦ conjb ,

conja(x.y) = conja(x).conja(y) .

• The adjoint representation of a Lie group G on the linear space Lie (G)
is the map Adj ∈ C1(G ;BL (Lie (G) ; Lie (G))) defined as the tangent
map to the conjugation at the unit of G :

Adj := Teconj .

Since conjugations are Lie groups automorphisms, by Proposition 1.5.4 the
adjoint representation is a Lie algebra homomorphism:

Adja.b = Teconja.b = Teconja ◦ Teconjb = Adja ◦Adjb ,

Adja · [X ,Y] = [Adja ·X ,Adja ·Y] , ∀a ∈ G , ∀X,Y ∈ Lie (G) .

A simple calculation shows that

Adja := Teconja = Te(λa ◦ ρa−1) = Ta−1λa · Teρa−1

= Te(ρa−1 ◦ λa) = Taρa−1 · Teλa .

Let c ∈ C1(I ; G) be a path with c(0) = e and velocity ∂t=0 c(t) = X ∈
TeG . Then, by Proposition 1.5.5, the velocity of the flow ρc(t) ∈ C1(G ; G) is
∂t=0 ρc(t) = LX and we have that:

Proposition 1.5.7 The adjoint representation of the Lie group G is given by

Adjc(t) ·Y = (TFlLX
−t ◦ LY ◦ FlLX

t )(e) = (FlLX
t ↓LY)(e) , ∀Y ∈ TeG .

Proof. Recalling the formula LY(c(t)) = Teλc(t)·Y , we have, for all Y ∈ TeG :

Adjc(t) ·Y = Tc(t)ρc(t)−1 · Teλc(t) ·Y

= Tc(t)ρc−1(t) · LY(c(t))

= (Tρc−1(t) ◦ LY ◦ ρc(t))(e)

= (TFlLX
−t ◦ LY ◦ FlLX

t )(e)

= (FlLX
t ↓LY)(e) ,

and the result is proven. �
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Proposition 1.5.8 The adjoint representation of the Lie group G meets the
property:

LX(a) = RAdjaX(a) , X ∈ TeG , a ∈ G .

Proof. A simple computation:

LX(a) := Teλa ·X = Teρa · Te(ρa−1 + λa) ·X = RAdjaX(a) , ∀X ∈ TeG ,

yields the result. �

• The adjoint representation of the Lie algebra Lie (G) is the tangent map
adj = TeAdj ∈ BL (Lie (G) ;BL (Lie (G) ; Lie (G))) .

Proposition 1.5.9 The adjoint representation adj = TeAdj of the Lie alge-
bra Lie (G) is characterized by the property:

adj(X) ·Y = [X ,Y] , X,Y ∈ TeG ,

which may be also written as adj(X) = [X , •] .

Proof. From Propositions 1.5.5 and 1.5.7 we infer that:

adj(X) ·Y = TeAdj(X) ·Y = ∂t=0 Adjc(t) ·Y

= ∂t=0 (FlLX
t ↓LY)(e) = [LX ,LY](e) = [X ,Y] ,

and the result is proven. �

1.5.6 Maurer-Cartan form
The canonical form or Maurer-Cartan form on a Lie group G is the differ-
ential one-form ω ∈ C1(G ; Lie (G)) with values in the Lie algebra Lie (G) ,
defined by:

〈ω,v〉(g) := (Teλg)−1 · v(g) = Teλg−1 · v(g) , g ∈ G , v ∈ C1(G ;TG) .

The Maurer-Cartan form is then pointwise defined by the rule which asso-
ciates with the tangent vector v(g) ∈ TgG , the vector X ∈ TeG which is its
generator by left invariance, i.e. such that:

v(g) = LX(g) = Teλg ·X .
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Let us recall that the image of a one form ω ∈ C1(G ; Lie (G)) under the left
translation λa ∈ C1(G ; G) is defined by:

〈λa↑ω, λa↑v〉 := λa↑〈ω,v〉 ,

or equivalently by:
λa↓〈λa↑ω,v〉 := 〈ω, λa↓v〉 .

Figure 1.21: Elie Joseph Cartan (1869-1951)

Proposition 1.5.10 The Maurer-Cartan form is left invariant, i.e.:

λa↑ω = ω ,

and the image by a right translation is given by: ρa↑ω = Adja ◦ ω .

Proof. To prove that 〈ω, λa↑v〉 = λa↑〈ω,v〉 we write:

〈ω, λa↑v〉(g) = 〈ω(g), Tgλa · v(a−1.g)〉 = (Teλg)−1 · Tgλa · v(a−1.g)

= Teλg−1 · Tgλa · v(a−1.g) = Te(λg−1 ◦ λa) · v(a−1.g)

= Teλg−1.a · v(a−1.g) = Teλ(a−1.g)−1 · v(a−1.g)

= 〈ω,v〉(a−1.g) = (〈ω,v〉 ◦ λa−1)(g) ,

and the former result is proven since (〈ω,v〉◦λa−1)(g) = λa↑〈ω,v〉 . The latter
result is proven in a similar way. �
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1.5.7 Group actions
Let us denote by Perm(M) the set of all the permutations of a set M , i.e. of
all the invertible maps from M onto itself.

A left action of a Lie group G on a set M is a group homomorphism
` ∈ C1(G ; Perm(M)) .

The left action can be defined as a map ` ∈ C1(G ×M ; M) such that,
setting `a(x) = `x(a) = `(a,x) for a ∈ G and x ∈M , it is

`a ◦ `b = `a.b , ∀a,b ∈ G , `e = idM ,

A right action of a Lie group on a set M is a group anti-homomorphism
r ∈ C1(G ; Perm(M)) in which composition and multiplication are performed
in reverse order.

A right action can be defined as a map r ∈ C1(M × G ; M) such that,
setting rx(a) = ra(x) = r(x,a) for a ∈ G and x ∈M , it is

ra ◦ rb = rb.a , ∀a,b ∈ G , re = idM .

A G-space is a manifold M together with a left or right action of a Lie group
G on M . The following definitions are identical for left and right actions.

• The orbit through x ∈M is the subset `(G,x) ⊆M .

• An action is transitive if M is an orbit. This means that given x,y ∈M
there exists a g ∈ G such that `(g,x) = y .

• An action is free if `a has a fixed point only if a = e . This means that
if `(a,x) = x for some x ∈M , then a = e .

• An action is effective if the group homomorphism ` ∈ C1(G ; Perm(M))
is injective. This means that, given a,b ∈ G if `a = `b , then a = b .

Proposition 1.5.11 An action is both transitive and free if and only if for any
x,y ∈M there is a unique g ∈ G such that `g(x) = y .

Proof. In the only if statement, existence is ensured by transitivity, so let us
prove uniqueness. Indeed, if `g(x) = `h(x) then

x = (`−1
g ◦ `h)(x) = (`g−1 ◦ `h)(x) = `g−1.h(x) .

Since the action is free, this implies that g−1.h = e , that is g = h . The if
statement follows by observing that the property implies transitivity. To prove
that the action is free, let us assume that x is a fixed point of `g . Then
`g(x) = x = `e(x) and, by uniqueness, g = e . �
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Proposition 1.5.12 A transitive action of a commutative group is free.

Proof. Let `a(x) = x . Then, by transitivity, we may set y = `b(x) and by
commutativity we get

`a(b) = `a(`b(x)) = (`a ◦ `b)(x) = `a.b(x)

= `b.a(x) = (`b ◦ `a)(x) = `b(x) = y .

By the arbitrariness of y ∈M we conclude that `a = idM and hence from the
previous Proposition 1.5.11 we infer that a = e . �

1.5.8 Killing vector fields
Let us consider a left action ` ∈ C1(G×M ; M) of a Lie group G at a point x ∈
M and a one parameter subgroup c ∈ C1({< ,+} ; G) of the Lie group, with
velocity X := ∂t=0 c(t) ∈ TeG . The composition `x ◦ c ∈ C1(< ; M) defines a
one parameter transformation group on the manifold M . The corresponding
flow is given by `c(t) = `exp (tX) ∈ C1(M ; M) and the velocity field:

ζX := ∂t=0 `c(t) = ∂t=0 `exp (tX) ∈ C1(M ;TM) ,

is the Killing vector field or the infinitesimal generator of the left action ` ∈
C1(G×M ; M) corresponding to the vector X ∈ TeG .

The corresponding flow is given by FlζXt = `exp (tX) ∈ C1(M ; M) . The
chain rule shows that the Killing vector field depends linearly on the tangent
vector X := ∂t=0 c(t) ∈ TeG since:

ζX(x) = Te`
x ·X ∈ TxM ,

with Te`
x ∈ BL (TeG ;TxM) , equivalent to ζX(x) = T(e,x)` · {X, 0x} ∈ TxM .

Moreover we have that the equality:

FlζXt (x) = `x(exp (tX)) = `x(λexp (tX)e) = (`x ◦ FlRX
t )(e) ,

defines pointwise the relation which transforms the flow associated with a right
invariant vector field on a Lie group into the corresponding flow associated with
the Killing vector field: FlζXt = Λ◦FlRX

t with the same generator X ∈ TeG .
Hence, the vector bundle homomorphism TΛ ∈ C0(TG ;TM) gives:

ζX = ∂t=0 FlζXt (x) = ∂t=0 Λ ◦ FlRX
t = TΛ ◦RX .
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Proposition 1.5.13 The Killing vector field associated with a left action of
a group G , meets the properties:

Tx`a · ζX(x) = ζAdja·X(a.x) , [ζX , ζY] = −ζ[X ,Y] .

Proof. By acting with the tangent map T`a(x) ∈ BL (TxM ;T`(a,x)M) on
both sides of the defining formula ζX(x) = T`x(e) ·X , we get

Tx`a · ζX(x) = (Tx`a ◦ Te`
x) ·X = Te(`a ◦ `x) ·X .

But (`a ◦ `x)(g) = a.g.x = (a.g.a−1).a.x = conja(g).a.x = `a.x(conja(g))
and hence

Te(`a ◦ `x) ·X = (Te`
a.x ◦ Teconja) ·X = (Te`

a.x ◦Adja) ·X = ζAdja·X(a.x) ,

and the first formula is proved. By Lemma 1.4.4 and Proposition 1.5.2 we have:

[ζX , ζY] = [TΛ ◦RX , TΛ ◦RY] = TΛ ◦ [RX ,RY] = TΛ ◦R[Y ,X] = ζ[Y ,X] ,

and this proves the second formula. �

If a right action is considered instead of a left one, similar results hold, with
the last property in Proposition 1.5.13 changed into: [ζX , ζY] = ζ[X ,Y] . If the
Lie group G acts effectively on the manifold M , the linear space of Killing
vector fields is isomorphic to the algebra Lie (G) .

1.6 Connections
We shall preliminarily introduce the definition of a connection on a manifold
as a split of its tangent bundle into a pair of complementary vector subbundles
called the vertical and the horizontal bundle. Then any tangent vector can
uniquely be split as sum of a vertical and a horizontal component. This general
definition will then be applied to provide the notion of connection on a fibre
bundle.

1.6.1 Ehresmann connections
The notion of connection on a manifold was introduced by Charles Ehres-
mann in 1950 , [52] and investigated upon by Paulette Libermann in [116],
[117], [118], [119]. We develop a treatment based essentially on the exposition
given in [99]. Let us give the following definitions.
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Figure 1.22: Charles Ehresmann (1905 - 1979)

Definition 1.6.1 (Connection) A connection on a manifold E is a tangent
valued one-form PV ∈ Λ1(E ;TE) which pointwise is a linear projector, that
is, for any e ∈ E , the linear operator PV(e) ∈ BL (TeE ;TeE) is idempotent:
PV(e) ◦ PV(e) = PV(e) , which will be written as PV ◦ PV = PV .

Then also the complementary operator PH := I− PV ∈ Λ1(E ;TE) , with I :=
idTE the identity on TE , is pointwise a linear projector and PH◦PH = PH and
PH ◦ PV = PV ◦ PH = 0 . The complementary projectors PV, PH ∈ Λ1(E ;TE)
induce a splitting of each tangent space TeE as the direct sum of two supple-
mentary closed linear subspaces.

Definition 1.6.2 (Vertical and horizontal vectors) Vectors belonging to the
range im(PV) of the connection are said to be vertical while vectors belonging
to the kernel ker(PV) of the connection are said to be horizontal.

Lemma 1.6.1 (Alternative characterization of a connection) A connec-
tion may also be characterized by a tangent valued one-form Γ ∈ Λ1(E ;TE)
which is involutive: Γ2 = I . Given two complementary projectors PV ∈
Λ1(E ;TE) and PH ∈ Λ1(E ;TE) the involutive connection Γ ∈ Λ1(E ;TE)
is defined by the l.h.s. of the equivalence below:{

PH + PV = I

PH − PV = Γ
⇐⇒

{
2PH = I + Γ

2PV = I− Γ

Conversely, given an involutive connection Γ ∈ Λ1(E ;TE) , the linear operators
PV ∈ Λ1(E ;TE) and PH ∈ Λ1(E ;TE) , defined by the r.h.s. of the equivalence
above, are complementary projectors.
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Proof. Involutivity of Γ ∈ Λ1(E ;TE) and complementarity and nihilpotency
of the operators PV, PH ∈ Λ1(E ;TE) , defined as above, are equivalent proper-
ties by virtue of the formulas

4PH ◦ PV = (I + Γ) ◦ (I− Γ) = I− Γ2 = 0

and
(I + Γ) ◦ (I + Γ) = I + 2 Γ + Γ2 = 2 (I + Γ) ,

that is: 1
2 (I + Γ) ◦ 1

2 (I + Γ) = 1
2 (I + Γ) and similarly for 1

2 (I− Γ) . �

A characterization of a connection Γ on a tangent bundle TM will be
provided in Section 1.12.6.

Definition 1.6.3 (Vertical and horizontal forms) Given an Ehresmann
connection on a manifold E , a vector-valued form K ∈ Λk(E ;TE) is horizon-
tal (vertical) if it vanishes when any of its arguments is a vertical (horizontal)
vector of E .

1.7 Connection on a fibre bundle
The notion of a connection on a fibre bundle p ∈ C1(E ; M) follows from the
notion of an Ehresmann connection by taking the vertical vectors in TE as
the ones with a vanishing velocity of their base points in M .

We provide here original treatment by founding the theory on the notion
of natural derivative and on its properties of projectability and naturality with
respect to Lie brackets, proved in Lemma 1.7.1.

The major achievement of this new approach is afforded by Theorem 1.7.5
which gives a direct proof of the expression of the curvature in a fibre bundle in
terms of covariant derivatives. The proof is based on a newly defined extension
by foliation of the natural derivatives to local tangent fields on the total space
of the fibre bundle.

Frobenius integrability condition, which is the essential tool in providing
the concept of curvature, is presented in Theorem 1.7.2, with a simplest proof
based on clear geometrical arguments.

Definition 1.7.1 (Connection on a fibre bundle) A connection on a fibre
bundle p ∈ C1(E ; M) is a tangent valued one-form PV ∈ Λ1(E ;TE) which
is a pointwise projector on the vertical subbundle. Then PV ∈ Λ1(E ;TE) is
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characterized by the following properties:{
PV ◦ PV = PV idempotency ,

im(PV) = ker(Tp) .

1.7.1 Natural derivative
Definition 1.7.2 (Natural derivative) The natural derivative of a section
s ∈ C1(M ;E) of a fibre bundle p ∈ C1(E ; M) according to a vector field
v ∈ C0(M ;TM) is the tangent vector field Tv ∈ C1(s(M) ;TE) of the tangent
bundle τE ∈ C1(TE ; s(M)) defined by

Tv ◦ s := T s · v ∈ C1(M ;TE) .

Clearly, on s(M) , we have that τE ◦ Tv = id s(M) and the relation

Tp · Tv ◦ s = Tp · T s · v = T (p ◦ s) · v = v ◦ p ◦ s ,

yields the commutativity of the diagram

s(M)
Tv−−−−→ TE

p

y Tp

y
M

v−−−−→ TM

⇐⇒ Tp · Tv = v ◦ p ∈ C1(s(M) ;TM) ,

which is equivalent to the commutativity of the diagram

s(M)
FlTv
λ−−−−→ s(M)

p

y p

y
M

Flvλ−−−−→ M

⇐⇒ p ◦ FlTv

λ = Flvλ ◦ p ∈ C1(s(M) ; M) .

By definition, the natural derivative Tv ∈ C0(s(M) ;TE) is tensorial in the
vector field v ∈ C0(M ;TM) .

Lemma 1.7.1 (Bracket of natural derivatives) For a section s ∈ C1(M ;E)
of a fibre bundle p ∈ C1(E ; M) and any pair of vector fields u,v ∈ C0(M ;TM) ,
the corresponding natural derivatives are natural with respect to the Lie-bracket,
i.e. on s(M) :

[Tu , Tv] = T[u ,v] .
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Proof. By Definition 1.7.2, the natural derivatives Tu, Tv ∈ C1(s(M) ;TE)
and the vector fields u,v ∈ C1(M ;TM) are s-related, i.e.:

TM
T s−−−−→ TE

u,v

x xTu,Tv

M
s−−−−→ E

⇐⇒
{
Tu ◦ s := T s · u ∈ C0(M ;TE) ,

Tv ◦ s := T s · v ∈ C0(M ;TE) .

Then, by Lemma 1.4.4, we have that:

[Tu , Tv] ◦ s = T s ◦ [u ,v] = T[u ,v] · s , ∀x ∈M ,

which, by definition of natural derivative, gives the result. �

Although not needed in evaluating the Lie bracket [Tu , Tv] on s(M) , for the
developments illustrated in Theorem 1.7.5 it is essential to extend the domain
of the natural derivatives Tu, Tv ∈ C1(s(M) ;TE) outside the range s(M) ⊂ E
of the section s ∈ C1(M ;E) , so that they can be considered as (local) tangent
vector fields Tu, Tv ∈ C1(E ;TE) with the further property of being projectable.
This task can be accomplished by the following construction.

Lemma 1.7.2 (Extension by foliation) The natural derivative of a section
s ∈ C1(M ;E) of a fibre bundle p ∈ C1(E ; M) , according to a vector field v ∈
C0(M ;TM) , can be extended to a (local) tangent vector field Tv ∈ C1(E ;TE)
in the bundle τE ∈ C1(TE ;E) which projects on the vector field v ∈ C0(M ;TM) ,
i.e. we have that, locally in E :

τE ◦ Tv = idE ,

Tp · Tv = v ◦ p .

Proof. The extension may be performed by considering a (local) foliation of
the total manifold E , whose leaves are transversal to the fibres and include the
folium s(M) . The existence of at least a local foliation with these characteristics
can be inferred by acting with a local bundle chart, which maps (locally) the
image of the section into the trivial bundle image of the chart, and, subsequently,
with a local chart which maps (locally) the fibre manifold in its linear model
space. The foliation is then performed by translation in the linear fibre image
and the resulting leaves are mapped back to get the leaves in the total manifold
(see the simple sketch in fig. 1.23). It is thus possible to define the map σ ∈
C1(E ; C1(M ;E)) which to each e ∈ E associates the section σe ∈ C1(M ;E)
defined by

σe(x) := Σe ∩ Ex , ∀ e ∈ E ,
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whose range is the leaf Σe through e ∈ E . The extension of Tv is the vector
field defined (locally) by

Tv(e) := Tp(e)σe · vp(e) , ∀ e ∈ E ,

with τE(Tp(e)σe · vp(e)) = e . This extension projects on v since

Tp(e)p · Tv(e) = Tp(e)p · Tp(e)σe · vp(e)

= Tp(e)(p ◦ σe) · vp(e) = vp(e) .

Being σe(p(e)) = e the extension Tv(e) := Tp(e)σe · vp(e) may be written
as (Tv ◦ σe)(p(e)) = (Tσe · v)(p(e)) which, by surjectivity of p , means that
(locally)

Tv ◦ σe = Tσe · v , ∀x ∈M .

If e1, e2 ∈ E are such that Σe1
= Σe2

, then σe1
= σe2

. If e ∈ s(M) , the
section σe ∈ C1(M ;E) is in fact s ∈ C1(M ;E) . �

2

1

2

Figure 1.23: Sketch of the foliation

1.7.2 Horizontal lift
Definition 1.7.3 The horizontal lift of a vector field v ∈ C0(M ;TM) along
a section s ∈ C1(M ;E) of the fibre bundle p ∈ C1(E ; M) , is the horizontal
component of the natural derivative:

H(s,v) = Hvs :=PH · Tv ◦ s

=PH · T s · v ∈ C1(M ;TE) .

Then, for given s ∈ C1(M ;E) , PH·T s ∈ C1(TM ;HE) and Hv ∈ C1(s(M) ;HE) .
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Lemma 1.7.3 (Injectivity) For any section s ∈ C1(M ;E) of a fibre bundle
p ∈ C1(E ; M) , the map PH · T s ∈ C1(TM ;TE) is a fibre bundle homomor-
phism from the bundle τM ∈ C1(TM ; M) to the bundle τE ∈ C1(HE ;E) which
is fibrewise injective. This means that the linear map PH·Txs ∈ BL (TxM ;Ts(x)E)
is injective at each point x ∈M .

Proof. We have to prove that ker(PH ◦Txs) = {0} . We first investigate on the
linear differential Txs ∈ BL (TxM ;Ts(x)E) . From the characteristic property
of a section, p ◦ s = idM , we get:

Ts(x)p · Txs · vx = Tx(p ◦ s) · vx = vx , ∀vx ∈ TxM .

Then ker(Txs) = {0} and im(Txs) ∩ ker(Ts(x)p) = {0} . The injectivity of
Txs implies that: dim im(Txs) = dimTxM . Being Txs = ∇xs +PH ·Txs with
im(∇xs) ⊆ ker(Ts(x)p) , we have that

Ts(x)p · PH · Txs · vx = Ts(x)p · Txs · vx = vx , ∀vx ∈ TxM .

We may conclude that PH · Txs ∈ BL (TxM ;Ts(x)E) is a right inverse of
Ts(x)p ∈ BL (Ts(x)E ;TxM) , that is

Ts(x)p ◦ PH · Txs = idTxM .

It follows that ker(PH ·Txs) = {0} and im(PH ·Txs)∩ker(Ts(x)p) = {0} with
dim im(PH · Txs) = dimTxM . �

Theorem 1.7.1 (Tensoriality of the horizontal lift) Given a section s ∈
C1(M ;E) of a fibre bundle p ∈ C1(E ; M) , the map PH ◦T s ∈ C1(TM ;TE) is
a vector bundle homomorphism from the bundle τM ∈ C1(TM ; M) to the
bundle τE ∈ C1(HE ;E) which is fibrewise invertible and tensorial in s ∈
C1(M ;E) .

Proof. Let dim M = dimTxM = m and dimF = f where F is the typical
fibre. Being dimE = dimTs(x)E = m + f we have that dimVs(x)E = f
and dimHs(x)E = m . By reasons of dimensions the injectivity of PH ◦ Txs ∈
BL (TxM ;Ts(x)E) implies the surjectivity of PH◦Txs ∈ BL (TxM ;Hs(x)E) . Let
us now consider in the bundle p ∈ C1(E ; M) two sections s, s ∈ C1(M ;E) such
that s(x) = s(x) . For any vector vx ∈ TxM , being Txs ·vx, Txs ·vx ∈ Ts(x)E ,
we have that

Tp ◦ (Txs− Txs) · vx = 0 ,

and hence that PH ◦ Txs = PH ◦ Txs ∈ BL (TxM ;Ts(x)E) . Then to a tangent
vector vx ∈ TxM there corresponds a horizontal vector PH ◦Txs ·vx ∈ Hs(x)E
depending only on the value of s ∈ C1(M ;E) at x ∈M . �
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By the tensoriality result stated in Theorem 1.7.1, the horizontal lift may be
defined on the whole manifold E without any mention to a special section.

Lemma 1.7.4 (Projectability of horizontal lifts) The vector field Hv ∈
C1(E ;HE) of horizontal lifts of a vector field v ∈ C1(M ;TM) is p-related to
the field v ∈ C1(M ;TM) according to the commutative diagram

HE Tp−−−−→ TM

Hv

x xv

E p−−−−→ M

⇐⇒ Tp ◦Hv = v ◦ p ∈ C0(E ;TM) .

Proof. Being Tv −Hv = (I−PH) ◦ Tv = PV ◦ Tv and Tp ◦PV = 0 , it follows
that:

Tp ◦ Tv = Tp ◦Hv .

The projectability of the natural derivative implies that the horizontal lift Hv ∈
C1(E ;HE) projects on v ∈ C1(M ;TM) . �

Lemma 1.7.5 If the tangent field X ∈ C1(E ;TE) projects on the tangent field
v ∈ C1(M ;TM) then PHX ∈ C1(E ;HE) also projects on v ∈ C1(M ;TM)
and PHX = Hv .

Proof. Since

Tp · (PHX−Hv) = Tp · PHX− Tp ·Hv = v ◦ p− v ◦ p = 0 ,

the difference PHX−τE Hv between the horizontal fields PHX and Hv , being
vertical, vanishes. �

The flow of the horizontal lift Hv ∈ C1(E ;HE) fulfils the commutative
diagram:

E
FlHv
λ−−−−→ E

p

y p

y
M

Flvλ−−−−→ M

⇐⇒ p ◦ FlHv

λ = Flvλ ◦ p .

The p-relatedness of brackets of p-related vector fields gives the commutative
diagram:

HE Tp−−−−→ TM

[Hu ,Hv]

x x[u ,v]

E p−−−−→ M

⇐⇒ Tp ◦ [Hu ,Hv] = [u ,v] ◦ p ∈ C1(E ;TM) .
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On the basis of the previous results we may state the following definitions and
properties.

Definition 1.7.4 (Horizontal lift) In a bundle p ∈ C1(E ; M) the horizontal
lift H ∈ C1(E×MTM ;TE) is a right inverse of (τE , Tp) ∈ C1(TE ;E×MTM)
such that for any section s ∈ C1(M ;E) the map H(s , ·) ∈ C1(TM ;TE) is a
linear homomorphism from the tangent bundle τ ∈ C1(TM ; M) to the tangent
bundle τE ∈ C1(TE ;E) , i.e:

(τE , Tp) ◦H = idE×MTM ,

H(sx , αux + β vx) = αH(sx ,ux) + βH(sx ,vx) ∈ TsxE ,

with sx ∈ Ex and ux,vx ∈ TxM and α, β ∈ < .

Lemma 1.7.6 (Horizontal lifts and horizontal projectors) Given a hor-
izontal projector PH ∈ C1(TE ;TE) , the induced horizontal lift is defined by

H(sx ,vx) := PH · Txs · vx ∈ HsxE , ∀ sx ∈ Ex, vx ∈ TxM ,

where s ∈ C1(M ;E) is an arbitrary section extension of sx ∈ Ex . Vice versa,
given a horizontal lift H ∈ C1(E ×M TM ;TE) , the corresponding horizontal
projector is given by

PH := H ◦ (τE , Tp) .

Proof. The former formula yields a horizontal lift since:

((τE , Tp) ◦H)(sx ,vx) = (τE , Tp) · PH · Txs · vx = (sx ,vx) .

The latter formula yields a horizontal projector since idempotency follows from:

PH ◦ PH = H ◦ (τE , Tp) ◦H ◦ (τE , Tp) = H ◦ idE×MTM ◦ (τE , Tp) = PH .

Horizontality of PH := H ◦ (τE , Tp) is expressed by the equivalence:

(H ◦ (τE , Tp))(X) = 0τE(X) ⇐⇒ Tp ·X = 0p(τE(X)) , ∀X ∈ TE ,

which is inferred from the formula

((τE , Tp) ◦H ◦ (τE , Tp))(X) = (τE(X) , Tp(X)) ,

based on the property (τE , Tp) ◦H = idE×MTM , and the result is proved.
�
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1.7.3 Splitting of dual exact sequences
Definition 1.7.5 (Connnection and splitting) A connnection on a fibre bun-
dle (E ,p ,M) is a splitting of the exact sequence (see section 1.3.5, page 54):

0 −−−−→ VE i−−−−→ TE
(τE ,Tp)−−−−−→ p↓TM −−−−→ 0

where i ∈ C1(VE ;TE) is the inclusion and (τE , Tp) ∈ C1(TE ; p↓TM) is the
canonical surjection.

By definition, a splitting H ∈ C1(p↓TM ;TE) is such that (τE , Tp) ◦ H =
idp↓TM , that is:

((τE , Tp) ◦H)(e ,v) = (e ,v) ,

with (e ,v) ∈ p↓TM = E×M TM . Hence, the splitting H ∈ C1(p↓TM ;TE)
is a horizontal lifting if it induces a linear homomorphism from the tangent
bundle τM ∈ C1(TM ; M) to the tangent bundle τE ∈ C1(TE ;E) .

Lemma 1.7.7 (Dual exact sequence) A dual exact sequence can be associ-
ated with the previous one:

0 −−−−→ p↓TM∗ T∗p−−−−→ TE∗ j−−−−→ VE∗ −−−−→ 0.

Proof. The canonical injection T ∗p ∈ C1(p↓T ∗M ;TE∗) is defined by:

T ∗p(e ,v∗) := T ∗e p · v∗ ,

with (e ,v∗) ∈ p↓T ∗M = E×M T ∗M . Then, for all Xe ∈ TeE :

T ∗p(e ,v∗) ·Xe := 〈T ∗e p · v∗,Xe 〉 = 〈v∗, Tep ·Xe 〉 ,

Let us now verify that the dual sequence is exact. The surjectivity of Tep ∈
BL (TeE ;Tp(e)M) implies that ker(T ∗e p) = im(Tep)

◦
= {0} and hence the

injectivity of T ∗e p ∈ BL (T ∗p(e)M ;T ∗eE) . Moreover, by Banach’s closed range
theorem, it implies also that im(T ∗e p) = ker(Tep)

◦
. On the other hand, the

canonical surjection j ∈ C1(TE∗ ;VE∗) is the pointwise dual of i ∈ C1(VE ;TE)
according to the identity:

〈j(α),V〉 = 〈α, i(V)〉 , ∀ (α ,V) ∈ TE∗ ×E VE .

The linear space V∗eE , dual of the subspace VeE ⊂ TeE , is isometrically iso-
morphic to the quotient space T ∗eE/(VeE)

◦
, and hence ker(j(e)) = (VeE)

◦
=

ker(Tep)
◦

= im(T ∗e p) . The surjectivity of j ∈ C1(TE∗ ;VE∗) follows from
im(j) = ker(i)

◦
due to the closedness of im(i) . �
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A dual splitting P ∗V ∈ C1(VE∗ ;TE∗) is pointwise defined by the linear
projector PV(e)∗ ∈ BL (V∗eE ;T ∗eE) dual to the vertical projector PV(e) ∈
BL (TeE ;VeE) according to:

〈β, PV ·X〉 = 〈P ∗V · β,X〉 ,

with {β ,X} ∈ VE∗ ×E TE .

1.7.4 Frobenius integrability theorem
The integrability theorem of Frobenius concerns a local vector sub-bundle A
of TM , called a distribution, with n-D base manifold M and fibres which are
linear k-D subspaces of the tangent spaces to M such that in the neighborhood
of a point of M there a family of k vector fields which form a frame for the
local vector bundle. Such a family is called a local basis.

Figure 1.24: Ferdinand Georg Frobenius (1849 - 1917)

Definition 1.7.6 (Integrability) A vector subbundle A is integrable at x ∈
M if there exists a (local) submanifold, the integral manifold IA ⊂M through
x , whose tangent manifold is the subbundle A restricted to IA .

In terms of the inclusion operator i ∈ C1(IA ; M) , the integral manifold is
characterized by: T (i(IA)) = (A ◦ i)(IA) . Equivalently, integrability requires
existence of a local chart for M such that the velocities of k of the n coordinate
lines form a local basis for the vector sub-bundle. Such a chart is called a
flat chart for the local vector sub-bundle. An original proof of Frobenius
theorem biased on its geometrical aspects, is proposed below. The next one is
a propædeutic result (see [99], Theorem 3.17).
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Lemma 1.7.8 (Local frames and coordinates) Let M be a manifold mod-
eled on a n-D linear space E and {v1, . . . ,vn} be a set of vector fields vi ∈
C1(M ;TM) in a neighborhood of x ∈ M such that {v1(x), . . . ,vn(x)} is a
frame at x ∈M with [vi ,vj ] = 0 for all i, j = 1, . . . , n . Then the vector fields
vi are the velocities of the coordinate lines associated with a coordinate map
ϕ ∈ C1(E ; M) centered at x ∈M .

Proof. By Proposition 1.4.2 the flows of the vector fields {v1, . . . ,vn} commute
pairwise. Then, if {e1, . . . , en} is a basis of E and t =

∑n
i=1 tiei , we may set

ϕ(t) := (Flv1
t1 ◦ Flv2

t2 ◦ . . . ◦ Flvntn )(x) , t ∈ E ,

Teiϕ(t) = ∂τi=ti Flviτi ◦ (Flv1
t1 ◦ Flv2

t2 ◦ . . . ◦ Flvntn )i(x)

= vi(Flv1
t1 ◦ Flv2

t2 ◦ . . . ◦ Flvntn )(x) ,

with ϕ(0) = x and Teiϕ(0) = vi(x) . The subscript ()i denotes that the i-th
term is missing. �

The proof of Frobenius sufficient condition of integrability will be carried
out with reference to a horizontal subbundle of a fibre bundle. Subsequently,
this result is readily adapted to deal with the general case of a distribution on
a manifold. Preliminarily we prove that an integrable subbundle of a tangent
bundle TM is involutive, according to the following definition.

Definition 1.7.7 (Involutivity of a subbundle) A vector subbundle A of
the tangent bundle TM is involutive if, for any pair of vector fields of A , their
bracket belongs to A .

Lemma 1.7.9 (Necessity of involutivity) An integrable vector subbundle A
of the tangent bundle TM is involutive.

Proof. Since A is integrable, we have that (A◦ i)(IA) = T (i(IA)) = T i(T IA) ,
where i ∈ C1(IA ; M) is the inclusion. Then the property u,v ∈ C1(i(IA) ;A) is
equivalent to require their i-relatedness to vector fields uA,vA ∈ C1(IA ;T IA)
according to the commutative diagram

T IA
T i−−−−→ TM

uA,vA

x xu,v

IA
i−−−−→ M

⇐⇒
{

u ◦ i = T i ◦ uA ∈ C0(IA ;TM) ,

v ◦ i = T i ◦ vA ∈ C0(IA ;TM) .

By Proposition 1.4.4 on page 78 the bracket [u ,v] ∈ C1(M ;TM) is i-related
to [uA ,vA] ∈ C1(IA ;T IA) . Hence [u ,v] ∈ C1(i(IA) ;A) . �
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Theorem 1.7.2 (Frobenius theorem for horizontal subbundles) A hori-
zontal subbundle HE of the tangent bundle τE ∈ C1(TE ;E) to a fibre bundle
p ∈ C1(E ; M) is integrable if it is involutive, i.e.

X,Y ∈ C1(E ;HE) =⇒ [X ,Y] ∈ C1(E ;HE) .

Proof. For any pair of vector fields u,v ∈ C1(M ;TM) such that [u ,v] = 0
the bracket of the horizontal lifts Hu,Hv ∈ C1(E ;TE) is a vertical field since,
by Lemma 1.7.4, Tp◦[Hu ,Hv] = [u ,v]◦p = 0 . By the involutivity assumption
it is also horizontal and hence vanishes. Given a set of coordinate lines on
M with velocities vi, i = 1, . . . , n we have that [vi ,vj ] = 0, i, j = 1 . . . , n
and also [Hvi ,Hvj ] = 0, i, j = 1, . . . , n . Then, as in Lemma 1.7.8, the map
ϕ ∈ C1(E ;E) defined by ϕ(t) = (Fl

Hv1
t1 ◦ Fl

Hv2
t2 ◦ . . . ◦ Fl

Hvn
tn )(e) transforms

an open neighborhood U(0) ⊂ E in a submanifold ϕ(U(0)) ⊂ E which is the
horizontal leaf passing through ϕ(0) = e ∈ E . �

The integral manifolds provide a foliation of E into a family of disjoint
connected horizontal leaves [3], [99].

Theorem 1.7.3 (Frobenius theorem for distributions) A vector subbun-
dle A of the tangent bundle TM is integrable if it is involutive.

Proof. The proof is directly inferred from Theorem 1.7.2 by the following trick.
Let us consider a decomposition of the model linear space E of the manifold M
into two supplementary linear subspaces: E = H+V with H := Tm0

ϕ(A(m0))
for a chart ϕ ∈ C1(U(m0) ;E) with U(m0) ⊂M open neighborhood of m0 ∈
M . Denoting by PH ∈ BL (E ;H) the linear projector on the subspace H , we
define the vector bundle p := PH ◦ ϕ ∈ C1(M ;H) with typical fibre V .

The vertical subbundle of the tangent bundle τ ∈ C1(TM ; M) is then given
by Tϕ−1(V ) since Tp ◦ Tϕ−1(V ) = PH ◦ Tϕ ◦ Tϕ−1(V ) = PH(V ) = 0 . The
horizontal bundle is taken to be A . �

A direct application of the involutivity property leads to the following results.

• A distribution, whose fibres are 1D, is integrable. Indeed, for any pair of
vector fields u,v in M , we may write v = f ·u with f ∈ C1(M ;<) , so
that

[u ,v] = [u , f · u] = Luf · u + f · Luu = Luf · u ∈ T IA .
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• A distribution, whose vector fields are characterized by the vanishing of the
corresponding Lie derivative of a given tensor field, is integrable. Indeed,
given a tensor field T on M , property xi) of Proposition 1.4.11 gives

LuT = LvT = 0 =⇒ L[u ,v] T = 0 .

A most important instance of this kind of distributions is the one whose
vector fields are infinitesimal isometries in a Riemann manifold {M ,g}
(see Lemma 1.14.4).

Various proofs of sufficiency of the involutive property for integrability of a
subbundle are given in the literature. The case of even non finite-dimensional
Banach spaces is considered in [50] Theorem 10.9.4, where Frobenius theorem
is formulated as an integrability condition for total differential equations. In the
same general context, Frobenius theorem is proved in [3] Theorem 4.4.3, as an
integrability condition for subbundles of manifolds modeled on Banach spaces.
In the latter proof the role, which in the finite dimensional context is played by
coordinate maps, is instead played by a skillful application of the Lie transform
method. Other proofs are given in [99] section 3.23, in [110] chapter VI and in
[34] chapter V.

Frobenius theorem can also be stated as an integrability condition for a
total differential equation:

y′ = f(x,y) .

Here H,V are Banach spaces, {x ,y} ∈ H × V and f(x,y) ∈ BL (H ;V ) a
bounded linear map. A solution is a differentiable map u ∈ C1(UH ;UV ) , with
UH ⊂ H and UV ⊂ V open subsets, such that

∇u(x) = f(x,u(x)) .

The total differential equation is completely integrable in UH × UV ⊂ H × V
if at any point {x0 ,y0} ∈ UH × UV there is an open neighborhood U(x0) of
x0 ∈ UH such that there is a unique solution u ∈ C1(U(x0) ;UV ) fulfilling the
condition u(x0) = y0 .

The equivalence with the integrability problem in Theorem 1.7.3 is revealed
by the following observation. If H := Tm0ϕ(A(m0)) , then Tmϕ(A(m)) =
{(h , f(x,y) · h) | h ∈ H} for any m ∈ U(m0) with {x ,y} = ϕ(m) according
to a chart ϕ ∈ C1(U(m0) ;H × V ) .

Thus y = u(x) is a parametric representation of the integral manifold in
the model Banach space E = H × V . Setting Xh := {(h , f(x,y) · h)} , we
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have that
[Xh1

, Xh2
] = ∇Xh1

Xh2
−∇Xh2

Xh1

= (0 ,∇Xh1
f(x,y) · h2 −∇Xh2

f(x,y) · h1) ,

and the involutivity condition writes as in [3], Theorem 4.4.3:

∇Xh1
f(x,y) · h2 = ∇Xh2

f(x,y) · h1 ,

or more explicitly as in [50], Theorem 10.9.4:

∇h1
fy(x) · h2 +∇f(x,y)·h1

fx(y) · h2 = ∇h2
fy(x) · h1 +∇f(x,y)·h2

fx(y) · h1 ,

which expresses the symmetry of the second derivative of the solution map
u ∈ C1(UH ;UV ) .

Indeed, being ∇u(x) = f(x,u(x)) , we have that

∇2
h1,h2

u(x) = ∇h2(f(x,u(x)) · h1)

= ∇h2
fu(x)(x) · h1 +∇∇h2

u(x)fx(u(x)) · h1

= ∇h2
fu(x)(x) · h1 +∇f(x,u(x))·h2

fx(u(x)) · h1 .

1.7.5 Curvature and cocurvature
On the basis of Frobenius theorem we may provide the notion of curvature
and cocurvature associated with an Ehresmann connection on a manifold E ,
as introduced in Section 1.7. These are defined to be the obstructions against
integrability of the vertical and the horizontal subbundle of the tangent bundle
TE , respectively.

Definition 1.7.8 (Curvature and cocurvature) The curvature R(X,Y) and
the cocurvature Rc(X,Y) of an Ehresmann connection are defined, in terms
of the associated complementary projectors PV, PH ∈ Λ1(E ;TE) , by

R(X,Y) := −PV · [PHX , PHY] ,

Rc(X,Y) := PH · [PVX , PVY] , ∀X,Y ∈ C1(E ;TE) ,

According to Definition 1.6.3, the curvature R ∈ Λ2(E ;TE) is a vertical-valued
horizontal 2-form, while the cocurvature Rc ∈ Λ2(E ;TE) is a horizontal-valued
vertical 2-form.

Proposition 1.7.1 (Tensoriality of curvature and cocurvature) The cur-
vature and the cocurvature R,Rc ∈ Λ2(E ;TE) of an Ehresmann connection
PV ∈ Λ1(E ;TE) on a manifold E are tensorial.
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Proof. A direct verification, based on Lemma 1.2.1 and on the properties of
the Lie derivative provided in Proposition 1.4.11, yields the result:

−R(X, fY) :=PV ◦ [PHX , PHfY]

= f PV ◦ [PHX , PHY] + (LPHXf) (PV ◦ PH)(Y)

=−f R(X,Y) , ∀ f ∈ C1(E ;<) ,

since PV ◦ PH = 0 . Similarly R(fX,Y) = f R(X,Y) . An analogous calcula-
tion yields tensoriality of the cocurvature. �

1.7.6 Curvature of a connection in a fibre bundle
Definition 1.7.9 (Horizontal forms in a fibred manifold) In a fibred man-
ifold p ∈ C1(E ; M) , a form K ∈ Λk(E ;TE) is horizontal if it vanishes when
any of its arguments is a vertical tangent vector to TE . This concept is inde-
pendent of the choice of a connection. Vertical-valued horizontal forms are also
called semi-basic (in French semi-basique [98]).

The next proposition states that the vertical subbundle of a fibre bundle p ∈
C1(E ; M) is integrable. The leaves of the induced foliation are the fibres of the
bundle.

Proposition 1.7.2 (Integrability of the vertical subbundle) The vertical
subbundle VE := ker(Tp) of a fibre bundle p ∈ C1(E ; M) is integrable.

Proof. By definition, vertical vector fields are projectable to zero. Then Lemma
1.4.4 tells us that

Tp ◦ [V1 ,V2] = 0 , ∀V1,V2 ∈ C1(E ;VE = ker(Tp)) .

and integrability follows from Frobenius Theorem 1.7.3. �

The integrability of the vertical subbundle is expressed by the vanishing of
the cocurvature:

Rc(X,Y) := PH ◦ [PVX , PVY] = 0 , ∀X,Y ∈ C1(E ;TE) .

As we have seen before, Frobenius Theorem 1.7.2 provides the necessary and
sufficient involutivity condition for the integrability of the horizontal subbundle
of a fibre bundle p ∈ C1(E ; M) in which a connection has been fixed [99]:

[PHX , PHY] ∈ C1(E ;HE) , ∀X,Y ∈ C1(E ;TE) .
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equivalently expressed by the vanishing of the curvature:

R(X,Y) := PV ◦ [PHX , PHY] = 0 , ∀X,Y ∈ C1(E ;TE) .

Theorem 1.7.4 (Curvature tensor in terms of horizontal lifts) The cur-
vature of a connection PV ∈ Λ1(E ;TE) in a fibre bundle p ∈ C1(E ; M) , is
expressed in terms of vector fields u,v ∈ C0(M ;TM) on the tangent bundle
τ ∈ C1(TM ; M) by setting:

curv(s)(v,u) := [Hu ,Hv](s)−H[u ,v](s) ,

with s ∈ C1(M ;E) section of the fibre bundle p ∈ C1(E ; M) . The curvature
map so defined is tensorial in the vector fields u,v ∈ C1(M ;TM) and the
resulting curvature two-form curv(s) ∈ Λ2(M ;VE) is also tensorial in the
section s ∈ C1(M ;E) .

Proof. We rely on the properties of tensoriality and horizontality of the curva-
ture two-form R ∈ Λ2(E ;VE) stated in Proposition 1.7.1 and on the tensorial
isomorphism of the horizontal liftings stated in Theorem 1.7.1. Accordingly,
the point value of the curvature R(X,Y) := PV ◦ [PHX , PHY] at e ∈ Ex de-
pends only on the vectors PHXe, PHYe ∈ TeE . Moreover, by Theorem 1.7.1,
fixed any section s ∈ C1(M ;E) such that sx = e , there exists a uniquely
determined pair of vectors ux,vx ∈ TxM , such that Huxs = (PHX)(sx) and
Hvxs = (PHY)(sx) . The pair ux,vx ∈ TxM does not depend on the choice of
the field s ∈ C1(M ;E) , provided that sx = e .

We may then conclude that the curvature two-form R ∈ Λ2(E ;VE) , evalu-
ated on pairs of horizontal lifts, defines the vertical-valued field:

curv(s)(v,u) := PV · [Hu ,Hv] ◦ s ∈ C1(M ;VE) .

for any pair of vector fields u,v ∈ C0(M ;TM) on the tangent bundle and any
section s ∈ C1(M ;E) of the fibre bundle p ∈ C1(E ; M) .

By tensoriality, for any section s ∈ C1(M ;E) the field curv(s) ∈ Λ2(M ;VE)
is a vertical-valued two-form on M with values in VE and for any pair u,v ∈
C0(M ;TM) the field curv(u,v) ∈ Λ1(M ;VE) is a vertical tangent field on E
along s ∈ C1(M ;E) . The projectability property of the horizontal lifts stated
in Lemma 1.7.4 yields the relations

Tp · [Hu ,Hv] = [u ,v] ◦ p

Tp ·H[u ,v] = [u ,v] ◦ p

}
=⇒ Tp · ([Hu ,Hv]−H[u ,v]) = 0 .

127



Connection on a fibre bundle Giovanni Romano

Then H[u ,v] is the horizontal component of [Hu ,Hv] , i.e.

H[u ,v] = PH · [Hu ,Hv] ,

and we get the equality: [Hu ,Hv]−H[u ,v] = PV · [Hu ,Hv] . �

1.7.7 Vertical derivative
Definition 1.7.10 The vertical derivative ∇v ∈ C1(s(M) ;VE) is the vertical
component of the natural derivative, defined by

∇vs := PV · T s · v ∈ C1(M ;VE) ,

where v ∈ C0(M ;TM) is a tangent vector field and s ∈ C1(M ;E) is a section
of the fibre bundle p ∈ C1(E ; M) . We write ∇s = PV ◦ T s ∈ C1(TM ;VE) .

Then T s = ∇s + Hs ∈ C1(TM ;TE) and Tv = ∇v + Hv ∈ C1(s(M) ;TE) .

Lemma 1.7.10 (Vertical derivative as a generalized Lie derivative) The
vertical derivative of a section s ∈ C1(M ;E) of the fibre bundle p ∈ C1(E ; M)
may be defined as a generalized Lie derivative:

∇vs := L(Hv ,v)s = ∂λ=0 Fl
(Hv ,v)
λ ↓s

= ∂λ=0 FlHv

−λ ◦ s ◦ Flvλ .

Proof. By Leibniz rule

L(Hv ,v)s = ∂λ=0 (s ◦ Flvλ)− ∂λ=0 (FlHv

λ ◦ s)

= T s · v −Hvs = Tvs−Hvs ,

Then, being L(Hv ,v)s ∈ C1(M ;VE) and Hvs ∈ C1(M ;HE) , by uniqueness of
the vertical-horizontal split, we get that ∇vs := PV · Tvs = L(Hv ,v)s . �

Theorem 1.7.5 (Curvature and vertical derivatives) For a given section
s ∈ C1(M ;E) of a fibre bundle p ∈ C1(E ; M) and any pair of vector fields
u,v ∈ C1(M ;TM) , the following identity holds on s(M) ⊂ E :

[∇u ,∇v]−∇[u ,v] + [Hu ,Hv]−H[u ,v] = [Hv ,∇u] + [∇v ,Hu] = 0 .

Accordingly , the vertical-valued curvature two-form curvx(s)(u,v) ∈ Vs(x)E
is given by

curv(s)(u,v) = [∇u ,∇v](s)−∇[u ,v](s) .
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Proof. By Lemma 1.7.1 we know that on s(M) ⊂ E :

[Tu , Tv] = T[u ,v] .

By performing an extension of the natural derivatives, e.g. by the foliation
method envisaged in Lemma 1.7.2, the vertical derivatives of a section s ∈
C1(M ;E) are consequently extended to (local) vector fields ∇u,∇v ∈ C1(E ;VE) .
Then, being

Tu = ∇u + Hu , Tv = ∇v + Hv , T[u ,v] = ∇[u ,v] + H[u ,v] ,

by bilinearity of the Lie bracket we get

[∇u + Hu ,∇v + Hv] = [∇u ,∇v] + [Hu ,Hv] + [∇u ,Hv] + [Hu ,∇v]

= ∇[u ,v] + H[u ,v] ,

which, being [Hu ,Hv]−H[u ,v] = PV · [Hu ,Hv] , can be written as:

[∇u ,∇v]−∇[u ,v] + PV · [Hu ,Hv] = [Hv ,∇u] + [∇v ,Hu] .

The tensoriality of the curvature PV · [Hu ,Hv] , as a function of the horizontal
lifts Hu and Hv , has the following implication. Let the local vector fields
Fx

u ,Fx
v ∈ C1(E ;TE) be generated by dragging the vectors Hux ,Hvx ∈ TsxE

along the flows of the extended vertical derivatives ∇u,∇v ∈ C1(E ;TE) :

Fx
u ◦ Fl∇v

λ := TFl∇v

λ ◦Hux ,

Fx
v ◦ Fl∇u

λ := TFl∇u

λ ◦Hvx .

By tensoriality, in evaluating the r.h.s. of the previous equality at a point
s(x) ∈ E , the horizontal lifts Hu,Hv ∈ C1(E ;TE) can be substituted by the
vector fields Fx

u ,Fx
v ∈ C1(E ;TE) . Then, by definition:

[Fx
v ,∇u]x = 0 , [∇v ,Fx

u ]x = 0 ,

so that
[Hv ,∇u]x + [∇v ,Hu]x = [Fx

v ,∇u]x + [∇v ,Fx
u ]x = 0 .

The result holds for any extension of the natural derivatives and the formula for
the curvature is independent of the extension, since, by tensoriality, it depends
only on the values of the vertical derivatives at s(x) . �
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1.7.8 Parallel transport
Let p ∈ C1(E ; M) be a fibre bundle with a connection and v ∈ C0(M ;TM) a
vector field in the tangent bundle τ ∈ C1(TM ; M) . According to the definition
given in Proposition 1.4.14, the push of a section s ∈ C1(M ;E) along a pair of
p-related vector fields v ∈ C1(M ;TM) and X ∈ C1(E ;TE) is given by:

Fl
(X ,v)
λ ↑s := FlXλ ◦ s ◦ Flv−λ ,

where FlXλ ∈ C1(E ;E) and Flvλ ∈ C1(M ; M) . Since a vector field v ∈
C1(M ;TM) and its horizontal lift Hv ∈ C1(E ;TE) are p-related, we may
introduce the following notions mainly due to Gregorio Ricci-Curbastro
and Tullio Levi-Civita.

Figure 1.25: Gregorio Ricci-Curbastro (1853 - 1925)

Definition 1.7.11 (Parallel transport) Let p ∈ C1(E ; M) be a fibre bundle
with a connection. The parallel transport Flvλ⇑ s ∈ C1(M ;E) of a section
s ∈ C1(M ;E) along the flow Flvλ ∈ C1(M ; M) is defined by:

Flvλ⇑ s := Fl
(Hv ,v)
λ ↑s := FlHv

λ ◦ s ◦ Flv−λ . (1.1)

From Lemma 1.7.4 we infer that

p ◦ (Flvλ⇑ s) = p ◦ FlHv

λ ◦ s ◦ Flv−λ = Flvλ ◦ p ◦ s ◦ Flv−λ = idM . (1.2)

The map Flvλ⇑ s ∈ C1(M ;E) is then still a section. We set Flvλ⇓ := Flv−λ⇑ .

A section s ∈ C1(M ;E) of the fibre bundle p ∈ C1(E ; M) is parallel trans-
ported along the flow Flvλ ∈ C1(M ; M) if

Flvλ⇑ s = s ⇐⇒ Fl
(Hv ,v)
λ ↑s = s , ∀λ ∈ I .
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The parallel transport enjoyes the same characteristic properties of a push:

Flu0⇑ = idE , Fluλ+µ⇑ = Fluµ⇑Fluλ⇑ = Fluλ⇑Fluµ⇑ ,

and Fluλ⇑Flu−λ⇑ = Flu−λ⇑Fluλ⇑ = idE .
From Lemma 1.7.10 and the definition of parallel transport we infer that the

vertical derivative and the horizontal lift are given by:

∇vs = ∂λ=0 FlHv

−λ ◦ s ◦ Flvλ = ∂λ=0 (Flvλ⇓ s) ,

Hvs = ∂λ=0 FlHv

λ ◦ s = ∂λ=0 (Flvλ⇑ s) ◦ Flvλ .

The horizontal lift Hv is defined pointwise in M , and hence the parallel trans-
port along a curve in M of a section defined only on that curve is meaningful
and so is for the vertical derivative.

The vertical derivative of a parallel transported section s ∈ C1(M ;E) of a
fibre bundle p ∈ C1(E ; M) , vanishes identically:

∇vs = ∂λ=0 Fl
(Hv ,v)
λ ↓s = ∂λ=0 s = 0 .

In a vector bundle p ∈ C1(E ; M) , endowed with a linear connection, the con-
verse implication holds too, as will be shown in Lemma 1.8.4.

If the parallel transport of cross sections is independent of the curve chosen
to join two points, we say that the connection defines a distant parallelism. Then
Lemma 1.8.12 shows that the curvature of the associated connection vanishes
identically.

1.8 Connections in a vector bundle
The fibrewise linear structure of a vector bundle permits to introduce the notion
of a connector as a manner to specify a connection in the vector bundle. A
connection in a vector bundle p ∈ C1(E ; M) is a Koszul connection [103].

1.8.1 Connectors and covariant derivatives
Definition 1.8.1 (Connector) In a vector bundle p ∈ C1(E ; M) a connector
KE ∈ C1(TE ;E) is a linear homomorphism from the tangent bundle τE ∈
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C1(TE ;E) to the bundle p ∈ C1(E ; M) , with the commutative diagram:

TE KE−−−−→ E

τE

y yp

E p−−−−→ M

⇐⇒ p ◦KE = p ◦ τE ∈ C0(TE ; M) ,

i.e. the τE-p-linearity property holds:{
KE(X +τE Y) = KE(X) +p KE(Y) ,

KE(α.τEX) = α.pKE(X) , ∀α ∈ < ,

for all X,Y ∈ TE such that τE(X) = τE(Y) ∈ E . The connector KE ∈
C1(TE ;E) is characterized by the following additional properties. It is a left
inverse to the vertical lift such that the kernel of any restriction to a tangent
fibre is a horizontal linear subspace, i.e.

KE ◦ vl (E,p,M) = idE , ker(KE(e)) ∩ VeE = {0} ,

where KE(e) ∈ BL (TeE ;Ep(e)) is the restriction.

Lemma 1.8.1 (Connections and connectors in vector bundles) In a vec-
tor bundle p ∈ C1(E ; M) a connection is well-defined by a connector. A con-
nector KE ∈ C1(TE ;E) induces a horizontal lift H ∈ C1(E×M TM ;HE) :

H(e ,v) := (Tp(e))−1 · v ∈ HeE , ∀ e ∈ E, v ∈ Tp(e)M ,

where Tp(e)−1 ∈ BL (Tp(e)M ; ker(KE(e))) . In turn an horizontal lift H ∈
C1(E×M TM ;HE) induces a horizontal projector PH ∈ C1(TE ;TE) :

PH := H ◦ (τE , Tp) .

A vertical projector PV = idTE−PH ∈ C1(TE ;TE) induces a connector KE ∈
C1(TE ;E) by:

KE = vd (E,p,M) ◦ PV .
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Proof. Being KE ◦ vl (E,p,M) = idE , it is im(KE(e)) = Ep(e) for any e ∈
E . Then dim ker(KE(e)) = dim M = m for reason of dimensions. Indeed
dimE = n = f + m , with f = dimEp(e) = dimVeE , and n = dimTeE =
dim ker(KE(e)) + im(KE(e)) = dim ker(KE(e)) + dimEp(e) . Hence the linear
subspace ker(KE(e)) is supplementary to VeE and therefore the tangent map
Tp(e) ∈ BL (TeE ;Tp(e)M) is invertible when restricted to ker(KE(e)) . The
horizontal lift H ∈ C1(E×M TM ;HE) is defined as:

H(e ,v) := (Tp(e))−1 · v ∈ HeE , ∀ e ∈ E, v ∈ Tp(e)M ,

where Tp(e)−1 ∈ BL (Tp(e)M ; ker(KE(e))) so that (τE , Tp)◦H = idE×MTM .
Vice versa, by Lemma 1.7.6, given a horizontal lift H ∈ C1(E×MTM ;HE) , the
induced horizontal projector PH ∈ C1(TE ;TE) is given by PH = H◦ (τE , Tp)
and the associated connector is given by

KE = vd (E,p,M) ◦ PV = vd (E,p,M) ◦ (idTE − PH) .

By observing that KE(e) = vd (E,p,M)(e) ◦ PV(e) and that vd (E,p,M)(e) ∈
BL (VeE ;Ep(e)) is injective, the property ker(KE(e)) ∩ VeE = {0} follows
from X ∈ ker(KE(e)) =⇒ PV(e) ·X = 0 ∈ TeE . Fibre linearity is clear. �

Definition 1.8.2 (Covariant derivative in vector bundles) In a vector bun-
dle p ∈ C1(E ; M) , for any section s ∈ C1(M ;E) , the covariant derivative
∇v ∈ C1(s(M) ;E) , is defined as the vertical drill of the vertical derivative

∇v = vd (E,p,M) ◦ ∇v = vd (E,p,M) ◦ PV ◦ Tv = KE ◦ Tv .

On the basis of Lemma 1.4.4, the bracket [∇u ,∇v] is related to the bracket
[∇u ,∇v] by the relation

[∇u ,∇v] = [vd (E,p,M)∇u ,vd (E,p,M)∇v] = vd (E,p,M)([∇u ,∇v]) .

Accordingly, by performing the vertical drill, the curvature may be defined as

curv(s)(u,v) := vd (E,p,M)(curv(s)(u,v))

= vd (E,p,M)([∇u ,∇v](s))− vd (E,p,M)(∇[u ,v](s))

= [∇u ,∇v](s)−∇[u ,v](s) .
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1.8.2 Linear connections
Definition 1.8.3 (Linear connection) In a vector bundle p ∈ C1(E ; M) a
connection is linear if the pair made of the horizontal lift Hv ∈ C1(E ;HE) and
of the vector field v ∈ C1(M ;TM) is a linear vector bundle homomorphism
from the vector bundle p ∈ C1(E ; M) to the vector bundle Tp ∈ C1(TE ;TM) :

E Hv−−−−→ HE

p

y Tp

y
M

v−−−−→ TM

⇐⇒ Tp ◦Hv = v ◦ p ,

that is, given two sections s1, s2 ∈ C1(M ;E) , the property of p-Tp-linearity
holds: {

Hvx(s1 +p s2) = Hvxs1 +Tp Hvxs2 ,

Hvx(α ·p s) = α ·Tp Hvxs , ∀α ∈ < .

From Section 1.3.4 we know that

Tx(s1 +p s2) · vx = Txs1 · vx +Tp Txs2 · vx ,

and hence p-Tp-linearity of the horizontal lift Hvx is equivalent to p-Tp-
linearity of the vertical derivative ∇vx :{∇vx(s1 +p s2) = ∇vxs1 +Tp ∇vxs2 ,

∇vx(α ·p s) = α ·Tp ∇vxs , ∀α ∈ < .

Lemma 1.8.2 In a vector bundle p ∈ C1(E ; M) a connection is p-Tp-linear
iff the horizontal projector PH ∈ C1(TE ;HE) (or equivalently the vertical pro-
jector PV ∈ C1(TE ;VE) ) is fibrewise linear in the bundle Tp ∈ C1(TE ;TM) :

PH · (X1 +Tp X2) = PH ·X1 +Tp PH ·X2

PH · (α ·Tp X) = α ·Tp X .
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Proof. The equivalence between fibrewise Tp-additivity of the horizontal pro-
jector PH ∈ C1(TE ;HE) and fibrewise p-Tp-additivity of the horizontal lift
is inferred from the following equality which holds for any pair of sections
s1, s2 ∈ C1(M ;E) of the vector bundle p ∈ C1(E ; M) and for any tangent
vector vx ∈ TxM :

Hvx(s1(x)) +Tp Hvx(s2(x)) = PH · Txs1 · vx +Tp PH · Txs2 · vx

= PH · (Txs1 · vx +Tp Txs2 · vx)

= PH · Tx(s1 +p s2) · vx

= Hv(s1(x) +p s2(x)) ,

where the map s1 +p s2 ∈ C1(M ;E) is pointwise defined by

(s1 +p s2)(x) = s1(x) +p s2(x) ∈ Ex .

The equivalence between fibrewise homogeneities is likewise inferred. �

Definition 1.8.4 (Linear connector) A connector KE ∈ C1(TE ;E) in a
vector bundle p ∈ C1(E ; M) is Tp-p-linear if it is a linear homomorphism
from the tangent bundle Tp ∈ C1(TE ;TM) to the bundle p ∈ C1(E ; M) ,
according to the commutative diagram:

TE KE−−−−→ E

Tp

y yp

TM
τ−−−−→ M

⇐⇒ p ◦KE = τ ◦ Tp ∈ C0(TE ; M) ,

i.e. the following Tp-p-linearity property holds:{
KE(X +Tp Y) = KE(X) +p KE(Y) ,

KE(α.TpX) = α.pKE(X) , ∀α ∈ < ,

for all X,Y ∈ TE such that Tp(X) = Tp(Y) ∈ E .

Lemma 1.8.3 In a vector bundle p ∈ C1(E ; M) a connection is p-Tp-linear
iff the connector is Tp-p-linear.
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Proof. The Tp-p-linearity of the vertical drill vd (E,p,M) ∈ C1(VE ;E) stated
in Lemma 1.3.13, and the relation

KE = vd (E,p,M) ◦ PV ,

show that the Tp-p-linearity of the connector is a consequence of the Tp-
linearity of any one of the projectors PV and PH , i.e. to the linearity of the
connection, according to Definition 1.8.3.

To prove the converse implication, let X ∈ ker(KE(a)) , Y ∈ ker(KE(b))
be such that Tap ·X = Tbp ·Y = v . Then, by the definition in Lemma 1.8.1,
we have that X = Hv(a) and Y = Hv(b) . If the connector is Tp-p-linear,
it will be X +Tp Y ∈ ker(KE(a +p b)) and, being Ta+b · (X +Tp Y) = v we
infer that

X +Tp Y = Hv(a + b) .

Similarly for the ·Tp operation. This proves p-Tp-linearity of the horizontal
lift. �

Lemma 1.8.4 (Vertical derivative and parallel transport) In a vector bun-
dle p ∈ C1(E ; M) endowed with a linear connection, the vertical derivative
∇vs ∈ C1(M ;VE) , of a section s ∈ C1(M ;E) along a tangent vector field
v ∈ C0(M ;TM) , vanishes along the path Flvλ(x) ∈ C1(I ; M) if and only if
the section s ∈ C1(M ;E) is parallel transported along that path.

Proof. In a vector bundle the covariant derivative is a section ∇vs = L(Hv ,v)s ∈
C1(M ;E) and, by p-Tp-linearity of the horizontal lift of a linear connection,
Proposition 1.4.14 gives:

∂µ=λ (Fl(Hv ,v)
µ ↓s) = Fl

(Hv ,v)
λ ↓(L(Hv ,v)s) ,

Then ∇vs = L(Hv ,v)s = 0 implies that the pull back Fl
(Hv ,v)
λ ↓s is independent

of λ ∈ I and hence that Fl
(Hv ,v)
λ ↓s = s . �

1.8.3 Sprays and geodesics
Lemma 1.8.5 (Spray of a connection) Let H ∈ C1(TM×MTM ;T 2M) be
the horizontal lift induced by a connection in a tangent bundle τM ∈ C1(TM ; M) .
Then, denoting by diag ∈ C1(TM ;TM×MTM) the map diag := (idTM , idTM) ,
the vector field S ∈ C1(TM ;T 2M) defined by:

S := H ◦ diag ⇐⇒ S(v) := H(v ,v) , ∀v ∈ TM ,
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is the spray associated with the connection, being

TτM ◦ S = idTM ⇐⇒ kT 2M ◦ S = S .

Vice versa, given a spray S ∈ C1(TM ;T 2M) , a connection such that S :=
H ◦ diag is said to be compatible with the spray.

Let multαTM ∈ C1(TM ;TM) and multαT 2M ∈ C1(T 2M ;T 2M) be the fibre-
wise multiplication by the scalar α i.e. the vector bundle morphisms defined
by

multαTM(v) := mult (TM ,τM ,M)(α,v) , ∀v ∈ TM , α ∈ <

multαT 2M(X) := mult (T 2M ,τTM ,TM)(α,X) , ∀X ∈ T 2M , α ∈ < .

with mult (TM ,τM ,M) the multiplication introduced in Section 1.3.4.

Lemma 1.8.6 (Spray of a linear connection) Let us consider a linear con-
nection in a tangent bundle τM ∈ C1(TM ; M) and the related horizontal lift
H ∈ C1(TM×M TM ;T 2M). Then the spray S := H ◦diag ∈ C1(TM ;T 2M)
is quadratic:

S ◦multαTM = T (multαTM) ◦multαT 2M ◦ S , ∀α ∈ < .

A linear connection H ∈ C1(TM×M TM ;T 2M) such that S := H ◦ diag is
said to be compatible with the quadratic spray.

Proof. The result follows from the relations:

H(αu , βv) = PH(T (αu) · βv) = (PH ◦ T (multαTM ◦ u)) ·multβTM(v)

= (PH ◦multβT 2M(T (multαTM ◦ u)) · v)

= (multβT 2M ◦ PH ◦ T (multαTM ◦ u)) · v

= (multβT 2M ◦ PH ◦ TmultαTM ◦ Tu) · v

= (TmultαTM ◦multβT 2M ◦ PH ◦ Tu) · v

= (TmultαTM ◦multβT 2M ◦H)(u ,v) .

and from the previuos Lemma 1.8.5. �
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Definition 1.8.5 (Symmetric connection) A linear connection is symmet-
ric if the horizontal lift fulfils the condition:

H = kT 2M ◦H ◦ flipTM×MTM ,

with flipTM×MTM the involution on TM×M TM defined by

flipTM×MTM(sx ,vx) = (vx , sx) , ∀ sx,vx ∈ TxM .

Definition 1.8.6 (Geodesic) A curve c ∈ C1(I ; M) ranging in a manifold
M with a connection is said to be a geodesic for the connection if the velocity
field v ∈ C0(c(I) ;TM) of the curve fulfills, for all λ ∈ I , the condition

∇vλv := ∂µ=0 (FlHv
−µ ◦ v ◦ c)(λ+ µ) = 0 ,

where the velocity is given by v(c(λ)) := ∂µ=0 cλ+µ .

Lemma 1.8.7 (Geodesics and sprays) Let S ∈ C1(TM ;T 2M) be a spray
and vx ∈ TxM a tangent vector. Then, for any connection compatible with the
spray, i.e. such that H(v ,v) = S(v) , the base curve below the flow line of the
spray through the vector vx ∈ TxM , is a geodesic curve through x ∈M .

Proof. Let vλ := FlSλ(vx) be the flow line of the spray through the vector
vx ∈ TxM . The projected curve on the base manifold is then (τM ◦FlSλ)(vx) ,
with τM(vx) = x ∈M . Its velocity field v ∈ C1(I ;TM) is given by

vλ := ∂µ=λ (τM ◦ FlSµ)(vx)

= TτM · S(FlSλ(vx)) = πTM(S(FlSλ(vx))) = FlSλ(vx) ,

Being H(v ,v) = S(v) , the formula for the time-covariant derivative yields:

∇vλv = ∂µ=0 (FlHv
−µ ◦ FlSλ+µ)(vx) = S(vλ)−H(vλ ,vλ) = 0 .

Hence the base curve is a geodesic. �

Lemma 1.8.8 (Geodesic of a quadratic spray) Let S ∈ C1(TM ;T 2M)
be a quadratic spray and vx ∈ TxM a tangent vector. Then the base curve:

geoλ(vx) := (τM ◦ FlSλ)(vx) ,
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below the flow-line of the spray through vx ∈ TxM , is a geodesic for any linear
connection compatible with the quadratic spray and fulfils the properties:

geo0(vx) = x , ∂λ=0 geoλ(vx) = vx ,

geoλ(αvx) = geoαλ(vx) ,

geoλ(∂ξ=µ geoξ(vx)) = geoλ+µ(vx) .

Given a geodesic geo the spray can be evaluated as S = ∂λ=0 ∂µ=λ geoµ .

Proof. A direct verification yields the stated properties. �

Definition 1.8.7 (Geodesic exponential) To a given geodesic there corre-
sponds an exponential map exp ∈ C1(TM ; M) defined by

exp (vx) := geo1(vx) ,

in an open neighborhood of the zero section in TM .

The exponential map fulfils the properties:

exp (tvx) = geot(vx) ,

T0xexp · vx = vx , ∀vx ∈ TxM (T0xTxM ' TxM) ,

since
T0xexp · vx = ∂t=0 exp (0x + tvx) = ∂t=0 exp (tvx)

= ∂t=0 geo1(tvx) = ∂t=0 geot(vx) = vx .

Then the map (τ ,exp ) ∈ C1(TM ; M × M) is a diffeomorphism from an
open neighborhood of the zero section in TM to an open neighborhood of the
diagonal in M×M .

1.8.4 Jacobi fields
In a manifold M with a connection, let c ∈ C1(I ; M) be a geodesic curve and
ċ ∈ C0(I ;TM) the associated velocity curve defined by ċ(t) := ∂τ=t c(τ) . Let
moreover Flvλ ∈ C1(M ; M) be a dragging flow.

If the dragged curves Flvλ ◦ c ∈ C1(I ; M) are still geodesics, the velocity
curve:

Jv ◦ ċ := ∂λ=0 Flvλ ◦ c ∈ C1(I ;TM) ,
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is called a Jacobi field along c . Let us recall the relation between geodesic
curves and sprays provided by Lemma 1.8.7 and expressed by

c = (τ ◦ FlS)(ux) ,

so that c(0) = x and, being Tτ ◦ S = idTM , the velocity of the geodesic at
t = 0 is given by:

ċ(0) := ∂t=0 c(t) = (Tτ ◦ S)(ux) = ux .

The requirement that the dragged curves Flvλ ◦c ∈ C1(I ; M) are still geodesics
is expressed by the condition

Flvλ ◦ τ ◦ FlS = τ ◦ FlS ◦ TFlvλ .

A direct computation then gives

Jv ◦ ċ := ∂λ=0 Flvλ ◦ c = (∂λ=0 Flvλ ◦ τ ◦ FlS)(ux)

= ∂λ=0 (τ ◦ FlS ◦ TFlvλ)(ux)

= (Tτ ◦ TFlS ◦ kT 2M ◦ Tv)(ux) .

Hence
∂t=0 Jv(t) = (Tv ◦ Tτ ◦ S)(ux) = Tv · ux .

Moreover
∂t=0 Flvλ ◦ τ ◦ FlS = TFlvλ ◦ Tτ ◦ S = Fl

kT2M◦Tv
λ .

1.8.5 Linear covariant derivative
Theorem 1.8.1 (Covariant derivative as a point derivative) Let a linear
connection be defined in a vector bundle p ∈ C1(E ; M) . Then the associated
covariant derivative ∇v ∈ C1(s(M) ;E) meets the properties:

i) ∇(αu+β v)s = α∇us + β∇vs ,

ii)

{
∇v(s1 + s2) = ∇vs1 +∇vs2 ,

∇v(α s) = α∇vs ,

where α, β ∈ < , s, s1, s2 ∈ C1(M ;E) are sections, u,v ∈ C1(M ;TM) are
tangent vector fields.
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Proof. Property i) stems from the tensoriality of the natural derivative. Prop-
erties ii) follow from the assumed Tp-linearity of the connection:{∇vx(s1 +p s2) = ∇vxs1 +Tp ∇vxs2 ,

∇vx(α ·p s) = α ·Tp ∇vxs , ∀α ∈ < ,

by taking the vertical drill of both members and applying to the r.h.s. the
relations provided in Lemma 1.3.13 and Definition 1.8.2. �

The point values of the covariant derivative ∇vs ∈ C1(M ;E) at x ∈M are
vectors of a linear space, since ∇vxs ∈ Ex . In a vector bundle it is meaningful
to consider the covariant derivative ∇v(f s) where s ∈ C1(M ;E) is a section
and f ∈ C1(M,<) is a scalar field.

Lemma 1.8.9 (Leibniz rule for the covariant derivative) In a vector bun-
dle p ∈ C1(E ; M) endowed with a linear connection, the covariant derivative
fulfils Leibniz rule:

∇v(f s) = (∇vf) s + f (∇vs) .

Proof. Let us recall from Lemma 1.7.10 the expression

∇vs = ∂λ=0 FlHv

−λ ◦ s ◦ Flvλ .

The linearity of the connection implies, by Lemma 1.3.17, that the flow FlHv

λ

is automorphic. Then

∇vx(fs) = ∂λ=0 f(Flvλ(x)) · FlHv

−λ(s(Flvλ(x))) .

To shorten the expressions we set

fλ := f(Flvλ(x)) , sλ := FlHv

−λ(s(Flvλ(x))) ,

so that

∇vx(fs) = ∂λ=0 fλ · sλ
= lim
λ→0

λ−1(fλsλ − fλs0 + fλs0 − f0s0)

= lim
λ→0

λ−1(fλ(sλ − s0)) + lim
λ→0

λ−1(fλs0 − f0s0) .
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Observing that

lim
λ→0

λ−1(fλ(sλ − s0)) = f0 ∂λ=0 sλ ,= f(x)∇vxs(x) ,

lim
λ→0

λ−1(fλs0 − f0s0) = vl (E,p,M)( lim
λ→0

λ−1(fλ − f0) s0)

= vl (E,p,M)((∇vxf) s(x)) ,

and recalling the τE-p linearity of the vertical drill, stated in Lemma 1.3.13,
the result follows. �

Definition 1.8.8 (Covariant derivative of a covector field) Let us consider
the dual vector bundles p ∈ C1(E ; M) and p∗ ∈ C1(E∗ ; M) . The covariant
derivative ∇vs∗ ∈ C1(M ;E∗) of a section s∗ ∈ C1(M ;E∗) of the dual vector
bundle p∗ ∈ C1(E∗ ; M) is defined by a formal application of Leibniz rule

〈∇vs∗, s〉 := dv〈s∗, s〉 − 〈s∗,∇vs〉 , ∀v ∈ C1(M ;TM) , ∀ s ∈ C1(M ;E) .

The covariant derivative ∇vs∗ ∈ C1(M ;E∗) so defined is a tensor field since
the expression 〈∇vs∗, s〉 is tensorial in the vector field s ∈ C1(M ;E) , as may
be shown by applying the tensoriality criterion of Lemma 1.2.1. The covariant
derivative of a (1, 1) tensor field T ∈ C1(M ;BL (TM, T ∗M ;<)) is also defined
by a formal application of Leibniz rule:

(∇u T)(v,v∗) := du(T(v,v∗))−T(∇uv,v∗)−T(v,∇uv∗) .

The result is a tensor field, as may be shown again by means of Lemma 1.2.1.

Definition 1.8.9 (Parallel transport of a covector) Let p ∈ C1(E ; M) and
p∗ ∈ C1(E∗ ; M) be dual vector bundles, and (v ,v∗) ∈ C1(M ;E ×M E∗) be a
section of their Whitney product. The parallel transport of the covector field
v∗ ∈ C1(M ;E∗) along a flow Fluλ ∈ C1(M ; M) with velocity u ∈ C1(M ;TM)
is defined by invariance:

eval(Fluλ⇑v∗ ,Fluλ⇑v) = eval(v∗ ,v) .

Proposition 1.8.1 The covariant derivative ∇uv∗ ∈ C1(M ;E∗) may be de-
fined, in terms of parallel transport, by

∇uv∗(x) := ∂λ=0 Fluλ⇓v∗(Fluλ(x)) .
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Proof. The result follows from the relation

∂λ=0 〈v∗(Fluλ(x)),v(Fluλ(x))〉= ∂λ=0 〈Fluλ⇓v∗(Fluλ(x)),Fluλ⇓v(Fluλ(x))〉

= 〈∂λ=0 Fluλ⇓v∗(Fluλ(x)),v(x)〉

+ 〈v∗(x), ∂λ=0 Fluλ⇓v(Fluλ(x))〉

= 〈(∇uv∗)(x),v(x)〉

+ 〈v∗(x),∇uv(x)〉 ,

which may be written as du〈v∗,v〉 = 〈∇uv∗,v〉+ 〈v∗,∇uv〉 . �

When the model space is finite dimensional, the Christoffel symbols cor-
responding to a set of coordinate vector fields {e1, . . . , en} are defined by

∇ei ej := Γkij ek .

The next proposition provides the expression of the covariant derivative in co-
ordinates.

Figure 1.26: Elwin Bruno Christoffel (1829 - 1900)

Proposition 1.8.2 (Components of the covariant derivative) The expres-
sion of the covariant derivative ∇uv in terms of components, defined by a local
chart ϕ : U ⊆M 7→ <n , is

∇uv = Y j (Xi
/j + ΓijkX

k) ei ,

where the Einstein notation has been adopted.
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Proof. By posing v = XA eA , u = Y B eB , we have:

∇u v =∇(Y j ej) (Xk ek) = Y j ∇ej (Xk ek) =

=Y j
[
(∂ej X

k) ek + (∇ej ek)Xk
]

=

=Y j (Xi
/j + ΓijkX

k) ei ,

and then the result.

1.8.6 Second covariant derivative
Given a vector bundle p ∈ C1(E ; M) and a cross section s ∈ C2(M ;E) , the
iterated covariant derivative along the tangent vector fields u,v ∈ C1(M ;TM)
is the covariant derivative along v ∈ C1(M ;TM) of the covariant derivative
along u ∈ C1(M ;TM) . By a formal application of Leibniz rule we get the
expression

∇v∇u s = ∇2
vu s +∇(∇vu) s ,

which provides the way to introduce the second covariant derivative as the vector
valued tensor field ∇2s ∈ C(M ;BL (TM2 ;E)) defined by:

∇2
vu s := ∇v∇u s−∇(∇vu) s .

From this definition, tensoriality of the second covariant derivative ∇2
vu s with

respect to v ∈ C1(M ;TM) is apparent. If the connection is linear, the second
covariant derivative ∇2

vu s is also tensorial in the vector field u ∈ C1(M ;TM) .
Indeed, although the evaluation of the two terms on the r.h.s involves the deriva-
tives of the vector field u ∈ C1(M ;TM) in a neighborhood of the point of
evaluation of the second covariant derivative, the l.h.s is in fact independent of
the values of the field u ∈ C1(M ;TM) at points other than the evaluation
point. This is readily shown by a direct application of the tensoriality criterion
of Lemma 1.2.1, taking into account the Leibniz rule stated in Lemma 1.8.9.

1.8.7 Curvature of a linear connection
In a vector bundle p ∈ C1(E ; M) we may define the commutator

[∇u ,∇v] = ∇u∇v −∇v∇u ,

being the covariant derivatives ∇u,∇v ∈ C1(s(M) ;E) linear operators on E .
Then we may state the following result.
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Proposition 1.8.3 In a vector bundle p ∈ C1(E ; M) the curvature of a linear
connection is given by

curv(s)(u,v) = ∇u∇v(s)−∇v∇u(s)−∇[u ,v](s) ∈ Λ2(M ;E) .

and, for any fixed section s ∈ C1(M ;E) , is a differential two-form taking values
in the bundle E .

Tensoriality of the curvature may be inferred by a direct application of the
criterion in Lemma 1.2.1. This is the content of the next two lemmas.

Lemma 1.8.10 (1st tensoriality lemma) In a vector bundle p ∈ C1(E ; M)
endowed with a linear connection, for any fixed section s ∈ C1(M ;E) , the
curvature field

curv(s)(u,v) := [∇u ,∇v](s)−∇[u ,v](s)

=∇u∇v(s)−∇v∇u(s)−∇[u ,v](s) ∈ C1(M ;VE) ,

is vertical-valued in TE and tensorial in the vector fields u,v ∈ C1(M ;TM) ,
i.e. the value of the field curv(s)(u,v) ∈ C1(M ;VE) at a point x ∈ M
depends only on the point values u(x),v(x) ∈ TxM .

Proof. By Proposition 1.7.2 the vertical bundle is integrable, Frobenius’
condition implies that [∇u ,∇v] ∈ C1(E ;VE) and hence curv(s)(u,v) ∈
C1(E ;VE) . The proof is based on the Lie-bracket formula and, according to
Lemma 1.2.1, consists in verifying the property curv(fu, gv) = fg curv(u,v)
for any f, g ∈ C1(M ;<) . A simple computation yields that

[∇v ,∇gu] ◦ s = (∇v∇gu −∇gu∇v) ◦ s

= g∇v∇us + Lvg∇us− f ∇u∇vs

= g [∇v ,∇u] ◦ s + Lvg∇us ,

∇[v ,gu] ◦ s = ∇g[v ,u]+(Lvg)u ◦ s = g∇[v ,u]s + Lvg∇us .

Then curv(s)(v, gu) = g curv(s)(v,u) . An analogous computation shows that
curv(s)(fv,u) = f curv(s)(v,u) . �

Lemma 1.8.11 (2nd tensoriality lemma) The curvature of a connection on
a vector bundle p ∈ C1(E ; M) is a tensorial function of the section s ∈
C1(M ;E) . Indeed for any f ∈ C1(M ;<) it is:

curv(f s)(v,u) = f curv(s)(v,u) .
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Proof. We have that

∇v∇u (f s) =∇v (∇u f) s +∇v (f ∇u s)

= (∇v∇u f) s + (∇u f) (∇v s) + (∇v f)∇u s + f ∇v∇u s ,

and that
∇[v ,u] (f s) =

(
∇v∇u f −∇u∇v f

)
s + f ∇[v ,u] s .

Then a simple computation and the tensoriality criterion of Lemma 1.2.1 yield
the result. �

Lemma 1.8.12 The curvature tensor field vanishes identically if the linear con-
nection is defined by a distant parallelism.

Proof. By the tensoriality property stated in Theorem 1.7.5, the curvature
curv(s)(v,u)(x) depends only on the values v(x),u(x), s(x) ∈ TM at the
point x ∈M . To compute the point value curv(s)(v,u)(x) according to the
formula

curv(s)(u,v)(x) := (∇u∇v s−∇v∇u s−∇[u ,v] s)(x) ,

we may extend the argument s(x) to a vector field s ∈ C1(M ;TM) defined by
a distant parallel transport. Hence the covariant derivative ∇ s vanishes along
any curve and the curvature at x ∈M vanishes too. �

1.8.8 Fibre derivative
Definition 1.8.10 (Fibre tangent map) Let us consider a fibre bundle p ∈
C1(E ; M) , and a manifold F . The fibre tangent map Tff ∈ C1(VE ;TF) of a
morphism f ∈ C2(E ;F) is the restriction of the tangent map T f ∈ C1(TE ;TF)
to the vertical bundle of E . It gives the rate of variation of f when an argument
e ∈ Ex is varied while its base point x ∈M is held fixed.

For a real-valued functional f ∈ C1(E ;<) , setting Tf(b)< ' < , it is

Tff(b) ∈ BL (VbE ;Tf(b)<) = BL (VbE ;<) = V∗bE .

Then Tff ∈ C1(E ;V∗E) is a section of the bundle τ ∗E ∈ C1(T ∗B ;E) , i.e.
τ ∗E ◦ Tff = idE . In a vector bundle p ∈ C1(E ; M) we have the identification
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VeE ' Ee and hence VE ' E . For any morphism f ∈ C1(E ;F) , Tff ∈
C1(E ;TF) , and for a real-valued functional f ∈ C1(E ;<) :

Tff(e) ∈ BL (VeE ;Tf(e)<) = BL (Ee ;<) .

Then Tff ∈ C1(E ;E∗) .

Definition 1.8.11 (Fibre derivative of a morphism) The fibre derivative
at e ∈ E of a morphism f ∈ C2(E ;F) from a vector bundle p ∈ C1(E ; M) to
a manifold F is the linear map dff(e) ∈ C1(Ep(e) ;Tf(e)F) defined by

dff(e) · η = T f(e) ·Vl (E ,p ,M)(e) · η , ∀η ∈ Ep(e) .

For a morphism f ∈ C2(E ;F ) with values in a Banach space F , we have that
dff(e) ∈ BL (Ep(e) ;Tf(e)F ) ' BL (Ep(e) ;F ) .

In a tangent bundle τ ∈ C1(TM ; M) , for a morphism f ∈ C2(TM ;F ) , we
have that dff(v) ∈ BL (Tτ (v)M ;Tf(v)F ) ' BL (Tτ (v)M ;F ) .

For a real valued functional f ∈ C2(E ;<) on a vector bundle p ∈ C1(E ; M) ,
we have that dff(e) ∈ BL (Ep(e) ;Tf(e)<) ' BL (Ep(e) ;<) = E∗p(e) .

Definition 1.8.12 (Fibre derivative of a functional) The fibre derivative
of a functional f ∈ C2(TM ;<) at v ∈ TM , is defined by

〈dff(v),w 〉 = 〈Tf(v),Vl (TM ,τ ,M)(v) ·w 〉 , ∀w ∈ Tτ (v)M ,

which may be written also dff = Vl∗(TM ,τ ,M) · Tf , or explicitly as

dff(v) = Vl∗(TM ,τ ,M)(v) · Tf(v) .

We have that Tf ∈ C1(T 2M ;T<) and the identification T< = < gives that
Tf(v) ∈ T ∗vTM . Moreover Vl∗(TM ,τ ,M)(v) ∈ BL (T ∗vTM ;T ∗τ (v)M) so that
dff ∈ BL (TM ;T ∗M) , with dff(v) ∈ T ∗τ (v)M .

By the identification VTM ' TM , the fibre derivative dff(v) ∈ T ∗vTM of
a functional f ∈ C1(TM ;<) may also be defined by the formula

dff(v) ·w := ∂λ=0 f(v + λw) .

A useful naturality property of the push of a fibre derivative is provided by the
next lemma.

We recall that, on a tensor bundle p ∈ C1(E ; M) , a base diffeomorphism
ϕ ∈ C1(M ; M) naturally induces, by the push operation, an automorphism
ϕ↑ ∈ C0(E ;E) of the total space, i.e. a base preserving, fibre-linear and invert-
ible map of the total space to itself (see Section 1.3.3).
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Lemma 1.8.13 (Naturality of the push of a fibre derivative) Let a real
valued functional f ∈ C1(E ;<) on a tensor bundle p ∈ C1(E ; M) and a base
diffeomorphism ϕ ∈ C1(M ; M) be given. Then

ϕ↑(dff(e)) = df(ϕ↑f)(ϕ↑e) , ∀ e ∈ E ,

where the functional ϕ↑f ∈ C1(E ;<) is defined by invariance:

(ϕ↑f)(ϕ↑e) := f(e) , ∀ e ∈ E .

Proof. For any (e , δe) ∈ E ×M E , a direct computation, based on the fiber-
linearity of the push, gives:

〈ϕ↑(dff(e)),ϕ↑δe〉= 〈dff(e), δe〉

= ∂λ=0 f(e + λδe)

= ∂λ=0 (ϕ↑f)(ϕ↑e + λϕ↑δe)

= 〈df(ϕ↑f)(ϕ↑e),ϕ↑δe〉 .

The result then follows by the arbitrariness of δe ∈ E and the fiber-regularity
of the push. �

1.8.9 Base derivative
Let p ∈ C1(E ; M) be a vector bundle with a connection ∇ and F a manifold.

Definition 1.8.13 (Fibre-covariant derivative) The fibre-covariant deriva-
tive of a morphism f ∈ C1(E ;F) at a section s ∈ C1(M ;E) of the vector bundle
p ∈ C1(E ; M) , is the map dff(s(x)) ∈ BL (Ts(x)Ex ;Tf(s(x))F) defined by

dff(s(x)) · ∇vxs := (Tff ◦ T s) · vx = (T f ◦ PV ◦ T s) · vx

=T f · ∇vxs ∈ Tf(s(x))F , ∀vx ∈ TxM .

Definition 1.8.14 (Horizontal tangent map) The horizontal tangent map
Tbf ∈ C1(HE ;TF) of a morphism f ∈ C1(E ;F) is the composition T f ◦ PH ∈
C1(TE ;TF) of the tangent map T f ∈ C1(TE ;TF) with the projection PH ∈
C1(TE ;TE) on the horizontal bundle of E .
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Definition 1.8.15 (Base derivative) The base derivative of a morphism f ∈
C1(E ;F) at a point sx ∈ Ex in the fibre bundle p ∈ C1(E ; M) , is the map
dbf(sx) ∈ BL (TxM ;Tf(sx)F) defined by

dbf(sx) · vx := (Tbf ◦ T s) · vx

= (T f ◦ PH ◦ T s) · vx

= (T f ◦Hvx)(sx) ∈ Tf(sx)F , ∀vx ∈ TxM .

Here s ∈ C1(M ;E) is any section of p ∈ C1(E ; M) such that s(x) = sx ∈ Ex .

Any vector X(e) ∈ TeE , tangent to a vector bundle p ∈ C1(E ; M) endowed
with a connection ∇ , may be uniquely split into a vertical and a horizontal
component.

Moreover, vertical and horizontal vectors in TeE are uniquely determined
respectively as vertical lifting at e ∈ E of a vector in the linear fibre Ep(e) and
horizontal lifting at e ∈ E of a tangent vector in Tp(e)M . Then we may state
the following result.

Lemma 1.8.14 (Decomposition of the tangent map) Let f ∈ C1(E ;F)
be a morphism from a vector bundle p ∈ C1(E ; M) into a manifold F . Then
for any X(e) ∈ TeE we have the unique decomposition

T f(e) ·X(e) = dff(e) · vX + dbf(e) · hX , e ∈ E ,

where hX := Tp(e) ·X(e) ∈ Tp(e)M and vX ∈ Ep(e) is defined by

Vl (E ,p ,M)(e) · vX = X(e)−H(e) · hX ∈ VeE ,

so that:
X(e) = Vl (E ,p ,M)(e) · vX + H(e) · hX ∈ TeE .

Lemma 1.8.15 (A split formula) Let p ∈ C1(E ; M) be a vector bundle en-
dowed with a linear connection and covariant derivative ∇ . The tangent map
of the composition f ◦ s ∈ C1(M ;F) of a morphism f ∈ C1(E ;F) , from the
total space E to a manifold F , with a section s ∈ C1(M ;E) may be uniquely
split according to the formula

T (f ◦ s) = T f ◦ T s = dff(s) · ∇s + dbf(s) ,
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as sum of the fibre-covariant derivative and the base derivative whose expressions
in terms of the parallel transport Flvλ⇑ ∈ C1(E ;E) along the flow associated
with the vector field v ∈ C1(M ;TM) are given by

dff(s(x)) · ∇v(x)s := ∂λ=0 (f ◦ Flvλ⇓ s)(x) ,

dbf(s(x)) · v(x) := ∂λ=0 (f ◦ Flvλ⇑ s)(x) .

Proof. By the definitions and the chain rule:

dff(s(x)) · ∇v(x)s = (T f ◦ ∇v(x)s)(x)

= (T f ◦ PV ◦ T s ◦ v)(x)

= Ts(x)f · ∂λ=0 (Flvλ⇓ s(Flvλ(x)))

= Ts(x)f · (∂λ=0 Flvλ⇓ s)(x)

= ∂λ=0 (f ◦ Flvλ⇓ s)(x) ,

dbf(s(x)) · v(x) = (T f ◦Hv(x)s)(x)

= (T f ◦ PH ◦ T s ◦ v)(x)

= Ts(x)f · (∂λ=0 Flvλ⇑ s)(x)

= ∂λ=0 (f ◦ Flvλ⇑ s)(x) ,

so that
T (f ◦ s) · v(x) = dff(s(x)) · ∇v(x)s + dbf(s(x)) · v(x) ,

and we get the result. �
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1.8.10 Legendre-Fenchel transform
Definition 1.8.16 (Legendre transform) The Legendre transform is the
fibre-linear correspondence between the dual bundles, τ ∈ C1(TM ; M) and
τ ∗ ∈ C1(T ∗M ; M) , induced by the fibre derivative dfL ∈ C1(VTM ;T ∗M) =
C1(TM ;T ∗M) of a functional L ∈ C1(TM ;<) on the tangent bundle τ ∈
C1(TM ; M) , defined by:

dfL(v) := Vl∗(TM ,τ ,M)(v) · dL(v) .

Figure 1.27: Adrien-Marie Legendre (1752 - 1833)

More in general we may assume that the functional L ∈ C1(TM ;<) is fibre-
wise strictly convex, i.e. when evaluated holding the base point fixed, it fulfils
the inequality:

L(α1 v1 + α2 v2) ≤ α1 L(v1) + α2 L(v2) ,

for all α1, α2 ∈ < such that α1 + α2 = 1 and 0 < α1, α2 < 1 and for all
v1,v2 ∈ TM such that τ (v1) = τ (v2) , with equality iff v1 = v2 . Then the
fibre derivative of L ∈ C1(TM ;<) has a fibre-wise strictly monotone graph,
i.e.

〈dfL(v2)− dfL(v1),v2 − v1 〉 ≥ 0 ,

for v1,v2 in TM such that τ (v1) = τ (v2) , with equality only if v1 =
v2 . Moreover dfL ∈ C1(TM ;T ∗M) admits fibre-wise a strictly monotone
inverse (dfL)−1 ∈ C1(T ∗M ;TM) which is in turn the fibre derivative dfH ∈
C1(T ∗M ;TM) of a functional H ∈ C1(T ∗M ;<) on the dual vector bundle:

(dfL)−1 = dfH .

By adjusting the integration constant, the two functionals are related by the con-
jugacy relation: L(v) +H(dfL(v)) = 〈dfL(v),v〉 equivalent to L(dfH(v∗)) +
H(v∗) = 〈v∗, dfH(v∗)〉 .
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Definition 1.8.17 (Liouville vector field) In a vector bundle p ∈ C1(E ; M) ,
the Liouville vector field C(E,p,M) ∈ C1(E ;TE) is the vertical-valued vector
field defined by

C(E,p,M) := Vl (E,p,M) ◦ diag ,

where diag ∈ C1(E ;E ×M E) is given by diag = (idE , idE) , so that the
characteristic property of a section is fulfilled: τE ◦C(E,p,M) = idE .

Defining the energy functional E := H ◦ dfL and recalling the definitions of
the fibre derivative dfL := Vl∗(TM ,τ ,M) · dL and of the Liouville vector
field C(TM ,τ ,M)(v) := Vl (TM ,τ ,M)(v) ·v , the conjugacy relation may also be
written as

L(v) + E(v) = 〈dfL(v),v〉 = dL(v) ·C(TM ,τ ,M)(v) .

The strict monotonicity of the fibre derivative implies the strict convexity of the
potentials and hence the following fibre-wise inequality is fulfilled:

L(v) +H(v∗) ≥ 〈v∗,v〉 , ∀ {v ,v∗} ∈ TM× T ∗M : τ ∗(v∗) = τ (v) ,

with equality if and only if the pair {v ,v∗} ∈ TM × T ∗M is in the graph of
the Legendre transform, that is:

v∗ = dfL(v) , v = dfH(v∗) , with τ ∗(v∗) = τ (v) .

Figure 1.28: Moritz Werner Fenchel (1905 - 1988)
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Definition 1.8.18 (Fenchel transform) The Fenchel transform is the graph
in the fibred product TM ×M T ∗M of the dual bundles τ ∈ C1(TM ; M) and
τ ∗ ∈ C1(T ∗M ; M) , which is induced by the unilateral fibre-derivative [191]:

d+
f L(v) ·w := ∂λ=0 L(v + λw) , λ ≥ 0 , (v ,w) ∈ TM×M TM ,

which is fibrewise sublinear (i.e. positively homogeneuos and subadditive) as
function of w ∈ TM .

The Fenchel transform is equivalent to the subdifferential rules:

v∗ ∈ ∂L(v) , v ∈ ∂H(v∗) , (v ,v∗) ∈ TM×M T ∗M ,

where the subdifferentials ∂L(v) ⊂ T ∗τM(v)M and ∂H(v∗) ⊂ Tτ∗M(v∗)M are
the convex sets defined by the inequalities:

v∗∈ ∂L(v) ⇐⇒ L(u)− L(v) ≥ 〈v∗,u− v〉 , ∀u ∈ Tτ (v)M

v∈ ∂H(v∗)⇐⇒ H(u∗)−H(v∗)≥ 〈v,u∗ − v∗ 〉 , ∀u∗ ∈ T ∗τ∗(v∗)M

The conjugacy relations are expressed by

H(v∗) = sup
v∈Eτ∗(v∗)

{〈v∗,v〉 − L(v)} ,

L(v) = sup
v∗∈E∗

τ(v)

{〈v∗,v〉 −H(v∗)} .

The graph of the multivalued maps ∂L and ∂H is maximal monotone and
conservative [190]. Conservativity of the maximal monotone multivalued map
∂L means that, for any closed polyline c in its domain, it is:∮

c

〈∂L, t〉 dλ = 0 ,

where t := ∂µ=λ c(µ) ∈ Tc(λ)M . Due to monotonicity, the integral is well
defined and independent of the choice of a representative element in the con-
vex set ∂L(c(λ)) ⊂ T ∗c(λ)M . Conservativity of the map ∂L is equivalent to
conservativity of the inverse map ∂H [190].

The Legendre transform plays an important role in physics. In dynamics,
Lagrange and Hamilton functionals, and, in thermodynamics, the internal
energy, Helmholtz potential, Gibbs potential and the enthalpy, are related
one another by a Legendre transform. The more general Fenchel transform
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arises naturally in the analysis of problems of calculus of variations involving
the stationarity of a length and will be illustrated in Section 2.4.7 with reference
to the Hamilton-Jacobi equation in dynamics and in Section 2.5 dealing with
Geometrical Optics.

1.8.11 Torsion tensor
Let us now consider a connection on the tangent bundle τ ∈ C1(TM ; M) .
The lack of symmetry of the second covariant derivative of a scalar field f ∈
C2(M ;<) is measured by

(∇d)vu f − (∇d)uv f = dv du f − du dv f − d(∇v u) f + d(∇u v) f

= d(∇u v) f − d(∇v u) f − d[u ,v] f

= (∇u v −∇v u− [u ,v]) f .

Definition 1.8.19 (Torsion) The torsion of a connection ∇ is the tangent
valued two-form tors ∈ Λ2(M ;TM) defined by:

tors(u,v) := ∇u v −∇v u− [u ,v] ,

for any pair of tangent vector fields v,u ∈ C1(M ;TM) .

The torsion fibrewise linear, skew-symmetric in its arguments and tensorial as
be shown by a direct application of Lemma 1.2.1 and relying on the property
of the Lie derivative stated in Proposition 1.4.11 on page 88, formula iii) . We
may then write

(∇d)uv f − (∇d)vu f = dtors(v,u) f .

The torsion operator can be equivalently characterized as the (1, 2) tensor
tors ∈ BL (TM2, T ∗M ;<) defined by

tors(u,v,α) := 〈α,tors(u,v)〉 .

The vanishing of the torsion of a connection states that the second covariant
derivative of any scalar field is symmetric.

Remark 1.8.1 Let F be a Banach space and v ∈ C2(M ;F ) a vector-valued
field on a manifold M modeled on a Banach space E . The directional deriva-
tive (dvv)(x) depends linearly on v ∈ TxM and the second covariant derivative
is given by

(∇d)vu v := dv du v − d(∇vu) v .
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We have that dv du v − du dv v = d[v ,u]v and hence the implication

dtors(v,u) v = 0 =⇒ (∇d)vu v = (∇d)uv v .

Proposition 1.8.4 (Symmetry of Christoffel symbols) The torsion of the
connection vanishes if and only if the Christoffel symbols corresponding to
any system of coordinate vector fields {e1, . . . , en} are symmetric with respect
to the lower pair of indices, that is

Γkij = Γkji .

Proof. By proposition 1.4.10 we have that [ei , ej ] = 0 and hence

tors(ei, ej) = ∇eiej −∇ejei − [ei , ej ] = 0⇐⇒ ∇eiej = ∇ejei .

The lack of symmetry of the second covariant derivatives of a tensor field T is
measured by

∇2
vu T−∇2

uv T = ∇v∇u T−∇u∇v T−∇(∇v u) T +∇(∇u v) T .

which may be written

∇2
vu T−∇2

uv T = ∇v∇u T−∇u∇v T−∇[v ,u] T−∇tors(v,u) T .

While the torsion of a connection provides the lack of symmetry of the second
covariant derivative of scalar fields, the lack of symmetry of the second covariant
derivative of a section s ∈ C2(M ;TM) of the tangent bundle τ ∈ C1(TM ; M)
along the tangent vector fields v,u ∈ C1(M ;TM) is measured by the curvature
tensor, when the torsion vanishes. Indeed we have that:

∇2
vu s−∇2

uv s =∇v∇u s−∇u∇v s−∇(∇v u) s +∇(∇u v) s

=∇v∇u s−∇u∇v s−∇[v ,u] s−∇tors(v,u) s .

The curvature of the connection ∇ on the vector bundle τ ∈ C1(TM ; M) is
defined by

curv(s)(v,u) := ∇v∇u s−∇u∇v s−∇[v ,u] s ,
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Accordingly, the lack of symmetry of the second covariant derivative of the cross
section s ∈ C2(M ;TM) may be written as:

∇2
vu s−∇2

uv s = curv(s)(v,u)−∇tors(v,u) s .

1.8.12 Formulas for curvature and torsion forms
From Theorem 37.15 of [99] we infer the following results.

Lemma 1.8.16 (A formula for the curvature) Let a connection on a vec-
tor bundle p ∈ C1(E ; M) be assigned by a connector KE ∈ C1(TE ;E) . Then,
for any section s ∈ C1(M ;VE) and any pair of vector fields u,v ∈ C1(M ;TM) ,
the curvature two-form curv(s) ∈ Λ2(M ;E) , given by:

curv(s)(u,v) := ∇u∇vs−∇v∇us−∇[u ,v]s ,

is equivalently expressed by:

curv(s)(u,v) = (KE · TKE · kT 3E −KE · TKE) · T 2s · Tu · v

= KE · TKE · (∂µ=0 ∂λ=0 − ∂λ=0 ∂µ=0 ) · s · Fluµ · Flvλ .

Proof. The iterated covariant derivatives may be written as:

∇u∇vs = KE · T (KE · T s · v) · u

= KE · TKE · T 2s · Tv · u .

Recalling that by definition: vl (TE ,τE ,E) = ∂t=0 lin t
E , the fibre linearity of the

connector KE ∈ C1(TE ;E) in the vector bundle (TE , τE ,E) implies that

KE ◦ lin t
TE = lin t

E ◦KE ,

TKE · vl (TE ,τE ,E) = vl (E ,p ,M) ·KE .
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Moreover, again by Lemma 1.3.11, it is: vl (TE ,τE ,E) · T s = T 2s · vl (TM ,τM ,M)

and we may write:

vl (E ,p ,M) · ∇[u,v]s = vl (E ,p ,M) ·KE · T s · [u ,v]

=TKE · vl (TE ,τE ,E) · T s · [u ,v]

=TKE · T 2s · vl (TM ,τM ,M) · [u ,v]

=TKE · T 2s · (Tv · u− kT 2M · Tu · v)

=PV · TKE · T 2s · Tv · u− PV · TKE · T 2s · kT 2M · Tu · v

=PV · TKE · T 2s · Tv · u− PV · TKE · kT 3E · T 2s · Tu · v .
At last, being KE = vd (E ,τM ,M) · PV , we get

curv(s)(u,v) = KE · TKE · T 2s · Tv · u−KE · TKE · T 2s · Tu · v

−KE · TKE · T 2s · Tv · u + KE · TKE · kT 3E · T 2s · Tu · v

= (KE · TKE · kT 3E −KE · TKE) · T 2s · Tu ◦ v .

The second formula in the statement follows from Lemma 1.3.6. �

Lemma 1.8.17 (A formula for the torsion) Let a connection in the tan-
gent bundle τ ∈ C1(TM ; M) be given by a connector KTM ∈ C1(T 2M ;TM) .
Then, for any pair of vector fields u,v ∈ C1(M ;TM) , the torsion two-form
tors ∈ Λ2(M ;TM) , defined by:

tors(u,v) := ∇uv −∇vu− [u ,v] ,

is equivalently expressed by:

tors(u,v) = (KTM · kT 2M −KTM) · Tu · v

= KTM · (∂µ=0 ∂λ=0 − ∂λ=0 ∂µ=0 ) · Fluµ · Flvλ .

Proof. The result follows from the evaluations:
∇uv = KTM · Tv · u ,

∇vu = KTM · Tu · v ,

[u ,v] = KTM · (Tv · u− kT 2M · Tu · v)

= KTM · Tv · u−KTM · kT 2M · Tu · v .
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The second formula in the statement is inferred from the definition of the flip
kT 2M ∈ C1(T 2M ;T 2M) by observing that Tu · v = ∂λ=0 ∂µ=0 Fluµ ◦Flvλ . �

Lemma 1.8.18 (Symmetric connections are torsion free) The following
equivalences hold:

kT 2M ·H = H ◦ flipTM×MTM ⇐⇒ KTM · kT 2M = KTM ⇐⇒ tors = 0 .

Proof. The connector associated with a given horizontal lift is defined by the
property (see Lemma 1.8.1): KTM(X) = vd (TM ,τM ,M)(X−H(τTM(X) , Tτ ·
X)) . The first equivalence, see Definition 1.8.5, follows from the relation:

(KTM ◦ kT 2M)(X)

= vd (TM ,τM ,M)(kT 2M(X)−Tτ H(τTM(kT 2M(X)) , Tτ · kT 2M(X)))

= vd (TM ,τM ,M)(kT 2M(X)−Tτ H(Tτ ·X , τTM(X)))

= vd (TM ,τM ,M)(kT 2M(X)−Tτ (H ◦ flipTM×MTM)(τTM(X) , Tτ ·X))

= vd (TM ,τM ,M)(kT 2M(X)−Tτ (kT 2M ◦H)(τTM(X) , Tτ ·X))

= (vd (TM ,τM ,M) ◦ kT 2M)(X−H(τTM(X) , Tτ ·X))

= vd (TM ,τM ,M)(X−H(τTM(X) , Tτ ·X)) = KTM(X) .

The second equivalence is a simple consequence of Lemma 1.8.17. �

1.8.13 Pushed connections
Let us consider a diffeomorphism ϕ ∈ C1(M ;N) between two differentiable
manifolds M and N . A linear connection ∇ on M induces a pushed linear
connection ϕ↑∇ on N defined by

(ϕ↑∇)(ϕ↑u)ϕ↑v := ϕ↑(∇uv) .

The parallel transports associated with the linear connections ∇ and ϕ↑∇ are
related by

Flϕ↑uλ ⇑ (ϕ↑v) := ϕ↑(Fluλ⇑v) .

Indeed we have that

(ϕ↑∇)(ϕ↑u)ϕ↑v = ∂λ=0 Flϕ↑uλ ⇓ (ϕ↑v) ◦ Flϕ↑uλ = ∂λ=0ϕ↑(Fluλ⇓v) ◦ϕ↑(Fluλ)

= ∂λ=0ϕ↑(Fluλ⇓v ◦ Fluλ) = ϕ↑(∇uv) .
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According to the previous definition, the connection is natural with respect to
the push and such is the Lie derivative by Proposition 1.4.4. Then we infer that

torsϕ = ϕ↑tors , curvϕ = ϕ↑curv ,

and also that

(ϕ↑∇)2
(ϕ↑v,ϕ↑u)ϕ↑s− (ϕ↑∇)2

(ϕ↑u,ϕ↑v)ϕ↑s = ϕ↑(∇2
v,u s−∇2

u,v s) .

Remark 1.8.2 The definition of a pushed linear connection has a nice inter-
pretation when dealing with differentiation in nD euclidean spaces {S ,can}
equipped with the canonical metric, in terms of curvilinear coordinates.

Indeed let ϕ ∈ C1(<n ;S) be the diffeomorphism induced by a curvilinear
coordinate system and v ∈ C1(S ;TS) a vector field. Then ϕ↓v ∈ C1(<n ;T<n)
is the numerical vector field of the components associated to v ∈ C1(S ;TS) .
Denoting by d the usual derivative in S and by ∇ = ϕ↓d the pushed connection
in <n , we have that

∇ϕ↓hϕ↓v = ϕ↓(dhv) .

This formula tells us that the numerical vector field of the components of the
directional derivative dhv is the covariant derivative of the numerical vector
field of the components of v , performed according to the connection ∇ = ϕ↓d
in <n . The explicit expression of this covariant derivative is provided by a
direct computation, as in Proposition 1.8.2:

dhv = dh(vαeα) = (dhβeβv
α) eα + vα (dhβeβeα) = hβ(deβv

α + vγ Γαβγ) eα .

Analogous reasoning and computations can be performed for tensor fields to get
the formula for the directional derivative in terms of the covariant derivative of
the matrix of the components, according to the connection ∇ = ϕ↓d in <n :

dhT = dh(Tαβeα ⊗ eβ) = hγ(deγT
αβ + Tατ Γβτγ + T τβ Γατγ) (eα ⊗ eβ) .

1.8.14 Covariant time derivative
In a fibre bundle p ∈ C1(E ; M) endowed with a connection, let us consider a
regular curve c ∈ C1(I ;E) and the projected curve γ ∈ C1(I ; M) in the base
manifold, defined by γ := p ◦ c .

Definition 1.8.20 (Covariant time derivative) The covariant time deriva-
tive at time t ∈ I of the curve c ∈ C1(I ;E) , is the projection of the total time
derivative ċt := ∂τ=t cτ = Ttc · 1t on the vertical subspace:

∇t c := PV(ċt) .
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Lemma 1.8.19 (Covariant time derivative and parallel transport) The
covariant time derivative may be defined by in terms of parallel transport along
the projected curve, as:

∇t c = ∂τ=t Flγ̇t,τ⇑ cτ := ∂τ=t Fl
Hγ̇

t,τ (cτ ) .

Proof. Leibniz rule gives

∇t c = ∂τ=t Fl
Hγ̇

t,τ (cτ ) = ċt −H(ct , γ̇t) .

The result then follows from the uniqueness of the decomposition into vertical
an horizontal components and the formula H(ct , γ̇t) = PH(ċt) . �

The main application of this notion is to Dynamics in defining the accelera-
tion as the covariant time derivative of the velocity curve.

The definition of covariant time derivative may be considered as a special
case of the standard covariant derivative along a tangent vector.

To see this, let us consider the fiber bundle (E×TI , (p , τ I) ,M×I) and the
trivial bundle (M × I ,π , I) . A connection in the bundle (E ,p ,M) and the
standard connection in the tangent bundle (TI , τ I , I) induce a connection in
the compound bundle (E× TI ,π ◦ (p , τ I) , I) . The first cartesian component
of the covariant derivative of the section (c , 1) ∈ C1(I ;E × TI) along the
tangent vector 1t ∈ TI is then equal to the covariant time derivative, i.e.
∇t c = pr1(∇1t(c , 1)) . The following results have important applications in
mechanics and in fluid dynamics. The latter one will be referred to in section
1.8.15 with reference to Coriolis force. Covariant time derivatives are also
dealt with in [162], Proposition 3.1.2. p. 27.

Lemma 1.8.20 Let the curve c ∈ C1(I ;E) be generated by a section s ∈
C1(M ;E) and by the curve γ ∈ C1(I ; M) in the base manifold, according to
the composition c := s ◦ γ . Then

∇t c = ċt −H(ct , γ̇t) = Tγts · γ̇t −H(s(γt) , γ̇t) = ∇γ̇t s .

Proof. We have that ċt := ∂τ=t cτ = ∂τ=t (s◦γ)(τ) = Tγts·γ̇t and H(ct , γ̇t) =
H(s(γt) , γ̇t) . The last equality follows from the definition of covariant derivative
∇γ̇t c = PV(Tγts · γ̇t) and of horizontal lift H(s(γt) , γ̇t) = PH(Tγts · γ̇t) . �

Lemma 1.8.21 Let the curve c ∈ C1(I ;E) be generated by a time dependent
section s ∈ C1(M×I ;E) and by the curve γ ∈ C1(I ; M) in the base manifold,
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according to the composition c := s ◦ (γ , id I) . Then

∇t c = ċt −H(ct , γ̇t) = ∂τ=t s(γt, τ) + Tγts · γ̇t −H(s(γt) , γ̇t)

= ∂τ=t s(γt, τ) +∇γ̇t st .

Proof. The result is proven as in Lemma 1.8.20, by applying Leibniz rule to
the evaluation of ċt . �

Lemmata 1.8.19 and 1.8.21 have their analogues for covectorial curves in
T ∗C and, more in general for curves with values in a tensor bundle.

An important application of the analogue of Lemma 1.8.21 for covectorial
curves is to the expression of the momentum of a particle of a continuous body
evolving in the ambient manifold in terms of the spatial velocity field defined in
the trajectory tracked by the body.

1.8.15 Coriolis formula for the acceleration
On the basis of the previous results we can establish a general formula which
relates the acceleration fields corresponding to a pair of flows related each other
thru a diffeomorphism between manifolds.

Let ϕt ∈ C1(M ;N) be a time dependent diffeomorphism between the man-
ifolds M and N . We then consider the associated flow

ϕt,s := ϕt ◦ϕ−1
s : N 7→ N ,

and denote by vt ∈ C1(N ;TN) the relevant velocity vector field, so that
∂τ=t ϕτ,s = vt ◦ ϕt,s with ϕs,s(x) = x for all x ∈ N , or ϕt,s = Flvt,s .
By Proposition 1.2.8, two time-dependent vector fields ut ∈ C1(M ;TM) and
wt ∈ C1(N ;TN) are ϕ-related:

wt = vt +ϕt↑ut ,

if and only if the corresponding flows Flut,s ∈ C1(M ; M) and Flwt,s ∈ C1(N ;N)
are related by the push:

ϕt ◦ Flut,s = Flwt,s ◦ϕs .

The accelerations along the flows associated with the velocity fields

vt ∈ C1(N ;TN) , ut ∈ C1(M ;TM) , wt ∈ C1(N ;TN) ,
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are given by the corresponding material time derivatives (see Section 1.8.14):

v̇t := ∂τ=t vτ + (ϕt↑∇)vt vt ,

u̇t := ∂τ=t uτ +∇ut ut ,

ẇt := ∂τ=t wτ + (ϕt↑∇)wt
wt .

The covariant derivative ∇ut ut is performed according to a connection ∇ on
the manifold M , while the covariant derivatives (ϕt↑∇)vt vt and (ϕt↑∇)wt

wt

are performed according to the pushed connection on the manifold N .

Figure 1.29: Gaspard-Gustave de Coriolis (1792 - 1843)

We have then the following result.

Theorem 1.8.2 (Coriolis formula) If the connection ∇ is torsion-free, the
acceleration of the transformed flow Flwt,s ∈ C1(N ;N) is given by

ẇt = ϕt↑u̇t + v̇t + 2 (ϕt↑∇)(ϕt↑ut)vt

where u̇t is the acceleration along the flow Flut,s ∈ C1(M ; M) , the term v̇t is
the drag-acceleration due to the pushing flow Flvt,s ∈ C1(N ;N) , and the term
2 (ϕt↑∇)(ϕt↑ut)vt is the Coriolis acceleration.

Proof. We make recourse to some previous results. Proposition 1.2.8 gives the
relation between the velocity fields

wt = vt +ϕt↑ut .
From the expression of the acceleration along the flow Flut,s ∈ C1(M ;TM) ,
performing the push along ϕt ∈ C1(M ;N) , we have that

ϕt↑u̇t = ϕt↑∂τ=t uτ +ϕt↑(∇ut ut) .
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By definition of pushed connection given in section 1.8.13, we can write

ϕt↑(∇ut ut) = (ϕt↑∇)(ϕt↑ut)ϕt↑ut = (ϕt↑∇)(wt−vt)(wt − vt) .

Moreover
ϕt↑ = ϕt,s↑ϕs↑ = ϕs,t↓ϕs↑ ,

and then, setting (ϕ↑u)s = ϕs↑us , we have that

ϕt↑(∂s=t us) = ∂s=t (ϕs,t↓ϕs↑us)

= Lϕ,t(ϕ↑u)t = [vt , (ϕ↑u)t] + ∂s=t (ϕ↑u)s

= [vt ,wt − vt] + ∂s=t (ws − vs) .

The symmetry of the connection ∇ ensures that the pushed connection ϕt↑∇
is torsion-free too, so that

tors(vt,wt − vt) = 0 ⇐⇒

[vt ,wt − vt] = (ϕt↑∇)vt(wt − vt)− (ϕt↑∇)(wt−vt)vt .

Finally we get

ϕt↑u̇t = (ϕt↑∇)vt(wt − vt)−(ϕt↑∇)(wt−vt)vt + ∂s=t ws

+(ϕt↑∇)(wt−vt)(wt − vt)− ∂s=t vs .

By the properties of the covariant derivative, we can group as follows

ϕt↑u̇t =−2 (ϕt↑∇)(wt−vt)vt + (ϕt↑∇)(wt−vt)wt

+(ϕt↑∇)vt(wt − vt) + ∂s=t ws − ∂s=t vs

=−2 (ϕt↑∇)(wt−vt)vt + (ϕt↑∇)wtwt + ∂s=t ws − (ϕt↑∇)vtvt − ∂s=t vs ,

which is the formula to be proven. �

In the euclidean space, the formula in Theorem 1.8.2 assumes a special form
when the pushing flow is an isometry so that

ϕt,s
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1.9 Integration on manifolds
The integral of vector or tensor fields on a manifold makes in general no sense
since the sum of the values of vector or tensor fields at different points of a
manifold is not defined. Integration over a manifold is defined only for special
tensor fields called volume-forms. The definition of volume-forms and of their
integrals on compact manifolds is illustrated in the next subsection.

1.9.1 Exterior and differential forms
Let us give the following definition.

Definition 1.9.1 (Exterior form) An exterior form, or k-form, or form of
degree k at x ∈ M is a real valued k-linear skew-symmetric map ωkx ∈
BL (TxMk ;<) .

The linear space of all the k-forms at x ∈ M is denoted by Λkx(M ;<) . The
value of a k-form vanishes if one of its arguments is linearly dependent on the
others. It follows that all k-forms with k ≥ n vanish identically.

Definition 1.9.2 (Exterior product) The exterior (or wedge) product of two
forms ωk ∧ ωh is defined by:

(ωk ∧ ωh)(e1, . . . , ek, ek+1, . . . ek+h) :=∑
π

sign(π)ωk(eπ(1), . . . , eπ(k))ω
h(eπ(k+1), . . . eπ(k+h)) ,

where the sum is over all k, h-shuffles, i.e. all permutations of {1, . . . , k + h}
such that π(1) < . . . < π(k) and π(k + 1) < . . . < π(k + h) .

The following associative and commutation rules hold:

ωk ∧ (ωh ∧ ωl) = (ωk ∧ ωh) ∧ ωl , ωk ∧ ωh = (−1)kh ωh ∧ ωk .

• The linear space Λx(M ;<) of all real valued exterior forms at x ∈M is
then a graded commutative algebra with respect to the exterior product,
called the Grassmann algebra.

Let dim M = n and {x1, . . . , xn} be a local coordinate system on M .
A basis of the linear space Λk(TxM ;<) is provided by the family of k-th

exterior products of the one-forms

{dxi1 , . . . , dxik} , 1 ≤ i1 < . . . < ik ≤ n ,
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Figure 1.30: Hermann Günter Grassmann (1809 - 1877)

which are the differentials of the coordinates.
The dimension of the linear space Λk(TxM ;<) is then n!/(k!(n − k)!) . It

follows that the dimension of Λnx is one. The n-forms are called volume forms,
and hence:

• All volume forms ωnx ∈ Λn(TxM ;<) at x ∈ M are proportional one
another.

A volume form µnx ∈ Λnx(M ;<) may then be chosen as standard volume form
and all others will be proportional to it.

The value of µnx on an n-tuple {ui} ∈ (TxM)n of tangent vectors provides
the standard signed-volume of the parallelepiped with edges {ui} .
• A differential k-form on a n-dimensional manifold M is a differentiable

field ωk ∈ Λk(TM ;<) of k-forms on M . Any differential n-form ωn ∈
Λn(TM ;<) on the n-dimensional manifold M is proportional to the
standard differential volume form µn ∈ Λn(TM ;<) .

• The contraction (or insertion) operator i : Λkx(M ;<) 7→ Λk−1
x (M ;<) is

defined, for ω ∈ Λk(TM ;<) , by the identity

(ihω)(v1, . . .v(k−1)) := ω(h,v1, . . . ,v(k−1)) ,

for all v1, . . . ,v(k−1) ∈ TxM .

We shall also write simply ωh instead of ihω when no confusion may occur.

1.9.2 Volume forms and Gram operator
Let the n-dimensional manifold M be endowed with a metric

g ∈ C1(M ;BL (TM2 ;<))
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which is a field of twice covariant symmetric and positive definite tensors.

Figure 1.31: Jorgen Pedersen Gram (1850 - 1916)

• The Gram operator G ∈ BL (TxMn, TxMn ;BL (<n ;<n)) associated
with the metric g is then defined by

Gij(u1, . . . ,un ; v1, . . . ,vn) := g(ui,vj) , i, j = 1, . . . , n .

The determinant of the matrix G(u1, . . . ,un,v1, . . . ,vn) is multilinear and
skew-symmetric in each n-tuple {ui} ∈ TxMn and {vj} ∈ TxMn .

It may then be written as the product of the corresponding values of a
metric-induced volume form µg ∈ C1(M ;BL (TxMn ;<)) defined by

detG(u1, . . . ,un,v1, . . . ,vn) = µg(u1, . . . ,un)µg(v1, . . . ,vn) .

Setting ui = vi we get the relation

detG(v1, . . . ,vn ; v1, . . . ,vn) = (µg(v1, . . . ,vn))2 .

It follows that the volume of the parallelepiped with edges {vi} , evaluated by
the metric-induced volume form, is equal to ±1 if the n-tuple {vi} ∈ TxMn

is orthonormal according to the metric. If the volume is positive the n-tuple is
said to have a positive orientation.

We denote by ∂M the (n−1) -dimensional manifold which is the boundary
of the n -dimensional M .

The volume forms µM and µ∂M on the manifolds M e ∂M and the
normal n∂M ∈ TM to the manifold ∂M meet the relations

inµM = µMn∂M = µ∂M ⇐⇒

iwµM = µMw = g(w,n∂M)µ∂M , ∀w ∈ TM .
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1.9.3 Integration of volume forms
The integral of the standard differential volume form µ on an orientable com-
pact n-dimensional manifold M provides the standard signed volume of the
manifold. The integration may be performed in the model space E by means
of local charts {U,ϕ} which define a volume form ϕ↑µ on the set ϕ(U) ⊂ E .
Accordingly, we define the integral by∫

U

µ :=

∫
ϕ(U)

ϕ↑µ =

∫
ϕ(U)

(det dϕ)−1 µ .

If ϕ ∈ C1(M ;N) is an injective immersion, the image of the n-dimensional
manifold M is a submanifold ϕ(M) ⊂ N with dimϕ(M) = n . Given a
n-form µn ∈ Λn(N ;<) on N its pull-back by ϕ ∈ C1(M ;N) is an n-form
ϕ↓µn ∈ Λn(TM ;<) on M and we have the change of integration-domain
(CID) formula: ∫

ϕ(M)

µn =

∫
M

ϕ↓µn .

1.9.4 Partition of unity
Integrals over a compact manifold are then defined by means of the partition of
unity method (see [3] chapter 7).

• An open covering {Uα}, α ∈ A of M is said to be locally finite if for each
x ∈ M there is a neighborhood U(x) such that U(x) ∩ Uα = ∅ except
for finitely many indices α ∈ A .

• A Ck-partition of unity on M is a family {Uα , fα}, α ∈ A with fα ∈
Ck(Uα ;<) such that

{Uα}, α ∈ A is a locally finite open covering of M

fα(x) ≥ 0 and fα(x) = 0 outside a closed set included in Uα∑
α∈A

fα(x) = 1 for all x ∈M (this is a finite sum) .

Compact manifolds admit a partition of unity {Uα, ϕα, fα}, α ∈ A subordi-
nated to an atlas, i.e. such that each element Uα of the partition is included in
the domain of the chart ϕα .
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We then define the integral over M by patching together the integrands:∫
M

µ :=
∑
α∈A

∫
Uα

fα µ =
∑
α∈A

∫
ϕα(Uα)

ϕα↑(fα µ) .

The integral is independent of the chosen atlas and of the subordinated partition
of unity.

Indeed if {Uβ , ϕβ , gβ}, α ∈ B is another subordinated partition of unity we
have that∑
α∈A

∫
Uα

fα µ =
∑
α∈A

∫
Uα

∑
β∈B

gβ fα µ =
∑
β∈B

∫
Uβ

gβ
∑
α∈A

fα µ =
∑
β∈B

∫
Uβ

gβ µ .

since ∑
α∈A

fα =
∑
β∈B

gβ =
∑
β∈B

∑
α∈A

gβ fα = 1 .

Any other differential volume form ωn on M provides a weighted volume
of the manifold M since, setting

ωn = wµ , w ∈ C1(M ;<) ,

we have that ∫
M

ωn =

∫
M

wµ .

The scalar field w ∈ C1(M ;<) is the weight function.

1.9.5 Simplicial Complex
Definition 1.9.3 (Simplex) A p-simplex in a n-dimensional vector space is
the convex envelope of p + 1 vectors, the vertices, {v0, . . . ,vp} , with p ≤ n ,
defined in terms of the p+ 1 barycentric coordinates λi , i = 0, . . . , p , by

∆p(v0, . . . ,vp) :=

{
p∑
i=0

λi vi |
p∑
i=0

λi = 1 , λi ∀ i ≥ 0

}
.

A simplex is nondegenerated if its volume is non zero. Any simplex spanned by
a proper subset of {v0, . . . ,vp} is called a face of ∆p(v0, . . . ,vp) .

Definition 1.9.4 (Simplicial complex) A simplicial complex K in a nD
linear space V is a finite collection of simplices ∆p(v0, . . . ,vp) in V , with
integers p ∈ Z , such that:
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• the collection contains all faces of every simplex;

• the intersection of any two simplices of K is a face of both of them.

A subcollection of K is called a subcomplex of K if it contains all faces of
its elements. The p-skeleton of K is the collection of all simplices of K of
dimension at most p and is denoted Kp .

Any simplex may have one of two orientations, depending on the class of
permutation in the ordering of its vertices.

Definition 1.9.5 (Chains) A p-chain of a simplicial complex K is a map
which associates an integer to any oriented p-simplex of the simplicial complex,
being nonvanishing at most on a finite family of simplices and changing sign by
changing the orientation.

The set of p-chains of a simplicial complex K is a group under the binary
operation of addition defined by addition of chain values in the set of integers.
The group of p-chains of a simplicial complex K , denoted by Cp(K) , is Abelian
and free, which means that the group operation is commutative and that there
exists a basis, i.e. a family of elements such that any other element of the group
can be written uniquely as a combination of a finite subfamily of the basis by
integers.

A basis for Cp(K) is provided by the family of elementary chains.

Definition 1.9.6 (Elementary chains) An elementary chain corresponding
to an oriented simplex ∆ of a simplicial complex K is a chain Cp(∆) which
is nonvanishing only on the pair formed by ∆ and by the simplex with the
opposite orientation, taking on them respectively the values {+1,−1} .
An oriented simplex ∆p(v0, . . . ,vp) induces an orientation on each (p − 1)-
face ∆(p−1)(v0, . . . ,vp)i , with the i-th vertex missing, 0 ≤ i ≤ p , such that
the elementary chain takes on it the value

C(p−1)(∆
(p−1)(v0, . . . ,vp)i) = (−1)i Cp(∆

p(v0, . . . ,vp)) .

Definition 1.9.7 (Boundary operator) In a simplicial complex K , the bound-
ary operator ∂p : Cp(K)→ C(p−1)(K) is defined on each oriented simplex by

∂p Cp(∆
p(v0, . . . ,vp)) =

p∑
i=0

(−1)iC(p−1)(∆
(p−1)(v0, . . . ,vp)i) .
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Then we infer that ∂(p−1) ◦ ∂p = 0 . Indeed the iterated boundary operator

∂(p−1)∂p Cp(∆
p(v0, . . . ,vp)) =

p∑
i=0

∑
j<i

(−1)(i+j)C(p−2)(∆
(p−2)(v0, . . . ,vp)(i,j))

+

p∑
i=0

∑
i<j

(−1)(i+j−1)C(p−2)(∆
(p−2)(v0, . . . ,vp)(i,j)) ,

vanishes because, after switching i and j in the second sum, it becomes the
negative of the first.

The properties of chains are best described in terms of the following sequence
called a chain complex :

0
∂n+1// Cn(K)

∂n // ∂p+1// Cp(K)
∂p // Cp−1(K)

∂p−1// ∂1// C0(K)
∂0 // 0

characterized by the property im(∂p+1) ⊆ ker(∂p) . The p-chains in im(∂(p+1))
are p-boundaries while the p-chains in ker(∂p) are p-cycles. Every p-boundary
is a p-cycle but not conversely. Both im(∂p+1) and ker(∂p) are subgroups of
Cp(K) and the quotient group

Hp(K) := ker(∂p)/im(∂p+1) ,

is the p-th homology group of K . The rank of Hp(K) is the p-th Betti’s
number bp(K) of the simplicial complex K .

1.9.6 Singular chains
Let M be an oriented n-dimensional manifold with volume-form µ . Then a
concording orientation on its (n − 1)-dimensional boundary submanifold ∂M
is defined by the volume-form µn with n pointing outside M .

• A k-chain is a family of oriented k-dimensional manifolds having (k−1)-
dimensional boundary submanifolds in common. To each k-dimensional
manifold of the chain we assign a positive or a negative sign so that, by
taking the signed volume-form ±µ on each of them, the same orientation
is induced on the common (k − 1)-dimensional boundary submanifolds.
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1.9.7 Stokes formula and exterior derivative
Let M be an n-dimensional chain and ∂M its boundary wich is an (n − 1)-
dimensional chain with the induced orientation.

Stokes formula states that the integral of a differential (n− 1)-form ωn−1

on the boundary ∂M , is equal to the integral on M of a differential n-form
called its exterior derivative dωn−1 , i.e.∫

M

dωn−1 =

∮
∂M

ωn−1 .

Figure 1.32: Mikhail Vasilevich Ostrogradski (1801 - 1862)

The exterior derivative is an operation on differential k-forms which is
uniquely defined by the validity of Stokes formula. It is the natural exten-
sion of the fundamental theorem of calculus for functions ( 0-forms) to integra-
tion on compact n-dimensional chains. This celebrated formula is named the
Newton-Leibniz-Gauss-Green-Ostrogradski-Stokes-Poincaré formula
by Arnold in [8].

We will refer to it as the Poincaré-Stokes-Kelvin-Ampère (PSKA) for-
mula.

Historical notes are reported by Ericksen in [59] which suggests that the
classical form of Stokes theorem should be named Ampère-Kelvin-Hankel
transform. The generalized version in terms of exterior derivative of forms is
due to Poincaré.

From Stokes formula we infer the following useful result.

Proposition 1.9.1 (Exterior derivatives and pushes) The pull-back by an
injective immersion ϕ ∈ C1(M ;N) and the exterior derivative of differential
forms commute:

d ◦ϕ↓ = ϕ↓ ◦ d .
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Figure 1.33: George Gabriel Stokes (1819 - 1903)

Figure 1.34: Vladimir Igorevich Arnold (1937 - )

Proof. For any k-form ωk ∈ Λk(N ;<) we have that ϕ↓ωk ∈ Λk(TM ;<) and
the image of any (k+ 1)-dimensional chain Σ ⊂M by the injective immersion
ϕ ∈ C1(M ;N) is still a (k+1)-dimensional chain ϕ(Σ) ⊂ N . Then, by PSKA
and CID formulas, we have the equality:∫

Σ

d(ϕ↓ωk) =

∮
∂Σ

ϕ↓ωk =

∮
ϕ(∂Σ)

ωk =

∮
∂ϕ(Σ)

ωk =

∫
ϕ(Σ)

dωk =

∫
Σ

ϕ↓(dωk) ,

which yields the result. �

As a direct consequence we get the following result.

Proposition 1.9.2 (Commutation of exterior and Lie derivatives) The
Lie derivative and the exterior derivative of a differential form commute:

d ◦ Lv = Lv ◦ d .

This result may also be inferred from the homotopy formula (see section 1.9.11).
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1.9.8 Cycles and boundaries, closed and exact forms
Chains and differential forms are tied by corresponding properties:

• a k-chain Nk is closed or a cycle if ∂Nk = 0 ,

• a k-form ωk is closed or a cocycle if dωk = 0 ,

• a k-chain Nk is a boundary if Nk = ∂Nk−1 ,

• a k-form ωk is exact or a coboundary if ωk = dωk−1 .

Basic properties of chains and forms are the following.

• Any boundary is a cycle since: Nk = ∂Nk−1 =⇒∂Nk = ∂∂Nk−1 = 0 ,

• Any exact form is closed since: ωk = dωk−1 =⇒dωk = ddωk−1 = 0 .

The property ∂∂Nk−1 = 0 is easily established by observing that each of its
element appears twice with opposite signs. Then Stokes formula shows that

∂∂Nk+2 = 0 =⇒ ddωk = 0 .

Indeed, if N is any (k + 2)-dimensional manifold, we have that∫
Nk+2

ddωk =

∮
∂Nk+2

dωk =

∮
∂∂Nk+2

ωk = 0 .

On the contrary we have that, globally on a manifold:

• a cycle is not necessarily a boundary,

• a closed form (a cocycle) is not necessarily exact (a coboundary).

In this respect see the Poincaré lemma in secton 1.9.13 and the definition of
homology and cohomology classes, de Rham theorem and Betti’s numbers, in
section 1.9.15.

1.9.9 Transport theorem
Let Γ ⊂ M be a compact k-dimensional submanifold embedded in a n-
dimensional manifold M with k < n and ϕ ∈ C1(Γ× I ; M) be a motion.
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The motion drags the submanifold Γ ⊂ M and the dragged submanifold
ϕt(Γ) ⊂M traces in the interval t ∈ [0, 1] a (k + 1)-dimensional submanifold
Jv(Γ) ⊆M (a flow tube) given by

Jv(Γ) :=
⋃
x∈Γ
t∈[0,1]

ϕt(x) .

The smooth transformation from ϕ0(Γ) = Γ ⊂ M to ϕ1(Γ) ⊂ M in the
interval t ∈ [0, 1] is called an homotopy.

Proposition 1.9.3 (Transport theorem) For any time-dependent differen-
tial k-form ωkt on Jv(Γ) we have that

∂τ=t

∫
ϕτ (Γ)

ωkτ =

∫
ϕt(Γ)

Lϕ,t ωk =

∫
ϕt(Γ)

∂τ=t ω
k
τ + Lϕ,t ωkt .

Proof. Being ϕt = ϕt,τ ◦ ϕτ , by the formula of transformation of integrals
under a diffeomorphism we have that:∫

ϕτ (Γ)

ωkτ =

∫
ϕt(Γ)

ϕτ,t↓ωkτ .

Differentiating with respect to time τ ∈ I at τ = t , the result follows from the
definition of Lie time-derivative. �

1.9.10 Fubini’s theorem for differential forms
Let us consider a differential volume-form ωk+1 on the (k + 1)-dimensional
manifold Jv(Γ) .

A corresponding volume-form is then induced on each ϕt(Γ) .
It is given by the contraction inω

k+1 = ωk+1n of the volume-form ωk+1

with the unit normal vector n ∈ TJv(Γ) to the manifold ϕt(Γ) , regarded as a
submanifold of the flow tube Jv(Γ) .

We shall also write the integral of a volume-form α on the manifold Γ in
the contracted form αΓ , following the notation in [48].

Fubini’s theorem states that the volume of the (k + 1)-dimensional flow
tube Jv(Γ) , evaluated according to a differential volume-form ωk+1 on Jv(Γ) ,
is equal to the integral, along the homotopic motion, of the corresponding flux

174



Integration on manifolds Giovanni Romano

Figure 1.35: Guido Fubini (1879 - 1943)

of the velocity field vϕ,t of the flow through the flowing k-dimensional manifold
ϕt(Γ) : ∫

Jv(Γ)

ωk+1 =

∫ 1

0

dt

∫
ϕt(Γ)

(ωk+1
t vϕ,t) .

If the flow tube Jv(Γ) is endowed with a Riemann metric, the velocity field
may be decomposed into a normal and a parallel component according to the
formula

vϕ,t = vn n + v|| , vn = g(vϕ,t,nt) ,

Hence, noting that (ωk+1v||)ϕt(Γ) = 0 , Fubini’s formula takes the expression∫
Jv(Γ)

ωk+1 =

∫ 1

0

dt

∫
ϕt(Γ)

g(vϕ,t,n) (ωk+1
t nt) .

In terms of time rates, Fubini’s theorem states that

• the rate of variation of the volume, evaluated according to a volume-
form ωk+1 , of the (k + 1)-dimensional flow tube Jv(Γ, t) , traced by a
k-dimensional submanifold ϕτ (Γ) , with τ ∈ [0, t] , is equal to the flux of
the velocity field vϕ,t through the manifold ϕt(Γ) :

∂τ=t

∫
Jv(Γ,τ)

ωk+1 =

∫
ϕt(Γ)

(ωk+1
t vϕ,t) =

∫
ϕt(Γ)

g(vϕ,t,nt) (ωk+1
t nt) .
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Figure 1.36: (k + 1)-dimensional flow tube Jv(Γ, t)

1.9.11 Extrusion and homotopy formulae
The boundary of the (k+1)-dimensional flow tube Jv(Γ, t) traced in the inter-
val [0, t] by the k-dimensional submanifold ϕτ (Γ) ( τ ∈ [0, t] ), flowing in M
according to an orientation preserving motion ϕt ∈ C1(Γ ; M) , is the k-chain
given by the

• geometric homotopy formula

∂(Jv(Γ, t)) = ϕt(Γ)− Γ− Jv(∂Γ, t) .

Figure 1.37: Geometric homotopy formula

The signs in the formula are due to the following choice.
The orientation of the (k + 1)-dimensional flow tube Jv(Γ, t) induces an

orientation on its boundary ∂(Jv(Γ, t)) . Assuming on ϕt(Γ) this orientation,
it follows that ϕ0(Γ) = Γ has the opposite orientation and the same holds for
Jv(∂Γ, t) .
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For any (time-dependent) differential form ωk on Jv(Γ, t) , the geometric
homotopy formula yields the additive decomposition:

∂τ=t

∫
ϕτ (Γ)

ωk = ∂τ=t

∮
∂(Jv(Γ,τ))

ωk + ∂τ=t

∫
Jv(∂Γ,τ)

ωk + ∂τ=t

∫
Γ

ωk0 ,

where the last term on the r.h.s. vanishes because the integral is evaluated at
time 0 ∈ [0, t] .

Applying Stokes and Fubini’s formulas to the first term on the r.h.s., we
get

∂τ=t

∮
∂(Jv(Γ,τ))

ωk = ∂τ=t

∫
Jv(Γ,τ)

dωk =

∫
ϕt(Γ)

(dωk)vϕ,t .

Hence applying Fubini’s formula to the second term on the r.h.s., noting that
ϕt(∂Γ) = ∂(ϕt(Γ)) , by Stokes formula we have that

∂τ=t

∫
Jv(∂Γ,τ)

ωk =

∮
ϕt(∂Γ)

(ωkvϕ,t) =

∮
∂(ϕt(Γ))

(ωkvϕ,t) =

∫
ϕt(Γ)

d(ωkvϕ,t) .

Summing up we get the extrusion formula:

∂τ=t

∫
ϕτ (Γ)

ωkτ =

∫
ϕt(Γ)

(dωk)vϕ,t +

∫
ϕt(Γ)

d(ωkvϕ,t) .

On the other hand, Reynolds transport formula tells us that

∂τ=t

∫
ϕτ (Γ)

ωkτ =

∫
ϕt(Γ)

Lϕ,t ωk .

Comparing the two formulas, we get∫
ϕt(Γ)

Lϕ,t ωk =

∫
ϕt(Γ)

(dωk)vϕ,t +

∫
ϕt(Γ)

d(ωkvϕ,t) .

Setting v = vϕ,0 , so that Lϕ,0 ωk = Lv ω
k , by the arbitrariness of the k-

dimensional submanifold Γ ⊂ M , the extrusion formula may be localized to
get the differential homotopy formula:

Lv ω
k = (dωk)v + d(ωkv)

also known as Henri Cartan’s magic formula, [127], [162] that provides a basic
relation between the Lie and the exterior derivative of a differential form [31].
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Figure 1.38: Henri Paul Cartan (1904 - 2008)

Figure 1.39: Richard Palais (1931 - )

1.9.12 Palais formula
The homotopy formula for one-forms may be readily inverted to provide Palais
formula for the exterior derivative of one-forms. Indeed, by Leibniz rule for the
Lie derivative, we have that for any two vector fields v,w ∈ C1(M ;TM) :

dω1 · v ·w = (Lv ω
1) ·w − d(ω1 · v) ·w

= dv (ω1 ·w)− dw (ω1 · v)− ω1 · [v ,w] .

By tensoriality, the point value (dω1 · v · w)(x) at x ∈ M depends only on
the point values vx,wx ∈ TxM and not on the knowledge of the vector fields
v,w ∈ C1(M ;TM) in a neighbourhoor of x ∈M .

Anyway the evaluation of the r.h.s. requires to extend these vectors to vector
fields v,w ∈ C1(M ;TM) , but the result is independent of the extension.

The same algebra may be applied repeatedly to deduce Palais formula for
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Figure 1.40: Richard Palais (1931 - ) with his wife and frequent co-author,
Chuu-lian Terng at the dedication of a memorial bust of Sophus Lie, at Lie’s
birthplace in Nordfjord, Norway.

the exterior derivative of a k-form [163]:

dωk(v0,v1, . . . ,vk) :=
∑
i=0,k

(−1)i vi (ωk(v0,v1, . . . ,vk)i)

+
∑
i,j=0,k
i<j

(−1)i+j (ωk([vi ,vj ],v0,v1, . . . ,vk)i,j) ,

where the subscript ()i means that the i-th term in the parenthesis is missing
and the subscript ()i,j means that the i-th and j-th terms are missing.

The tensoriality of the exterior derivative follows from the criterion of Lemma
1.2.1 by invoking Leibniz formula for the Lie derivative (formula iii) of Propo-
sition 1.4.11):

[vi , fvj ] = f [vi ,vj ] + (vif) vj .

Indeed we have that

(−1)ivi (ωk(. . . , fvj , . . .)i) = (−1)ifvi (ωk(. . . ,vj , . . .)i)

+(−1)i(vif) (ωk(. . . ,vj , . . .)i) , .

(−1)i+j ωk([vi , fvj ], . . .)i,j = (−1)i+j f ωk([vi ,vj ], . . .)i,j

+(−1)i+j (vif) (ωk(vj , . . .)i)

= (−1)i+j f ωk([vi ,vj ], . . .)i,j

−(−1)i (vif) (ωk(. . . ,vj , . . .)i) .
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By tensoriality, the argument vectors may be extended to vector fields in an
arbitrary way.

If the associated flows commute pairwise, so that [vi ,vj ] = 0 for i, j =
0, . . . , k , Palais’ formula for the exterior derivative of a k-form ωk reduces to:

dωk(v0,v1, . . . ,vk) =
∑
i=0,k

(−1)i vi (ωk(v0,v1, . . . ,vk)i) .

The exterior derivative of the exterior product of two differential forms is given
by the formula

d(αp ∧ ωk) = (dαp) ∧ ωk + (−1)pαp ∧ dωk .

Hence the exterior derivative is an anti-derivation for the exterior algebra, i.e. a
graded derivation of degree +1 (see section 1.12). Let {x1, . . . , xn} be a local
coordinate system on M with local basis {∂x1, . . . , ∂xn} and dual local basis
{dx1, . . . , dxn} so that 〈dxi, ∂xj 〉 = δij .

A k-form ωk ∈ Λkx(M ;<) may be written as a linear combination of k-fold
exterior products of the differentials of the coordinates:

ωk = ωi1,...,ik dx
i1 ∧ . . . ∧ dxik ,

where the components are given by ωi1,...,ik = ω(∂xi1 , . . . , ∂xik) and the sum
is performed over the set of indices 1 ≤ i1 < . . . < ik ≤ n .

Accordingly, the expression of the exterior derivative dωk in terms of com-
ponents is given by

dωk = dωi1,...,ik ∧ dxi1 ∧ . . . ∧ dxik .

An alternative formula for the exterior derivative in terms of components is
deduced from Palais formula taking into account that the Lie bracket of any
pair of coordinate vector fields vanish i.e. [∂i , ∂j ] = 0 for i, j = 0, . . . , k , so
that:

dωk(∂x0, ∂x1, . . . , ∂xk) =
∑
i=0,k

(−1)i ∂i (ωk(∂x0, ∂x1, . . . , ∂xk)i) .

When acting on exterior forms, the contraction iv and the exterior derivative
are operators with a null iterate:

d ◦ d= 0 ,

iv ◦ iv = 0 .
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The homotopy formula then yields the commutativity properties:

Lv ◦ d = d ◦ Lv ,

Lv ◦ iv = iv ◦ Lv ,

and the equality

Lv ◦ iu − iv ◦ Lu = d ◦ iv ◦ iu − iv ◦ iu ◦ d .

The homotopy formula provides a simpler proof of property iv) of the Lie
derivative, provided in Proposition 1.4.11 for general tensors, in the special case
of the Lie derivative of a k-form:

L(f v) ω
k = d(f ωk v) + f (dωk) v

= d(f ωk v) + f (Lv ω
k − d(ωk v))

= df ∧ (ωk v) + f d(ωk v) + f (Lv ω
k − d(ωk v))

= df ∧ (ωk v) + f Lv ω
k .

Moreover for volume forms µ we get a simple proof of property vi) in Propo-
sition 1.4.11:

L(f v) µ= d(µ f v) + (dµ) f v = d(f µv)

= d(f µv) + d(f µ) v = Lv (f µ) .

1.9.13 Poincaré lemma
Let us now give the following definition:

• A smooth homotopy in an n-dimensional manifold M is a time-dependent
map ϕt ∈ C1(M ; M) which is a diffeomorphism for t 6= 0 and is C1 with
respect to the variable t ∈ [0, 1] .

• A homotopy ϕt ∈ C1(M ; M) is called a contraction to x0 ∈M if ϕ1 is
the identity map, i.e. ϕ1(x) = x for all x ∈M , and ϕ0 is the constant
map ϕ0(x) = x0 for all x ∈M .

Let ϕt ∈ C1(M ; M) be a smooth contraction to x0 ∈ M and let ϕτ,t :=

ϕτ ◦ϕ−1
t be the corresponding displacement.
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Figure 1.41: Jules Henri Poincaré (1854 - 1912)

Denoting by vt = ∂τ=tϕτ,t ∈ C1(M ;TM) the velocity of the contraction,
by Prop. 1.4.12, for any differential k-form ( k ≤ n ) ωk ∈ C1(M ; Λk) , we have:

∂τ=t (ϕτ↓ωk) = ϕt↓(Lv,tω
k) .

Integrating in the interval t ∈ [0, 1] , we get

ϕ1↓ωk −ϕ0↓ωk =

∫ 1

0

ϕt↓(Lvω
k) dt .

By the homotopy formula and the property ϕt↓ ◦d = d ◦ϕt↓ (see Prop. 1.9.1),
we infer that

ϕ1↓ωk −ϕ0↓ωk = d

∫ 1

0

ϕt↓(ωk · v) dt+

∫ 1

0

ϕt↓(dωk · v) dt .

Recalling that ϕt ∈ C1(M ; M) is a contraction to x0 ∈M , we have that

ϕ1↑w = w , ϕ0↑w = 0 , ∀w ∈ TM ,

and hence ϕ1↓ωk = ωk , ϕ0↓ωk = 0 . We have thus proved the formula

ωk = dα(k−1) + βk ,

with

α(k−1) =

∫ 1

0

ϕt↓(ωk · v) dt , βk =

∫ 1

0

ϕt↓(dωk · v) dt ,

If dωk = 0 the form ωk is exact and we get the following classical result.
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Lemma 1.9.1 (Poincare lemma) In a star-shaped manifold any closed form
is exact.

1.9.14 Potentials in a linear space
If the manifold is a linear space S we may set ϕt(x) = tx so that v(x) = x
and Tϕt(x) = t I . Then we get the following expressions for α(k−1) and βk :

α(k−1)(x) =

∫ 1

0

t(k−1)ωk(tx) · x dt ,

βk(x) =

∫ 1

0

tkdωk(tx) · x dt .

From the formula ωk = dα(k−1) + βk we may directly infer some classical
integrability conditions in a linear space and the explicit expressions of the
relevant potentials.

To this end, let us recall the definitions of cross product, gradient, curl and
divergence in an inner product linear space {S ,g} :

cross product: u× v = µguv , dimS = 2

cross product: g(u× v)= µguv , dimS = 3

gradient: df = g∇f , dimS = n

curl: d(gv) = (rot v)µg , dimS = 2

curl: d(gv) = µg(rot v) , dimS = 3

divergence: d(µgv) = (div v)µg . dimS = n

Remark 1.9.1 An important special result is peculiar to dimS = 2 . Indeed
we may set µg = gR to define uniquely the operator R ∈ BL (S ;S) . Then, by
the skew-symmetry of µg we get RT = −R and g(Ra,a) = 0 for all a ∈ S .
Moreover, being µg(a,Ra)2 = g(a,a)g(Ra,Ra) , we infer that g(Ra,Ra) =

µg(a,Ra) = g(a,a) so that, by polarization, RTR = I and R2 = −I . The
operator R ∈ BL (S ;S) is an isometry which changes any vector in S into its
orthogonal such that the oriented square {a ,Ra} has a positive area, and we
have that:

(div v)µg = d(µgv) = d(gRv) = rot (Rv)µg .
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that is div v = rot (Rv) and div (Rv) = −rot v .

From Poincaré lemma we get the following results.

• Let dimS = 3 and ω1 = gv (analogous result for dimS = 2 ). Since
d(gv) = µg(rot v) , the closedness of ω1 is equivalent to the irrotationality
condition, i.e. d(gv) = 0 ⇐⇒ rot v = 0 . Any irrotational vector field
admits a scalar potential such that ∇f = v , given by

f(x) =

∫ 1

0

g(v(tx),x) dt

• Let dimS = 2 and ω1 = µgv . Since d(µgv) = (div v)µg , the closedness
of ω1 is equivalent to the solenoidality condition, i.e. d(µgv) = 0 ⇐⇒
div v = rot (Rv) = 0 . Then there exists a scalar potential such that
∇f = Rv , defined by

f(x) =

∫ 1

0

g(Rv(tx),x) dt =

∫ 1

0

µg(v(tx),x) dt =

∫ 1

0

v(tx)× x dt .

• Let dimS = 3 and ω2 = µgv . Since d(µgv) = (div v)µg , the closedness
of ω2 is equivalent to the solenoidality condition, i.e. d(µgv) = 0 ⇐⇒
div v = 0 . Any solenoidal vector field admits then a vector potential, i.e.
div v = 0 =⇒ v = rot w , with

w(x) =

∫ 1

0

tv(tx)× x dt .

• Let dimS = n . Setting ωn = f µg we have that dωn = 0 and hence
any scalar field f ∈ C1(S ;<) is the divergence of a vector field, that is:
f = div w , with

w(x) =

∫ 1

0

t(n−1) f(tx)x dt .

1.9.15 de Rham cohomology and Betti’s numbers
Let M be a finite dimensional, compact manifold with n = dim M . Then:

• Two k-chains are said to be homological if their difference is a boundary.
The family of equivalence classes of k-cycles so defined, endowed with the
natural linear operations, is the homology space of dimension k and is
denoted by Hk(M) .
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• Two k-forms are said to be cohomological if their difference is a cobound-
ary. The family of equivalence classes of closed k-forms so defined, en-
dowed with the natural linear operations, is the cohomology space of di-
mension k and is denoted by Hk(M) .

• The dimension bk of the linear space Hk(M) is called the k-dimensional
Betti’s number of M , [8].

Figure 1.42: Enrico Betti (1823 - 1892)

• The Euler-Poincaré characteristic of M is the integer defined by:

χ(M) =

n∑
k=0

(−1)kbk ,

The following result is due to S. Chern [32], see also A. Avez [11].

Theorem 1.9.1 (Chern’s theorem) A finite dimensional, orientable and com-
pact manifold M admits a regular vector field if and only if its Euler-Poincaré
characteristic vanishes.

We owe to Georges de Rham the following basic result [?].

Theorem 1.9.2 (de Rham’s theorem) A k-cocycle is a coboundary iff its
integral over every k-cycle vanishes, and a k-cycle is a boundary iff the integral
over it of every k-cocycle vanishes. The dimensions of the linear spaces Hk(M)
and Hk(M) are the same and bk = bn−k where n = dim M .
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Figure 1.43: Georges de Rham (1903 - 1990)

A simple interpretation of de Rham’s theorem may be given by rewriting
Stokes formula as

〈ω, ∂M〉 = 〈dω,M〉 ,
where dim M = n and ω ∈ Λ(n−1)(M ;<) . Stokes formula provides then a
duality product between differential forms and manifolds with the operators ∂
(boundary chain of ) and d (exterior derivative of ) in duality.

The exterior derivative d is a linear operator in each linear space Λk(M ;<)
of differential k-forms on compact manifolds.

The boundary chain ∂ is a signed additive operator on each oriented chain of
k-manifolds and positive homogeneity is granted by setting ∂(αM) := α(∂M)
for all α ∈ < .

Here α(∂M) is the chain such that 〈ω, α(∂M)〉 = α〈ω, ∂M〉 .
The duality expressed by Stokes formula implies that kernels and ranges

of the dual linear operators d and ∂ meet the properties:{
Ker ∂= (Im d)0 ,

Ker d = (Im ∂)0 ,

where the symbol ()0 denotes the annihilator according to the duality. Indeed
from Stokes formula we infer that{

ω = dα ,

∂Σ = 0 ,
=⇒

∫
Σ

ω =

∫
Σ

dα =

∮
∂Σ

α = 0 ,

and that {
Σ = ∂M ,

dω = 0 ,
=⇒

∫
Σ

ω =

∮
∂M

ω =

∫
M

dω = 0 ,

which are the implications to be proved. �
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Then de Rham’s theorem states that we have also the relations{
Im ∂= (Ker d)0 ,

Im d = (Ker ∂)0 ,

which provide two dual fundamental existence result.

1.10 Homologies and cohomologies
The exterior differentiation dn operates on the linear space of exterior forms
C1(E ; Altn(TM)) and the boundary operator ∂(n+1) , operates on (n + 1)-
chains. It is then convenient to write Stokes formula as follows:

〈Ωn+1, dnωn 〉 = 〈∂n+1Ωn+1,ωn 〉 .

In general, Ωn is a chain and ∂n is a boundary operator. Hence ωn is called a
co-chain and dn is the co-boundary operator. The relevant theory, first outlined
by de Rham1 in his famous 1931 thesis [45], is exposed in [46]. The basic results
are expressed by the following annihilation relations which extend to chain and
co-chains well-known formulae for dual operators in linear algebra:{

Ker ∂k = (Im dk−1)0 ,

Ker dk = (Im ∂k+1)0 ,

{
Im ∂k+1 = (Ker dk)0 ,

Im dk−1 = (Ker ∂k)0 ,

where the annihilators are defined as exemplified by:

(Im ∂k)0 := {ωk−1 ∈ C1(E ; Altk−1(TM)) : 〈ωk−1, ∂kΩk 〉 = 0 ∀Ωk} .

Homologies and cohomologies of degree k are the quotient spaces:

Hk(E) := Ker ∂k/Im ∂k+1 and Hk(E) := Ker dk/Im dk−1 ,

Duality between them is expressed by the period, the integral of a cocycle (closed
cochain) over a cycle (closed chain). The Stokes formula provides the invari-
ance property: ∮

ck
ωk =

∮
ck+lk

ωk +αk ,

with ck ∈ Ker ∂k and ωk ∈ Ker dk , for all lk ∈ Im ∂k+1 and αk ∈ Im dk−1 .
1 Georges de Rham (1903-1990) Swiss mathematician.
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The de Rham annihilations reveal that duality provided by the period is
separating and this ensures the existence of an isomorphism between the spaces
of homologies and cohomologies of degree k . Accordingly these will have the
same finite dimension, the k-dimensional Betti2 number of E .

Currents introduced by de Rham are the k-dimensional extension of scalar
distributions of Schwartz.3 Currents are linear functionals on the linear space
of smooth exterior forms with compact support on a manifold. These topological
notions are gaining a rapidly increasing attention in theoretical and computa-
tional aspects of electromagnetics [18, 19, 20, 229, 230, 242, 243, 244, 241].

1.10.1 Curvilinear coordinates
The definition of gradient, divergence and curl in terms of exterior derivative
leads to simple formulas in curvilinear coordinates.

Indeed let {∂1, . . . , ∂n} be a basis of a system of curvilinear coordinates and

(dωk)(∂0, ∂1, . . . , ∂k) =
∑
i=0,k

(−1)i ∂i (ωk(∂0, ∂1, . . . , ∂k)i) ,

the coordinate formula for the exterior derivative provided in section 1.9.7.

• The divergence of a vector field v ∈ C1(M ;TM) is expressed in curvilin-
ear coordinates by

div v =
1

µg(∂1, . . . , ∂n)

∑
i=1,n

∂i (vi µg(∂1, . . . , ∂n)) .

Indeed d(µgv) = (div v)µg and

d(µgv)(∂1, . . . , ∂n) =
∑
i=1,n

(−1)(i−1) ∂i (µg(v, ∂1, . . . , ∂n)i)

=
∑
i=1,n

∂i (vi µg(∂1, . . . , ∂n)) ,

2 Enrico Betti (1823-1892) Italian mathematician.
3 Laurent-Moïse Schwartz (1915-2002) French mathematician.
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where we have made use of the formulas

∂i (µg(v, ∂1, . . . , ∂n)i) = ∂i (µg(
∑
k=1,n

vk∂k, ∂1, . . . , ∂n)i)

= ∂i (vi(µg∂i)(∂1, . . . , ∂n)i) ,

and

(−1)(i−1) ∂i (vi(µg∂i)(∂1, . . . , ∂n)i) = ∂i (vi µg(∂1, . . . , ∂n)) .

In orthogonal curvilinear coordinates the metric volume form may be eval-
uated as

µg(∂1, . . . , ∂n) =
∏
i=1,n

√
g(∂i, ∂i) =

∏
i=1,n

hi .

In terms of the engineering components v̂i = vi hi , (not summed) with
hi = ||∂i|| , the formula above takes the form

div v =
1( ∏

i=1,n

hi

) ∑
i=1,n

∂i

(
v̂i

∏
j=1,n
j 6=i

hj

)
.

We remark that the engineering components are evaluated with respect
to the normalized basis

{∂̂1, . . . , ∂̂n} ,
with

∂̂i =
∂i
||∂i||

.

A similar analysis can be perfomed to derive the component expressions of the
gradient of a scalar field and the curl of a vector field in curvilinear coordinates.
The issue is briefly illustrated below.

• For the gradient of a scalar field f ∈ C1(M ;<) in curvilinear coordinates
we have

df(∂i) = ∂i f

= g(∇f, ∂i)

= g(∂i, ∂k)(∇f)k ,
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so that
∇f = (G−1)ik (∂k f) ∂i ,

and in orthogonal curvilinear coordinates

∇f =
∂i f

h2
i

∂i =
∂i f

hi
∂̂i .

• For the curl of a vector field v ∈ C1(M ;TM) in curvilinear coordinates
we have

d(gv)(∂2, ∂3) = ∂2 g(v, ∂3)− ∂3 g(v, ∂2)

= i(rot v)µg(∂2, ∂3) = (rot v)1 µ(∂1, ∂2, ∂3)

d(gv)(∂1, ∂3) = ∂1 g(v, ∂3)− ∂3 g(v, ∂1)

= i(rot v)µg(∂1, ∂3) = −(rot v)2 µ(∂1, ∂2, ∂3)

d(gv)(∂1, ∂2) = ∂1 g(v, ∂2)− ∂2 g(v, ∂1)

= i(rot v)µg(∂1, ∂2) = (rot v)3 µ(∂1, ∂2, ∂3) ,

so that

(rot v)1 =
1

µ(∂1, ∂2, ∂3)
(∂2 g(v, ∂3)− ∂3 g(v, ∂2))

(rot v)2 =
1

µ(∂1, ∂2, ∂3)
(∂3 g(v, ∂1)− ∂1 g(v, ∂3))

(rot v)3 =
1

µ(∂1, ∂2, ∂3)
(∂1 g(v, ∂2)− ∂2 g(v, ∂1)) ,
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and in orthogonal curvilinear coordinates

(rot v)1 =
1

h1h2h3
(∂2v

3 − ∂3v
2)

(rot v)2 =
1

h1h2h3
(∂3v

1 − ∂1v
3)

(rot v)3 =
1

h1h2h3
(∂1v

2 − ∂2v
1) .

1.10.2 Reynolds theorem
The classical form of Reynolds theorem may obtained from the transport
Theorem 1.9.3 by setting ωt = ft µ , with µ volume-form on the n-dimensional
ambient manifold M , and choosing Γ to be an n-dimensional submanifold
embedded in M . Then the transport formula writes

Figure 1.44: Osborne Reynolds (1842 - 1912)

∂τ=t

∫
ϕτ,t(Γ)

ft µ=

∫
Γ

Lt,v (ft µ)

=

∫
Γ

(∂τ=t fτ )µ+ Lv (ft µ) .
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Then from the formulas Lv (f µ) = (Lvf)µ + f (Lvµ) and Lvµ = (div v)µ
we infer that

∂τ=t

∫
ϕτ,t(Γ)

f µ =

∫
Γ

(∂τ=t fτ + Lvf)µ+

∫
Γ

f (div v)µ

=

∫
Γ

(Lt,v f + f div v)µ .

An alternative expression of the transport theorem may be obtained by formula
v) of Proposition 1.4.11 and the definition of divergence of a vector field. Indeed,
being µ a volume-form, we have that

Lv (f µ) = L(f v) µ = div (f v)µ ,

we get

∂τ=t

∫
ϕτ,t(Γ)

f µ =

∫
Γ

Lt,(fv) µ

=

∫
Γ

(∂t f + L(f v))µ+

=

∫
Γ

(∂t f)µ+

∫
Γ

div (f v)µ

=

∫
Γ

(∂t f)µ+

∫
∂Γ

f g(v,n) (µn) ,

where the last formula follows from the divergence theorem (see Section 1.10.3).
This last expression of the transport theorem tells us that

• the time-rate of increase of an extensive quantity evaluated on a flowing
manifold is equal to the time-rate of increase evaluated by frozing the flow
plus the time-rate of supply of its density thru the boundary.

It should be noted that the transport theorem for vector or tensor fields,
other than volume-form fields, is not feasible on differentiable manifolds since
the integral of such fields makes no sense.

The extension of these results from the euclidean space to manifolds can be
performed by adopting a variational form which requires only the integration of
volume-form fields.
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1.10.3 Classical integral transformations
On an oriented finite dimensional manifold M endowed with a standard volume
form µ ∈ BL (TM(dim M) ;<) the divergence of a vector field v ∈ C1(M ;TM)
is defined as the constant of proportionality between the Lie derivative of the
standard volume form along the flow of the vector field and the standard volume
form itself:

Lvµ = (div v)µ .

The divergence may be also defined in terms of the exterior derivative by the
relation

d(µv) = (div v)µ .

Indeed, being dµ = 0 , the homotopy formula tells us that

Lv µ = (dµ)v + d(µv) = d(µv) = (div v)µ .

From Stokes formula we may then derive the classical integral transformation
theorems. Indeed by the definition of

gradient: d f = i(∇f)g = g∇f , dim M = n

curl: d(gv) = (rot v)µg , dim M = 2

curl: d(gv) = i(rot v)µg = µg(rot v) , dim M = 3

divergence: d(µgv) = (div v)µg , dim M = n

we get the following statements:

• dim M = n , Γ ⊂M , dim Γ = 1 : the gradient theorem:∫
Γ

df =

∫
Γ

g∇f =

∫
Γ

g(∇f, t) (g t) =

∫
∂Γ

f = f(B)− f(A) ,

where A , B are the end points of the curve Γ and (g t) = it g is the
volume form (the signed-length) induced along the curve Γ .
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• dim M = 3 , Σ ⊂M , dim Σ = 2 : the curl theorem:∫
Σ

d(gv) =

∫
Σ

µg(rot v) =

∫
Σ

g(rot v,n) (µgn) =

∫
∂Σ

gv =

∫
∂Σ

g(v, t) (g t) ,

with n unit normal to the surface Σ and t unit tangent to the boundary of
the surface. For dim M = 2 the curl theorem writes:∫

M

d(gv) =

∫
M

(rot v)µg =

∫
M

d(gv) =

∫
∂M

gv .

• dim M = n : the divergence theorem:∫
M

d(µgv) =

∫
M

(div v)µg =

∫
∂M

µgv =

∫
∂M

g(v,n) (µgn) ,

with n unit normal to the boundary ∂M .

Remark 1.10.1 The definition of gradient, curl and divergence in <3 given
above are based on the following algebraic results.

• To any one-form df on <n there correspond a unique vector ∇f in <n
such that df = g∇f .

• To any two-form ω2 on <3 there correspond a unique vector w in <3

such that ω2 = µw , with µ a given volume form.

• All volume forms µ on <n are proportional one another.

Let us prove the second statement. The linear space Λ2(<3) is 3-dimensional
since C3

2 = C3
1 = 3 . The linear subspace i(<3)µ ⊆ Λ2(<3) , spanned by the

2-forms iwµ on <3 when w ranges in <3 , is also 3-dimensional since the
forms ieiµ , with {ei , i = 1, 2, 3} a basis, are linearly independent. Indeed∑

i=1,3

λi (ieiµ) =
∑
i=1,3

(i(λi ei)µ) = 0 =⇒ λi = 0 , i = 1, . . . , 3 ,

since otherwise, taking a basis {a,b,∑i=1,3 λi ei} in <3 , the volume

µ(
∑
i=1,3

λi ei,a,b) = (i(
∑
i=1,3 λi ei)µ)(a,b)
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would be zero, whilst volume forms are non vanishing when evaluated on a basis.
Then i(<3)µ = Λ2(<3) and the correspondence i(·)µ ∈ BL (<3 ; Λ2(<3)) is a
linear isomorphism.

A noteworthy formula due to Hermann Helmholtz is a direct consequence
of the homotopy formula [48]. Given a tangent vector field u ∈ C2(M ;TM)
we set ω2 = µu . To evaluate the flux of the field u ∈ C2(M ;TM) through a
time-dependent surface Σt drifted by a flow ϕτ,t ∈ C2(M ; M) , we apply the
homotopy formula to get:

∂τ=t

∫
ϕτ,tΣt

ω2 =

∫
Σt

Lvϕ ω
2 =

∫
Σt

d(ω2vϕ) + (dω2)vϕ .

Translating into the language of vector analysis, recalling that

µuvϕ = g(u× vϕ) ,

dg(u× vϕ) = µ · (rot (u× vϕ)) ,

we have:
d(ω2vϕ) = d(µuvϕ) = µ · (rot (u× vϕ)) ,

(dω2)vϕ= d(µu)vϕ = (div u)µvϕ ,

which, substituted into the first expression, provide Helmholtz’s formula:

∂τ=t

∫
ϕτ,tΣt

ω2 =

∫
Σt

µ · (rot (u× vϕ)) + (div u)µvϕ .

Figure 1.45: Hermann Ludwig Ferdinand von Helmholtz (1821 - 1894)
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1.11 Electromagnetism
A noteworthy physical application of the theory of integration on manifolds is
to the laws of Electromagnetism. We denote by {S ,g} the Riemann ambient
3-D manifold without boundary, by Σ a 2D-submanifold with boundary ∂Σ
and by Ω a 3-D submanifold with boundary ∂Ω . The 3-form µ is the volume
form induced in {S ,g} by the metric tensor field.

Let the vector fields E,D,H,B ∈ C1(S ;TS) be the electric field, the electric
displacement, the magnetic field and the magnetic induction and the scalar field
ρE ∈ C1(S ;<) be the electric charge density per unit volume.

Figure 1.46: Oliver Heaviside (1850 - 1925)

In literature the integral form of the laws of Electromagnetism is expressed
by∮

∂Σ

gH =

∫
Σ

µ(Ḋ + JE) Maxwell(1861)-Ampère(1826)

∮
∂Σ

gE = −
∫

Σ

µḂ Maxwell(1881)-Henry(1831)-Faraday(1831)

∮
∂Ω

µD =

∫
Ω

ρEµ Gauss(1835)

∮
∂Ω

µB = 0 Gauss(1831)

with Ḋ := ∂τ=t Dτ and Ḃ := ∂τ=t Bτ .
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By applying Stokes theorem, the laws of Electromagnetism may be written,
in terms of exterior derivatives or according to the classical vectorial notations
of Heaviside, as

d(gH) = µ(Ḋ + JE) ⇐⇒ rot H = Ḋ + JE ,

d(gE) = −µḂ ⇐⇒ rot E = −Ḃ ,

d(µD) = ρE = ρEµ ⇐⇒ div D = ρE ,

d(µB) = 0 ⇐⇒ div B = 0 .

Figure 1.47: André-Marie Ampère (1775 - 1836)

From the formulations above it is apparent that what really enter into the
laws of Electromagnetism are the one-forms gH and gE , whose integrals over
the boundary provide the circuitation of the magnetic and of the electric fields,
and the two-forms µB and µD , whose integrals over the surface provide the
flux of the magnetic induction and of the electric displacement.

Moreover, the charge density is a volume three-form ρE = ρEµ and the
current density is a two-form µJE .

As shown below, when expressed in terms of differential forms, the laws of
Electromagnetism do not involve the metric properties of the physical space.

However the constitutive laws expressing the electric permittivity and the
magnetic permeability of a medium depend on the metric properties of the space.
The electric permittivity is a relation between the electric vector field and the
electric displacement field so that the spatial metric tensor field is involved.
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Figure 1.48: Carl Friedrich Gauss (1777 - 1855), portrait in Astronomische
Nachrichten, 1828.

The metric tensor permits to associate the vector field E with the one-
form gE , and the volume form µ , induced by the metric, permits to associate
the electric displacement vector field D with the two-form µD . Analogously,
the magnetic permeability relates the magnetic induction vector field to the
magnetic vector field, thus involving the metric properties of the space.

Let us introduce the differential forms

ω1
H= gH magnetic field one form ,

ω1
E= gE electric field one form ,

ω2
B= µB magnetic induction two form ,

ω2
JE

= µJE electric current two form ,

ω2
D= µD electric displacement two form .
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Figure 1.49: Hans Christian Ørsted (1777 - 1851)

The laws of Electromagnetism are then expressed by∮
∂Σ

ω1
H =

∫
Σ

(ω̇2
D + ω2

JE
) Maxwell(1861)-Ampère(1826)

∮
∂Σ

ω1
E = −

∫
Σ

ω̇2
B Maxwell(1881)-Henry(1831)-Faraday(1831)

∮
∂Ω

ω2
D =

∫
Ω

ρE Gauss(1835)

∮
∂Ω

ω2
B = 0 Gauss(1831)

By applying Stokes theorem, and taking into account that the surface Σ is
arbitrary, we may localize to get the differential laws:

dω1
H = ω̇2

D + ω2
JE

Maxwell(1861)-Ampère(1826)

dω1
E = −ω̇2

B Maxwell(1881)-Henry(1831)-Faraday(1831)

dω2
D = ρE Gauss(1835)

dω2
B = 0 Gauss(1831)
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Figure 1.50: Jean-Baptiste Biot (1774 - 1862)

Figure 1.51: Félix Savart (1791 - 1841)

which, being dd = 0 , imply that:

d(ω̇2
D + ω2

JE
) = 0 ,

dω̇2
B = 0 .

The former condition does not hold in general and this shows that Ampère’s law
should be revised. It is to be remarked that Gauss law for the electric displace-
ment is a simple consequence of Poincaré Lemma, since trivially dρE = 0
and, in a space manifolds without holes, the closed form ρE is exact.
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Figure 1.52: Michael Faraday (1791 - 1867)

Figure 1.53: Joseph Henry (1797 - 1878)

1.11.1 Ampère and Faraday laws for a moving surface
Let us now consider a motion dragging the surface Σ . Denoting by Σt = ϕt(Σ)
we have that

∂τ=t

∫
ϕτ,t(Σt)

ω2
B,τ =

∫
Σt

Lϕ,t ω2
B =

∫
Σt

(∂τ=t ω
2
B,τ + Lvϕ,t ω

2
B,t) .

Then, being dω2
B = 0 by Gauss principle of magnetic dipoles, we have:

Lvϕ,t ω
2
B,t = d(ω2

B,t · vϕ,t) + (dω2
B,t) · vϕ,t = d(ω2

B,t · vϕ,t) .
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Figure 1.54: James Clerk Maxwell (1831 - 1879)

Hence
∂τ=t

∫
ϕτ,t(Σt)

ω2
B,τ =

∫
Σt

∂τ=t ω
2
B,τ +

∮
∂Σt

ω2
B · vϕ ,

and Faraday’s law: ∮
∂Σt

ω1
E =

∫
Σt

∂τ=t ω
2
B,τ ,

may we rewritten in the equivalent form:∮
∂Σt

(ω1
E − ω2

B · vϕ) = −∂τ=t

∫
ϕτ,t(Σt)

ω2
B,τ .

The one-form ω1
E − ω2

B · vϕ is the Lorentz force on a unit electric charge.
In a similar way, taking account that dω2

D = ρE by Gauss principle of
electric charge conservation, Ampère’s law may be rewritten as∮

∂Σt

(ω1
H + ω2

D · vϕ) = ∂τ=t

∫
ϕτ,t(Σt)

ω2
D,τ +

∫
Σt

(ω2
JE
− ρE · vϕ) .

The one-form ω1
H + ω2

D · vϕ is the magnetomotive intensity. The two-form
ω2

JE
− ρE · vϕ is the conduction electric current.

Faraday’s paradox

Faraday’s disk or homopolar generator: the device is constructed from a brass
disk that can rotate in front of a circular magnet. The induction EM force
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Figure 1.55: John Henry Poynting (1852 - 1914)

between the center of the disk and a point on its rim is measured by closing the
circuit with the aid of a brush contact. Let us analyze the experiment by means
of the expression of the standard Faraday’s law.

- 1st experiment: The disk rotates while keeping the magnet still. An in-
duced DC current is measured, in concordance with Faraday’s law.

- 2nd experiment: The disk is kept still while the magnet rotates. An
induction force was expected to appear but the galvanometer measure no
current. This result could seem logical as the symmetry of the magnetic
field with respect to the disk’s rotation axis does not alter anything.

- 3rd experiment: The disk is attached to the magnet and both rotate with
any relative motion of the disk with respect to the magnet. Contrary to
expectation the galvanometer measures an electric current depending on
the disc spin velocity.

1.11.2 Faraday law revisited
The magnetic induction Bϕ,t is a material field, and hence its time derivative
should be taken as the convective time-derivative along the motion. Faraday’s
law should accordingly be reformulated as

−
∮
∂Σt

ω1
E = ∂τ=t

∫
ϕτ,t(Σt)

ω2
B =

∫
Σt

Lϕ,t ω2
B .
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Figure 1.56: Hendrik Antoon Lorentz (1853 - 1928)

Figure 1.57: Heinrich Friedrich Emil Lenz (1804 - 1865)

In order that this formula be meaninful, it is compelling to prove that its r.h.s.
is independent of the choice of the surface Σt , for a given boundary ∂Σt .

It follows that the integral over any boundary surface should vanishes in
space, i.e. that for all spatial domain Ω :∫

∂Ω

Lϕ,t ω̂2
B =

∫
Ω

d(Lϕ,t ω̂2
B) = 0 .

By localizing we infer that d(Lϕ,t ω̂2
B) = 0 . From Leibniz rule and homotopy

formula, we get:

Lϕ,t ω̂2
B = ∂τ=t ω̂

2
B,τ + d(ω̂2

B · v̂ϕ)t + (dω̂2
B)t · v̂ϕ,t .
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Then Gauss law of magnetic induction, (dω̂2
B)t = 0 for all t ∈ I , implies that

d(∂τ=t ω̂
2
B,τ ) = ∂τ=t dω̂

2
B,τ = 0 ,

and provides the result. Vice versa, the condition d(Lϕ,t ω̂2
B) = 0 implies

Gauss law of magnetic induction which is therefore a direct corollary to the re-
vised Faraday’s law. Moreover, by Poincaré Lemma, the closedness property
d(Lϕ,t ω̂2

B) = 0 ensures the existence of a one-form field ω1
E such that

dω1
E = −Lϕ,t ω̂2

B .

Answer to Faraday’s paradox

A direct answer to Faraday’s paradox may then be given by rewriting the
revised Faraday’s law in the equivalent form

−
∮
∂Σt

ω̂1
E =

∫
Σt

∂τ=t ω̂
2
B,τ +

∮
∂Σt

ω̂2
B · v̂ϕ .

In Faraday’s experiment, the spatial magnetic induction field was stationary
so that ∂τ=t ω̂

2
B,τ = 0 . Hence an electromotive force is generated along the disc

radius as soon as the disc spins about the axel, so that the relative spatial ve-
locity v̂ϕ , between the disc radius closing the circuit through the brush contact
and the magnetic field, is not zero. This is the Lorentz effect.

1.11.3 Ampère law revisited
The magnetic induction Bϕ,t is a material field too, and hence its time deriva-
tive should be taken as the convective time-derivative along the motion.

Ampère’s law should accordingly be reformulated as∮
∂Σt

ω1
H = ∂τ=t

∫
ϕτ,t(Σt)

ω2
D +

∫
Σt

ω2
JE

=

∫
Σt

Lϕ,t ω2
D + ω2

JE
.

In order that this formula be meaninful, it is to be proven that its r.h.s. is
independent of the choice of the surface Σt , for a given boundary ∂Σt .

It follows that the integral over any boundary surface should vanish in space,
i.e. that for all spatial domain Ω :∫

∂Ω

Lϕ,t ω̂2
D + ω2

JE
=

∫
Ω

d(Lϕ,t ω̂2
D + ω2

JE
) = 0 .
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By localizing we get the equivalent differential condition d(Lϕ,t ω̂2
D +ω2

JE
) = 0 .

From Leibniz rule and homotopy formula, we may write:

Lϕ,t ω̂2
D = ∂τ=t ω̂

2
D,τ + d(ω̂2

D · v̂ϕ)t + (dω̂2
D)t · v̂ϕ,t .

Then Gauss law for the electric displacement, dω̂2
D = ρE for all t ∈ I , implies

that
d(∂τ=t ω̂

2
D,τ ) = ∂τ=t dω̂

2
D,τ = ∂τ=t (ρE)τ ,

and hence

d(Lϕ,t ω̂2
D + ω2

JE
) = ∂τ=t (ρE)τ + d(ρE · v̂ϕ,t + ω2

JE
) = Lϕ,t ρE + dω2

JE
.

The invariance of Ampère’s law is thus equivalent to the condition of electric
charge conservation:

∂τ=t

∫
ϕτ,t(Ωt)

ρE +

∮
∂Ωt

ω2
JE

= 0 ,

to be read as:

- The time rate of increase of the total electric charge in a moving spatial
domain is equal to the rate of inflow of electric conduction current into
the domain.

Ampère’s law may be rewritten as:∮
∂Σt

ω̂1
H − ω̂2

D · v̂ϕ=

∫
Σt

∂τ=t ω̂
2
D,τ + ω2

JE
+ ρE · v̂ϕ .

This reduces to the usual one if v̂ϕ = 0 .
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Figure 1.58: Arnold Johannes Wilhelm Sommerfeld (1868 - 1951)

Figure 1.59: Richard Phillips Feynman (1918 - 1988)

1.12 Graded derivation algebra
• A differential k-form ω ∈ Λk(TM ;<) on a manifold M is a differentiable

field of k-forms on M .

We denote by Λ(M ;<) the graded commutative algebra of differential forms
on M with the associative and graded commutative exterior multiplication:

ωk ∧ (ωh ∧ ωl) = (ωk ∧ ωh) ∧ ωl , ωk ∧ ωh = (−1)kh ωh ∧ ωk .

Definition 1.12.1 The space Ders Λ(M ;<) of graded derivations of degree
s , is made of the linear maps D ∈ BL (Λ(M ;<) ; Λ(M ;<)) with

D(Λq(M ;<)) ⊂ Λq+s(M ;<)
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Figure 1.60: Giovanni Romano (1941 - )

fulfilling, for any α ∈ Λ(M ;<) , the graded Leibniz rule:

D(ω ∧α) = D(ω) ∧α+ (−1)degD degωω ∧D(α) .

By virtue of the graded Leibniz rule, a graded derivation is completely defined
by its action on 0-forms and 1-forms, since any k-form is pointwise uniquely
expressed as a linear combination of k-th exterior products of 1-forms.

The space Der Λ(M ;<) of graded derivations of any degree, is a graded
Lie algebra whose bracket is the graded commutator

[D1 , D2] := D1 ◦D2 − (−1)degD1 degD2D2 ◦D1 ,

fulfilling the graded anticommutativity relation:

[D1 , D2] := −(−1)degD1 degD2 [D2 , D1] ,

and the graded Jacobi identity :

[D1 , [D2 , D3]] = [[D1 , D2] , D3] + (−1)degD1 degD2 [D2 , [D1 , D3]] .

To any derivation D ∈ Der Λ(M ;<) there corresponds an adjoint derivation,
defined by

AdjD(·) := [D , · ] .
Indeed, by the graded Jacobi identity we have that

AdjD([D1 , D2]) = [AdjD(D1) , D2] + (−1)degD degD1 [D1 ,AdjD(D2)] .

and hence also AdjD ∈ Der Λ(M ;<) with deg AdjD = degD .

Let ω ∈ Λ(M ;<) . It is easy to see that:
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• The insertion operator iv : Λq(M ;<) 7→ Λq−1(M ;<) is a derivation of
degree −1 . Indeed

iv(ω ∧α) = (ivω) ∧α+ (−1)degω ω ∧ ivα .

• The Lie derivation Lv : Λq(M ;<) 7→ Λq(M ;<) is of degree 0 . Indeed

Lv(ω ∧α) = (Lvω) ∧α+ ω ∧ Lvα .

• The exterior derivation d : Λq(M ;<) 7→ Λq+1(M ;<) is of degree +1 .
Indeed

d(ω ∧α) = (dω) ∧α+ (−1)degω ω ∧ dα .

The graded commutation rule is in accordance with the formula

[Lu , iv] = Lu ◦ iv − iv ◦ Lu ,

and the differential homotopy formula takes the simple expression

Lv = [iv , d] = iv ◦ d+ d ◦ iv .

Definition 1.12.2 A derivation D ∈ Der Λ(M ;<) is algebraic if it vanishes
on 0-forms: D(f) = 0 , ∀ f ∈ C∞(M ;<) .

Being
D(fω) = f D(ω) , ∀ f ∈ C∞(M ;<) ,

we infer that a derivation is algebraic if and only if it is tensorial, i.e. lives at
points. By virtue of the graded Leibniz rule, an algebraic graded derivation
is completely defined by its action on 1-forms and hence on differentials of
functions which generate the space of one-forms. The action of an algebraic
derivation D ∈ Der Λ(M ;<) is equivalent to the action of an insertion operator
and we may write

D(ω) = iLω ,

where deg L = degD+1 and L ∈ Λ(M ;TM) is a tangent valued exterior form.
Indeed the vectorial value of the form L , evaluated on its multi-argument whose
cardinality is deg L , takes the first position in the list of the multi-argument of
ω , whose cardinality is degω , so that the final list of arguments has cardinality
degω + deg L− 1 and hence deg iL = deg L− 1 .
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To get an alternating form, the definition of iL(ω) ∈ Λ`+k−1(M ;TM) , with
deg L = ` and degω = k , is given by

(iLω)(X1, . . .X`+k−1) :=∑
σ∈Σ(`+k−1)

signσ

(k − 1)!(`)!
ω(L(Xσ(1), . . .Xσ(`)),Xσ(`+1), . . . ,Xσ(`+k−1)) ,

where Xi ∈ TM . Let us write explicitly the following special cases.
If ` = 0 and k = 2 i.e. L ∈ Λ0(M ;TM) and ω ∈ Λ2(M ;<) , then

(iLω)(X) = ω(L,X) .

If ` = 1 and k = 2 i.e. L ∈ Λ1(M ;TM) and ω ∈ Λ2(M ;<) then

(iLω)(X,Y) = ω(L ·X,Y) + ω(X,L ·Y) .

A non-algebraic derivation D ∈ Der Λ(M ;<) writes

D(ω) = LK(ω) ,

with the Lie-Nijenhuis derivative along the tangent valued form K ∈ Λ(M ;TM)
defined by a formal extension of the homotopy formula to a graded homotopy
formula [71]:

LK := [iK , d] = iK ◦ d− (−1)(deg K−1)d ◦ iK ,

where d is the exterior derivative. Note that deg iK = deg K−1 and deg d = 1
so that degD = degLK = deg K .

If K ∈ Λ(M ;TM) is a 0-form, it is in fact a vector field and its degree is
zero. The graded homotopy formula for the Lie derivative reduces then to the
homotopy formula.

Denoting by I = idTM ∈ Λ1(M ;TM) the identity form, we have: iIω =
(degω)ω . Hence LI = d since

LIω = [iI , d]ω = iI ◦ dω − d ◦ iIω = (degω + 1)dω − (degω)dω = dω .

The next Lemma plays a basic role in the theory of graded derivations.

Lemma 1.12.1 The linear map L ∈ BL (Λ(M ;TM) ; Der Λ(M ;<)) which
associates L(L) := LL ∈ Der Λ(M ;<) with L ∈ Λ(M ;TM) is injective.
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Moreover the Lie derivatives of tangent valued forms are in the null space of
the adjoint of the exterior derivative, that is:

[LK , d] = 0 , ∀K ∈ Λ(M ;TM) ,

and the only algebraic derivation in the null space of the adjoint of the exterior
derivative is the null algebraic derivation, that is:

[iL , d] = 0 ⇐⇒ L = 0 , L ∈ Λ(M ;TM) .

Proof. The first assertion follows from the fact that LL f = 0 for all f ∈
C∞(M ;<) implies that L = 0 . The second assertion is proved by a direct
computation. Indeed, being [d , d] = 2 d ◦ d = 0 , the graded Jacobi identity
yields

0 = [iK , [d , d]] = [[iK , d] , d] + (−1)deg K[d , [iK , d]] = 2 [[iK , d] , d] = 2 [LK , d] .

The third assertion is clear since by definition LL := [iL , d] . �

From Lemma 1.12.1 we infer that the adjoint of the exterior derivative acts
on a derivation as a projection on the space of the algebraic derivations of the
same degree.

Proposition 1.12.1 (Graded derivations) A derivation D ∈ Der Λ(M ;<)
may be written uniquely as

D = LK + iL ,

with deg L = degD + 1 and deg K = degD . Then L = 0 if and only if
[D , d] = 0 and the derivation is algebraic if and only if K = 0 .

Proof. Let us evaluate a derivation D ∈ Derk Λ(M ;<) on smooth scalar
fields ( 0-forms) f ∈ Λ0(M ;<) . Then Df ∈ Λk(M ;<) is a k-form but also
a point derivation on M . Then Df can be valuated as the derivative of f ∈
Λ0(M ;<) along the point value of a uniquely defined tangent valued exterior
k-form K ∈ Λk(M ;TM) :

Df = Tf ·K = (iK ◦ d)f = LKf .

Then D − LK is an algebraic derivation and we may write that D − LK = iL
for a unique tangent valued form L ∈ Λ(M ;TM) with deg L = degD + 1 .
Lemma 1.12.1 and the formula

[D , d] = [LK , d] + [iL , d] = [iL , d] = LL ,

provide the proofs of the last two assertions. �
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1.12.1 Nijenhuis-Richardson bracket
The graded commutator of two algebraic derivations is still an algebraic deriva-
tion and we may define the Nijenhuis-Richardson bracket by:

i[K ,L]NR := [iK , iL] ,

with deg[K ,L]NR = deg K + deg L− 1 . The explicit expression is given by

[K ,L]NR = iKL− (−1)(deg K−1)(deg L−1) iLK ,

where iLK is defined by setting K = ω ⊗X with deg(ω) = deg(K) and

iL(ω ⊗X) := (iLω)⊗X .

1.12.2 Frölicher-Nijenhuis bracket
The Frölicher-Nijenhuis bracket is a generalization of the Lie bracket to
tangent valued forms K ∈ Λ(M ;TM) and L ∈ Λ(M ;TM) on the tangent
bundle τM ∈ C1(TM ; M) , the value of the bracket being still a tangent valued
form. The reader is referenced to [99] for an exhaustive exposition of the topic.

To define the Frölicher-Nijenhuis bracket, briefly the FN-bracket, we
recall the decomposition formula for a derivation D ∈ Der Λ(M ;<) :

D = LK + iL .

The property [LK , d] = 0 and the graded Jacobi identity tell us that, for any
two tangent valued forms K,L ∈ Λ(M ;TM) , it is

[[LK ,LL] , d] = 0 .

Then, by Proposition 1.12.1, the derivation [LK ,LL] ∈ Der Λ(M ;<) may be
written as L[K ,L]FN ∈ Der Λ(M ;<) with [K ,L]FN ∈ Λ(M ;TM) a tangent
valued form uniquely defined by the property

L[K ,L]FN := [LK ,LL] ,

By bilinearity, the map (K ,L) → [K ,L]FN ∈ Λ(M ;TM) is a bracket, the
Frölicher-Nijenhuis bracket, and

deg[K ,L]FN = deg K + deg L .
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The space Λ(M ;TM) is a graded Lie algebra for the FN-bracket, fulfilling the
graded anticommutativity relation:

[K1 ,K2]FN := −(−1)deg K1 deg K2 [K2 ,K1]FN ,

and the graded Jacobi identity :

[K1 , [K2 ,K3]FN]FN = [[K1 ,K2]FN ,K3]FN

+(−1)deg K1 deg K2 [K2 , [K1 ,K3]FN]FN ,

equivalent to

(−1)deg K1 deg K3 [K1 , [K2 ,K3]FN]FN

+ (−1)deg K2 deg K1 [K2 , [K3 ,K1]FN]FN

+ (−1)deg K3 deg K2 [K3 , [K1 ,K2]FN]FN = 0 .

From the proerties LI = d and [LK , d] = 0 , we infer that

[K , I]FN = 0 , ∀K ∈ Λ(M ;TM) .

For vector fields, which are tangent valued 0-forms, i.e. elements of Λ0(M ;TM)
the FN-bracket coincides with the Lie bracket.

Lemma 1.12.2 For K,L ∈ Λ(M ;TM) we have that

[iL ,LK]FN = L(iLK) + (−1)deg Ki[L ,K]FN .

Proof. For f ∈ C∞(M ;<) we have that

[iL ,LK] f = (iL ◦ LK) f = (iL ◦ iK) d f

= iL(d f ◦K) = d f ◦ (iLK) = L(iLK) f ,

and hence [iL ,LK]−L(iLK) is an algebraic derivation. Moreover, by the graded
Jacobi identity, we have that

[[iL ,LK], d ,] = [iL , [LK , d]]− (−1)deg K deg L[LK , [iL , d]]

= −(−1)deg K deg L[LK ,LL] = −(−1)deg K deg LL[K ,L]FN

= (−1)deg K[i[L ,K]FN , d] .

The algebraic part of [iL ,LK] ∈ Der Λ(M ;<) is equal to (−1)deg Ki[L ,K]FN ,
by Lemma 1.12.1. �
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For K ∈ Λk(M ;TM) and ω ∈ Λ`(M ;<) the Lie-Nijenhuis derivative
LKω ∈ Λ(`+k)(M ;<) is expressed in terms of the Lie derivative by the formula

LKω(X1, . . .Xk+`)

=
1

k! `!

∑
σ

signσL(K(Xσ(1), . . . ,Xσ(k)))ω(Xσ(k+1), . . .Xσ(k+`))

+
−1

k! (`− 1)!

∑
σ

signσω([K(Xσ(1), . . . ,Xσ(k)) ,Xσ(k+1)],Xσ(k+2), . . .)

+
(−1)k−1

(k − 1)! (`− 1)! 2!

∑
σ

signσω(K([Xσ(1) ,Xσ(2)],Xσ(3), . . .),Xσ(k+2), . . .) .

For K ∈ Λk(M ;TM) and L ∈ Λ`(M ;TM) the Frölicher-Nijenhuis bracket
[K ,L] ∈ Λ(k+`)(M ;TM) is expressed in terms of the Lie bracket by the for-
mula [124], [137]:

[K ,L]FN(X1, . . .Xk+`)

=
1

k! `!

∑
σ

signσ [K(Xσ(1), . . .Xσ(k)) ,L(Xσ(k+1), . . .Xσ(k+`))]

+
−1

k! (`− 1)!

∑
σ

signσL([K(Xσ(1), . . . ,Xσ(k)) ,Xσ(k+1)],Xσ(k+2), . . .)

+
(−1)k`

(k − 1)! `!

∑
σ

signσK([L(Xσ(1), . . . ,Xσ(`)) ,Xσ(`+1)],Xσ(`+2), . . .)

+
(−1)k−1

(k − 1)! (`− 1)! 2!

∑
σ

signσL(K([Xσ(1) ,Xσ(2)],Xσ(3), . . .),Xσ(k+2), . . .)

+
(−1)k−1

(k − 1)! (`− 1)! 2!

∑
σ

signσK(L([Xσ(1) ,Xσ(2)],Xσ(3), . . .),Xσ(`+2), . . .) .

1.12.3 Frölicher-Nijenhuis bracket between one forms
Let us now consider the special case of tangent valued one-forms.

Tangent valued 1-forms K ∈ Λ1(M ;TM) are in one-to-one correspondence
with the linear maps K̂ ∈ BL (TM ;TM) and K̂∗ ∈ BL (T ∗M ;T ∗M) defined
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by [125]:
K̂(v) := Kv , ∀v ∈ C1(M ;TM) ,

K̂∗(v∗) := iKv∗ , ∀v∗ ∈ C1(M ;TM) .

Given a tangent valued one-form K ∈ Λ1(M ;TM) and a tangent valued zero-
form (vector field) u ∈ Λ0(M ;TM) = C1(M ;TM) , their FN-bracket is the
tangent valued one-form [K ,u] ∈ Λ1(M ;TM) which, for any vector field v ∈
C1(M ;TM) , is defined by

[K ,u]FN(v) := [K ,v]u + K · [u ,v] .

The FN-bracket between the tangent valued one-forms K,L ∈ Λ1(M ;TM) is
the tangent valued two-form [K ,L]FN ∈ Λ2(M ;TM) which, for any pair of
vector fields u,v ∈ C1(TM ; M) , is given by

[K ,L]FN(u,v) := [Ku ,Lv]− [Kv ,Lu]

−L · ([Ku ,v]− [Kv ,u])

−K · ([Lu ,v]− [Lv ,u])

+ (K ◦ L + L ◦K) · [u ,v] .

Lemma 1.12.3 The FN-bracket between one forms is a tensorial two form.

Proof. Although the point values of each term at the r.h.s. of the formula
given above depend on the choice of the vector fields u,v ∈ C1(M ;TM) , the
l.h.s., is tensorial. Indeed the Leibniz rule for the Lie derivative yields

[Ku ,Lv] = [Ku ,L] · v + L · [Ku ,v] ,

[Ku ,v] = [u ,K]v + K · [u ,v] ,

and the previous formula may be written as

[K ,L]FN(u,v) := [Ku ,L] · v + [Lu ,K] · v − L · [u ,K] · v −K · [u ,L] · v ,

which shows the tensoriality with respect to v . A symmetric argument yields
tensoriality with respect to u . �
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Setting L = K in the expression of the FN-bracket, we get:

[K ,K]FN(u,v) := [Ku ,Kv]− [Kv ,Ku]

−K · ([Ku ,v]− [Kv ,u])

−K · ([Ku ,v]− [Kv ,u])

+ (K ◦K + K ◦K) · [u ,v] ,

and, grouping:

1
2 [K ,K]FN(u,v) := [Ku ,Kv]− K · ([Ku ,v]− [Kv ,u]) + (K ◦K) · [u ,v] .

Lemma 1.12.4 If K ∈ Λ1(M ;TM) is idempotent, that is K ◦K = K , then

[K ,K]FN(u,v) = [I−K , I−K]FN(u,v)

= (I−K) · [Ku ,Kv] + K · [(I−K)u , (I−K)v] .

Proof. From the defining formula, rearranging:

1
2 [K ,K]FN(u,v) := [Ku ,Kv]− K · ([Ku ,v]− [Kv ,u]) + K · [u ,v]

= [Ku ,Kv]− K · [Ku ,Kv]

+ K · [Ku ,Kv]− K · ([Ku ,v]− [Kv ,u]) + K · [u ,v]

= (I−K) · [Ku ,Kv] + K · [(I−K)u , (I−K)v] ,

and the result follows. �

Lemma 1.12.5 Given L ∈ Λ1(M ;TM) and X ∈ Λ0(M ;TM) we have that

i) [iL , iX] = −iLX ,

ii) [iL ,LX] = i[L ,X]FN ,

iii) [iX ,LL] = LLX + i[L ,X]FN ,

iv) [iL ,LL] = LL◦L − i[L ,L]FN .
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Proof. To get i) we remark that the derivation [iL , iX] is algebraic so that it
is enough to compute it on a one-form ω ∈ Λ1(M ;<) :

[iL , iX]ω = (iL ◦ iX)ω − (iX ◦ iL)ω = −(iX ◦ iL)ω = −iLXω .

Indeed (iL ◦ iX)ω = iL(ω · X) = 0 since ω · X is a 0-form. To get ii) we
recall Lemma 1.12.2 to write: [iL ,LX] = L(iLX) + i[L ,X]FN and observe that
iLX = iL(1 ⊗ X) = (iL1) ⊗ X = 0 . Formulae iii) and iv) follow again by
Lemma 1.12.2 being

[iX ,LL] = L(iXL)− i[X ,L]FN = LLX + i[L ,X]FN ,

[iL ,LL] = L(iLL)− i[L ,L]FN = LL◦L − i[L ,L]FN ,

since [X ,L]FN = −[L ,X]FN and iLL = L ◦ L . �

Lemma 1.12.6 (Naturality of the FN-bracket) The push-forward of a tan-
gent-valued form K ∈ Λ1(M ;TM) , according to a morphism ϕ ∈ C1(M ; M) ,
is defined by

ϕ↑K ·ϕ↑X := ϕ↑(K ·X) ,

where X ∈ Λ0(M ;TM) , and similarly for higher degree tangent valued forms.
Then the FN-brackets of two tangent valued forms K,L ∈ Λ(M ;TM) is nat-
ural with respect to the push, i.e.:

ϕ↑[K ,L]FN = [ϕ↑K ,ϕ↑L]FN .

Proof. We have that iϕ↑K = ϕ↑iK and ϕ↑ ◦ d = d ◦ϕ↑ . Then

ϕ↑LK = ϕ↑[iK , d] = ϕ↑(iK ◦ d− (−1)deg Kd ◦ iK

= ϕ↑iK ◦ d− (−1)deg Kϕ↑ ◦ d ◦ iK = ϕ↑iK ◦ d− (−1)deg Kd ◦ϕ↑iK
= [ϕ↑iK , d] = Lϕ↑K ,

and also ϕ↑[LK ,LL] = [Lϕ↑K ,Lϕ↑L] so that

Lϕ↑[K ,L]FN = ϕ↑L[K ,L]FN = ϕ↑[LK ,LL] = [Lϕ↑K ,Lϕ↑L] = L[ϕ↑K ,ϕ↑L]FN .

and the result follows. �

217



Graded derivation algebra Giovanni Romano

Definition 1.12.3 Given K,L ∈ Λ1(M ;TM) , the Nijenhuis differential is
defined by

dKL := [K ,L]FN .

Note that dKI = 0 . By Jacobi identity, the Nijenhuis differential is a graded
derivation on the FN-algebra, i,e:

dK[L ,M]FN = [dKL ,M]FN + (−1)deg K deg L[L , dKM]FN .

Rewriting Jacobi identity, we also infer that:

d[K ,L]FN = dKdL − (−1)deg K deg LdLdK .

As a special case we get

d[K ,K]FN = (1− (−1)deg K) dK ◦ dK .

If deg K is even, by the graded anticommutativity of the FN-bracket we have:
[K ,K]FN = −[K ,K]FN = 0 and, by the previous formula, also d[K ,K]FN = 0 .
If deg K is odd, we have the identities

d[K ,K]FN = 2 dK ◦ dK ,

dKdKK = 0 , second Bianchi identity

[dKK , dKK]FN = 0 .

1.12.4 Curvature, cocurvature and Bianchi identity
Setting K = PV and then K = PH , in the formula for the FN-bracket between
idempotent one forms provided in Lemma 1.12.4, we get:

1
2 [PV , PV]FN = 1

2 [PH , PH]FN = R + Rc ,

where the tangent valued 2-forms R,Rc ∈ Λ2(E ;TE) , are the curvature and
the cocurvature of the connection, given by (see Section 1.7.5):

R(X,Y) := PV · [PHX , PHY] ,

Rc(X,Y) := PH · [PVX , PVY] , ∀X,Y ∈ C1(E ;TE) ,

so that
2 R = PV ◦ [PV , PV]FN = PV ◦ [PH , PH]FN ,

2 Rc = PH ◦ [PH , PH]FN = PH ◦ [PV , PV]FN .
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Tensoriality of R,Rc ∈ Λ2(M ;TM) may also be deduced from Lemma 1.12.3.
By Frobenius theorem, the curvature and the cocurvature are respectively
obstructions against integrability of the horizontal and the vertical subbundle.
The graded Jacobi identity implies that

[PV , [PV , PV]FN]FN = 0 ,

and this result is known as the (generalized second) Bianchi identity for the
connection [99]. Moreover we have that

[R , PV]FN = iRRc + iRcR .

Indeed
−2 R = PV ◦ [PV , PV]FN = i[PV ,PV]FNPV ,

and from Lemma 1.12.2 (see [99] Theorem 8.11 (2)):

i[PV ,PV]FN [PV , PV]FN = 2 [i[PV ,PV]FNPV , PV]FN = 4 [R , PV]FN .

Therefore

[R , PV]FN = 1
4 i[PV ,PV]FN [PV , PV]FN = iR+Rc(R + Rc) = iRRc + iRcR ,

since iRR = 0 and iRcRc = 0 .
In a fibre bundle p ∈ C1(E ; M) the vertical bundle is integrable by Frobe-

nius theorem, so that

Rc(X,Y) := PH · [PVX , PVY] = 0 , ∀X,Y ∈ C1(E ;TE) ,

Then, the curvature of the connection may be defined as: R = 1
2 [PV , PV]FN =

1
2 [PH , PH]FN = 1

2dPVPV = 1
2dPHPH .

1.12.5 Soldering forms
Definition 1.12.4 (Soldering form) In a fibre bundle p ∈ C1(E ; M) a sol-
dering form is a vertical-valued and horizontal 1-form: σ ∈ Λ1(E ;VE) .

From the definition it follows that soldering forms are nilpotent: σ ◦ σ = 0 .

Definition 1.12.5 (Canonical soldering form) In the tangent bundle τ ∈
C1(TM ; M) , the canonical soldering form J ∈ Λ1(TM ;T 2M) is the vertical-
valued and horizontal one-form defined by

J := Vl (TM ,τM ,M) ◦ (τTM , Tτ ) ,

with (τTM , Tτ ) ∈ C1(T 2M ;TM ×M TM) , Vl (TM ,τM ,M) ∈ C1(TM ×M

TM ;T 2M) .
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At any v ∈ TM , the vertical lift Vl (TM ,τM ,M) ∈ C1(TM ×M TM ;T 2M)
defines a linear isomorphism Vl (TM ,τM ,M)(v) ∈ BL (Tτ (v)M ;VvTM) . It
follows that J(v) ∈ BL (TvTM ;TvTM) is an endomorphism with the property
that

ker(J(v)) = im(J(v)) = VvTM = TvTτ (v)M .

Denoting by J∗ ∈ C1(TM ;BL (T ∗TM ;T ∗TM)) the dual tensor field defined
by

〈Y∗(v),J(v) ·X(v)〉 = 〈J∗(v) ·Y∗(v),X(v)〉 , ∀
{

X(v)∈ TvTM

Y∗(v)∈ T ∗vTM

we have that im(J∗(v)) = ker(J(v))
◦ and ker(J∗(v)) = im(J(v))

◦ . The
tensor J∗(v) ∈ BL (T ∗vTM ;T ∗vTM) vanishes exactly on horizontal forms and
takes values exactly on horizontal forms. The dual tensor field has the expression

J∗ = T ∗τM ◦ (τ ∗TM ,Vl∗(TM ,τM ,M) ◦ (τTM , idT∗TM)) .

The cotangent map T ∗τM has been discussed in Lemma 1.3.4 and the dual
Vl∗(TM ,τM ,M) of the vertical lift has been discussed in Lemma 1.3.14.

Proposition 1.12.2 The canonical soldering J ∈ C1(TM ;BL (T 2M ;T 2M))
and its dual form J∗ ∈ C1(TM ;BL (T ∗TM ;T ∗TM)) are nilpotent:

J ◦ J = 0 , J∗ ◦ J∗ = 0 .

Proposition 1.12.3 (Sprays) A spray S ∈ Λ0(TM ;T 2M) is characterized
by the equivalent conditions:

(τTM , Tτ ) ◦ S = diag ⇐⇒ J · S = C ,

where diag := (idTM , idTM) ∈ C1(TM ;TM×M TM) .

Proof. Def. 1.8.17 of Liouville vector field C ∈ C1(TM ;T 2M) , Def. 1.12.5
of canonical soldering form J ∈ Λ1(TM ;T 2M) and Def. 1.3.17 of spray S ∈
C1(TM ;T 2M) , give the formula

J · S = Vl (TM ,τM ,M) ◦ (τTM , Tτ ) ◦ S = Vl (TM ,τM ,M) ◦ diag = C ,

By injectivity of the vertical lift Vl (TM ,τM ,M) ∈ C1(TM×M TM ;T 2M) the
central equality implies the condition (τTM , Tτ ) ◦ S = diag . �
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A spray can be canonically associated with a connection on the tangent
bundle τ ∈ C1(TM ; M) by taking the horizontal projection of any spray S .
Indeed the spray S = PH ◦ S is independent of the choice of the spray S since
the difference of any two sprays is vertical.

In [76], Propositions X.1.5 and X.1.6 on page 160 , the following properties
were provided on the basis of computations in coordinates:

[JX ,JY] = J · [JX ,Y] + J · [X ,JY] ,

JX = [JX ,C] + J · [C ,X] , ∀X,Y ∈ Λ0(TM ;T 2M) .

Then
[J ,J]FN = 0 ⇐⇒ [LJ ,LJ] = 0 ⇐⇒ LJ ◦ LJ = 0 ,

[J ,C]FN = J .

Related properties of the canonical soldering form have been investigated in [82]
and referred to in [98], [143] and [84].

From the properties of the canonical soldering form we get the formulas
listed in the next Proposition.

Proposition 1.12.4 The canonical soldering form J ∈ Λ1(TM ;T 2M) , the
Liouville canonical field C ∈ Λ0(TM ;T 2M) and a spray S ∈ Λ0(TM ;T 2M)
fulfil the properties:

i) [iJ , iC] = −iJC = 0

ii) [iJ ,LC] = i[J ,C]FN

iii) [iC ,LJ] = LJC + i[J ,C]FN = i[J ,C]FN

iv) [iJ ,LJ] = LJ◦J − i[J ,J]FN = −i[J ,J]FN

v) [iS ,LJ] = LJS + i[J ,S]FN = LC + i[J ,S]FN .

Proof. By the verticality of the Liouville canonical field, it is:

J ·C = 0 ,

[J ,C]FN ·X = [JX ,C]FN + J · [C ,X]FN = [JX ,C]FN ,

and the results follow from Lemma 1.12.5. �
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1.12.6 Sprays and connections
Lemma 1.12.7 (Characterization of a connection) A connection on the
tangent bundle of a manifold M may be characterized by a tangent valued one-
form Γ ∈ Λ1(TM ;T 2M) fulfilling the properties{

J ◦ Γ = +J⇐⇒ J ◦ (I− Γ) = 0⇐⇒ im(I− Γ) ⊆ ker(J) ,

Γ ◦ J = −J⇐⇒ (I + Γ) ◦ J = 0⇐⇒ ker(I + Γ) ⊇ im(J) .

Proof. These properties of Γ ∈ Λ1(TM ;T 2M) ensure its involutivity, being:

im(J) = ker(J) =⇒ im(I− Γ) ⊆ ker(I + Γ) ⇐⇒ (I + Γ) ◦ (I− Γ) = 0

⇐⇒Γ2 = I .

Then, by Lemma 1.6.1 we infer that

im(I− Γ) = ker(I + Γ) = im(J) = ker(J) = ker(Tτ ) .

Hence Γ ∈ Λ1(TM ;T 2M) is a connection on τ ∈ C1(TM ; M) . The converse
implication is clear. �

By the theory of the Frölicher-Nijenhuis bracket developed in section
1.12, it can be proved that to any spray S(v) ∈ TvTM there corresponds a
connection Γ ∈ Λ1(TM ;T 2M) given by

Γ = [J ,S]FN ,

and that the spray canonically associated with this connection is given by [82],
[83], [84]:

S + 1
2 ([C ,S]FN − S) = 1

2 ([C ,S]FN + S) .

1.12.7 Generalized torsion of a connection
Following [144], the torsion in a fibre bundle is defined as follows.

Definition 1.12.6 In a fibre bundle p ∈ C1(E ; M) the torsion T ∈ Λ2(E ;VE)
of the connection PH ∈ Λ1(E ;HE) with respect to the soldering form σ ∈
Λ1(E ;VE) is defined by the Nijenhuis differential:

T := dσPH .
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The next result was provided in [144] without proof (with a spurious factor 1
2

in the explicit formula).

Lemma 1.12.8 The torsion T = dσPH = dPHσ ∈ C1(E ;VE) of the connec-
tion PH ∈ C1(E ;HE) with respect to the soldering form σ ∈ Λ1(E ;VE) is the
vertical-valued horizontal 2-form on E given by:

T := dσPH = dPHσ = [σ , PH]FN = [PH ,σ]FN

=−dσPV = −dPVσ = 1
2dσΓ = 1

2dΓσ ,

and explicitly, in terms of Lie brackets:

T(Hu,Hv) = [Hu ,σHv]− [Hv ,σHu]− σ · [Hu ,Hv] ,

for all u,v ∈ C1(M ;TM) .

Proof. The equality [σ , PH]FN = [PH ,σ]FN follows directly from the graded
anticommutativity of the FN-bracket. To prove the latter formula, we recall
the defining formula:

[PH ,σ]FN(X,Y) := [PHX ,σY]− [PHY ,σX]

−σ · ([PHX ,Y]− [PHY ,X])

−PH · ([σX ,Y]− [σY ,X])

+ (PH ◦ σ + σ ◦ PH) · [X ,Y] .

By tensoriality of the torsion, the vector fields X,Y ∈ C1(E ;TE) may be
assumed to be projectable. Then, being Tp ◦ σ = 0 , both brackets in the
third line are vertical by Lemma 1.4.5 and hence the line vanishes. Moreover,
observing that:

σ ◦ PH = σ , PH ◦ σ = 0 , σ ◦R = 0 ,

the sum of the second and of the fourth lines may be written as:

−σ ◦ PH · ([PHX ,Y]− [PHY ,X]− [X ,Y])

= σ · ( 1
2 [PH , PH]FN(X,Y)− [PHX , PHY])

= σ · (R(X,Y)− [PHX , PHY]) = −σ · [PHX , PHY] ,
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so that

T(X,Y) = [PHX ,σY]− [PHY ,σX]− σ · [PHX , PHY] ,

and the result follows by observing that, by Lemma 1.7.5, the horizontal projec-
tion of a projectable vector field is equal to the horizontal lift of the projected
vector field. Then setting u ◦ p = Tp ◦ X and v ◦ p = Tp ◦ Y so that
PHX = Hu and PHY = Hv , we get the formula in the statement which also
shows the vertical-valuedness of the torsion by Lemma 1.4.5. The formulas in
terms of the connection Γ ∈ Λ1(E ;TE) are direct consequences of the property:

[σ , PH + PV]FN = [σ , I]FN = 0

[σ , PH − PV]FN = [σ ,Γ]FN

}
=⇒ [σ , PH]FN = −[σ , PV]FN = 1

2 [σ ,Γ]FN ,

which holds for any vector-valued form σ ∈ Λ(M ;TM) . �

Lemma 1.12.9 The torsion T = dPHσ ∈ C1(E ;VE) of the connection PH ∈
C1(E ;HE) with respect to the soldering form σ ∈ Λ1(E ;VE) fulfils the rela-
tions:

dPHT = d2
PH
σ = [R ,σ]FN = −dσR , first Bianchi identity ,

PH = PH + σ =⇒
{
T= T + dσσ ,

R = R + T + 1
2dσσ .

Proof. By the graded Jacobi identity:

[PH , [PH ,σ]FN]FN = [[PH , PH]FN ,σ]FN − (−1)degPH [PH , [PH ,σ]FN]FN ,

we get the former formula:

[PH ,T]FN = [PH , [PH ,σ]FN]FN = 1
2 [[PH , PH]FN ,σ]FN = [R ,σ]FN = −[σ ,R]FN .

The latter result is got by a direct computation based on the bilinearity of the
FN-bracket. In this respect we remark that, being ker(PH + σ) = ker(Tp)
and

(PH + σ) ◦ (PH + σ) = PH ◦ PH + PH ◦ σ + σ ◦ PH + σ ◦ σ = PH + σ ,

the sum PH + σ is a connection. On the other hand, the difference of any two
connections is a soldering form. Indeed VE ⊆ ker(PH−PH) since X ∈ VE =⇒
PHX = PHX = 0 =⇒ (PH − PH)X = 0 . Moreover im(PH − PH) ⊆ VE since
Tp · (PH − PH)X = Tp · PHX− Tp · PHX = 0 . �
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1.12.8 Canonical torsion in a tangent bundle
The next result provides a formula which will be recalled hereafter in deriving
the expression of the canonical torsion in a tangent bundle in terms of covariant
derivatives according to a linear connection.

Lemma 1.12.10 Given a linear connection on a tangent bundle τ ∈ C1(TM ; M)
and two tangent vector fields u,v ∈ C1(M ;TM) , the covariant derivative field
∇vu ∈ C0(M ;TM) may be expressed as

Vl (TM ,τ ,M) ◦ (idTM ,∇vu ◦ τ ) = [Hv ,JHu] ,

or equivalently as ∇vu = vd (TM ,τM ,M) ◦ [Hv ,JHu] .

Proof. By Lemma 1.4.5 PH · [JHu ,Hv] = 0 and we get the equality

[PH ,JHu]FN ·Hv = [PHHv ,JHu] + PH · [JHu ,Hv] = [Hv ,JHu] ,

which shows that the r.h.s. is tensorial in v ∈ C1(M ;TM) . Moreover, we
have that JHu = Vl (TM ,τ ,M) ◦ (idTM , Tτ ◦Hu) = Vl (TM ,τ ,M) ◦ (idTM ,u ◦
τ ) . Observing that by Lemmas 1.3.17 and 1.8.2 the flow of an horizontal lift
FlHv

λ ∈ C1(TM ;TM) is an automorphism, we may apply the definition of Lie
derivative, Definition 1.12.5, and the linearity of the vertical lift in its second
argument, to show that:

[Hv ,JHu] = LHv(JHu) := ∂λ=0 TFlHv

−λ ◦ JHu ◦ FlHv

λ

= ∂λ=0 TFlHv

−λ ◦Vl (TM ,τ ,M) ◦ (FlHv

λ ,u ◦ τ ◦ FlHv

λ )

= ∂λ=0 TFlHv

−λ ◦Vl (TM ,τ ,M) ◦ (FlHv

λ ,u ◦ Flvλ ◦ τ )

= ∂λ=0 Vl (TM ,τ ,M) ◦ (idTM ,FlHv

−λ ◦ u ◦ Flvλ ◦ τ )

= Vl (TM ,τ ,M) ◦ (idTM , ∂λ=0 (FlHv

−λ ◦ u ◦ Flvλ ◦ τ ) .

The result then follows from Lemma 1.7.10. �

In the tangent bundle τ ∈ C1(TM ; M) , the canonical torsion of a connec-
tion is induced by the canonical soldering form J := Vl (TM ,τ ,M) ◦ (τTM , Tτ ) ,
so that T = dJPH = dPHJ ∈ Λ2(TM ;T 2M) . Since the torsion is a vertical-
valued horizontal 2-form on TM , it may be evaluated on the horizontal lifts
Hu,Hv ∈ C1(TM ;T 2M) of tangent vector fields u,v ∈ C1(M ;TM) and its
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value may be expressed as the vertical lift of the value of a 2-form on M with
values in TM by

Vl (TM ,τ ,M)◦(idTM ,tors(u,v) ◦ τ ) := T(Hu,Hv)

= [Hu ,J ·Hv]− [Hv ,J ·Hu]− J · [Hu ,Hv] .

Recalling that
J ·Hv = Vl (TM ,τ ,M) ◦ (idTM , Tτ ·Hv)

= Vl (TM ,τ ,M) ◦ (idTM ,v ◦ τ ) ,

and that PH · [Hu ,Hv] = H[u ,v] , we have:

J · [Hu ,Hv] = Vl (TM ,τ ,M) ◦ (idTM , Tτ · [Hu ,Hv])

= Vl (TM ,τ ,M) ◦ (idTM , [u ,v] ◦ τ ) .

Moreover, by Lemma 1.12.10, we have that

[Hv ,J ·Hu] = Vl (TM ,τ ,M) ◦ (idTM ,∇vu ◦ τ ) ,

and hence
tors(u,v) = ∇uv −∇vu− [u ,v] .

In [82], Proposition I.37, the following formula is stated without proof:

∇zw = vd (TM ,τM ,M) ◦ ([PH ,JW]FN · Z) ,

with W,Z ∈ Λ0(TM ;T 2M) projecting on w, z ∈ C1(M ;TM) respectively.
By the formula in section 1.12.3 we have that:

[PH ,JW]FN · Z = [PHZ ,JW]− PH · [JW ,Z] = [PHZ ,JW] ,

since [JW ,Z] is vertical by Lemma 1.4.5. Moreover, JW = J(PHW) and
PHZ = Hz , PHW = Hw by Lemma 1.7.5. The formula may then be rewritten
as

∇zw = vd (TM ,τM ,M) ◦ [Hz ,JHw] ,

and coincides with the one proved in Lemma 1.12.10.
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1.13 Symplectic manifolds
Definition 1.13.1 (Symplectic manifold) A symplectic manifold is a man-
ifold M modeled on a linear Banach space and endowed with a closed differ-
ential two-form ω ∈ Λ2(TM ;<) which is weakly nondegenerate.

This means that ω[x ∈ BL (TxM ;T ∗xM) is injective for all x ∈M , i.e. kerω[x =
{0} or

ωx(ux,vx) = 0 , ∀vx ∈ TxM =⇒ ux = 0 ,

Definition 1.13.2 (Strong nondegeneracy) The strong nondegeneracy (or
nondegeneracy) of ω[x ∈ BL (TxM ;T ∗xM) means that it is one-to-one, i.e.
kerω[x = {0} and Im ω[x = T ∗xM .

By the open mapping theorem, a one-to-one bounded linear map, between Ba-
nach spaces, has a bounded linear inverse. Then a weakly nondegenerate two-
form ωx ∈ Λ2(TxM ;<) is nondegenerate if ω[x ∈ BL (TxM ;T ∗xM) is onto.

Definition 1.13.3 (Exact symplectic manifold) A symplectic manifold is
exact if the two-form ω is exact, that is ω = dθ for a differential one-form
θ ∈ Λ1(M ;<) which is sometimes called a symplectic potential.

1.13.1 Canonical forms
The standard example of a symplectic manifold is the cotangent vector bundle
τ ∗M ∈ C1(T ∗M ; M) to a given manifold M . The interest for this peculiar
symplectic manifold is motivated by the hamiltonian description of mechanics.

Applying the tangent functor to the projector τ ∗M ∈ C1(T ∗M ; M) we get
the fibre-wise surjective map Tτ ∗M ∈ C1(TT ∗M ;TM) :

∀v∗ ∈ T ∗M

∀v ∈ Tτ∗M(v∗)M

}
=⇒ ∃ X(v∗) ∈ Tv∗T

∗M : Tτ ∗M ·X(v∗) = v .

The cotangent map of the projector τ ∗M ∈ C1(T ∗M ; M) is the map T ∗τ ∗M ∈
C1(τ ∗M↓T ∗M ;T ∗T ∗M) introduced with Definition 1.3.7. This is a homomor-
phism from the pull-back bundle τ ∗M↓T ∗M = T ∗M ×M T ∗M to the bundle
(T ∗T ∗M , τ ∗T∗M , T ∗M) which, by Lemma 1.3.3, is fibrewise injective and hori-
zontal valued. Let us recall here Definition 1.3.10.
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Definition 1.13.4 (Liouville one-form) The canonical or Liouville one-
form is the horizontal one-form defined by:

θM := T ∗τ ∗M ◦ diag ∈ C1(T ∗M ;T ∗T ∗M) ,

or, explicitly:
〈θM(v∗),X(v∗)〉 := 〈v∗, Tv∗τ

∗
M ·X(v∗)〉 ,

for all v∗ ∈ T ∗M and X(v∗) ∈ Tv∗T
∗M , or also, briefly

〈θM,X〉 := 〈τT∗M(X), Tτ ∗M ·X〉 ∈ C1(T ∗M ;<) ,

for all sections X ∈ C1(T ∗M ;TT ∗M) of the bundle τT∗M ∈ C1(TT ∗M ;T ∗M) .

The definition of the canonical one-form in terms of the cotangent map
appears to be new.

On its grounds many related properties are clarified and their proof is greatly
simplified.

Lemma 1.13.1 In a local chart ϕ ∈ C1(UM ;UE) the canonical one-form is
given by:

θE(v∗)) ·X(v∗) = 〈v∗, Tv∗τ∗(X(v∗))〉E∗×E ,
where τ∗ ∈ C1(E × E∗ ;E) is the cartesian projection on the first component.
Acting with the tangent functor gives the map

Tτ∗ ∈ C1((E × E∗)1 × (E × E∗)2 ;E1 × E2) .

Proof. The induced local charts in the tangent manifold, in the cotangent
manifold, in the manifold tangent to the cotangent manifold and in the manifold
cotangent to the cotangent manifold, are respectively given by:

Tϕ ∈ C1(TM ;E × E) ,

T ∗ϕ−1 ∈ C1(T ∗M ;E × E∗) ,

TT ∗ϕ−1 ∈ C1(TT ∗M ; (E × E∗)× (E × E∗)) ,

T ∗T ∗ϕ ∈ C1(T ∗T ∗M ; (E × E∗)× (E∗ × E∗∗)) .
Let us set

v∗ := T ∗ϕ−1(v∗) ∈ E × E∗ ,

X(v∗) := T ∗ϕ−1↑X(v∗) ∈ (E × E∗)× (E × E∗) ,

θE(v∗) := (T ∗ϕ−1↑θM(v∗)) ◦ T ∗ϕ ∈ E × E∗ × E∗ × E∗∗ ,

τ∗(v∗) = (ϕ ◦ τ ∗M ◦ T ∗ϕ)(v∗) ∈ E ,
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where the last equality follows from the commutative diagram:

T ∗M
T∗ϕ−1

−−−−→ E × E∗

τ∗M

y yτ∗
M

ϕ−−−−→ E

⇐⇒ ϕ ◦ τ ∗M = τ∗ ◦ T ∗ϕ−1 .

The canonical one-form is the expressed in the model space by

θE(v∗)) ·X(v∗) := 〈v∗, Tv∗τ∗ ·X(v∗)〉E∗×E ,

and the result is proved. �

The next result is a correction of Proposition 3.2.11 on page 179 of [2], by
adding the needed assumption of horizontality of the one-form θ , see Definition
1.7.9.

Theorem 1.13.1 (Characterization of the canonical one-form) The cano-
nical, or Liouville one-form θM ∈ C1(T ∗M ;T ∗T ∗M) , defined by the formula
θM := T ∗τ ∗ ◦ diag can be characterized as the unique horizontal one-form
θ ∈ C1(T ∗M ;T ∗T ∗M) fulfilling the property:

α↓θ = α ,

for any section α ∈ C1(M ;T ∗M) of the cotangent bundle τ ∗M ∈ C1(T ∗M ; M) .

Proof. By definition of the pull-back one-form α↓θM ∈ C1(M ;T ∗M) we have
that:

〈(α↓θM)x,vx 〉= 〈θM(αx), Txα · vx 〉

= 〈T ∗τ ∗M(αx ,αx), Txα · vx 〉

= 〈T ∗αx
τ ∗M ·αx, Txα · vx 〉

= 〈αx, Tαxτ
∗
M · Txα · vx 〉

= 〈αx, Tx(τ ∗M ◦α) · vx 〉

= 〈αx,vx 〉 , ∀vx ∈ TxM ,

since τ ∗M ◦ α is the identity on M . Hence the property is fulfilled. Vice
versa if θ ∈ C1(T ∗M ;T ∗T ∗M) is horizontal and α↓θ = α for any section
α ∈ C1(M ;T ∗M) of the cotangent bundle τ ∗M ∈ C1(T ∗M ; M) , we have the
equality α↓θ = α↓θM which means that

〈θ(αx), Txα · vx 〉 = 〈θM(αx), Txα · vx 〉 , ∀vx ∈ TxM .
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Hence, the horizontality of θ and θM gives:

〈(θ − θM)(αx),H(αx ,vx)〉 = 0 , ∀vx ∈ TxM .

The surjectivity of the linear map H(αx) ∈ BL (TxM ;HαxTM) and the arbi-
trariness of α ∈ C1(M ;T ∗M) then yield the equality θ = θM . �

Definition 1.13.5 (Canonical two-form) In a symplectic manifold, the canon-
ical two-form ωM ∈ C1(T ∗M ; Λ(TT ∗M2 ;<)) is the negative exterior deriva-
tive of the canonical one-form:

ωM := −dθM .

The map ω[M ∈ C1(T ∗M ;BL (TT ∗M ;T ∗T ∗M)) provides an isomorphism be-
tween the bundles τT∗M ∈ C1(TT ∗M ;T ∗M) and τ ∗T∗M ∈ C1(T ∗T ∗M ;T ∗M)
if it is surjective. Injectivity follows by the next Theorem.

Theorem 1.13.2 (Weak nondegeneracy of the canonical two-form) In a
symplectic manifold, the canonical two-form ωM is weakly nondegenerate

ωM(v∗) ·Xv∗ ·Yv∗ = 0 ∀Yv∗ ∈ Tv∗TM =⇒ Xv∗ = 0 ,

and hence is an exact symplectic two-form.

Proof. In a local chart ϕ ∈ C1(UM ;UE) , by Palais’ formula for the exterior
derivative, we have that:

dθE(v∗) ·X(v∗) · Y (v∗) = dX(v∗)θE(v∗) · Y (v∗)

−dY (v∗)θE(v∗) ·X(v∗)

−θE(v∗) · [X(v∗) , Y (v∗)] .

By tensoriality of the exterior derivative, may assume that the vector fields
X,Y ∈ C1(T ∗M ;TT ∗M) are such that their images through the local chart
ϕ ∈ C1(UM ;UE) are constant vector fields X,Y ∈ C1(E × E∗ ;E × E∗) , so
that the flows FlXλ and FlYλ commute and [X ,Y ] = 0 . Palais’ formula then
gives

dθE(v∗) ·X(v∗) · Y (v∗) = dX(v∗)(θE · Y )(v∗)− dY (v∗)(θE ·X)(v∗)

= dX(v∗)〈v∗, T τ∗(v∗) · Y (v∗)〉

−dY (v∗)〈v∗, T τ∗(v∗) ·X(v∗)〉 .
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The duality pairing 〈v∗, T τ∗(v∗)·X(v∗)〉E∗×E is performed between the compo-
nents pr2(v∗) ∈ E∗ and pr2(Tτ∗(v∗)·X(v∗)) ∈ E since the vectors v∗ ∈ E×E∗
and Tτ∗(v∗) ·X(v∗) ∈ E × E are based at the same point in E .

Next we observe that τ∗ = pr1 is a constant linear map from E ×E∗ onto
E and that the vectors X(v∗), Y (v∗) ∈ E × E∗ are independent of the point
v∗ ∈ E×E∗ . The vectors Tτ∗(v∗)·X(v∗) ∈ E×E and Tτ∗(v∗)·Y (v∗) ∈ E×E
are then also independent of the point v∗ ∈ E×E∗ . The derivatives in Palais’
formula may thus be easily evaluated to give:

dθE(v∗) ·X(v∗) · Y (v∗) = 〈X(v∗), T τ∗(v∗) · Y (v∗)〉E∗×E
−〈Y (v∗), T τ∗(v∗) ·X(v∗)〉E∗×E ,

where the duality pairings are performed between the second cartesian compo-
nents of the involved pairs. Observing that pr1(X(v∗)) = pr2(Tτ∗(v∗) ·X(v∗)) ,
the condition dθE(v∗) · X(v∗) · Y (v∗) = 0 for all Y (v∗) ∈ E × E∗ , may be
conveniently rewritten as

〈pr2(X(v∗)),pr1(Y (v∗))〉E∗×E − 〈pr2(Y (v∗)),pr1(X(v∗))〉E∗×E = 0 .

Assuming that pr1(Y (v∗)) = 0 , we get the implication

〈pr2(Y (v∗)),pr1(X(v∗))〉E∗×E = 0 , ∀pr2(Y (v∗)) ∈ E∗ =⇒ pr1(X(v∗)) = 0 .

Then we may conclude that

〈pr2(X(v∗)),pr1(Y (v∗))〉E∗×E = 0 , ∀ pr1(Y (v∗)) ∈ E ⇐⇒ pr2(X(v∗)) = 0 ,

and the proposition is proved. �

The proof of Theorem 1.13.2 provides the following simple representation of
the canonical two form in a local chart:

−dθE(v∗)[ = J[ ,

where the linear operator J[ ∈ BL (E × E∗ ;E∗ × E) is defined by

J[(X(v∗)) := {−pr2(X(v∗)) ,pr1(X(v∗))} ∈ E∗ × E , ∀X(v∗) ∈ E × E∗ ,
with the block-matrix representation

J[ =

[
0 −I
I 0

]
.

Accordingly, the result of Theorem 1.13.2 may be stated as

ker J[ = {0, 0} ∈ E × E∗ .
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Moreover, defining the linear operator J] ∈ BL (E∗ × E ;E × E∗) by

J](X∗(v∗)) := {−pr2(X∗(v∗)) ,pr1(X∗(v∗))} ∈ E × E∗ , ∀X∗(v∗) ∈ E × E∗ ,

we have that J] ◦ J[ = −idE×E∗ and J[ ◦ J] = −idE∗×E . Moreover:

−dθE(v∗) ·X(v∗) · Y (v∗) = 〈J[ ·X(v∗), Y (v∗)〉(E∗×E)×(E×E∗)

= −〈J[ · Y (v∗), X(v∗)〉(E∗×E)×(E×E∗) ,

that is JA = −J[ where JA ∈ BL (E ×E∗ ;E∗ ×E) is the adjoint operator of
J[ ∈ BL (E × E∗ ;E∗ × E) . Hence JAJ[ = I .

1.13.2 Darboux theorem
We have seen that the exterior derivative of the canonical one-form on T ∗M
is an exact two-form with a trivial kernel, i.e. ker(ωM) = {0} , and that its
push forward along any local chart is a constant two-form in the linear model
spaceE . The corresponding linear operator performs a conterclockwise block
rotation of π/2 in the product space E× E∗ .

Figure 1.61: Jean Gaston Darboux (1842 - 1917)

A classical result due to Darboux [40] applies to closed nondegenerate two-
forms on a simplectic manifold. We reproduce here the modern, elegant proof
due to Jürgen Moser [2].

Theorem 1.13.3 (Darboux theorem) A closed, nondegenerate two-form ω ∈
C1(T ∗M ;T ∗T ∗M) can be locally mapped to a constant two-form on the model
linear space.
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Figure 1.62: Jürgen Kurt Moser (1928 - 1999)

Proof. Let ϕ ∈ C1(M ;E) be a local chart to the model Banach space E .
Being ϕ↓dω = d(ϕ↓ω) , a diffeomorphic chart preserves closedness.

We may then assume that a chart has been applied, so that we have to look
for a change of chart C1(E ;E) in a ball around the origin of E which makes
the two-form a constant two-form.

To this end, we set ω0 = ω(0) and ωt = ω0 +t(ωx−ω0) , so that ω1 = ωx .
By Poincaré Lemma we may assume that ωx − ω0 = dα .
Moreover the assumed property, that ωx and ω0 are nondegenerate, ensures

that ωt is nondegenerate for all t ∈ [0, 1] . Then the equation ωt ·Xt = −α
admits a unique solution for any given α .

The associated flow FlXt drags the time-dependent two-form ω according
to the rule

∂τ=t FlXt
τ,s↓ωτ = FlXt

t,s↓Lt,Xt
ω .

Being dωt = 0 and α+ ωt ·Xt = 0 , setting LXt
ωt = ∂λ=0 FlXt

λ ↓ωt , we have
that

Lt,Xt
ω := ∂τ=t FlXt

τ,t↓ωτ = ∂τ=t ωτ + LXt
ωt

= ωx − ω0 + LXt
ωt

= ωx − ω0 + d(ωt ·Xt) + dωt ·Xt

= d(α+ ωt ·Xt) = 0 ,

so that ∂τ=t FlXτ,s↓ωτ = 0 and hence FlX1,0↓ωx = ω0 . �
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1.13.3 Finite dimensional symplectic manifolds
Let us consider a n-D differentiable manifold M with model linear space E
and dual space E∗ .

Let {ej ∈ E, j = 1, . . . , n} and {ei ∈ E∗, i = 1, . . . , n} be dual bases in E
and E∗ so that 〈ei, ej 〉 = Ii..j with I ∈ BL (<n ;<n) the identity matrix.

Given a diffeomorphic local chart ϕ ∈ C1(UM ;UE) , the bases in the tan-
gent bundle, the cotangent bundle, the tangent bundle to the cotangent bundle
and the cotangent bundle to the cotangent bundle, are then generated by the
coordinate maps:

Tϕ−1 ∈ C1(E × E ;TM) ,

T ∗ϕ∈ C1(E × E∗ ;T ∗M) ,

TT ∗ϕ∈ C1(E × E∗ × E × E∗ ;TT ∗M) ,

T ∗T ∗ϕ−1 ∈ C1(E × E∗ × E∗ × E∗∗ ;T ∗T ∗M) .

The tangent space TxM is generated by the velocities of the coordinate lines
and the chart-induced basis is denoted by {∂xi := Tϕ−1(ei), i = 1, . . . , n} .
The dual basis in the cotangent space T ∗xM is given by {dxi := T ∗ϕ(ei), i =
1, . . . , n} so that

〈dxi, ∂xj 〉T∗x M×TxM = 〈T ∗ϕ(ei), Tϕ−1(ej)〉T∗x M×TxM = 〈ei, ej 〉E∗×E = Ii..j ,

Setting v∗ = pi dx
i and x = τ ∗(v∗) , we have that

θM(v∗) = {pi dxi , 0 ∂xk} = {pi dxi , 0} ,

X(v∗) = {αk ∂xk , βj dx
j} ,

Y(v∗) = {γk ∂xk , δj dx
j} ,

θM(v∗) ·X(v∗) = pi(x)αi(x) ,

θM(v∗) ·Y(v∗) = pi(x) γi(x) .

(1.3)

Hence
dθM(v∗) ·X(v∗) ·Y(v∗) = dX(v∗)(θM ·Y)(v∗)− dY(v∗)(θM ·X)(v∗)

−θM(v∗) · [X(v∗) ,Y(v∗)]

= βi(x) γi(x)− δi(x)αi(x) .

234



Symplectic manifolds Giovanni Romano

Remark 1.13.1 In most treatments the component expression of θM(v∗) in
(1.3) is written as pi dx

i thus generating an awkward confusion with the com-
ponent expression of v∗ = pi dx

i , see e.g. [1], [2], [8].

1.13.4 Simplectic maps
• A map ϕ ∈ C1(M ;N) between two simplectic manifolds {M ,ωM} and
{N ,ωN} is symplectic if it preserves simplectic forms: ωM = ϕ↓ωN .

In section 1.2.4 we introduced the cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M)
of a diffeomorphism ϕ ∈ C1(M ;N) , pointwise defined as the dual T ∗ϕ(y) ∈
BL (T ∗yN ;T ∗ϕ−1(y)M) of the tangent map Tϕ(x) ∈ BL (TxM ;Tϕ(x)N) , accord-
ing to the relation:

〈T ∗ϕ(x)ϕ · v∗N(ϕ(x)),v(x)〉 = 〈v∗N(ϕ(x)), Txϕ · v(x)〉 ,
with the commutative diagram:

T ∗M
T∗ϕ←−−−− T ∗N

τ∗M

y τ∗N

y
M

ϕ−1

←−−−− N

⇐⇒ ϕ−1 ◦ τ ∗N = τ ∗M ◦ T ∗ϕ ∈ C0(T ∗N ; M) .

Theorem 1.13.4 (Simplecticity of cotangent maps) Given the simplectic
spaces {T ∗M ,ωM} and {T ∗N ,ωN} and a diffeomorphism ϕ ∈ C1(M ;N) ,
the cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M) meets the invariance property:

(T ∗ϕ)↓θM = θN .

and hence is simplectic.

Proof. For any b∗ ∈ T ∗N and Y(b∗) ∈ Tb∗T
∗N we have that

(T ∗ϕ)↓θM(b∗) ·Y(b∗) = θM(T ∗ϕ(b∗)) · T ∗ϕ↑Y(b∗)

= 〈T ∗ϕ(b∗), Tτ ∗M(T ∗ϕ(b∗)) · TT ∗ϕ(b∗) ·Y(b∗)〉

= 〈T ∗ϕ(b∗), T (τ ∗M ◦ T ∗ϕ)(b∗) ·Y(b∗)〉

= 〈T ∗ϕ(b∗), T (ϕ−1 ◦ τ ∗N)(b∗) ·Y(b∗)〉

= 〈b∗, ((Tϕ · Tϕ−1) ◦ Tτ ∗N)(b∗) ·Y(b∗)〉

= 〈b∗, Tτ ∗N(b∗) ·Y(b∗)〉

= θN(b∗) ·Y(b∗) ,
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which gives
(T ∗ϕ)↓θM = θN .

By naturality of the exterior derivative with respect to the push:

T ∗ϕ↓ωM = T ∗ϕ↓dθM = d(T ∗ϕ↓θM) = dθN = ωN .

we may conclude that the cotangent lift is a symplectic map. �

A simpler proof of the statement in Theorem 1.13.4 is got by recalling that
θM = T ∗τ ∗M ◦ diag and that, by Proposition 1.2.1:

(T ∗ϕ)↓θM = θN ⇐⇒ T ∗T ∗ϕ ◦ θM ◦ T ∗ϕ = θN .

Indeed, defining T ∗ϕ ◦ diag = (T ∗ϕ , T ∗ϕ) , a direct computation gives

T ∗T ∗ϕ ◦ θM ◦ T ∗ϕ= T ∗T ∗ϕ ◦ T ∗τ ∗M ◦ diag ◦ T ∗ϕ

= T ∗T ∗ϕ ◦ T ∗τ ∗M ◦ (T ∗ϕ , T ∗ϕ)

= T ∗T ∗ϕ ◦ T ∗τ ∗M ◦ T ∗ϕ ◦ diag

= T ∗(ϕ ◦ τ ∗M ◦ T ∗ϕ) ◦ diag

= T ∗τ ∗N ◦ diag ,

A symplectic map which is the cotangent map T ∗ϕ ∈ C0(T ∗N ;T ∗M) of
a diffeomorphism ϕ ∈ C1(M ;N) is called a point transformation [3]. A map
which preserves the canonical one-form is called a homogeneous canonical trans-
formation or a Mathieu transformation [238].

1.13.5 Poincaré-Cartan one-form
In section 1.8.10 it has been shown how Legendre transform, induced by a
Lagrangian L ∈ C1(TM ;<) , provides a homeomorphism between the tangent
and the cotangent bundles. The fibre-preserving property of this homeomor-
phism is expressed by the relation τ ∗ ◦ dfL = τ . We then get the following
special case of Definition 1.3.11.

Definition 1.13.6 (Poincaré-Cartan one-form) The Poincaré-Cartan one-
form θL ∈ C1(TM ;T ∗TM) is the pull-back by the Legendre transform dfL ∈
C1(TM ;T ∗M) of the canonical one-form on the tangent bundle:

θL := dfL↓θM .
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Lemma 1.13.2 (Poincaré-Cartan one-form) The Poincaré-Cartan one-
form may be written, in terms of the canonical soldering form and the differential
of the Lagrangian, as

θL = T ∗τ ◦ (idTM , dfL) = J∗ · dL .
and explicitly θL(v) = T ∗τ (v) · dfL(v) = J∗(v) · dL(v) .

Proof. From Section 1.8.8 it is dfL := Vl∗(TM ,τ ,M) · dL , and hence

θL = dfL↓θM = T ∗dfL ◦ θM ◦ dfL = T ∗dfL ◦ T ∗τ ∗ ◦ dfL

= T ∗(τ ∗ ◦ dfL) ◦ dfL = T ∗τ ◦ dfL

= T ∗τ ◦Vl∗(TM ,τ ,M) ◦ dL = (Vl (TM ,τ ,M) ◦ Tτ )∗ ◦ dL

= J∗ ◦ dL ,
which is the result. �

Defining the derivative dJ of a Lagrangian L ∈ C1(TM ;<) with respect
to the canonical soldering form, by the relation

〈dJL(v),X(v)〉 = 〈dL(v),J(v) ·X(v)〉 , ∀x(v) ∈ TvTM ,

we have that dJL = J∗ ◦ dL = θL .

1.14 Riemann manifolds
A Riemann’s manifold is a differentiable manifold M endowed with a twice
covariant metric tensor field g ∈ C1(M ;BL (TM2 ;<)) which is symmetric and
positive definite:

g(u,v) = g(v,u) , ∀u,v ∈ TM ,

g(u,u) ≥ 0 , ∀u ∈ TM .

1.14.1 Koszul formula and Levi Civita connection
The Levi-Civita connection on a Riemann manifold is a linear connection
which is torsion-free and metric, that is such that

i) T(v ,u) = ∇vu−∇uv − [v ,u] = 0 ,

ii)∇g = 0 .
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Figure 1.63: Georg Friedrich Bernhard Riemann (1826 - 1866)

Property ii) of the Levi-Civita connection states that the parallel transport
does not affect the metric, i.e. that the covariant derivative of the metric tensor
vanishes.

As a consequence the value of the metric tensor evaluated on a pair of vector
fields u,v ∈ C1(M ;TM) generated by parallel transport of vectors along a
curve c ∈ C1(I ; M) is constant:

∇ċu = 0

∇ċu = 0

}
=⇒ ∇ċ(g(u,v)) = g(∇ċu,v) + g(u,∇ċv) = 0 . (1.4)

A fortiori the norm of a vector parallel transported along a curve c ∈ C1(I ; M)
is constant too.

Figure 1.64: Jean-Louis Koszul (1921 - )
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Proposition 1.14.1 (Koszul formula) In a Riemann manifold {M ,g} a
linear connection is metric if and only if it fulfils Koszul formula:

2 g(∇vu,w) = d(g(u,w)) · v + d(g(w,v)) · u− d(g(v,u)) ·w

−g([u ,w],v) + g([w ,v],u) + g([v ,u],w)

−g(T(u ,w),v) + g(T(w ,v),u) + g(T(v ,u),w) .

(1.5)

Proof. Since the connection is metric, we have that:

dw(g(v,u)) = g(∇wv,u) + g(v,∇wu) ,

dv(g(u,w)) = g(∇vu,w) + g(u,∇vw) ,

du(g(w,v)) = g(∇uw,v) + g(w,∇uv) .

Then, adding the last two equalities and subtracting the first one, and recalling
the expression of the torsion form, we get Koszul formula in Eq.(1.5). Vice
versa from Eq.(1.5) we directly infer

g(∇vu,w) + g(∇vw,u) = d(g(u,w)) · v , (1.6)

that is the metricity property. �

Figure 1.65: Tullio Levi Civita (1873 - 1941)

If the torsion of the linear connection is vanishing, the parallel derivative is
well-defined, by Koszul formula Eq. (1.5), in terms of the metric and of the
Lie bracket of the involved vector fields. As a direct consequence we get the
following classical result.
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Proposition 1.14.2 (Basic theorem of Riemann geometry) In a Riemann
manifold {M ,g} the Levi-Civita connection is a connection with the prop-
erty of being torsion-free and metric preserving. It is uniquely is defined by the
formula

2 g(∇LCv u,w) = d(g(u,w)) · v + d(g(w,v)) · u− d(g(v,u)) ·w

−g([u ,w],v) + g([w ,v],u) + g([v ,u],w) .
(1.7)

The Christoffel symbols Γkij of a connection are defined by

∇eiej = Γkijek (1.8)

By Koszul formula Eq. (1.7), the Christoffel symbols of a Levi-Civita
connection are symmetric in the pair of indices (i, j) and are given by

2 g(∇eiej , ek) = dei (g(ej , ek)) + dej (g(ek, ei))− dek (g(ei, ej)) ,

that is, setting Gij := g(ei, ej)

2 Γsij Gks = Gjk/i + Gki/j −Gij/k .

Remark 1.14.1 The linear isomorphism g ∈ BL (TM ;T ∗M) induced by a
metric tensor field doesn’t commute in general with the covariant derivative,
since by Leibniz rule: ∇v(gw) = (∇vg)w + g(∇vw) . Then the commutation
property holds if and only if the connection is metric:

∇vg = 0 ⇐⇒ ∇vg = g∇v .

From Koszul formula we also infer the following notion.

Definition 1.14.1 (Contorsion) In a Riemann manifold {M ,g} , let ∇LC
be the Levi-Civita connection, and ∇ a linear connection. The contorsion K
of ∇ is defined by

K(v ,u) := ∇vu−∇LCv u . (1.9)
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If the connection ∇ is metric, Koszul formula provides the following ten-
sorial expression for the contorsion

2 g(K(v ,u),w) = −g(T(u ,w),v) + g(T(w ,v),u) + g(T(v ,u),w) , (1.10)

Then also

2 g(K(u ,v),w) = g(T(w ,v),u)− g(T(u ,w),v)− g(T(v ,u),w) , (1.11)

and subtracting Eq. (1.11) from Eq. (1.10), we get the converse expression for
the torsion form

T(v ,u) = 2 anti K(v ,u) = K(v ,u)−K(u ,v) . (1.12)

The following alternative characterization of metric connections holds.

Proposition 1.14.3 (Metric connections) In a Riemann manifold {M ,g}
a linear connection ∇ is metric if and only if the contorsion can be represented
by a tensorial linear map which associates a two-form gKv ∈ Λ2(TM ;<) to
any tangent vector field v ∈ C1(M ;TM) , i.e. iff g(K(v ,u),u) = 0 which is
equivalent to

g(K(v ,u),w) + g(K(v ,w),u) = 0 . (1.13)

Proof. The metricity property leads to the equalities

dvg(u,w) = g(∇vu,w) + g(∇vw,u)

= g((∇LCv u + K(v ,u)),w) + g((∇LCv w + K(v ,w)),u)

= dvg(u,w) + g(K(v ,u),w) + g(K(v ,w),u) ,

(1.14)

which implies Eq.(1.13). Vice versa, substituting Eq.(1.13) into Eq.(1.14), we
infer the metricity condition. �

1.14.2 Weingarten map
Let i ∈ C1(Q ; M) be an injective immersion of a manifold Q in a Riemann
manifold {M ,gM} . A metric is induced in Q by setting

gQ := i↓gM ,

that is gQ(u,v) := gM(i↑u, i↑v) ◦ i where i↑u ◦ i = T i · u and u,v ∈ TQ .
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Lemma 1.14.1 (Riemann embedding) Let {M ,gM} and {Q ,gQ} be two
Riemann manifolds with injective immersion i ∈ C1(Q ; M) and Levi-Civita
connections ∇M and ∇Q . Then

gQ = i↓gM =⇒ ∇Qu · v = PQM(∇Mi↑u · i↑v) , ∀u,v ∈ C1(Q ;TQ) ,

where the linear map PQM(x) ∈ BL (Ti(x)M ;Ti(x)(i(Q))) is an orthogonal
projector at i(x) ∈M .

Proof. The expression of the Levi-Civita connection ∇Q follows from Koszul
formula Eq. (1.7). �

Definition 1.14.2 (Weingarten tensor field) Given any linear connection
∇ on a Riemann manifold (M ,g) and a tangent subbundle ∆ ⊆ TM , the
tangent valued Weingarten two-tensor field, W ∈ C1(∆ ×M ∆ ; ∆⊥) , with
domain on the Whitney bundle ∆×M ∆ and codomain in the complementary
tangent subbundle ∆⊥ , is defined by

W(v,u) := Π⊥(∇u · v) , ∀u,v ∈ C1(M ; ∆) . (1.15)

The operator Π⊥ ∈ C1(TM ; ∆⊥) is the g-orthogonal projector on ∆⊥ .

Tensoriality of the Weingarten map with respect to u ∈ C1(M ; ∆) follows
by the tensoriality criterion of Lemma 1.2.1 since

Π⊥(∇(f u) · v) = (∇f · v) Π⊥(u) + f Π⊥(∇u · v) = f Π⊥(∇u · v) , (1.16)

for any f ∈ C1(M ;<) .

Lemma 1.14.2 (Skew-symmetric part of Weingarten tensor field) The
skew-symmetric part of the Weingarten tensor field W ∈ C1(∆×M ∆ ; ∆⊥)
is equal to one-half the orthogonal projection on the complementary bundle ∆⊥

of the torsion of the linear connection ∇ on TM :

W(u,v)−W(v,u) = Π⊥ ·T(u ,v) , ∀u,v ∈ TM . (1.17)
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Proof. Let us draw through x ∈ M a curve γ ⊂ M whose tangent vec-
tor field uγ ∈ C1(γ ;TγM) takes at x the value ux ∈ ∆x . The extension
of the vector vx ∈ ∆x to a vector field v ∈ C1(U(x) ;TM) , defined in a
neighbourhood U(x) ⊂ M , generates the flow Flvλ ∈ C1(M ; M) . We may
then consider the sheet Sγ , swept by the curve γ ⊂ U(x) pushed by the flow
Flvλ ∈ C1(M ; M) , and perform the extension of uγ ∈ C1(γ ;TγM) to the vec-
tor field u ∈ C1(Sγ ;TSγ) , pushed by the flow Flvλ ∈ C1(M ; M) , according to
the formula

u := Flvλ↑uγ ⇐⇒ u ◦ Flvλ := TFlvλ · uγ .
By construction, the Lie-bracket [u ,v] ∈ C1(Sγ ;TSγ) vanishes identically.
The evaluation of the torsion of the linear connection yields then the relation

T(u ,v) := ∇uv −∇vu− [u ,v] = ∇uv −∇vu , (1.18)

and from definition Eq. (1.17) we get

W(u,v)−W(v,u) = Π⊥(∇uv −∇vu) = Π⊥ ·T(u ,v) , (1.19)

for any u,v ∈ TM and the result is proved. �

From Lemma 1.14.2 we infer the following simple consequences.

Corollary 1.14.1 (Symmetry of Weingarten map) The tangent valued two
tensor field W ∈ C1(∆×M ∆ ; ∆⊥) is symmetric iff the restriction to ∆ of the
torsion form T of the linear connection ∇ on TM has codomain in ∆ , i.e.

W(u,v) = W(v,u) ⇐⇒ T(u ,v) ∈ ∆ , ∀u,v ∈ ∆ .

Corollary 1.14.2 (Torsion-free connections) The Weingarten tensor field
W ∈ C1(∆ ×M ∆ ; ∆⊥) is symmetric if the linear connection ∇ on TM is
torsion-free.

If the manifold Q is an hypersurface in M with inclusion map i ∈ C1(Q ; M) ,
setting ∆x = Ti(x)(i(Q)) , the linear subspace ∆⊥x is one dimensional with or-
thonormal basis the unit normal n(x) ∈ Ti(x)M .

The scalar valued Weingarten tensor field W ∈ C1(TQ×QTQ ;<) is then
defined as the unique scalar component of the tangent valued Weingarten
tensor field, by

W(u,v) := g(∇(i↑u) · (i↑v),n) , ∀u,v ∈ TQ .
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Figure 1.66: Julius Weingarten (1836 - 1910)

Moreover, being g(i↑u,n) = 0 identically on Q , if the connection is metric,
∇g = 0 and we have that

∇i↑v(g(i↑u,n)) = (∇i↑vg)(i↑u,n) + g(∇i↑v(i↑u),n) + g(i↑u,∇i↑vn) = 0 .

The Weingarten tensor field of a metric connection is then given by

W(u,v) := g(∇i↑v(i↑u),n) ,= −g(i↑u,∇i↑vn) , ∀u,v ∈ TQ .

1.14.3 Gradient, hessian, divergence and laplacian
• The gradient ∇f ∈ C(M ;TM) of a scalar field f ∈ C1(M ;<) is the

vector field associated with the directional derivative according to the
pointwise relation

g(∇f,u) := duf , ∀u ∈ TM ⇐⇒ df = g ◦ ∇f .
On the l.h.s the metric tensor is considered to be the symmetric bilinear
map g(x) ∈ BL (TM(x)× TM(x) ;<) while on the r.h.s. we have made
use of the equivalent characterization g(x) ∈ BL (TM(x) ;T ∗M(x)) .

• The hessian ∇2f ∈ C(M ;BL (TM ;TM)) of a scalar field f ∈ C2(M ;<)
is the (1, 1) tensor field associated with the covariant derivative of the
gradient ∇f , according to the relation

g((∇2f) v,u) := g(∇v(∇f),u) , ∀v,u : M 7→ TM .

• The laplacian ∆f ∈ C(M ;TM) of a scalar field f ∈ C2(M ;<) is the
scalar field defined by

∆f := div (∇f) .
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In a Riemann manifold with the Levi-Civita connection we have that

∆f = tr(∇(∇f)) .

Remark 1.14.2 The second covariant derivative:

(∇d)vu f := (∇v df) · u = dv du f − d(∇vu) f .

is related to the hessian by the formula

(∇d) f = g∇2f .

Indeed, being ∇g = 0 , we have that

g(∇v(∇f),u) = dv(g(∇f,u))− g(∇f,∇vu)

= dv du f − d(∇vu) f .

A connection ∇ in M is said to be µ-volumetric if the covariant derivative
of the volume form µ ∈ BL (TM3 ;<) vanishes identically: ∇µ = 0 .

Definition 1.14.3 By tensoriality of the torsion field, for any fixed field v ∈
C1(M ;TM) , we may introduce the mixed tensor field Tors(v) ∈ Mix(M)
which is fibrewise defined by the linear maps Tors(vx) ∈ BL (TxM ;TxM) =
Mix(TM)x such that

Tors(vx) · ux = tors(vx,ux) , ∀v,u ∈ C1(M ;TM) .

Then we may state the following result.

Lemma 1.14.3 Let M be a manifold, µ ∈ BL (TM3 ;<) a volume form, and
∇ a linear connection in M . Then we have the formula:

Lvµ = ∇v µ+ tr(∇v + Tors(v))µ .

If the connection is volumetric, i.e. ∇v µ = 0 , the divergence of the vector field
v ∈ C1(M ;TM) , defined by Lvµ = (div v)µ , is provided by the formula:

div v = tr(∇v + Tors(v)) .
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Proof. Recalling that the torsion of the connection ∇ is defined by the formula
tors(v,a) = ∇va−∇av − Lva , we have, for all a,b, c ∈ C1(M ;TM) , that

(Lvµ)(a,b, c) =

Lv (µ(a,b, c))− µ(Lva,b, c)− µ(a,Lvb, c)− µ(a,b,Lvc) =

∇v (µ(a,b, c))− µ(∇va,b, c)− µ(a,∇vb, c)− µ(a,b,∇vc)

+ µ(∇av,b, c) + µ(a,∇bv, c) + µ(a,b,∇cv)

+ µ(tors(v,a),b, c) + µ(a,tors(v,b), c) + µ(a,b,tors(v, c)) =

(∇v µ)(a,b, c) + µ(∇av,b, c) + µ(a,∇bv, c) + µ(a,b,∇cv)

+µ(Tors(v) · a,b, c) + µ(a,Tors(v) · b, c) + µ(a,b,Tors(v) · c) =

= (∇v µ)(a,b, c) + (tr(∇v + Tors(v))µ(a,b, c) ,

which is the result. �

If the connection is torsion-free, the formula becomes

div v = tr(∇v) .

This result then holds in any Riemann manifold endowed with the Levi-Civita
connection which is torsion-free and, being metric, is also volumetric with re-
spect to the volume form associated with the metric.

1.14.4 Euler-Killing formula
A connection ∇ in a Riemann manifold {M ,g} is said to be g-metric if the
covariant derivative of the metric tensor g ∈ BL (TM2 ;<) vanishes identically:

∇g = 0 .

Definition 1.14.4 (Stretching and co-stretching) The twice covariant sym-
metric stretching tensor field associated with a vector field v ∈ C1(M ;TM)
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is defined by 1
2Lv g and the corresponding mixed stretching tensor is the g-

symmetric linear operator Def(v) ∈Mix(M) given by:

g ◦Def(v) := 1
2Lv g .

The co-stretching is similarly defined with the co-metric tensor field g∗ in place
of the metric tensor field g . We recall that the co-metric tensor field g∗ is the
inverse and not the dual of the symmetric (i.e. selfdual) metric tensor field g .

The metric gradient Met(v) ∈ Mix(M) , is the g-symmetric operator which,
by the tensoriality of the nabla operator, is defined pointwise by

g ◦Met(v) := 1
2∇v g .

The Euler’s strain operator Eul(v) ∈ Mix(M) is the g-symmetric operator
defined by

Eul(v) := sym∇v .

The formula

Def(v) = Met(v) + Eul(v) + sym Tors(v) ,

is proven in the next proposition. The definitions provided in section 1.3.13
should be recalled.

Proposition 1.14.4 Let M be a manifold and ∇ a linear connection in M .
The Lie derivative of a twice covariant tensor field α ∈ C1(M ; Cov(M)) along
the flow of a tangent vector field v ∈ C1(M ;TM) is given by

Lv α = ∇v α+α · ∇v + (∇v)∗ ·α+α ·Tors(v) + (Tors(v))∗ ·α .

Denoting by α∗ ∈ C1(M ; Con(M)) the field of dual tensors, if the symmetry
property α = α∗ holds, the formula specializes into

1
2 (Lv α) = 1

2 (∇v α) + sym (α · ∇v) + sym (α ·Tors(v)) .

Proof. Applying Leibniz rule to the Lie derivative and to the covariant deriva-
tive, we have that, for any u,w ∈ C1(M ;TM) :

(Lv α)(u,w) = Lv (α(u,w))−α(Lvu,w)−α(u,Lvw) ,

(∇v α)(u,w) = ∇v (α(u,w))−α(∇vu,w)−α(u,∇vw) .
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The Lie derivative and the covariant derivative of a scalar field coincide, so that
Lv (α(u,w)) = ∇v (α(u,w)) and hence:

(Lv α)(u,w) = (∇v α)(u,w) +α(∇vu,w) +α(u,∇vw)

−α(Lvu,w)−α(u,Lvw) .

Moreover, since tors(v,u) := ∇vu−∇uv − [v ,u] we may write

(Lv α)(u,w) = (∇v α)(u,w) +α(tors(v,u),w) +α(∇uv,w)

+α(u,tors(v,w)) +α(u,∇wv) ,

which, by Definition 1.14.3 of the tensor field Tors(v) ∈ C1(M ; Mix(M)) ,
gives the result. �

In an analogous way we may prove the next formula, which provides the ex-
pression of the Lie derivative of a three times covariant tensor field in terms of
covariant derivatives. Indeed, for any triplet of vector fields a,b, c ∈ C1(M ;TM)
we have that

(Lv µ)(a,b, c) = (∇v µ)(a,b, c) +µ(tors(v,a),b, c) + µ(∇av,b, c)

+µ(a,tors(v,b), c) + µ(a,∇bv, c)

+µ(a,b,tors(v, c)) + µ(a,b,∇cv) .

Introducing the operator Cycle , which evaluates the sum of the values of a
form over cyclic permutations of the argument vectors, the linear invariant of a
mixed tensor L is defined by the relation

J1(L)µ := Cycle(µ · L) .

The previous formula may then be written as

Lv µ= ∇v µ+ J1((∇+ Tors)(v))µ .

Proposition 1.14.5 Let M be a manifold and ∇ a linear connection in M .
For a twice contravariant tensor field β ∈ C1(M ; Con(M)) , the Lie derivative
of along the flow of a vector field v ∈ C1(M ;TM) is given by

Lv β = ∇v β −∇v · β − β · (∇v)∗ −Tors(v) · β − β · (Tors(v))∗ .

Denoting by β∗ ∈ C1(M ; Con(M)) the field of dual tensors, if the symmetry
property β = β∗ holds, the formula specializes into

1
2 (Lv β) = 1

2 (∇v β)− sym (∇v · β)− sym (Tors(v) · β) .
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Proof. Applying the Leibniz rule to the Lie derivative and to the covariant
derivative, we have that, for any u∗,w∗ ∈ C1(M ;T ∗M) :

(Lv β)(u∗,w∗) = Lv (β(u∗,w∗))− β(Lvu∗,w∗)− β(u∗,Lvw∗) ,

(∇v β)(u∗,w∗) = ∇v (β(u∗,w∗))− β(∇vu∗,w∗)− β(u∗,∇vw∗) .

Since the Lie derivative and the covariant derivative of a scalar field coincide,
we also have that Lv (β(u∗,w∗)) = ∇v (β(u∗,w∗)) and hence:

(Lv β)(u∗,w∗) = (∇v β)(u∗,w∗) +β(∇vu∗,w∗) + β(u∗,∇vw∗)

−β(Lvu∗,w∗)− β(u∗,Lvw∗) .

Now, by Leibniz rule, it is

β(∇vu∗,w∗) = 〈∇vu∗,β∗w∗ 〉 = ∇v〈u∗,β∗w∗ 〉 − 〈u∗,∇v(β∗w∗)〉 ,

β(u∗,∇vw∗) = 〈βu∗,∇vw∗ 〉 = ∇v〈βu∗,w∗ 〉 − 〈∇v(βu∗),w∗ 〉 ,

β(Lvu∗,w∗) = 〈Lvu∗,β∗w∗ 〉 = Lv〈u∗,β∗w∗ 〉 − 〈u∗,Lv(β∗w∗)〉 ,

β(u∗,Lvw∗) = 〈βu∗,Lvw∗ 〉 = Lv〈βu∗,w∗ 〉 − 〈Lv(βu∗),w∗ 〉 .

Then, taking into account that

tors(v,βu∗) := ∇v(βu∗)−∇(βu∗)v − [v ,βu∗] ,

tors(v,β∗w∗) := ∇v(β∗w∗)−∇(β∗w∗)v − [v ,β∗w∗] ,

we get

(Lv β)(u∗,w∗) = (∇v β)(u∗,w∗)−〈tors(v,βu∗),w∗ 〉 − 〈∇(βu∗)v,w
∗ 〉

− 〈tors(v,β∗w∗),u∗ 〉 − 〈∇(β∗w∗)v,u
∗ 〉 ,

which provides the result. �

Proposition 1.14.6 Let S be a manifold and ∇ a linear connection in S .
The Lie derivative of a spatial tensor field γ ∈ C1(S ; Mix(S)) , along the flow
Flvλ ∈ C1(S ;S) of a tangent vector field v ∈ C1(S ;TM) is given by

Lv γ = ∇v γ −∇v · γ + γ · ∇v −Tors(v) · γ + γ ·Tors(v) .
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Proof. Applying Leibniz rule to the Lie derivative and to the covariant deriva-
tive, we have that, for any u,w∗ ∈ C1(S ;TM) and w∗ ∈ C1(S ;T ∗M) :

(Lv γ)(u,w∗) = Lv (γ(u,w∗))− γ(Lvu,w∗)− γ(u,Lvw∗) ,

(∇v γ)(u,w∗) = ∇v (γ(u,w∗))− γ(∇vu,w∗)− γ(u,∇vw∗) .

The Lie derivative and the covariant derivative of a scalar field coincide, so that
Lv (γ(u,w∗)) = ∇v (γ(u,w∗)) and hence:

(Lv γ)(u,w∗) = (∇v γ)(u,w∗) +γ(∇vu,w∗) + γ(u,∇vw∗)

−γ(Lvu,w∗)− γ(u,Lvw∗) .

Now, by Leibniz rule, it is

γ(u,∇vw∗) = 〈γu,∇vw∗ 〉 = ∇v〈γu,w∗ 〉 − 〈∇v(γu),w∗ 〉 ,

γ(u,Lvw∗) = 〈γu,Lvw∗ 〉 = Lv〈γu,w∗ 〉 − 〈Lv(γu),w∗ 〉 .

Hence, being

tors(v,γu) := ∇v(γu)−∇(γu)v − [v ,γu] ,

tors(v,u) := ∇v(u)−∇uv − [v ,u] ,

we get

(Lv γ)(u,w∗) = (∇v γ)(u,w∗)−〈tors(v,γu),w∗ 〉 − 〈∇(γu)v,w
∗ 〉

+γ(tors(v,u),w∗) + γ(∇uv,w∗) ,

which provides the result. �

Proposition 1.14.7 The Lie derivative of a covector field u∗ ∈ C1(S ;T ∗S)
along the flow Flvλ ∈ C1(S ;S) of a tangent vector field v ∈ C1(S ;TM) is
given by

Lv u∗ = ∇v u∗ + (∇v)∗ · u∗ + (Tors(v))∗ · u∗ .
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Proof. Applying Leibniz rule to the Lie derivative and to the covariant deriva-
tive, we have that, for any u,w ∈ C1(S ;TM) :

(Lv u∗) ·w = Lv 〈u∗,w〉 − 〈u∗,Lvw〉 ,

(∇v u∗) ·w = ∇v 〈u∗,w〉 − 〈u∗,∇vw〉 .

The Lie derivative and the covariant derivative of a scalar field coincide, so that
Lv 〈u∗,w〉 = ∇v 〈u∗,w〉 and hence:

(Lv u∗) ·w = (∇v u∗) ·w + 〈u∗,∇vw〉 − 〈u∗,Lvw〉 .

Moreover, since tors(v,w) := ∇vw −∇wv − [v ,w] we may write

(Lv u∗) ·w = (∇v u∗) ·w + 〈u∗,tors(v,w)〉+ 〈u∗,∇wv〉 ,

which yields the result. �

Proposition 1.14.8 The Lie derivative of a vector field u ∈ C1(S ;TS) along
the flow Flvλ ∈ C1(S ;S) of a tangent vector field v ∈ C1(S ;TM) is given by

Lv u = ∇v u−∇u v −Tors(v) · u .

Proof. The formula is just the definition of torsion. �

Proposition 1.14.9 Let {M ,g} be a Riemann manifold and ∇ a connection
in M . Then the Lie and the covariant derivatives of the metric and the co-
metric tensor fields, g and g∗ , are related by the formulas

g · Lv g∗+Lv g · g∗ = 0 ,

g · ∇v g∗+∇v g · g∗ = 0 .

Proof. A direct computation based on Leibniz rule gives

(Lv g∗)(ga,gb) = Lv (g(a,b))− 〈Lv(ga),b〉 − 〈Lv(gb),a〉

= 〈ga,Lvb〉 − Lv (g(a,b)) + g(Lva,b)

= −(Lv g)(a,b) ,

that is: g · Lv g∗ · g = −Lv g . An analogous computation leads to the formula
for ∇v . �
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Figure 1.67: Wilhelm Karl Joseph Killing (1847 - 1923)

Definition 1.14.5 A vector field v ∈ C1(M ;TM) on a Riemann manifold
{M ,g} is a Killing field if the metric tensor is dragged along its flow:

Lv g = 0 .

A Killing vector field is also called an infinitesimal isometry.

Proposition 1.14.10 (Euler-Killing formula) Let {M ,g} be a Riemann
manifold endowed with the Levi-Civita connection. Then the Lie derivative of
the metric tensor is expressed in terms of the covariant derivative by the formula

1
2 (Lv g) = sym (g · ∇v) , ∀v ∈ C1(M ;TM) ,

and the Euler-Killing condition may be written as Def(v) = sym∇v = 0 .

Proof. The statement follows from Proposition 1.14.4 being the Levi-Civita
connection metric-preserving and torsion-free: Met = 0 and Tors = 0 . �

A most important property of Killing vector fields is stated below.

Lemma 1.14.4 (Integrability of Killing’s distribution) In a Riemann man-
ifold {M ,g} , the distribution of Killing vector fields is integrable. The man-
ifold is thus foliated into disjoint rigidity leaves.

Proof. The result follows from Frobenius theorem, being the involutivity
property a direct consequence of the formula L[u ,v] g = [Lu ,Lv] g (see property
xi) of Proposition 1.4.11). �
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Killing condition extends Euler’s condition in the euclidean space to the
more general case of Riemann manifolds. In the euclidean space endowed with
the canonical connection, the Levi-Civita parallel transport is simply the trans-
lation and the covariant derivative is the ordinary derivative. Hence Killing’s
condition reduces to the classical one due to Euler.

1.14.5 Geodesics
• A patchwork of manifolds M is a finite family {Mα | α ∈ A} whose

elements are regular manifolds Mα , possibly with boundary, all modeled
on the same Banach space and with the element manifolds intersecting
pairwise only at their boundaries. A patchwork {M ,g} of Riemann
manifolds is a patchwork of manifolds M endowed with a metric tensor
field which is regular in each element and may undergo finite jumps at the
interfaces between the elements.

The simplest picture of a patchwork of manifolds is a parallelepiped in the
euclidean 3-space (a candy box). In geometrical optics a patchwork of Rie-
mann manifolds is naturally provided by optical media with different refraction
properties, see Section 2.5.

Let us consider a patchwork of Riemann manifolds {M ,g} and a path γ ∈
C1(T (I) ; M) which is piecewise regular according to a finite partition T (I) .
We denote by ∂I the boundary chain of the interval I and by ∂T (I) , I(I)
the union of the boundary chains of the elements and the family of interfaces
between the elements of the partition T (I) .

The speed or velocity of the path at a regular point t ∈ I is given by
v(γ(t)) = vt := ∂τ=t γ(τ) , and the scalar speed is its g-norm: ‖vt‖g :=√

g(vt,vt) . We will assume that ‖vt‖g ∈ C0(I ;<) , i.e. that the scalar speed
of the path is continuous over the whole interval of definition.

• The length of the path γ ∈ C1(T (I) ; M) is the integral of its scalar speed:

`(γ) :=

∫
T (I)

√
g(vt,vt) dt ,

and is independent of the parametrization.

• The energy of the path γ ∈ C1(T (I) ; M) is the integral of half its squared
scalar speed:

E(γ) :=

∫
T (I)

1
2 g(vt,vt) dt ,
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which is dependent on the parametrization.

Let ϕλ ∈ C1(M ; M) be a flow with velocity field vϕ = ∂λ=0 ϕλ ∈ C1(M ;TM) .

• A path γ ∈ C1(T (I) ; M) is said to have an extremal length if for any flow
ϕλ ∈ C1(M ; M) :

∂λ=0 `(ϕλ ◦ γ) := ∂λ=0

∫
T (I)

√
(ϕλ↓g)(vt,vt) dt =

∫
∂I

gτ (vt)(vt, δvt)√
g(vt,vt)

dt ,

where δvt := vϕ(τ (vt)) and

(ϕλ↓g)(vt,vt) := gϕλ(τ (vt))(ϕλ↑vt,ϕλ↑vt) .

The extremality condition states that, if the path is dragged by the flow into
the path ϕλ ◦ γ ∈ C1(T (I) ; M) , the initial rate of variation of the length,
due to the variation of the scalar speed field (the l.h.s.), is equal to the gap
of equiprojectivity of the flow velocity at the end points (the r.h.s.). A path
γ ∈ C1(T (I) ; M) with an extremal length is called a geodesic.

The strip fastened around a candy box is a geodesic. By Fermat principle,
the light ray thru optical media is a geodesic.

• A path γ ∈ C1(I ; M) is said to have an extremal energy if for any flow
ϕλ ∈ C1(M ; M) :

∂λ=0 E(ϕλ ◦ γ) := ∂λ=0

∫
T (I)

1
2 (ϕλ↓g)(vt,vt) dt =

∫
∂I

gτ (vt)(vt, δvt) dt .

Proposition 1.14.11 (Energy characterization of geodesics) In a patch-
work of Riemann manifolds {M ,g} a geodesic γ ∈ C1(T (I) ; M) , parametrized
with a constant scalar speed, has an extremal energy. This is equivalent to the
differential condition:

1
2 (Lvϕg)(vt,vt) = ∂τ=t gτ (vτ )(vτ , δvτ ) ,

in the elements of the patchwork, and to the jump conditions

〈 [[gτ (vt)vt]], δvt 〉 = 0 ,

at singular points.

254



Riemann manifolds Giovanni Romano

Proof. Let the path γ ∈ C1(T (I) ; M) have constant scalar speed α =√
g(vt,vt) > 0 . Then

∂λ=0

√
(ϕλ↓g)(vt,vt) =

∂λ=0 (ϕλ↓g)(vt,vt)

2
√

g(vt,vt)
= 1

2α (Lvϕg)(vt,vt) .

Extremality of the length may then be written as

1
2α

∫
T (I)

(Lvϕg)(vt,vt) dt = 1
α

∫
∂I

gτ (vt)(vt, δvt) dt ,

which is equivalent to∫
T (I)

1
2 (Lvϕg)(vt,vt) dt=

∫
T (I)

∂τ=t gτ (vτ )(vτ , δvτ ) dt

−
∫
I(I)

〈 [[gτ (vτ )vτ ]], δvτ 〉 dt ,

and, by the arbitrariness of the flow, to the differential and jump conditions in
the statement. �

Let us now consider, in a Riemann manifold {M ,g} with a connection ∇ ,
a curve c ∈ C1(I ; M) thru x = c(0) with speed w = ∂λ=0 c(λ) , and a vector
v ∈ TxM . According to the formula in Theorem ??, the base derivative of a
functional f ∈ C1(TM ;<) at v ∈ TxM along w = ∂λ=0 c(λ) is given by:

〈dbf(v),w〉 := ∂λ=0 f(c(λ)⇑v) , ∀w ∈ Tτ (v)M .

The definition is well-posed since the r.h.s. depends linearly on w ∈ Tτ (v)M
for any fixed v ∈ TM . The base derivative of the quadratic metric form
qg ∈ C1(TM ;<) , defined at v ∈ TM by qg(v) := g(v,v) , is given by:

〈dbqg(v),w〉 := ∂λ=0 gc(λ)(c(λ)⇑v, c(λ)⇑v) , ∀w ∈ Tτ (v)M .

Proposition 1.14.12 (Differential equation of a geodesic) In a patchwork
of Riemann manifolds {M ,g} with a linear connection ∇ , a constant-speed
curve γ ∈ C1(I ; M) is a geodesic if and only if it fulfills the differential equa-
tion:

∂τ=t gτ (vτ )(vτ ,χτ,t⇑ δvt) = 1
2 〈dbqg(vt), δvt 〉+ 〈(gτ (vt)vt)Tors(vt), δvt 〉 ,
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which may be written as

∇vt(gτ (v)v) = 1
2 dbqg(vt) + (gτ (vt)vt)Tors(vt) ,

at regular points, and the jump conditions

〈 [[gτ (vt)vt]], δvt 〉 = 0 ,

at singular points.

Proof. We have that

1
2 (Lvϕg)(vt,vt) = 1

2 ∂λ=0 gϕλ(τ (vt))(ϕλ↑vt,ϕλ↑vt) .

We extend the velocity along the path to a vector field v ∈ C1(M ;TM) by
pushing it along the flow ϕλ ∈ C1(M ; M) according to the relation:

v(ϕλ(τ (vt))) := ϕλ↑vt .

Then, writing ϕλ↑vt = ϕλ⇑ϕλ⇓ϕλ↑vt and applying Leibniz rule, we get

1
2 (Lvϕg)(vt,vt) = 1

2 ∂λ=0 gϕλ(τ (vt))(ϕλ⇑vt,ϕλ⇑vt)

+ gτ (vt)(∂λ=0 ϕλ⇓ϕλ↑vt,vt)

= 1
2 〈dbqg(vt), δvt 〉+ gτ (vt)(∇δvtv,vt) .

Similarly, defining the trajectory-flow χτ,t ∈ C1(M ; M) by χτ,t ◦ γt = γτ , we
have that

∂τ=t gτ (vτ )(vτ , δvτ ) = ∂τ=t gτ (vτ )(vτ ,χτ,t⇑χτ,t⇓ δvτ )

= ∂τ=t gτ (vτ )(vτ ,χτ,t⇑ δvt) + gτ (vt)(∇vtvϕ,vt)

= 〈∇vt(gτ (v)v), δvt 〉+ gτ (vt)(∇vtvϕ,vt) .

By definition of the vector field v ∈ C1(M ;TM) we have that [vϕ ,v] = 0
and hence

Tors(v) · vϕ = tors(v,vϕ) = ∇vvϕ −∇vϕv .

The differential condition of Proposition 1.14.11 may then be written as

1
2 〈dbqg(vt), δvt 〉 = 〈∇vt(gτ (v)v), δvt 〉+ gτ (vt)(vt,Tors(vt) · δvt) .

and the statement is proven. �
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Proposition 1.14.13 (Geodesics in Riemann manifolds) In a patchwork
of Riemann manifolds {M ,g} with a torsion-free connection ∇ , a geodesic
γ ∈ C1(I ; M) fulfills the differential equation:

∇vt(gτ (v)v) = 1
2 dbqg(vt) ,

in the elements of the patchwork, and the jump conditions

〈 [[gτ (vt)vt]], δvt 〉 = 0 ,

at singular points. If the connection is Levi-Civita, the differential equation
becomes

∇vtv = 0 .

Proof. The first statement follows directly from proposition 1.14.12. In a
Riemann manifold {M ,g} the Levi-Civita connection is torsion-free and
metric-preserving. In a metric connection, being ∇g = 0 , the norm is preserved
by the parallel transport, so that

dbqg(vt) = ∂λ=0 g(ϕλ⇑vt,ϕλ⇑vt) = 0 .

Moreover, for any w ∈ C1(M ;TM) , it is:

〈∇vt(gτ (v)v),w〉 = dvtgτ (v)(v,w)− gτ (vt)(vt,∇vtw) = gτ (vt)(∇vtv,w) .

Hence the latter statement follows from the former one. �

The next result provides another proof of the second statement in proposition
1.14.13 extending a formula in [142], [110].

Proposition 1.14.14 (First variation of the energy) In a patchwork of Rie-
mann manifolds {M ,g} the first variation of the energy of a path is given by

∂λ=0 E(ϕλ ◦ γ):= ∂λ=0

∫
I

1
2 (ϕλ↓g)(vt,vt) dt

=

∫
I

( 1
2 〈dbqg(vt), δvt 〉+ gτ (vt)(∇δvtv,vt)) dt ,

which, in the Levi-Civita connection, becomes:

∂λ=0 E(ϕλ ◦ γ) = −
∫
T (I)

g(∇vtv, δvt) dt−
∫
I(I)

〈 [[gτ (vt)vt]], δvt 〉 dt .
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Proof. The first formula follows from the proof of proposition 1.14.12. The lat-
ter is then deduced by observing that in the Levi-Civita connection: dbqg(vt) =
0 and tors(v,vϕ) = ∇vvϕ −∇vϕv = 0 , so that

∂λ=0

∫
I

(ϕλ↓g)(vt,vt) dt=

∫
I

gτ (vt)(∇δvtv,vt) dt =

∫
I

gτ (vt)(∇vtvϕ,vt) dt .

Moreover, at regular points in I , we have:

gτ (vt)(∇vtvϕ,vt) = dvt(gτ (vt)(vt, δvt)− gτ (vt)(∇vtv, δvt) .

so that an integration by parts in each element of the partition T (I) yields the
result. �

Remark 1.14.3 If a vector field w ∈ C1(M ;TM) is parallel transported along
the geodesic curve, that is ∇vtw = 0 for all t ∈ I , its inner product with the
tangent field v ∈ C1(γ ;Tγ) is constant:

dvt(g(w,v)) = g(∇vtw,v) + g(w,∇vtv) = 0 .

Since the norms of the parallel transported fields v and w are constant along
the geodesic, the cosinus of the angle between the parallel transported vector and
the tangent to the geodesic curve is constant too. Short geodesics, joining two
sufficiently near points, are curves of minimal length [142], [110], [171].

Remark 1.14.4 The differential condition of extremal length may be also for-
mulated as follows. Let us define the one-form θg on TM as

〈θg(v),Y(v)〉 := 〈gτ (v) · v, Tvτ ·Y(v)〉 , ∀v ∈ TM , ∀Y(v) ∈ TvTM .

We have that τ (ϕλ↑vt) = ϕλ(τ (vt)) . Moreover, it is Tϕλ↑vtτ ·Φλ↑v̇t = ϕλ↑vt
for any flow Φλ ∈ C1(TM ;TM) which projects to a flow ϕλ ∈ C1(M ; M) .
Then we have that

(Φλ↓θg)(vt) · v̇t = 〈θg(ϕλ↑vt),Φλ↑v̇t 〉

= 〈gϕλ(τ (vt)) ·ϕλ↑vt, Tτ (ϕλ↑vt) ·Φλ↑v̇t 〉

= 〈gϕλ(τ (vt)) ·ϕλ↑vt,ϕλ↑vt 〉 = (ϕλ↓g)(vt,vt) ,

〈θg(vt),vΦ(vt)〉= 〈gτ (vt) · vt, Tτ (vt) · vΦ(vt)〉 = gτ (vt)(vt, δvt) ,
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and extremality of the action integral may be written as

∂λ=0

∫
Φλ(Γ)

θg =

∫
∂Γ

θg · vΦ ⇐⇒
∫

Γ

LvΦ
θg =

∫
Γ

d(θg · vΦ) .

where Γ ∈ C1(I ;TM) is the lifted curve of γ ∈ C1(I ; M) , defined by Γ(t) =
vt .

By the homotopy formula

LvΦ
θg = d(θg · vΦ) + (dθg) · vΦ ,

the differential condition of extremality is given by

dθg(vt) · vΦ(vt) · v̇t = 0 .

The tensoriality of the exterior derivative ensures that Palais formula can be
applied by extending the vector v̇t ∈ TvtΓ to a vector field Ḟ ∈ C1(TM ;T 2M)
such that Ḟ(vt) = v̇t :

dθg(vt) ·vΦ(vt) · v̇t = dvΦ(vt)(θg · Ḟ)(vt)− dv̇t(θg ·vΦ)(vt)− (θg · LvΦ
Ḟ)(vt) .

It is expedient to define Ḟ(Φλ(vt)) := Φλ↑v̇t so that LvΦ
Ḟ = 0 . Being

dv̇t(θg · vΦ)(vt) = ∂τ=t gτ (vτ )(vτ , δvτ ) ,

dvΦ(vt)(θg · Ḟ)(vt) = ∂λ=0 gϕλ(τ (vt))(Φλ(vt),Φλ(vt)) = Lvϕg(vt,vt) ,

the extremality condition writes

Lvϕg(vt,vt) = ∂τ=t gτ (vτ )(vτ , δvτ ) .

1.14.6 Riemann-Christoffel curvature tensor
In a Riemann manifold {M ,g} endowed with the Levi-Civita connection,
the curvature can be represented as a (0, 4) tensor field

R : M 7→ BL (TM4 ;<) ,

by setting

R(v,u,w,a) := g(∇2
vu w ,a)− g(∇2

uv w ,a)

= g(∇v∇u w −∇u∇v w −∇[v ,u] w ,a) .
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In a local system of coordinates the components of the curvature tensor field
are given by the formula

R(ei, ej , ek, eD) = g(∇ei∇ej ek −∇ej∇ei ek −∇[ei ,ej ] ek , eD) .

Hence, recalling that [ei , ej ] = 0 , we get

RABCD = g(∇ei(Γ
E
jk eE)−∇ej (Γ

E
ik eE), eD) =

= g(ΓEjC/A eE + ΓEjk ΓFiE eF − ΓEiC/B eE − ΓEik ΓFjE eF , eD) =

= g(ΓEjC/A eE + ΓFjk ΓEiF eE − ΓEiC/B eE − ΓFik ΓEjF eE , eD) =

= GED

[
ΓEjC/A − ΓEiC/B + ΓFjk ΓEiF − ΓFik ΓEjF

]
.

Substituting the relations

ΓDijGCD = GBC/A + GCA/B −GAB/C ,

we obtain the expressions of the components of the curvature tensor in terms
of the components of the metric tensor and of its derivatives.

In a Riemann manifold {M ,g} the curvature tensor field R(v,u,w,a)
meets the following properties

• R is antisymmetric in the first and in the second pair of arguments

R(v,u,w,a) = −R(u,v,w,a) = R(u,v,a,w) .

• R is symmetric with respect to an exchange between the first and the
second pair of arguments

R(v,u,w,a) = R(w,a,v,u) .
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• R fulfills the first Bianchi identity

R(v,u) w + R(w,v) u + R(u,w) v = 0 , ∀v,u,w : M 7→ TM .

• R fulfills the second Bianchi identity

(∇aR)(v,u) w + (∇vR)(u,a) w + (∇uR)(a,v) w = 0 .

For completeness we report the proof of the previous properties following the
treatment in [171].

• The antisymmetry of R(v,u,w,a) in the first pair of arguments derives
immediately from the definition.

• The antisymmetry in the second pair of arguments can be deduced from
the fact that the quadratic form associated with the tensor R(v,u) does
vanish. This follows from the formula

∇v∇u f −∇u∇v f = ∇[v ,u] f .

Indeed the vanishing of the covariant derivative of the metric implies that

g(R(v,u) w,w) = g(∇v∇u w,w)− g(∇u∇v w,w)− g(∇[v ,u] w,w)

=∇v(g(∇u w,w))− g(∇u w,∇v w)

−∇u(g(∇v w,w)) + g(∇v w,∇u w)

− 1
2 ∇[v ,u](g(w,w))

= 1
2 (∇v∇u −∇u∇v −∇(v,u))(g(w,w))

= 1
2 R(v,u)(g(w,w)) = 0 .
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Figure 1.68: Luigi Bianchi (1856 - 1928)

• The fulfillment of the first Bianchi identity is proven by observing that
by virtue of the tensoriality property, the computations are independent
of the extension of the vector arguments to vector fields. By proposition
1.4.9 we may assume that the vector fields v,u,w commute pairwise, that
is

[v ,u] = [u ,w] = [w ,v] = 0 .

Since the torsion of the connection vanishes, we have that

R[v ,u] w + R[w ,v] u+ R[u ,w] v =

= ∇v∇u w −∇u∇v w

+∇w∇v u−∇v∇w u

+∇u∇w v −∇w∇u v

= ∇v (∇u w −∇w u)

+∇w (∇v u−∇u v)

+∇u (∇w v −∇v w)

= ∇v [u ,w] +∇w [v ,u] +∇u [w ,v] = 0 .

• The property of symmetry with respect to an exchange between the first
and the second pair of arguments is proven by a direct computation. In-
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deed we have that

R(v,u,w,a)= −R(u,w,v,a)−R(w,v,u,a)

= R(u,w,a,v) + R(w,v,a,u)

= −R(w,a,u,v)−R(a,u,w,v)

−R(v,a,w,u)−R(a,w,v,u)

= 2 R(w,a,v,u) + R(a,u,v,w) + R(v,a,u,w)

= 2 R(w,a,v,u)−R(u,v,a,w)

= 2 R(w,a,v,u)−R(v,u,w,a) .

Then 2 R(v,u,w,a) = 2 R(w,a,v,u) .

• In order to establish the fulfillment of the second Bianchi identity let us
assume again that [v ,u] = [u ,w] = [w ,v] = 0 .

Then we have that

R(v,u) w = [∇v ,∇u] w −∇[v ,u] w = [∇v ,∇u] w .

It must be noted that

(∇wR)(v,u) a= ∇w(R(v,u) a)−R(∇wv,u) a

−R(v,∇wu) a−R(v,u)∇wa

= [∇w ,R(v,u)] a−R(∇wv,u) a−R(v,∇wu) a .
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Therefore, by Jacobi identity for the commutator, it follows that

(∇wR)(v,u) a + (∇vR)(u,w) a + (∇uR)(w,v) a

= [∇w ,R(v,u)] a + [∇v ,R(u,w)] a + [∇u ,R(w,v)] a

−R(∇wv,u) a−R(v,∇wu) a

−R(∇vu,w) a−R(u,∇vw) a

−R(∇uw,v) a−R(w,∇uv) a

= [∇w ,R(v,u)] a + [∇v ,R(u,w)] a + [∇u ,R(w,v)] a

+ R([v ,w],u) a + R([w ,u],v) a + R([u ,v],w) a

=
(
[∇w , [∇v ,∇u]] + [∇v , [∇u ,∇w]] + [∇u , [∇w ,∇v]]

)
a = 0 .

1.14.7 Directional and sectional curvature
• The directional curvature operator Rt ∈ BL (TM ;TM) defined by

Rt(a) := R(a, t, t) , ∀a ∈ TM , t ∈ C2(M ;TM) ,

is a symmetric operator since

gS(Rt(a),h) = gS(R(a, t, t),h) = R(a, t, t,h)

= R(t,h,a, t) = R(h, t, t,a) = gS(Rt(h),a) .

Further t ∈ TM is in the kernel of Rt .

We further define:

• The canonical 2-tensor is the symmetric tensor R2(v,u) := R(v,u,u,v) .

The canonical 2-tensor provides a complete information on the curvature,
due to the formula:

∂t=0 ∂s=0 R(v + ta,u + sb,v + ta,u + sb)

− ∂t=0 ∂s=0 R(v + tb,u + sa,v + tb,u + sa) = 6 R(v,u,a,b) .
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• The sectional curvature operator sec ∈ BL (TM2 ;<) is defined by

sec(a,b) :=
gS(Ra(b),b)

µM(a,b)2
=

R(b,a,a,b)

µM(a,b)2
,

for any pair of linearly independent vectors a,b ∈ TM . Here n is the
normal versor to the middle surface M and µM := µS n is the volume
form on M induced on M by the volume form µS on S according to
the relation

µM(a,b) gS(n,h) = (µS h)(a,b) = µS(h,a,b) , ∀a,b,h ∈ TM ,

which states that the volume of the oriented parallelepiped with sides
a,b,h in TM is equal to the product of the area of the oriented base
parallelogram with sides a,b in TM times the relative height gS(n,h) .

It is easy to check that sec(a,b) depends only on the plane spanned by
the linearly independent vectors a,b ∈ TM .

1.14.8 Riemann isometries
Let {M ,g} be a Riemann manifold endowed with the Levi-Civita connec-
tion and let N = ϕ(M) be a differentiable manifold which is diffeomorphic
to {M ,g} thru the diffeomorphism ϕ : M 7→ N . The Riemann manifold
{ϕ(M) ,ϕ↑g} is said to be isometric to the Riemann manifold {M ,g} .

Proposition 1.14.15 (Riemann connections and isometries) Let the Rie-
mann manifolds {M ,g} and {ϕ(M) ,ϕ↑g} be isometric. The covariant deriva-
tives ∇ on {M ,g} and ϕ↑∇ on {ϕ(M) ,ϕ↑g} , defined by the corresponding
Levi-Civita connections, are natural with respect to the push:

a) ϕ↑(∇u v) = (ϕ↑∇)(ϕ↑u) (ϕ↑v) , ∀v ∈ C1(M ;TM) , ∀u : M 7→ TM .

In other terms, the Levi-Civita connection on the manifold {ϕ(M) ,ϕ↑g} is
the connection induced by the diffeomorphism ϕ : M 7→ N = ϕ(M) , as defined
in section 1.8.13.

Proof. Formula a) to be proven may alternatively be written as

b) (ϕ↑g)((ϕ↑∇)(ϕ↑u) (ϕ↑v),ϕ↑w) = ϕ↑
(
g(∇u v,w)

)
,
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for all v,u,w : M 7→ TM . Indeed from the definition of the push of a tensor
we have that

c) (ϕ↑g)((ϕ↑∇)(ϕ↑u) (ϕ↑v), (ϕ↑w)) = ϕ↑
(
g(ϕ↓((ϕ↑∇)(ϕ↑u) (ϕ↑v)),w)

)
.

By equating the r.h.s. terms of expressions b) and c) we obtain the result a)
and viceversa. In order to demonstrate relation b) we recall that the metric ten-
sor of the Riemann manifold N is ϕ↑g . Hence, by applying Koszul formula,
the l.h.s. term in b) may be rewritten as the sum of the terms

d) d(ϕ↑u)

(
(ϕ↑g)(ϕ↑v,ϕ↑w)

)
, e) (ϕ↑g)([ϕ↑u ,ϕ↑v],ϕ↑w) .

From the definition of push we have that

d) d(ϕ↑u)

(
(ϕ↑g)(ϕ↑v,ϕ↑w)

)
= d(ϕ↑u)

(
ϕ↑
(
g(v,w)

))
,

e) (ϕ↑g)([ϕ↑u ,ϕ↑v],ϕ↑w) = ϕ↑
(
g(ϕ↓[ϕ↑u ,ϕ↑v],w)

)
.

Propositions 1.2.4 and 1.4.4 ensure that the directional derivative and the Lie
bracket are natural with respect to the push. The following equalities then hold

d) d(ϕ↑u)

(
ϕ↑
(
g(v,w)

))
= ϕ↑

(
du

(
g(v,w)

))
,

e) ϕ↑
(
g(ϕ↓[ϕ↑u ,ϕ↑v],w)

)
= ϕ↑

(
g([u ,v],w)

)
.

By applying again Koszul formula we obtain the equality in b) . �

Proposition 1.14.15 tells us that the Levi-Civita covariant derivative is
natural with respect to Riemann isometries.

Let now {M ,g} and {N ,ϕ↑g} be two isometric Riemann manifolds re-
lated by the diffeomorphism ϕ : M 7→ N . In force of Proposition 1.14.15 the
curvature tensor fields RM and RN are related by the formula

RN = ϕ↑RM .

Indeed it is sufficient to observe that

ϕ↑(RM(v,u) w) = ϕ↑(∇v∇u w)−ϕ↑(∇u∇v w)−ϕ↑(∇(v,u) w) ,

and that

ϕ↑(∇v∇u w) = ∇ϕ↑vϕ↑(∇u w) = ∇ϕ↑v∇ϕ↑u (ϕ↑w) ,

ϕ↑(∇[v ,u] w) = ∇ϕ↑[v ,u](ϕ↑w) = ∇[ϕ↑v ,ϕ↑u](ϕ↑w) .
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Hence
ϕ↑(RM [v ,u] w) = RN [ϕ↑v ,ϕ↑u] (ϕ↑w) .

Since
ϕ↑(RM [v ,u] w) = (ϕ↑RM) [ϕ↑v ,ϕ↑u] (ϕ↑w) ,

we deduce that RN = ϕ↑RM .
A Riemann manifold with an identically vanishing curvature tensor field is

called a flat manifold. From the previous formula it follows that a Riemann
manifold which is isometric to a flat Riemann manifold is flat too.

1.14.9 Euclidean spaces
In a euclidean space the translation defines a distant parallel transport and the
related standard connection. It follows that the curvature tensor field vanishes
identically. Moreover the torsion also vanishes since, by tensoriality, we may
extend the vector fields by translation, so that

tors(v,u) := ∇vu−∇uv − [v ,u] = −[v ,u] = 0 ,

since flows with constant velocities in a euclidean space commute pairwise.
Then:

• The euclidean space {S ,can} , endowed with the connection induced by
the distant parallel transport by translation, is flat and torsion-free.

Let ϕ ∈ C1(M ;N) be a diffeomorphism between the 3D-submanifolds M
and N of the euclidean space S . If the manifold N is equipped with the
euclidean canonical metric, then the Riemann manifold {M ,ϕ↓can} is flat
since it is isometric to {N ,can} which is flat. The Green metric tensor field
ϕ↓can is defined by

(ϕ↓can)(v,u) = ϕ↓(can(ϕ↑v,ϕ↑u)) ,

for any pair of vector fields v,u ∈ C1(M ;TM) .
The Green metric tensor field is associated in {S ,can} with the field of

linear operators ϕ↑T ◦ϕ↑ ∈ C1(M ;BL (TM ;TM)) . Indeed we have that

ϕ↑((ϕ↓can)(v,u)) = can(ϕ↑v,ϕ↑u) = can(ϕ↑T ϕ↑v,u) , ∀v,u ∈ TM .

We may now discuss an integrability condition which plays an important role in
continuum mechanics. If the support of a Riemann manifold {M ,g} is an open

267



Riemann manifolds Giovanni Romano

connected subset of an euclidean space {S ,can} , it is physically important
to ask whether the metric tensor field g could be obtained as the Green
metric tensor field ϕ↓can associated with a diffeomorphism ϕ ∈ C1(M ;N)
between M and a submanifold {N ,can} of the euclidean space {S ,can} .
The necessary and sufficient condition is that the Riemann manifold {M ,g}
be flat.

Proposition 1.14.16 (Isometries in an euclidean space) A nD Riemann
manifold {M ,g} with a flat Levi-Civita connection is locally isometrically
diffeomorphic to a submanifold {N ,can} of the nD euclidean space.

Proof. Flatness means that the horizontal subbundle of the bitangent bundle is
locally integrable. The vectors of a frame {ei | i = 1, . . . , n} at a point x0 ∈M
can then be extended in an open connected neighborhood UM(x0) ⊂ M to
vector fields vi ∈ C1(UM(x0) ;TM) whose horizontal lifts Hvi are tangent to
the leaf of the horizontal foliation passing through vi(x0) = ei . Each vector
field vi ∈ C1(UM(x0) ;TM) is then parallel transported along the integral curve
of any vj ∈ C1(UM(x0) ;TM) , i.e.

(vi ◦ Fl
vj
λ )(x0) = Fl

Hvj

λ (ei) , ∀λ ∈ I : Fl
vj
λ ∈ UM(x0) ,

and hence the covariant derivatives ∇vjvi vanish identically. The vanishing of
the torsion of the Levi-Civita connection implies that the Lie derivative of
any pair of these vector fields vanishes too

tors(vi,vj) := ∇vivj −∇vjvi − [vi ,vj ] = −[vi ,vj ] = 0 .

The local frame is then a local coordinate system defined by a chart ξ ∈
C1(UM(x0) ;<m) with ξ↑vi(x) = σi , the standard basis vector in <m . We
denote by std the standard metric in <m . Since the Levi-Civita covariant
derivative is metric preserving and the vector fields vi ∈ C1(UM(x0) ;TM) are
parallel transported along any curve, from the formula:

∇v[g(vi,vj)] = (∇vg)(vi,vj) + g(∇vvi,vj) + g(vi,∇vvj) = 0 ,

we infer that the evaluation of the metric on each pair of vector fields of the
local frame is constant along any curve and hence, by connectedness:

gx(vi(x),vj(x)) = gx0
(ei, ej) , ∀x ∈ U(x0) .

Then

(ξ↑g)ξ(x)(σi, σj) = gx(ξ↓σi, ξ↓σj) = gx(vi(x),vj(x)) = gx0
(ei, ej) .
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If the basis {ei | i = 1, . . . , n} is g-orthonormal, we get: ξ↑g = std . Since the
euclidean nD space is flat and torsion-free when endowed with the Levi-Civita
connnection associated with the canonical metric can , we may also consider
a submanifold of it {N ,can} locally mapped to ξ(UM(x0)) ⊂ <n by a chart
ζ ∈ C1(UN(z0) ; ξ(UM(x0)) ⊂ <n) with ζ(z0) = ξ(x0) and

(ζ↑can)ζ(z)(σi, σj) = canz(ξ↓σi, ξ↓σj) = canz(wi(z),wj(z)) = canz0
(hi,hj) ,

with the basis {hi | i = 1, . . . , n} can-orthonormal so that ζ↑can = std .
The diffeomorphism ϕ = ζ−1 ◦ ξ ∈ C1(UM(x0) ;UN(z0)) is then such that
ϕ↓can = g . �

In continuum mechanics the stretching of a body is defined as the change in
length of any curve drawn in it. A suitable measure of the stretching is provided
by a field g of metric tensors on the initial placement M of the body, which
evaluates the length of a curve c ∈ C1(I ; M) by means of the formula∫

I

g(∂τ=t c(τ), ∂τ=t c(τ))
1
2 dτ ,

whose value is independent of the chosen parametrization.
A field of metric tensors, which is not equal to the canonical metric field

can , provides a pointwise measure of the stretching and the difference

1
2 (g − can)

is called the Green’s strain field. The scalar factor 1
2 is inserted for convenience

in order to get for the stretching rate the expression 1
2Lvg = sym∇v for a Levi-

Civita connection, see Section 1.14.4. This choice eventually leads to define by
duality a stress field whose flux is a force per unit surface area. The strain
field is said to be kinematically compatible if there exists at least an embedding
ϕ ∈ C1(M ;S) with ϕ(M) = N such that ϕ↓can = g . The diffeomorphism
ϕ ∈ C1(M ;N) describes a displacement of the body in the 3D euclidean space
{S ,can} from the placement M to the placement N .

1.15 Hypersurfaces
Let us consider a (n− 1)-dimensional submanifold M of a n-dimensional Rie-
mann manifold {S ,gS} where gS ∈ Cov(TS) is the metric tensor field on S
and TS is the tangent bundle to S .
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Let us denote by TS, TM the tangent bundles to the manifold S and to
the submanifold M respectively, and by TS(M) the restriction of the tangent
bundle TS to the submanifold M . The elements of the linear space TS(M)
are the applied vectors {x ,v} with v ∈ TS and base point x ∈M .

1.15.1 Distance function and shape operator
The tangent bundle TS(M) is n-dimensional and the bundle TM is (n− 1)-
dimensional. A distance function from a (n−1)-dimensional submanifold M ⊂
S is a scalar valued map f ∈ C2(O ;<) which is twice continuously differentiable
in an open neighborhood O ⊂ S and such that its gradient is a vector field with
unitary norm. A distance function is then a solution the non-linear eikonal
equation or Hamilton-Jacobi equation:

‖∇f(x)‖ = 1 , ∀x ∈ O ,

where ∇ is the gradient operator on {S ,gS} according to the Levi-Civita
connection.

To provide a constructive example of a distance function we may consider
an open strip UM ⊂ S including M whose thickness is suitably small so that
every point x ∈ UM can be orthogonally projected in an unique fashion onto a
point PV(x) ∈M according to the metric of the Riemann manifold {S ,gS} .

Figure 1.69: Distance function

For any fixed r ∈ < we denote by Mr the r-level set of f ∈ C2(O ;<)
which is an hypersurface parallel to M . The hypersurface Mr is the r-level
folium and the family UM of all admissible folii is the foliation of M .

We denote by TS(UM) the family of all vectors {x ,h} of TS with base
point x ∈ UM and by TM(UM) ⊂ TS(UM) those which are tangent to the
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folium passing through x ∈ UM . Let us then consider the nonlinear projector
PV ∈ C1(UM ; M) which maps any point x ∈Mr ⊂ UM of the r-level folium
to the unique point PV(x) ∈M which minimizes the distance between x ∈ UM

and M according to the metric of {S ,gS} .

Figure 1.70: Projectors

We denote by n(x) the normal versor to Mr at x ∈Mr and by n(PV(x))
the normal versor to M at PV(x) ∈M . Observing that n(x) = n(PV(x)) we
may write

x = PV(x) + r(x) n(x) = PV(x) + r(x) n(PV(x)) ,

and then define the signed-distance function

f(x) = r(x) , ∀x ∈ O = UM ,

which is differentiable in the open set UM , and also the distance function

f(x) = |r(x)| , ∀x ∈ O = UM\M .

By construction we have that

n(x) = ∇f(x) , ∀x ∈ O .

The hessian of the distance function is the tensor field of type (1, 1) :

∇2f(x) := ∇(∇f)(x) ∈ BL (TM(x) ;TM(x)) , ∀x ∈ O ,
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It provides a description of the variation of the normal to the manifold M at
each point, since

∇n(x) = ∇(∇f)(x) , ∀x ∈ O ,
and is therefore called the shape operator of M .

Two basic properties are proven in the next Lemmas.

Lemma 1.15.1 The shape operator S(x) := ∇n(x) ∈ BL (TS(x) ;TS(x)) is
symmetric.

Proof. The symmetry of S(x) = ∇n(x) = ∇2f(x) is a direct consequence of
the symmetry of the Riemann connection of {S ,gS} .

Lemma 1.15.2 At any point x ∈ Mr the normal versor n ∈ TS(x) belongs
to the kernel of the shape operator S(x) ∈ BL (TS(x) ;TS(x)) :

S(x) n(x) = ∇2f(x) n(x) = 0 ,

hence Im S(x) = (Ker S(x))⊥ ⊆ TMr (x) .

Proof. By the symmetry of S(x) ∈ BL (TS(x) ;TS(x)) we have that

gS(Sn,h) = gS(Sh,n) = gS(dhn,n) =
1

2
dh gS(n,n) = 0 ,

for any h ∈ TS(x) . The last statement follows from the well-known property
that the kernel and the image of a symmetric operator are mutual orthogonal
complements. �

In the sequel we will be interested in the case where the n-dimensional
Riemann manifold {S ,gS} is an n-dimensional euclidean space endowed with
the canonical connection corresponding to the parallel transport defined by the
translations in the euclidean space. The covariant derivative in {S ,gS} is then
the usual directional derivative in {S ,gS} and will be denoted by d .

1.15.2 Nonlinear projector
Let us derive here for subsequent use a noteworthy formula concerning the
derivative of the nonlinear projector P ∈ C1(UM ; M) on an oriented (n− 1)-
dimensional submanifold M of the n-dimensional euclidean space {S ,gS} .

272



Hypersurfaces Giovanni Romano

Lemma 1.15.3 Let P ∈ C1(UM ; M) be the nonlinear projector, on the hy-
persurface M , of the points of the foliation UM ⊂ S . Its derivative at
x ∈ Mr ⊂ UM is a linear operator dP(x) ∈ BL (TS(x) ;TS(P(x))) which
is related to the linear projector π(x) ∈ BL (TS(x) ;TS(x)) of the vectors
h ∈ TS(x) on the tangent plane at x ∈ Mr to the r-level folium Mr , by
the formulas

π(x) = dP(x) + r(x) S(x) = (I + r(x) S(P(x))) dP(x) = π(P(x)) ,

where S(P(x)) is the shape operator of M at the point P(x) ∈M and S(x)
is the shape operator of Mr at the point x ∈Mr .

Proof. Taking the directional derivative along any a ∈ TMr (x) in the formula
x = P(x) + r(x) n(x) = P(x) + r(x) n(P(x)) and observing that

∇n(x) = S(x) ,

d(n ◦P)(x) = dn(P(x)) dP(x) = S(P(x)) dP(x) ,

we get the relation

a = dP(x)a + r(x) S(x)a , ∀a ∈ TMr (x) .

Since dP(x)n = 0 and S(x)n = 0 also

(dP(x) + r(x) S(x))n = 0 .

Hence the operator dP(x) + r(x) S(x) maps any vector h ∈ TS(x) into its
projection onto TMr (x) and the formula is proved. �

Remark 1.15.1 The ranges of the linear operators π(x) ∈ BL (TS(x) ;TS(x))
and of dP(x) ∈ BL (TS(x) ;TS(P(x))) at x ∈Mr are TMr (x) and TM(P(x))
respectively. In an euclidean space the linear subspaces TS(x) and TS(P(x))
are identified by means of the parallel translation defined by the translation oper-
ation. Accordingly also the subspaces TMr (x) and TM(P(x)) will be identified
and considered as subspaces of the linear space TS(x) .

Lemma 1.15.4 For any x ∈ UM the operator dP(x) ∈ BL (TS(x) ;TS(x)) is
symmetric and is related to the linear projector π(x) ∈ BL (TS(x) ;TS(x)) by
the formulas

dP(x) = π(x)− r(x) S(x) = (I + r(x) S(P(x)))−1 π(x) .

Moreover Ker dP(x) = Ker π(x) = Span(n(x)) .
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Proof. The formulas for dP(x) both follow directly from Lemma 1.15.3. The
symmetry of dP(x) is apparent from the first formula since both terms on the
r.h.s are symmetric. Indeed the shape operator is symmetric by Lemma 1.15.1
and the linear operator π(x) ∈ BL (TS(x) ;TS(x)) is symmetric being a linear
orthogonal projector since (see e.g. [240]):

gS(πa,b) = gS(πa,πb) , ∀a,b ∈ TS(x) .

To establish the second formula we preliminarily observe that the linear operator
I+r(x) S(x) ∈ BL (TS(x) ;TS(x)) is symmetric and positive definite, and hence
invertible, due to the suitably small value of the thickness of the shell choosen
to ensure that the nonlinear projector P ∈ C1(UM ; M) be well-defined. �

The symmetry of dP(x) ∈ BL (TS(x) ;TS(x)) may also be inferred from the
second formula since the symmetric operators π(x) and I+r(x) S(x) commute.
Indeed at x ∈Mr the eigenspaces of the former, which are the tangent spaces
TMr (x) to Mr and the linear span of n(P(x)) , are invariant subspaces for the
latter [85]. The same is true if the latter operator is replaced by its inverse.

1.15.3 First and second fundamental forms
• The first fundamental form on M is the twice covariant tensor field

gM ∈ BL (TM2 ;<) ,

defined on M as the restriction of the metric gS ∈ BL (TS2 ;<) of {S ,gS}
to the vectors {x ,h} ∈ TM .

An analogous definition may be given for gMr ∈ BL (T 2
Mr ;<) on each folium

Mr . These fundamental forms gM induce, on each folium Mr of the foliation
UM , a Riemann metric. The resulting Riemann manifold is {Mr ,gMr} .
• The second fundamental form on M is the twice covariant tensor field

sM ∈ Cov(TM) defined by

sM(a,b) = gS(Sa,b) = gM(SMa,b) , ∀a,b ∈ TM .

The mixed tensor SM ∈ BL (TM ;TM) , which picks up the two-dimensional
essential part of the shape operator, is the Weingarten operator introduced
in Sect.1.14.2.

Lemma 1.15.5 The Weingarten operator SM ∈ BL (TM ;TM) meets the
identity

gM(SMa,b) = −gS(n,∇ab) , ∀a,b ∈ TM .
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Proof. Since for all b ∈ TM the inner product gS(n,b) vanishes identically
on M , we have that

0 = ∇a (gS(n,b)) = gS(Sa,b) + gS(n,∇ab) , ∀a,b ∈ TM ,

which is the result. �

Remark 1.15.2 The identity in Lemma 1.15.5 is usually taken as definition of
the Weingarten operator. It is important to highlight the surprising tensorial-
ity property of the bilinear form gS(n, dab) in spite of the apparent dependence
of the derivative dab from the local behavior of the field b ∈ C1(M ;TM) .

By applying the tensoriality criterion of Lemma 1.2.1:

gS(n, da(f b)) = (daf) gS(n,b)) + f gS(n, dab) = f gS(n, dab) ,

we realize that the tensoriality property is due to the orthogonality between the
vector n and the vectors b ∈ TM(x) at any point x ∈M .

1.15.4 Gauss and Mainardi-Codazzi formulas
Let {S ,gS} be a Riemann manifold and {Mr ,gMr} be the r-level set of
a foliation UM of {S ,gS} . Let us denote by ∇r the Riemann connection
induced on Mr by the Riemann connection ∇ on S . The associated covariant
derivative is defined by the orthogonal projection formula:

∇ra b := π∇ab , ∀a ∈ TMr , b ∈ C1(Mr ;TMr ) .

Hence we have that

gS(∇at,b) = gS(∇rat,b) , ∀a,b ∈ TMr , t ∈ C1(Mr ;TMr ) .

We recall (see section 1.8.6) that the second covariant derivative of a tangent
vector field is defined by:

∇2
abt := ∇a∇bt−∇∇abt ∀a ∈ TS , b ∈ C1(S ;TS) , t ∈ C2(S ;TS) ,

and that the Riemann-Christoffel curvature of a Riemann manifold {S ,gS}
is the fourth order tensor field R ∈ BL (TS3 ;TS) which provides the skew part
of the second covariant derivative of a tangent vector field:

R(a,b, t) := ∇a∇bt−∇b∇at−∇[a ,b]t = ∇2
abt−∇2

bat .
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for all a,b ∈ TS and t ∈ C2(S ;TS) .
Defining the four times covariant curvature tensor R ∈ BL (TS3 ;<) :

R(a,b, t,h) := gS(R(a,b, t),h) , ∀a,b,h ∈ TS , t ∈ C2(S ;TS) .

we recall also the symmetry property

R(a,b, t,h) = R(t,h,a,b) ,

and the skew-symmetry properties

R(a,b, t,h) = −R(b,a, t,h) = R(b,a,h, t) .

It is natural to look for the relation between the Riemann-Christoffel cur-
vature of the ambient manifold {S ,gS} and the one of the embedded manifold
{Mr ,gMr} .

The answer is provided by a direct computation (see e.g. [171]) which leads
to the following formulas for the tangent and the normal components of the
curvature vector R(a,b, t) , respectively named after Gauss and Mainardi-
Codazzi:

R(a,b, t) = tan R(a,b, t) + nor R(a,b, t) ,

for all a,b ∈ TMr , t ∈ C2(Mr ;TMr ) , where

tan R(a,b, t) = Rr(a,b, t) + gS(Sa, t) Sb− gS(Sb, t) Sa ,

nor R(a,b, t) = gS((∇bS)a, t) n− gS((∇aS)b, t) n .

Remark 1.15.3 We may give an alternative form to the Mainardi-Codazzi
formula by observing that the covariant derivative of the shape operator is still
a symmetric operator. Indeed we have that

∇t(gS(Sa,b)) = gS(∇t(Sa),b) + gS((Sa),∇tb) =

= gS((∇tS)a,b) + gS(S∇ta,b) + gS(S∇tb,a) .

The symmetry of the first term on the r.h.s. follows from the symmetry of the
term on l.h.s and the symmetry of the sum of the last two terms on the r.h.s.
Hence the Mainardi-Codazzi formula may be written as

nor R(a,b, t) = gS((∇bS)t,a) n− gS((∇aS)t,b) n .
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The Riemann-Christoffel curvature R ∈ BL (TS4 ;<) vanishes on the
manifold S if and only if the manifold is euclidean.

In this case the Gauss and Mainardi-Codazzi formulas yield two integra-
bility conditions:

tan R(a,b, t) = Rr(a,b, t) + gS(Sa, t) Sb− gS(Sb, t) Sa = 0 ,

nor R(a,b, t) = gS((∇bS)a, t) n− gS((∇aS)b, t) n = 0 ,

for all a,b ∈ TMr , t ∈ C2(M ;TMr ) .
In the euclidean space the curvature of an embedded hypersurface {Mr ,gMr}

vanishes if the shape operator vanishes.
Let us recall that:

• The sectional curvature sec ∈ BL (TM2 ;<) is defined by

sec(a,b) :=
gS(Ra(b),b)

µM(a,b)2
=

R(b,a,a,b)

µM(a,b)2
,

for any pair of linearly independent vectors a,b ∈ TM , where n is the
normal versor to the middle surface M and µM := µS n is the volume
form on M induced on M by the volume form µS on S .

Figure 1.71: Karl Friederich Gauss (1777 - 1855)

Lemma 1.15.6 (Theorema egregium) Let S be the 3-dimensional euclidean
space and M a regular surface in S . Then we have that

sec(a,b) = det S ,
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Proof. By Gauss formula for the tangential curvature we have that

Rr(a,b, t) = gS(Sb, t) Sa− gS(Sa, t) Sb ,

and hence
Rr(a,b,b,a) = gS(Sa,a) gS(Sb,b)− gS(Sa,b)2 .

If {a ,b} is an orthonormal basis of TM we get the relation

Rr(a,b,b,a) = sec(a,b) = det S ,

which is a formal expression of the celebrated theorema egregium of Gauss: al-
though S is an extrinsic quantity, its determinant det S is an intrinsic quantity,
i.e. it depends only on the metric tensor of the surface. �

The eigenvalues of S are called the principal curvatures while the determi-
nant of S (i.e. the product of the the principal curvatures) is called the gaussian
curvature of the surface.

If a sheet of paper is bent without any stretching, the principal curvatures
do change while the gaussian curvature remains invariant.

A direct computation provides a third fundamental equation which relates
the directional curvature operator to the shape operator:

∇nS + S2 = −Rn ,

and is referred to as the radial curvature equation (see e.g. [171]).
Indeed, by Leibniz rule:

(∇nS)a =∇n(Sa)− S(∇na) = ∇n(∇an)−∇∇nan

S2a = S Sa = S(∇an) = ∇∇ann .

Then, being ∇nn = 0 we get

(∇nS)a + S2a =∇n(Sa)− S(∇na) = ∇n(∇an)−∇∇nan +∇∇ann

= ∇n(∇an)−∇a(∇nn)− (∇∇na −∇∇an)n =

= ∇n(∇an)−∇a(∇nn)−∇[n ,a] n = R(n,a,n) = −Rna .

1.15.5 Flowing hypersurfaces
Let us begin by stating the abstract context we are dealing with.

We consider in a nD Riemann manifold {M ,g} with standard volume-
form µ and Riemann connection ∇ :
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• a (n− 1)D submanifold Σ (an hypersurface) with boundary ∂Σ ,

• a flow Flvτ,t ∈ C1(M ; M) with velocity field vt ∈ C1(M ;TM) and the
nD flow-tube Jv(Σ) traced by Σ .

Denoting by nΣ(x) ∈ TxM the unit normal to Σ at x ∈ Σ , the flow gen-
erates on the tube Jv(Σ) a vector field nΣ of unit normals to the dragged
hypersurfaces Flvτ,t(Σ) by setting:

(nΣ ◦ Flvτ,t)(x) := nFlvτ,t(Σ)(Flvτ,t(x)) , x ∈ Σ .

Accordingly a (n − 1)-form-valued field µΣ is generated on Jv(Σ) by the
contraction:

(µΣ ◦ Flvτ,t)(x) := µFlvτ,t(Σ)(Flvτ,t(x)) = µnFlvτ,t(Σ)(Flvτ,t(x)) , x ∈ Σ ,

whose restriction to the tangent bundle of Flvτ,t(Σ) defines a field of (n − 1)-
dimensional volume-forms on the dragged hypersurfaces which we shall call the
area-form of the hypersurfaces.

1.15.6 Transport theorem for a flowing hypersurface
If we consider a (n − 1)D submanifold Σ flowing in a nD ambient Riemann
manifold M , the transport formula may be given a peculiar form.

The following two preliminary results are interesting di per se and will be
referred to in the proof of Proposition 1.15.1.

Lemma 1.15.7 In a Riemann manifold {M ,g} , endowed with the Levi-
Civita connection, the Lie-derivative of the hypersurface area-form along the
flow generated by the field of normals nΣ is equal to the surface mean-curvature
times the area-form:

LnΣ
µΣ = (trSΣ)µΣ .

Proof. We proceed as in Lemma 1.14.3, noting in addition that, by Lemma
1.15.2, we have that ∇nΣnΣ = 0 and g(∇anΣ,nΣ) = 0 so that ∇anΣ ∈ TΣ
for all a ∈ TΣ . Then, being

Lab = ∇ab−∇ba , ∀a,b ∈ C1(Σ ;TΣ) ,
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and ∇µ = 0 we have that:

(LnΣ
µΣ)(a,b) = (LnΣ

(µnΣ))(a,b) =

LnΣ (µ(nΣ,a,b))− µ(nΣ,LnΣa,b))− µ(nΣ,a,LnΣb)) =

∇nΣ
(µ(nΣ,a,b))− µ(∇nΣ

nΣ,a,b)− µ(nΣ,∇nΣ
a,b)− µ(nΣ,a,∇nΣ

b)

+ µ(∇nΣ
nΣ,a,b) + µ(nΣ,∇anΣ,b) + µ(nΣ,a,∇bnΣ) =

(∇nΣ µ)(nΣ,a,b) + µ(∇nΣnΣ,a,b) + µ(nΣ,∇anΣ,b) + µ(nΣ,a,∇bnΣ) =

= µΣ(SΣa,b) + µΣ(a,SΣb) = tr(SΣ)µΣ(a,b) ,

and the assertion is proved. �

Lemma 1.15.8 The Lie-derivative of the hypersurfaces area-forms along the
flow generated by the field of normal velocities vnnΣ is equal to the Lie-derivative
of volume-form along the flow generated by the field of normals nΣ times the
normal component vn of the velocity :

L(vnnΣ) µΣ = vn LnΣ µΣ .

Proof. By applying twice the homotopy formula, we have that:

L(vnnΣ) µΣ = d(vnµΣnΣ) + vn(dµΣ)nΣ

= d(vnµΣnΣ) + vn (LnΣ
µΣ)− d(µΣnΣ) ,

and hence, being µΣnΣ = µnΣnΣ = 0 , we get the result. �

Proposition 1.15.1 (Flowing hypersurface) Let {M ,g} be a nD Riemann
manifold with standard volume-form µ and connection ∇ and let Σ be a
(n − 1)D submanifold with boundary ∂Σ . Given a flow Flvτ,t ∈ C1(M ; M)

with velocity field vt ∈ C1(M ;TM) and a time-dependent (n− 1)-form ωn−1
t

on the nD flow tube Jv(Σ) , the transport formula

∂τ=t

∫
Flvτ,t(Σ)

ωn−1
τ =

∫
Σ

Lt,v ωn−1
t ,
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takes the expression

∂τ=t

∫
Flvτ,t(Σ)

fτ µΣ =

∫
Σ

Lt,v (ft µΣ) =

∫
Σ

(Lt,v ft)µΣ + ft (Lv µΣ)

=

∫
Σ

(Lt,v ft + ft (vn trSΣ + divΣv||))µΣ

=

∫
Σ

(∂τ=t fτ + vn LnΣft + ft vn trSΣ + divΣ(ft v
||))µΣ

=

∫
Σ

(∂τ=t fτ + vn LnΣft + ft vn trSΣ)µΣ +

∫
∂Σ

ft v∂Σ µ∂Σ ,

where

• n∂Σ ∈ TΣ unit normal field to ∂Σ

• µ∂Σ = µΣ n∂Σ induced boundary-volume-form on ∂Σ

• SΣ = ∇nΣ shape operator of Σ

• v = vn nΣ + v|| , v|| ∈ TΣ

• v∂Σ = g(v||,n∂Σ) normal speed of ∂Σ

• Lv Lie derivative along the flow

• Lt,v convective time-derivative along the flow.

Proof. Let us write αΣ for the integral of a area-form α on Σ . Since area-
forms are proportional one-another we may set ωn−1

t = ft µΣ on the (n− 1)D
submanifold Σ , so that

Lt,v ωn−1
t = Lt,v (ft µΣ) = (Lt,v ft)µΣ + ft Lv µΣ .

To explicit the dependence on the shape of the hypersurface, the velocity is
decomposed into its normal and tangential components to Σ : v = vn nΣ + v|| .
Substituting, and recalling the formulas in Lemmas 1.15.7 and 1.15.8, we get

Lv µΣ = L(vn nΣ) µΣ + Lv|| µΣ

= vn LnΣ µΣ + Lv|| µΣ

= vn (trSΣ)µΣ + (divΣv||)µΣ .
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The alternative expression of the transport formula may be obtained by setting

Lt,v ωn−1
t = Lt,v (ft µΣ) = ∂τ=t fτ µΣ + Lt,v (ft µΣ) ,

and noting that

Lv (ft µΣ) = Lv||(ft µΣ) + LvnnΣ(ft µΣ)

= L(ftv||)µΣ + (LvnnΣ
ft)µΣ + ft (L(vnnΣ)µΣ)

= (divΣ(ftv
||) + vn (LnΣ

ft) + ft vn (trSΣ))µΣ ,

and then the result is proved. �

In particular, form the transport theorem of Proposition 1.15.1, we get the
following formula for the rate of change of the total area of the flowing hyper-
surface

∂τ=t

∫
Flvτ,t(Σ)

µΣ =

∫
Σ

(vn trSΣ + divΣv||)µΣ

=

∫
Σ

vn trSΣ µΣ +

∫
∂Σ

v∂Σ µ∂Σ ,

which tells us that:

• The specific rate of change of the area of the flowing hypersurface is the
sum between the normal velocity of the flow times the mean curvature of
the hypersurface and the divergence of the parallel velocity on the surface.

• Alternatively the latter contribution may be globally interpreted as the
flux of the parallel velocity thru the boundary of the surface. It vanishes
if the hypersurface is closed (no-boundary).

1.15.7 Piola’s transform and Nanson’s formula
Piola’s transform Pϕ ∈ BL (TM ;TM) answers to the following question:
which is the vector whose flux is equal to the pull back of the flux of a given
vector? The flux of a vector v(x) ∈ TxM is, by definition, its contraction
with the assumed volume-form µ ∈ BL (TxMn ;<) . Hence, if the pull back
is performed according to a diffeomorphic map ϕ ∈ C1(M ; M) , the Piola’s
transform Pϕ(v) is pointwise defined by the formula:

µ (Pϕ(v)) := ϕ↓(µv) .
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Proposition 1.15.2 (Piola’s formula and identity) Piola’s transform of
a vector field v ∈ C1(M ;TM) is pointwise defined by the equivalent formula

Pϕ(v) = Jv ϕ↓v ,
and fulfills the differential property

divPϕ(v) = Jv (ϕ↓div v) = Jv (div v ◦ϕ) .

In the literature the former is usually referred to as Piola’s formula and the
latter as Piola’s identity, see e.g. [127].

Proof. The equivalence of the former formula follows from the definition ϕ↓µ =
Jv µ of the jacobian Jv = det(dϕ) and from the non-degeneracy of the volume
form: µ(v,a,b) = 0 , ∀a,b =⇒ v = 0 . Indeed, by the formula for the
pull-back of a contraction of Proposition ??:

ϕ↓(µ · v) = ϕ↓µ ·ϕ↓v = Jv µ ·ϕ↓v .
The latter property is simply the equality between the exterior derivatives of
the equality in Piola’s formula. Indeed the equality

div (Jv ϕ↓v)µ= d(µ (Jv ϕ↓v)) = d(ϕ↓(µv)) = ϕ↓d(µv)

= ϕ↓((div v)µ) = (ϕ↓div v)ϕ↓µ = Jv (div v ◦ϕ)µ ,

is implied by the commutativity between exterior derivative and pull-back. �

Piola’s formula may be expressed in an equivalent way, known as Nanson’s
formula, concerning the changes of the area-form of a hypersurface under a
diffeomorphism ϕ ∈ C1(M ; M) .

Proposition 1.15.3 (Nanson’s formula) The area-form µΣ of a hypersur-
face Σ ⊂ M in a Riemann manifold {M ,g} subject to a diffeomorphism
ϕ ∈ C1(M ; M) transforms according to the equivalent relations:

ϕ↓(gnϕ(Σ) ⊗ µϕ(Σ)) = ϕ↓(gnϕ(Σ))⊗ϕ↓µϕ(Σ) = Jv gnΣ ⊗ µΣ ,

(gnϕ(Σ) ◦ϕ)⊗ϕ↓µϕ(Σ) = Jv ϕ↑(gnΣ)⊗ µΣ = Jv g(dϕ−TnΣ)⊗ µΣ ,

(nϕ(Σ) ◦ϕ)⊗ϕ↓µϕ(Σ) = Jv (dϕ−TnΣ)⊗ µΣ ,

where nΣ and nϕ(Σ) are the unit normals to the hypersurfaces Σ and ϕ(Σ) .
The last equality is often referred to as Nanson’s formula in the literature.
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Proof. If {a,b} is a frame at TxΣ , then {nΣ,a,b} is a frame of TxM , so
that

µ(v,a,b) = 〈gnΣ,v〉µ(nΣ,a,b) = (gnΣ ⊗ µΣ)(v,a,b) , ∀v ∈ TxM .

Moreover, {nϕ(Σ),ϕ↑a,ϕ↑b} is a frame at Tϕ(x)M , so that

ϕ↓(gnϕ(Σ) ⊗ µϕ(Σ))(v,a,b) = (gnϕ(Σ) ⊗ µϕ(Σ))(ϕ↑v,ϕ↑a,ϕ↑b)

= g(nϕ(Σ),ϕ↑v)µϕ(Σ)(ϕ↑a,ϕ↑b)

= g(nϕ(Σ),ϕ↑v)µ(nϕ(Σ),ϕ↑a,ϕ↑b)

= µ(ϕ↑v,ϕ↑a,ϕ↑b) = Jv µ(v,a,b) .

The other formulas may be readily obtained by relying on the property that
an equality between tensor products of the same kind still holds if alteration
or push operations are performed on each of its members, and by recalling the
formula ϕ↑(gnΣ) = g(dϕ−TnΣ) provided in section ??. �

By acting both sides of the second of Nanson’s formulas on the normal
nϕ(Σ) we get the ratio between the hypersurface area-form and its pull-back:

ϕ↓µϕ(Σ) = Jv g(dϕ−TnΣ,nϕ(Σ))µΣ = Jv g(dϕ−1nϕ(Σ),nΣ)µΣ .

which, rewritten as

ϕ↓(µnϕ(Σ)) = ϕ↓µϕ(Σ) = Jv g(ϕ↓nϕ(Σ),nΣ)µΣ = µ(Jvϕ↓nϕ(Σ)) ,

is Piola’s formula with v = nϕ(Σ) .

The equivalence between Piola’s and Nanson’s formulas is apparent from
the fact that both stem from the very definition of the Jacobian.

1.15.8 Lamb’s formula
By taking the time-derivative of Nanson’s formula we get a well-known formula,
due to Lamb, which provides a tool for the evaluation of the rate of change of the
flux of a time-dependent vector field thru a hypersurface flowing in a euclidean
space. Lamb’s formula will be derived in the next Proposition 1.15.4 and the
consequent surface transport formula is contributed in Proposition 1.15.8.

A more general transport formula for a hypersurface flowing on a Riemann
manifold will be provided in Proposition 1.15.8. It may be adopted as an alter-
native to the one provided in Proposition 1.15.1.
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Figure 1.72: Horace Lamb (1849 - 1934)

Proposition 1.15.4 (Lamb’s formula) Let us consider a hypersurface Σ ⊂
M flowing in a euclidean space {M ,g} dragged by flow Flvτ,t ∈ C1(M ; M) .
Then

∂τ=t (nFlvτ,t(Σ) ◦ Flvτ,t)⊗ Flvτ,t↓µFlvτ,t(Σ) = ((div vt) I− dvTt ) nΣ ⊗ µΣ .

Proof. By differentiating Nanson’s formula with respect to time we get

∂τ=t ((nFlvτ,t(Σ) ◦ Flvτ,t)⊗Flvτ,t↓µFlvτ,t(Σ)) = ∂τ=t (JFlvτ,t
dFlvτ,t

−T
nΣ ⊗ µΣ)

= ((div vt) nΣ + ∂τ=t dFlvτ,t
−T

nΣ) ⊗ µΣ

= ((div vt) I− dvTt ) nΣ ⊗ µΣ ,

which is the result. �

A direct application of Lamb’s formula yields the surface transport formula.

Proposition 1.15.5 (Surface transport formula) Let us consider a hyper-
surface Σ ⊂M flowing in a euclidean space {M ,g} dragged by a flow Flvτ,t ∈
C1(M ; M) . Then, for any time-dependent vector field at ∈ C1(M ;TM) :

∂τ=t

∫
Flvτ,t(Σ)

g(nFlvτ,t(Σ),aτ )µFlvτ,t(Σ) =

∫
Σ

g(ȧt + ((div vt) I− dvt) at,nΣ)µΣ ,

where ȧt := ∂τ=t (aτ ◦ Flvτ,t) = ∂τ=t aτ + dat · vt .
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Proof. From the formula∫
Flvτ,t(Σ)

g(nFlvτ,t(Σ),aτ )µFlvτ,t(Σ) =

∫
Σ

g(nFlvτ,t(Σ) ◦ Flvτ,t,aτ ◦ Flvτ,t) Flvτ,t↓µFlvτ,t(Σ)

=

∫
Σ

((nFlvτ,t(Σ) ◦ Flvτ,t)⊗ Flvτ,t↓µFlvτ,t(Σ))(gaτ ◦ Flvτ,t) ,

taking the time-derivative, we get

∂τ=t

∫
Flvτ,t(Σ)

g(nFlvτ,t(Σ),aτ )µFlvτ,t(Σ) =

∫
Σ

(((div vt) I− dvTt ) nΣ ⊗ µΣ) gat

+

∫
Σ

(nΣ ⊗ µΣ) gȧt ,

and the result follows since g(at, dv
T
t · nΣ) = g(dvt · at,nΣ) . �

From the surface transport formula of Proposition 1.15.5, setting aτ =
nFlvτ,t(Σ) and hence at = nΣ , and observing that

g(nFlvτ,t(Σ),nFlvτ,t(Σ)) = g(nΣ,nΣ) = 1,

g(nΣ, ṅΣ) = 0 ,

we get the following formula for the rate of change of the global area of the
flowing hypersurface

∂τ=t

∫
Flvτ,t(Σ)

µFlvτ,t(Σ) =

∫
Σ

(div vt − g(dvt · nΣ,nΣ))µΣ ,

which tells us that

• The rate of change of the area of the flowing hypersurface is the integral
over the hypersurface of the difference between the volumetric dilatation-
rate induced by the flow and the dilatation-rate in the direction normal
to the hypersurface.

1.15.9 Hypersurface transport
Proposition 1.15.6 (Hypersurface transport formula) Let us consider a
hypersurface Σ ⊂M flowing in a manifold {M ,g} dragged by a flow Flvτ,t ∈
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C1(M ; M) . Then the rate of change of the flux thru Σ of any time-dependent
vector field at ∈ C1(M ;TM) is given by the formulas

∂τ=t

∫
Flvτ,t(Σ)

µaτ =

∫
Σ

µ(a′t + (div v) a + Lva) ,

=

∫
Σ

µa′t +

∫
Σ

d(µa)v +

∫
∂Σ

µav

=

∫
Σ

g(a′t + (div v) a + Lva ,nΣ)µΣ

=

∫
Σ

g(ȧt + (div v) a−∇av ,nΣ)µΣ ,

where a′t = ∂τ=t aτ is the partial time-derivative and ȧt := a′ + ∇va is the
covariant time-derivative with respect to a torsion-free connection.

Proof. By the transport formula we get

∂τ=t

∫
Flvτ,t(Σ)

µaτ =

∫
Σ

µa′t + Lv(µa) =

∫
Σ

µa′t + (Lvµ)a + µ(Lva) .

Then the first formula follows by the definition of divergence: Lvµ = (div v)µ .
The second formula stems from the homotopy formula:

Lv(µa) = d(µav) + d(µa)v ,

and Stokes’ theorem. The third formula is based on the equalities∫
Σ

µa′t =

∫
Σ

g(a′t,nΣ)µnΣ∫
Σ

µ(Lva) =

∫
Σ

g(Lva,nΣ)µnΣ ,

and the fourth, being
Lva = ∇va−∇av .

is valid for a torsion-free connection �
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Setting at = nΣ we infer the following result which generalizes Lamb’s
formula to Riemann manifolds.

Proposition 1.15.7 (Hypersurface area change) Let us consider a hyper-
surface Σ ⊂ M flowing in a Riemann manifold {M ,g} dragged by a flow
Flvτ,t ∈ C1(M ; M) . Then the rate of change of the global hypersurface area is
given by

∂τ=t

∫
Flvτ,t(Σ)

µΣ =

∫
Σ

(div v − 1
2 (Lvg)(nΣ,nΣ))µΣ

=

∫
Σ

(tr(∇v)− g((sym∇v)nΣ,nΣ))µΣ ,

Proof. Since nΣ doen’t depend explicitly on time, we have that n′Σ = 0 .
Moreover

2 g(LvnΣ,nΣ) = Lv(g(nΣ,nΣ))− (Lvg)(nΣ,nΣ) = −(Lvg)(nΣ,nΣ) ,

since g(nΣ,nΣ) = 1 , and the formula follows from Proposition 1.15.6. �

1.15.10 Surface transport
Proposition 1.15.8 (Surface transport formula) Let us consider a 2D sur-
face Σ ⊂ M flowing in a 3D Riemann manifold {M ,g} dragged by a flow
Flvτ,t ∈ C1(M ; M) . Then the rate of change of the flux thru Σ of a time-
dependent vector field at ∈ C1(M ;TM) is given by Helmholtz formula:

∂τ=t

∫
Flvτ,t(Σ)

µ · aτ =

∫
Σ

µ · (a′t + rot (a× v) + (div a) v) .

Proof. Recalling that
µ · a · v = g · (a× v) ,

d(µ · a) = (div a)µ ,

d(g ·w) = µ · (rot w) ,

setting w = a × v and substituting in the transport formula of Proposition
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1.15.6 rewritten as

∂τ=t

∫
Flvτ,t(Σ)

µ · aτ =

∫
Σ

µ · a′t +

∫
Σ

d(µ · a) · v +

∫
∂Σ

µ · a · v

=

∫
Σ

µ · a′t +

∫
Σ

d(µ · a) · v +

∫
Σ

d(µ · a · v) ,

we get the result. �
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Chapter 2

Dynamics

2.1 Introduction
Classical dynamics may be conventionally considered to be born about 1687
with Newton’s Principia and grew up to a well-established theory in the fun-
damental works on the subject by Euler, Lagrange, Hamilton and Jacobi
during the XVIII century and the first half of the XIX century. Euler’s law
refers to motions of arbitrary bodies in the eucliden space but, in most modern
textbooks, the presentation of the foundations of dynamics is still developed
in the spirit of rigid body dynamics and with reference to finite dimensional
systems [8]. Extensions to continuous systems are illustrated in [2], [127], [3] by
assuming that the configuration manifold is modeled on a Banach space. Any-
way these treatments essentially reproduce the formal structure of the dynamics
of finite dimensional systems with suitable technical changes required by func-
tional analysis. The point of view followed in the present treament is described
hereafter. The Euler-Cauchy model of continua, which is the worldwide stan-
dard, requires to build up the axiomatics of classical dynamics as a discipline
which investigates the motions of continuous bodies in the eucliden space, pos-
sibly subject to kinematical constraints which are assumed to describe a fibered
manifold of admissible states. In the definition of dynamical equilibrium the
test fields are isometric fields of virtual velocities of the body, according to the
point of view expressed by Johann Bernoulli in a famous letter to Pierre
Varignon dated 1717 . The assumption concerning the isometry of test fields
of virtual velocities expresses the basic physical idea that equilibrium is indepen-
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dent of the material which a body is made of, and the virtuality of the test fields
means that equilibrium does not take into account the time dependency of the
constraints defining the manifold of admissible states. It is then apparent that,
to comply with the original ideas of the old masters, it is compelling to express
the condition of dynamical equilibrium in variational form. We choose to take
Hamilton’s action principle, inspired by earlier ideas by Fermat and Huygens
in optics, as the basic axiom of dynamics since it has the pleasant flavour of an
extremality property and, much more than this, it leads in a natural and direct
way to the most general formulation of Lagrangian dynamics. In this respect we
quote from [1], Part II Analytical Dynamics, section 3.8 Variational Principles
in Mechanics, the following opinion: Historically, variational principles have
played a fundamental role in the evolution of mathematical models in mechanics
but in the last few sections we have obtained the bulk of classical mechanics with-
out a single reference to the calculus of variations. In principle, we may envision
two equivalent models for mechanics. In the first, we may take the Hamiltonian
or Lagrangian equations as an axiom and, if we wish, obtain variational prin-
ciples as theorems. In the second, we may assume variational principles and
derive the Hamiltonian or Lagrangian equations as theorems. We prefer the
first because it is quite difficult to be rigorous in the calculus of variations, and
in practise, the variational principles are not necessary to the prediction of the
model. In fact, in the model-theoretic view, we consider the variational prin-
ciples important primarily to the inductive formation of the theory. After this
most basic function, they do not have a crucial role within the theory. Probably,
this point of view, shared by other authoritative authors, has contributed to the
wide acceptance of the classical Lagrange’s and Hamilton’s equations of mo-
tion as the starting point for subsequent developments of the theory. But, apart
from personal tastes, there is a drawback shared by most usual presentations of
the fundamentals of dynamics. In fact, Lagrange’s equations, either assumed
as axioms or derived as differential conditions equivalent to Hamilton’s action
principle, are always formulated in coordinates since their expression involve
partial derivatives which are well-defined in a linear space. On the other hand,
Hamilton’s equations have been translated in invariant form on a manifold [2],
[8], [127], but their explicit expression is always given in coordinates. Moreover,
Lagrange’s and Hamilton’s equations are both written in a non-variational
form so that their validity is restricted to rigid body dynamics or more generally
to perfect dynamical systems (see section 2.1.9 for the definition). Our original
plan was to find an explicit expression of the fundamental one-form appearing
in Hamilton’s equations without any recourse to coordinates. This goal has
been achieved by a recourse to concepts of calculus on manifolds, the suitable
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mathematical tool for dynamics of continuous systems undergoing motions in
a nonlinear configuration manifold. A detailed account of the basic concepts,
due to Marius Sophus Lie, Henri Poincaré and Elie Cartan has been
provided in chapter 1 and may be found in [2], [34], [8], [221], [127], [216].

In section 2.1.2 we provide an abstract statement of the action principle as
a stationarity condition for a signed-length of a path in which the variations
are left free to move the end points. In deriving the differential condition of
stationarity the Reynolds transport theorem, the Ampère-Hankel-Kelvin
transform, usually dubbed Stokes’s formula, and its expression in terms of dif-
ferential forms due to Poincaré, the Cartan’s magic formula and the Palais’
formula for the exterior derivative of a differential one-form, are the playmates.
In the remaining sections the abstract theory is applied to continuum dynam-
ics.velocity Hamilton’s action principle is restated in variational terms by in-
troducing a lagrangian one-form in the velocity-time phase-space, and the sta-
tionarity condition is expressed in terms of its exterior derivative. The general
variational law of dynamics is derived by providing an explicit expression of the
exterior derivative of the one-form in terms of the Lagrangian of the system. To
get the result, the key property is the tensoriality of the exterior derivative so
that Palais’ formula [163] may be applied by envisaging an expedient extension
of the time-velocity of the trajectory at the actual configuration-velocity point
in the velocity phase-space. The new form of the law of dynamics provides the
most general formulation of the governing rules in terms of the Lagrangian of
the system and, to the author’s knowledge, is not quoted in the literature. A
generalized version of the celebrated Noether’s theorem [154] on symmetry of
the Lagrangian and invariance along the trajectory is implied as an immediate,
simple corollary. Remarkably, the expression of the general law of dynamics
requires no special connection to be defined on the configuration manifold. In
section 2.3 we show that, if the configuration manifold is endowed with an affine
connection, the general law of dynamics may be rewritten in terms of the fiber
derivative and the base derivative of the Lagrangian and that the standard La-
grange’s form is recovered, if the torsion of the connection vanishes. The proof
of this result is enlighting since it reveals that the steps of reasoning could be
followed backwards to get the general law of dynamics from the classical La-
grange’s expression. However a direct discovery of the right back-steps appear
to be much harder to envisage than the opposite direct-step reasoning. This
is likely the reason why this track has not been followed before. The defini-
tion of the base derivative of a functional on the tangent bundle according to
a given parallel transport, is an original idea and provides the key tool to get
results independent of coordinates. It is thus possible to prove the equivalence
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between Lagrange’s and Hamilton’s formulations by showing that the sum
of the base derivatives of the Lagrangian and the Hamiltonian vanishes for any
chosen connection.

Only after having obtained these results, I realized that the general law of
dynamics can be reached, in a by far simpler way, by a skillful reformulation
of Hamilton’s action principle in which the assumption of fixed initial and
final configurations is substituted by a proper boundary term. The way to
such a reformulation is however revealed by a less direct analysis performed
by the tools of calculus on manifolds. This fact could explain why a simple
proof of a generalized Noether’s theorem was not envisaged before. A main
innovative feature of the analysis developed in the present paper is the explicit
introduction of the rigidity constraint from the very beginning. This is in the
spirit of the basic definition of dynamical equilibrium. To take account of the
rigidity constraint, it is compelling to state principles and laws of dynamics in
variational form and this leads, in addition, to develop a completely general and
coordinate-free theory.

2.1.1 Tools from calculus on manifolds
When dealing with a nonlinear manifold, most usual rules of calculus in linear
spaces are no more available and the general concepts and methods of calculus
on manifolds must be resorted to [2], [34], [48], [221], [127], [3], [171], [99].
Manifolds are nonlinear geometrical entities which are locally linear. This means
that they admit a covering made of intesecting open subsets which are mapped
by diffeomorphic charts onto open sets of a Banach space, a complete normed
linear space. Each local chart endows the related open subset of the manifold of
the induced topology and an atlas of compatible charts provides a topology for
the whole manifold. Anyway, physically meaningful concepts and results must
be independent of the recourse to a particular description by means of charts. A
theoretical approach which does not make reference to charts is then appealing
to get directly physically significant results. The first issue to be stressed is
that at each point of a nonlinear manifold there is an attached tangent space.
Since linear operations are only defined on vectors of the same tangent space,
vectors belonging to tangent spaces at distinct points cannot be compared one-
another, unless a special way of connecting vectors in distinct tangent spaces is
defined. This is the concept of connection or parallel transport on a manifold.
Each local chart induces on the manifold a distant parallel transport which is
inherited by the translational transport in the linear model space. The trouble
is that there is not a unique way to endow a manifold with a connection. As a
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significant example, we quote the dynamical notion of acceleration which makes
sense in a euclidean space since it is tacitly understood that the connection is
provided by the standard translation operation. In a nonlinear configuration
manifold the notion of acceleration depends on the choosen connection. To
get rid of this choice, we have to consider a parametrized curve of velocities,
which are pairs of base points and vectors of the relevant tangent space, and to
compute the tangent vector at each point of the curve. Another issue concerns
integration over nonlinear manifolds which is properly defined for volume-forms
on compact subsets of a finite dimensional submanifold. Volume forms are
alternating k-linear scalar-valued functions defined on the tangent spaces to
a kD submanifold. Since fundamental concepts of continnum dynamics are
defined in terms of integrals over finite dimensional submanifols of the ambient
manifold, a variational approch is compelling and natural because it leads to
integration of volume forms. Integration of tensor fields, which do not take
point-values on a given linear space when evaluated on a basis of tangent vectors,
is meaningless, being addition of their values not defined. A variational approach
leads naturally to integration of volume forms. After these general premises, we
summarize hereafter concepts, results and notations of calculus on manifolds
which will be referred to in the sequel. We consider a non-finite dimensional
differentiable manifold M modeled on a linear Banach’s space E . The tangent
bundle TM is the collection of the tangent spaces at the points of M and
the dual cotangent bundle T ∗M is the collection of the cotangent spaces, i.e.
of the linear spaces of bounded linear forms on the tangent spaces. Push-
forward and its inverse, the pull-back, of scalar, vector and tensor fields due
to a diffeomorphism ϕ ∈ C1(M ; M) are respectively denoted by ϕ↑ and ϕ↓ .
The usual notation in differential geometry is ϕ∗ = ϕ↑ and ϕ∗ = ϕ↓ but then
too many stars appear in the geometrical sky (duality, Hodge operator). A
dot · denotes linear dependence on subsequent arguments and the crochet 〈 , 〉
denotes a duality pairing. The variational analysis performed in this paper is
mainly based on the following tools of calculus on manifolds which have been
illustrated in chapter 1. The first tool is the Poincaré-Stokes’ formula which
states that the integral of a differential (k − 1)-form ωk−1 on the boundary
chain ∂Σ of a kD submanifold Σ of M is equal to the integral of its exterior
derivative dωk−1 , a differential k-form, on Σ i.e.∫

Σ

dωk−1 =

∮
∂Σ

ωk−1 .
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The second tool is Lie’s derivative of a vector field w ∈ C1(M ;TM) along a
flow ϕλ ∈ C1(M ; M) with velocity v = ∂λ=0ϕλ ∈ C1(M ;TM) :

Lvw = ∂λ=0 (ϕλ↓w) ,

which is equal to the antisymmetric Lie-bracket: Lvw = [v,w] = −[w,v]
defined by: d[v,w]f = dvdwf − dwdvf , for any f ∈ C2(M ;<) .

The Lie derivative of a differential form ωk ∈ C1(M ; Λk(TM)) is similarly
defined by Lvω

k = ∂λ=0 (ϕλ↓ωk) . The third tool is Reynolds’ transport
formula:∫

ϕλ(Σ)

ωk =

∫
Σ

ϕλ↓ωk =⇒ ∂λ=0

∫
ϕλ(Σ)

ωk =

∫
Σ

Lv ω
k ,

and the fourth tool is the extrusion formula

∂λ=0

∫
ϕλ(Σ)

ωk =

∫
Σ

(dωk)v +

∫
∂Σ

ωkv ,

and the related Cartan’s magic formula (or homotopy formula):

Lv ω
k = (dωk)v + d(ωkv) ,

where the (k − 1) -form ωkv = ωk · v is the contraction performed by taking
v as the first argument of the form ωk . The homotopy formula may be readily
inverted to get Palais formula for the exterior derivative. Indeed, by Leibniz
rule for the Lie derivative, we have that, for any two vector fields v,w ∈
C1(M ;TM) :

dω1 · v ·w = (Lv ω
1) ·w − d(ω1v) ·w

= dv (ω1w)− ω1 · [v,w]− dw (ω1v) .

The expression at the r.h.s. of Palais formula fulfills the tensoriality criterion,
as quoted in Lemma 1.2.1 on page 28. A proof may be found in [221], [99]. The
exterior derivative of a differential one-form is thus well-defined as a differential
two-form, since its value at a point depends only on the values of the argument
vector fields at that point.

The same algebra may be repeatedly applied to deduce Palais formula for
the exterior derivative of a k-form.
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2.1.2 Abstract results
Let a status of the system be described by a point of a manifold M , the state
space. In both theory and applications, there are many instances in which it is
compelling to consider fields which are only piecewise regular on M . To this
end, we give the following

Definition 2.1.1 A patchwork Pat(M) on M is a finite family of disjoint
open subsets of M such that the union of their closures is a covering of M .
The closure of each subset in the family is called an element of the patchwork.

The disjoint union of the boundaries of the elements, deprived of the boundary of
M , is the set of singularity interfaces sing(M) associated with the patchwork
Pat(M) . A field is said to be piecewise regular on M if it is regular, say C1 ,
on each element of a patchwork on M which is called a regularity patchwork.

In the family of all patchworks on M we may define a partial ordering by
saying that a patchwork Pat1 is finer than a patchwork Pat2 if every element
of Pat1 is included in an element of Pat2 .

Given two patchworks it is always possible to find a patchwork finer than
both by taking as elements the nonempty pairwise intersections of their ele-
ments. This property is expressed by saying that the family of all patchworks
on M is an inductive set.

Then, let Pat(I) be a time-patchwork, that is a patchwork of a time interval
I . The evolution of the system along a piecewise regular trajectory Γ : I →M
is assumed to be governed by a variational condition on the line integral of a
piecewise regular differential one-form ω1 ∈ Λ1(M ;<) .

We assume, without loss in generality, that the trajectory Γ : I → M is
regular in each element of the time-patchwork Pat(I) .

The test fields for the variational condition are vector fields belonging to a
subbundle test(M) ⊂ TM , called the test-subbundle. The restriction of the
test-subbundle test(M) ⊂ TM to Γ := Γ(I) ⊂M is denoted by test(Γ) .

The trial fields for the variational condition are vector fields belonging to a
subbundle trial(Γ) ⊂ TΓ , called the trial-subbundle.

As a rule, the test bundle is a subbundle of the trial bundle, that is:

test(Γ) ⊆ trial(Γ) .

Equality holds in perfect dynamical systems, see Section 2.1.9.
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2.1.3 Action Principle and Euler conditions
Definition 2.1.2 (Action integral) The action integral, of a piecewise regu-
lar path Γ : I →M in the state-space, is the line integral, along the 1D chain
Γ := Γ(I) , of the action one-form: ∫

Γ

ω1 .

A general statement of the action principle requires to define properly the virtual
flows along which the trajectory is assumed to be varied.

To this end we denote by TΓM the bundle which is the restriction of the
tangent bundle TM to the path Γ .

Definition 2.1.3 (Virtual flows) The virtual flows of Γ are flows ϕλ ∈
C1(Pat(M) ; Pat(M)) whose velocities vϕ ∈ TΓM are tangent to interelement
boundaries of the patchwork Pat(M) .

Velocities of the virtual flows are called virtual velocities. The linear space of
virtual velocities at Γ will be denoted by Virt(Γ) . The linear space of virtual
velocities at Γ taking value in the test subbundle will be denoted by test(Γ) .

Definition 2.1.4 (Action principle) A trajectory of the system governed by
a piecewise regular differential one-form ω1 on M , is a piecewise regular path
Γ : I →M such that the action integral meets the variational condition:

∂λ=0

∫
ϕλ(Γ)

ω1 =

∮
∂Γ

ω1 · vϕ ,

for all virtual flows ϕλ ∈ C1(M ; M) whose velocities vϕ = ∂λ=0ϕλ ∈ test(Γ)
take values in the test subbundle.

This means that the initial rate of increase of the ω1-length of the trajectory
Γ along a virtual flow is equal to the outward flux of virtual velocities at end
points. Denoting by x1 and x2 the initial and final end points of Γ , we have
that ∂Γ = x2 − x1 (a 0-chain) and the boundary integral may be written as∮

∂Γ

ω1 · vϕ = (ω1 · vϕ)(x2)− (ω1 · vϕ)(x1) .

The action principle is purely geometrical since it characterizes the trajectory
Γ to within an arbitrary reparametrization.
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In geometrical optics the action principle is Fermat principle, the action
functional is the eikonal functional and its level sets are light wave-fronts. Ele-
mentary waves are wave fronts emerging from a single point at a given instant.
Huygens theorem in optics states that wave-fronts can be obtained as the en-
velopes of the elementary waves issuing, at one instant, from each point of a
given wave-front (see e.g. [94],[8]). A detailed account of the variational ap-
proach to geometrical optics will be given in Section 2.5. The translation of
these concepts to mechanics is due to Hamilton.

We owe to Jacobi the observation that this point of view provides an ef-
fective tool in determining the evolution of a mechanical system and the de-
velopment of what is still considered the most powerful method of solution of
dynamical problems [8]. The stationarity of the action integral is a problem of
calculus of variations on a nonlinear manifold. A necessary and sufficient dif-
ferential condition for a path to be a trajectory is provided by the next theorem
and will be called the Euler’s condition. The classical result of Euler deals
with regular paths and fixed end points and is formulated in coordinates.

The new statement, introduced below, deals with the more general case of
non-fixed end points and piecewise regular paths, so that stationarity is ex-
pressed in terms of differential and jump conditions. Moreover, the formulation
is coordinate-free and relies on the notion of exterior derivative [48, 3].

The author became recently aware of a 1938 paper [237] by P. Weiss where
non-fixed end points in the action principle were considered. Our development
was independently performed before Weiss treatment, dealing with regular dy-
namics in finite dimensions and with arbitrary test fields, were brought to our
attention through the quotation in [63].

Theorem 2.1.1 (Euler’s conditions) A path Γ : I → M is a trajectory if
and only if the tangent vector field vΓ ∈ C1(Pat(Γ) ; trial(Γ)) meets, in each
element of a regularity patchwork Pat(Γ) , the differential condition

dω1 · vΓ · vϕ = 0 , vΓ ∈ trial(Γ) ∀vϕ ∈ test(Γ) ,

and, at the singularity interfaces sing(Γ) , the jump conditions

[[ω1 · vϕ]] = 0 , ∀vϕ ∈ test(Γ) .

Proof. By applying the extrusion formula in each element of the regularity
partition we get

∂λ=0

∫
ϕλ(Γ)

ω1 −
∮
∂Γ

ω1 · vϕ =

∫
Pat(Γ)

dω1 · vϕ −
∫
sing(Γ)

[[ω1 · vϕ]] ,
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so that the action principle writes∫
Pat(Γ)

dω1 · vϕ =

∫
sing(Γ)

[[ω1 · vϕ]] , ∀vϕ ∈ test(Γ) .

Then, by the fundamental theorem of the calculus of variations, we get the
result. Indeed, let us assume that the path Γ be parametrized by s ∈ I and
let vΓ ∈ C1(Γ ;TΓ) be the velocity field along the path, so that:∫
Pat(Γ)

dω1 ·vϕ−
∫
sing(Γ)

[[ω1 ·vϕ]] =

∫
Pat(I)

dω1 ·vϕ ·vΓ ds−
∫
sing(Γ)

[[ω1 ·vϕ]] .

If the differential and jump conditions are fulfilled, the action principle holds.
Conversely, if dω1 ·vΓ ·vϕ 6= 0 at a point inside an element P ∈ Pat(Γ) of the
regularity partition, by continuity of dω1 ·vΓ ·vϕ , we could take vϕ ∈ test(Γ)
such that dω1 · vϕ · vΓ > 0 on an open segment U ⊂ Γ around that point
and dω1 · vϕ · vΓ = 0 on P\U . Hence

∫
Pat(Γ)

(dω1) · vϕ > 0 , contrary to the
assumption. The vanishing of the jumps follows by a simple argument. �

Euler’s conditions show that the geometry of the trajectory is uniquely
determinate if the exact two-form dω1 has a 1D kernel at each point. This is
the basic assumption to ensure local existence and uniqueness of the trajectory
through a point of the state-space.

The next proposition states that the action principle and the Euler’s con-
ditions are preserved if the state-space is changed into another one by a diffeo-
morphic transformation.

Proposition 2.1.1 (Invariance under a diffeomorphism) If the manifolds
M and N are related by a diffeomorphic tranformation ξ ∈ C1(M ;N) , then
the action principle and the related Euler condition for the trajectory Γ ⊂M :

∂λ=0

∫
ϕλ(Γ)

ω1 =

∫
∂Γ

ω1 · vϕ ⇐⇒ dω1 · vΓ · vϕ = 0 , ∀vϕ ∈ test(Γ) ,

are identical to the action principle and the related Euler condition for the
trajectory ξ(Γ) ⊂ N :

∂λ=0

∫
(ξ◦ϕλ)(Γ)

ξ↑ω1 =

∫
∂ξ(Γ)

ξ↑ω1 · ξ↑vϕ ⇐⇒ d(ξ↑ω1) · ξ↑vΓ · ξ↑vϕ = 0 .
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Proof. The equality of the integrals follows from the formula for the change
of variables since ξ(∂Γ) = ∂ξ(Γ) . Moreover, by the naturality of the exterior
derivative with respect to the push, we have that:

d(ξ↑ω1) · ξ↑vΓ · ξ↑vϕ= ξ↑(dω1) · ξ↑vΓ · ξ↑vϕ
= ξ↑(dω1 · vΓ · vϕ) ,

and this proves the equivalence. Alternatively the proof could be carried out in
terms of integrals by the formula for the change of domain of integration. �

Remark 2.1.1 The local conditions are necessary and sufficient for the ful-
filment of the action principle under various boundary conditions. Indeed the
equivalence∫

Γ

dω1 · vϕ = 0 ⇐⇒ dω1 · vΓ · vϕ = 0 , ∀vϕ ∈ test(Γ) ,

still holds when the test space test(Γ) is substituted by any linear subspace
which contains the space C∞0 (Γ ; test(Γ)) of indefinitely differentiable test vec-
tor fields vanishing in a neighbourhood of the end points. However, the assump-
tion that the field vϕ ∈ test(Γ) vanishes at each endpoint of Γ , usually made
in stating the action principle on a manifold (see e.g. [48]), is needlessly special,
unsatisfactory from the epistemological point of view (see remark 2.2.3) and not
adequate to deal with singular points in the trajectory.

The next results, which are direct consequences of Theorem 2.1.1, deal with a
regular trajectory on a regular manifold M . By the skew symmetry of the form
dω1 , it can be assumed, without loss of generality, that the virtual velocity field
vϕ ∈ C1(Γ ; test(Γ)) is transversal to Γ , i.e. nowhere tangent to Γ .

Theorem 2.1.2 (Symmetry condition) The differential condition of extremal-
ity fulfilled by Γ ⊂M may be equivalently expressed by the following symmetry
condition to hold on Γ , for any vϕ ∈ C1(Γ ; test(Σ))

dvΓ
(ωk · v̂ϕ) = dvϕ(ωk · v̂Γ) ,

where the vector field v̂ϕ ∈ C1(M ;TM) is any extension of the transver-
sal virtual velocity field vϕ ∈ C1(Γ ; test(Γ)) to a tubular neighbourhood of
Γ and the vector field v̂Γ ∈ C1(M ;TM) is the transversal extension of the
trajectory velocity vΓ ∈ C1(Γ ; (TxΓ)k) performed by pushing along the flow
ϕλ ∈ C1(M ; M) generated by the transversal field v̂ϕ ∈ C1(M ;TM) .
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Proof. The result follows from Theorem 2.1.1 by a direct application of Palais
formula for the exterior derivative of one-forms (see Section 1.9.12):

dω1 · vϕ · vΓ = dvϕ (ω1 · v̂Γ)− dvΓ
(ω1 · v̂ϕ)− ω1 · [v̂ϕ , v̂Γ] .

The extension of vΓ , by push along the flow ϕλ ∈ C1(M ; M) generated by
the chosen extension of vϕ ∈ C1(Γ ; test(Γ)) , implies that [v̂ϕ , v̂Γ] = 0 . �

By the symmetry property of Theorem 2.1.2 it follows that, on the trajectory,
the derivative dvϕ(ωk · v̂Γ) is independent of the extension v̂ϕ ∈ C1(M ;TM)
to a tubular neighbourhood of Γ , since the derivative dvΓ

(ωk · v̂ϕ) = dvΓ
(ωk ·

vϕ) depends only on the field vϕ ∈ C1(Γ ; test(Γ)) .
As a special case we get the following result.

Theorem 2.1.3 (Abstract Noether’s theorem) The fulfillment of the sta-
tionarity property dvϕ (ω1 · v̂Γ) = 0 at a point of Γ implies that the functional
ω1 · v̂ϕ is stationary along the trajectory Γ at that point and vice versa, i.e.

dvϕ(ω1 · v̂Γ) = 0 ⇐⇒ dvΓ
(ω1 · v̂ϕ) = 0 .

In the literature on Physics, an invariance property, implying the stationarity
property dvϕ(ω1 · v̂Γ) = 0 , is usually referred to as a symmetry property.

Figure 2.1: Emmy Amalie Noether (1882 - 1935)

2.1.4 Multidimensional Action Principle
A more general action principle can be formulated for a k-form over the n-
dimensional ambient manifold M and a flying k-dimensional submanifold Σ ,
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with n > k . The condition of extremality is expressed by:

∂λ=0

∫
ϕλ(Σ)

ωk =

∮
∂Σ

ωk · vϕ .

Let us denote by vΣ(x) ∈ (TxΣ)k a k-vector vΣ(x) = (v1(x),v2(x), . . . ,vk(x))
where vi(x) ∈ TxΣ are linearly independent vectors. A direct extension of the
treatment in the previous section leads to Euler’s differential condition on Σ :

dωk · vϕ · vΣ = 0 , vΣ ∈ trial(Σ) , ∀vϕ ∈ test(Σ) ,

and, at the (k − 1)-dimensional singularity interfaces sing(Σ) , to the jump
conditions

[[ωk · vϕ · vsing]] = 0 , ∀vsing ∈ sing(Σ) , ∀vϕ ∈ test(Σ) ,

where vsing(x) is any (k−1)-vector whose elements are tangent to the (k−1)-
dimensional singularity interface sing(Σ) . By the skew symmetry of the (k+1)-
form dωk , it can be assumed, without loss of generality, that the virtual velocity
field vϕ ∈ C1(Σ ; test(Σ)) is transversal to Σ , that is nowhere tangent to Σ .

Let us now consider on Σ a natural frame

vΣ = (v1,v2, . . . ,vk) ∈ C1(Σ ; (TxΣ)k) ,

and a transversal virtual velocity field vϕ ∈ C1(Σ ;TΣM) on Σ . We extend
vϕ ∈ C1(Σ ;TΣM) to a vector field v̂ϕ ∈ C1(M ;TM) , defined in a tubular
neighborhood of Σ . Then the transversal extension v̂Σ ∈ C1(M ; (TM)k)
of the natural frame vΣ = (v1,v2, . . . ,vk) ∈ C1(Σ ; (TΣ)k) is performed by
pushing the base vectors along the flow Fl

v̂ϕ
λ ∈ C1(M ; M) generated by the

transversal field v̂ϕ ∈ C1(M ;TM) .
By virtue of the tensoriality of the exterior derivative, Palais formula gives,

on Σ :

dωk · vΣ · vϕ = dvΣ
(ωk · vϕ)− dvϕ(ωk · v̂Σ)− ωk · [v̂Σ , v̂ϕ] ,

where, by definition:

[v̂Σ , v̂ϕ] :=
∑
j=1,k

(−1)j ([v̂ϕ , v̂j ], v̂1, . . . , v̂k)j .

The special extension of vΣ = (v1,v2, . . . ,vk) ∈ C1(Σ ; (TΣ)k) ensures that all
the multivectors at the r.h.s. of the previous formula have a null first component.
If follows that ωk · [v̂Σ , v̂ϕ] = 0 and hence that

dωk · vΣ · vϕ = dvΣ(ωk · vϕ)− dvϕ(ωk · v̂Σ) .
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Then Euler’s differential condition:

(dωk −α(k+1)) · vΣ · vϕ = 0 , vΣ ∈ C1(Σ ; (TΣ)k) , ∀vϕ ∈ C1(Σ ;TΣM) ,

leads to the following equivalent formulation.

Theorem 2.1.4 (Multidimensional symmetry condition) The differential
condition of extremality on Σ ⊂ M is equivalently expressed by the symmetry
condition

dvΣ
(ωk · vϕ) = dvϕ(ωk · v̂Σ) +α(k+1) · vΣ · vϕ ,

to hold for any vϕ ∈ C1(Σ ; test(Σ)) . The vector field v̂Σ ∈ C1(U(Σ) ;TM) is
the transversal extension of the natural frame vΣ = (v1,v2, . . . ,vk) ∈ C1(Σ ; (TΣ)k)
performed by pushing the basis vectors along the flow ϕλ ∈ C1(M ; M) generated
by the transversal field v̂ϕ ∈ C1(M ;TM) which is extension of the transversal
virtual velocity field vϕ ∈ C1(Σ ; test(Σ)) to a tubular neighbourhood of Σ .

The same result in the special case k = 1 has been first enunciated in [207].
Proof. The result follows from Theorem 2.1.1 by a direct application of Palais
formula for k-forms (see Section 1.9.12) setting v0 = vϕ :

dωk(v0,v1, . . . ,vk) :=
∑
i=0,k

(−1)i dvi (ωk(v̂0, v̂1, . . . , v̂k)i)

+
∑
i,j=0,k
i<j

(−1)i+j (ωk([v̂i , v̂j ],v0,v1, . . . ,vk)i,j) ,

where the superimposed ˆ denotes an extension of the vector to a vector field
to a neighbourhood of the base point, the subscript ()i means that the i-th
term in the parenthesis is missing and the subscript ()i,j means that the i-
th and j-th terms are missing. Indeed, by the naturality of the frame, the Lie
brackets [v̂i , v̂j ] vanish on Σ for any 1 ≤ i < j ≤ k . Moreover, the transversal
extension of the natural frame vΣ = (v1,v2, . . . ,vk) ∈ (TxΣ)k , by pushing its
vectors along the transversal flow ϕλ ∈ C1(M ; M) , implies that [v̂0 , v̂i] = 0
for 1 ≤ i ≤ k . Then the second term at the r.h.s. of Palais formula vanishes
and the first one may be written as∑
i=0,k

(−1)i dvi (ωk(v̂0, v̂1, . . . , v̂k)i) = dv0
(ωk(v̂1, v̂2, . . . , v̂k))

+
∑
i=1,k

(−1)i dvi ((ωk · v̂0)(v1, . . . ,vk)i)

= dv0
(ωk · v̂Σ)− dΣ(ωk · v̂0) · vΣ .
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The last equality follows from Palais formula for k-forms taking into account
that the brackets [v̂i , v̂j ] vanish identically on Σ so that the exterior derivative
dΣ on Σ of the (k − 1)-form ωk · v̂0 is given by

dΣ(ωk · v̂0)(vΣ) := −
k∑
i=1

(−1)idvi ((ωk · v̂0)(v̂1, . . . , v̂k)i) .

Hence, setting dvΣ(ωk · v̂0) := dΣ(ωk · v̂0)(vΣ) , the result follows. �

By the symmetry property of Theorem 2.1.4 it follows that the derivative
dvϕ(ωk · v̂Σ) is independent of the extension v̂ϕ ∈ C1(M ;TM) to a tubular
neighbourhood of Σ , since the exterior derivative dvΣ(ωk · v̂ϕ) = dvΣ(ωk ·vϕ)
depends only on the field vϕ ∈ C1(Σ ; test(Σ)) .

As a simple corollary we get the multidimensional version of Noether’s the-
orem. To express, the symmetry condition of Theorem 2.1.4 and the next multi-
dimensional Noether’s theorem 2.1.5, in terms of a divergence, we resort to the
following formula for the divergence on Σ of a vector field vϕ ∈ C1(Σ ;TM) ,
with respect to the k-form ωk ∈ Λk(Σ ;<) , (see Section 1.9.14):

(divΣvϕ)ωk := dΣ(ωk · vϕ) .

Theorem 2.1.5 (Multidimensional Noether’s theorem) The fulfillment of
the stationarity property dvϕ(ωk · vΣ) = 0 for a non-singular form ωk of
the scalar field ωk · vΣ on Σ implies the vanishing of the divergence field
divΣvϕ ∈ C0(Σ ; Fun(Σ)) on Σ and vice versa, i.e.

dvϕ(ωk · vΣ) = 0 ⇐⇒ (divΣvϕ)ωk = 0 .

2.1.5 Abstract force forms
Let us consider the bundle TΓM which is the restriction of the tangent bundle
TM to the path Γ and a differential two-form α2 on TΓM , the regular-force-
form, which provides an abstract description of a possibly non-potential system
of forces acting along the trajectory.

The force-form α2 is said to be potential if it is defined on a neighbourhood
U(Γ) ⊂M of the path and there is exact.

This amounts to assume that there exists a differential one-form β1 ∈
C1(M ;U(Γ)) such that α2 = dβ1 , where d is the exterior differentiation.
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We consider also a differential one-form α1 on Tsing(Γ)M , the impulsive-
force-form, which provides an abstract description of an impulsive system of
forces acting at singular points on the trajectory.

The expression of the force-forms for mechanical system are provided in
section 2.2.8.

Definition 2.1.5 (Action principle) A trajectory Γ ⊂M of the system is a
piecewise regular path Γ ∈ C1(Pat(I) ; M) such that the action integral meets
the variational condition:

∂λ=0

∫
ϕλ(Γ)

ω1 =

∫
∂Γ

ω1 · vϕ +

∫
Γ

α2 · vϕ +

∫
sing(Γ)

α1 · vϕ ,

for all flows ϕλ ∈ C1(M ; M) with initial velocity vϕ ∈ test(Γ) .

Theorem 2.1.6 (Euler’s conditions) A path Γ ⊂M is a trajectory if and
only if the tangent vector field vΓ ∈ C1(Pat(Γ) ;TΓ) meets, in each element of
a regularity partition Pat(Γ) , the differential condition

(dω1 −α2) · vΓ · vϕ = 0 , ∀vϕ ∈ test(Γ) .

and, at the singularity interfaces sing(Γ) , the jump conditions

[[ω1 · vϕ]] = α1 · vϕ , ∀vϕ ∈ test(Γ) .

2.1.6 Continuum vs rigid-body dynamics
The abstract theory concerning the action principle may be applied to contin-
uum mechanics by envisaging a suitable phase-space to describe motions.

A continuous body is identified with an open, connected, reference domain
B ⊂ S embedded in the euclidean space {S ,g} .

A configuration χ ∈ C1(B;S) of a continuous body B ⊂ S is an injective
map with the property of being a diffeomorphic transformation onto its range.
The configuration-space C is assumed to be a differentiable manifold modeled
on a Banach space.

The velocity phase-space is the tangent bundle TC and the covelocity phase-
space is the cotangent bundle T ∗C .

The velocity-time state-space is TC × I , is the cartesian product of the
velocity-space TC and an open time interval I , and the covelocity-time state-
space is T ∗C× I .
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These two state-spaces are respectively adopted in the Lagrangian and the
Hamiltonian descriptions of dynamics. Vectors tangent to the velocity-time
state-space TC × I are in the bundle TTC × TI whose elements are pairs
{X(v) ,Θ(t)} ∈ TvTC× TtI .

Denoting by τC ∈ C1(TC ;C) the projector on the base manifold, the
velocity of the configuration τC(v) ∈ C , corresponding to a tangent vec-
tor X(v) ∈ TvTC is found by acting on it with the differential TτC(v) ∈
BL (TvTC ;TτC(v)C) of the projector, to get: TτC(v) ·X(v) ∈ TτC(v)C .

A section X ∈ C1(TC ;TTC) of τTC ∈ C1(TTC ;TC) , is such that τTC ◦
X = idTC . The tangent map TτC ∈ C1(TTC ;TC) , defined by (TτC◦X)(v) =
TτC(v) · X(v) maps each vector X(v) into the velocity of the configuration
τC(v) ∈ C .

2.1.7 Holonomic vs non-holonomic constraints
A dynamical system is said to be subject to ideal constraints if the admissibile
velocities are imposed to belong to a vector sub-bundle A of TC , that is,
a bundle with base manifold C and fibers which are linear subspaces of the
tangent spaces to C .

The subbundle A is integrable if for any x ∈ C there exists a (local)
submanifold (the integral manifold) IA ⊂ C thru x such that T IA is A
restricted to IA .

If the subbundle A is integrable, the ideal constraints are said holonomic.
Frobenius theorem 1.7.3 states that integrability holds if and only if the

sub-bundle A is involutive, that is for any pair of vector fields u,v ∈ C1(C ;A)
in the vector sub-bundle A of TC we have that [u,v] = Lu v ∈ C1(C ;A) .

2.1.8 Rigidity constraint
Two configurations χ1 ∈ C1(B;S) and χ2 ∈ C1(B;S) are metric-equivalent if
ϕ2↓g = ϕ1↓g . Then the diffeomorphic map χ2 ◦χ−1

1 ∈ C1(ϕ1(B) ;ϕ2(B)) is a
metric-preserving (or rigid) transformation of the configuration χ1 ∈ C1(B;S)
into the configuration χ2 ∈ C1(B;S) .

By the metric-equivalence relation so introduced, the manifold C is parti-
tioned into a family of disjoint connected rigidity-classes CR which are sub-
manifolds of C .

The elements of the tangent space TχCR to a rigidity-class CR at the
configuration χ ∈ CR are the infinitesimal isometries v ∈ test , that is, the
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vector fields v ∈ C1(χ(B) ;S) fulfilling the Euler-Killing condition:

Lvg = g ◦ (2 sym∇v) = 0 .

The Lie derivative of the metric tensor is defined by:

Lvg := ∂λ=0ϕλ↓g ,

where ϕλ ∈ C1(χ(B) ;S) is the flow generated by v = ∂λ=0ϕλ and ϕλ↓g is
the pull back along ϕλ ∈ C1(χ(B) ;S) of the metric tensor:

(ϕλ↓g)(a,b) = g(Tϕλ · a, Tϕλ · b) , ∀a,b ∈ Tχ(B)S .

2.1.9 Perfect dynamical systems
Let the phase-space M be the velocity-time state-space manifold M = TC ×
I and the trajectory be an arbitrary path ΓI ∈ C1(I ;TC × I) . Then the
test subbundle test(M) of the tangent bundle TM = TTC × TI is made of
isometric velocities, i.e. pairs {Y(v) ,Θ(t)} ∈ T{v ,t}(TC × I) = TvTC × TtI
such that the velocity TτC(v) ·Y(v) ∈ TτC(v)C is an infinitesimal isometry of
the configuration τC(v) ∈ C at time t ∈ I .

In rigid-body dynamics the trial velocity fields too are infinitesimal isome-
tries. As a consequence, the trajectories are univocally characterized by the Eu-
ler-Lagrange extremality condition and the the test field, being completely
arbitrary, and can be dropped from the condition.

Another context in which trial and test fields are sections of the same bun-
dle is that of Elastodynamics. There the rigidity constraint is eliminated by
introducing the stress tensor field as a Lagrange multiplier (see Section 3.16).

In either case, under the further assumption that the force system acting on
the body admits a potential we have that a trajectory Γ ⊂M is a path fulfilling
the property dω1 ·vΓ = 0 , for any tangent vector field vΓ ∈ C1(Γ ; trial(Γ)) .
We shall refer to these contexts as perfect dynamical systems.

Remark 2.1.2 Trajectories of perfect dynamical systems are also called curl-
lines of the differential one-form ω1 ∈ C1(M ;T ∗M) [8]. Indeed, in a 3D
riemannian manifold {M ,g} , with the metric-induced volume form µg , setting
ω1 = g · w , we have that µg · rot w = d(g · w) = dω1 . Hence the Euler
condition dω1 · vΓ = µg · (rot w) · vΓ = 0 means that the vector vΓ , tangent
to the trajectory, is parallel to rot w .
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Remark 2.1.3 In optics the action principle is Fermat’s time-stationarity
principle which characterizes light rays. By virtue of this analogy, trajectories
are also called rays and the following definitions are given.

• A ray-segment is a regular segment Γ ∈M of a trajectory.

• A ray-sheet is an 2D surface Σ ∈M generated by the trajectories crossing
a given curve in M . Then

dω1 · vΓ = 0 =⇒
∫

Σ

dω1 = 0 .

• A ray-tube in M is a tube whose generating lines are rays of the system.

2.1.10 Abstract integral invariant
The Euler-Lagrange stationarity condition and Stokes formula provide the
following invariance result.

Theorem 2.1.7 (Integral invariants) The integral of the action one-form
ω1 around any loop c , surrounding a given ray-tube in M , is invariant.

Proof. Given two loops c1 and c2 surrounding a ray-tube in M , let Σ be
the portion of the tube surface such that ∂Σ = c2 − c1 .

Then by Stokes formula:∮
c2

ω1 −
∮

c1

ω1 =

∫
∂Σ

ω1 =

∫
Σ

dω1 = 0 ,

where the last integral vanishes since Σ is a ray-sheet (see remark 2.1.3). �

The next proposition shows that the invariance of the integral of the action
one-form is indeed equivalent to the Euler-Lagrange stationarity condition.

Theorem 2.1.8 (Inverse of the integral invariants theorem) Let the in-
tegral of the action one-form ω1 around any loop c , surrounding any given
flow-tube in M generated by the flow FlXλ ∈ C1(M ; M) of a vector field
X ∈ C1(M ;TM) be invariant. Then the flow-lines are trajectories, i.e.:

dω1 ·X = 0 .
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Proof. The invariance of the integral of the action one-form may be written as

∂λ=0

∮
FlXλ (c)

ω1 =

∫
c

LX ω
1 = 0 .

By the homotopy formula

LX ω
1 = d(ω1 ·X) + dω1 ·X ,

and by Stokes formula, being ∂c = 0 , we have that

∂λ=0

∮
ψλ(c)

ω1 =

∫
c

dω1 ·X +

∫
∂c

ω1 ·X =

∫
c

dω1 ·X = 0 .

By the arbitrarity of the intensity of the vector field X the result follows.
Indeed, if at a point x of the flow-tube, it were dω1 ·X·Y 6= 0 , with Y tangent
to the loop, we could take the field X vanishing outside a neighbourhood U(x)
of that point, so that, by continuity:∫

c

dω1 ·X =

∫
c∩U(x)

dω1 ·X 6= 0 ,

contrary to the assumption. Hence dω1 ·X ·Y = 0 and, by the arbitrarity of
the loop c , we have that:

dω1 ·X ·Y = 0 , ∀Y ∈ TxM ⇐⇒ dω1 ·X = 0 ,

at any point of the flow-tube. �

2.2 Classical Dynamics
Let us now turn to general dynamics. In the lagrangian description, the phase-
space is the velocity phase-space, that is, the tangent bundle TC to the config-
uration manifold. The state variables are then velocity vector field based at a
placement in the configuration manifold.

The projector τC ∈ C1(TC ;C) maps the velocity phase-space onto the
configuration space by associating each velocity v ∈ TC with its base placement
τC(v) ∈ C . The Lagrangian of the system is a time-dependent functional
Lt ∈ C1(TC ;<) on the velocity phase-space.
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The usual expression of the Lagrangian is Lt = Kt + Pt ◦ τC , Kt ∈
C1(TC ;<) is the positive definite quadratic kinetic energy and Pt ∈ C1(C ;<)
is the force potential.

The fiber-derivative dfLt ∈ C1(TC ;T ∗C) of the Lagrangian is defined by

dfLt(vx) ·wx := ∂λ=0 Lt(vx + λwx) ,

where vx,wx ∈ TxC are tangent vectors. In the tangent bundle TC the fiber-
derivative plays the role of the partial derivative with respect to the vectorial
part of tangent vectors, due to the linearity of the tangent fiber.

No analogue of the partial derivative of a Lagrangian with respect to the
base point of the vectorial argument is available in a nonlinear configuration
manifold, unless a connection is defined (see section 2.3).

When Lt(v) = Kt(v) + Pt(τC(v)) , the fiber-derivative of the Lagrangian
is equal to the fiber-derivative of the kinetic energy and has the mechanical
meaning of a kinetic momentum. Let I be a time interval and γ ∈ C1(I ;C)
a time-parametrized path in the configuration manifold with image γ := γ(I)
and velocity field v ∈ C1(γ ; Γ) with Γ := Tγ defined by

v(γ(t)) := ∂τ=t γ(τ) = γ̇(t) .

The classical variational statement of the law of dynamics concerns the action
integral defined by the equivalent expressions:∫

γ

(L ◦ v) γ↑dt =

∫
I

γ↓(L ◦ v) dt =

∫
I

(L ◦ v ◦ γ) dt ,

where we have applied the invariance formula of integrals under the pull-back
by a morphism and the rule for the pull-back of the product between a scalar
function and a one-form:

γ↓((Lt ◦ v) γ↑dt) = γ↓(Lt ◦ v) dt = (Lt ◦ v ◦ γ) dt .

The push forward γ↑dt ∈ C1(C ;T ∗C) of the one form dt ∈ C1(I ;T ∗I) is
defined by the commutative diagram

T ∗I
T∗γ←−−−− T ∗C

dt

x xγ↑dt
I

γ−−−−→ C

⇐⇒ T ∗γ ◦ γ↑dt ◦ γ = dt .
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The synchronous (first) variation of the action integral along a flow ϕλ ∈
C1(C ;C) in the configuration space is the derivative of the integral performed
along the flow-dragged path. This compels to evaluate the integrand on the
flow-dragged path. To this end the velocity field v ∈ C1(γ ;TC) is extended, in
a synchronous fashion, by dragging it along the flow, according to the relation:

v(ϕλ(γ(t))) := Tϕλ(γ(t)) · v(γ(t)) = Tϕλ(γ(t)) · γ̇(t) ,

that is:
v = ϕλ↑v .

The classical statement of Hamilton’s principle, in the dynamics of continuous
bodies, is the following.

Proposition 2.2.1 (Classical Hamilton’s principle) A dynamical trajectory
of a continuous mechanical system in the configuration manifold is a time-
parametrized path γ ∈ C1(I ;C) fulfilling the stationarity condition

∂λ=0

∫
ϕλ(γ)

(Lt ◦ v) [(ϕλ ◦ γ)↑dt] = ∂λ=0

∫
I

(ϕλ ◦ γ)↓(L ◦ v) dt

= ∂λ=0

∫
I

(L ◦ v ◦ϕλ ◦ γ) dt = 0 ,

for any flow ϕλ ∈ C1(C ;C) whose velocity field vϕ = ∂λ=0ϕλ ∈ C1(γ ;TC)
is an infinitesimal isometry and vanishes at the boundary (end points) of γ .

Figure 2.2: Sir William Rowan Hamilton (1805 - 1865)
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Remark 2.2.1 The kinetic energy in the Lagrangian functional Lt ∈ C1(TC ;<) ,
is defined only on the trajectory of the body in the euclidean space, since the spa-
tial mass-density is defined only there. On the other hand, to formulate Hamil-
ton’s principle, a definition of the Lagrangian on paths which are variations
of the trajectory must be provided. In the literature on particle dynamics, this
extension is tacitly performed by considering the point-mass of the particle to
be constant along the virtual flow. Although such an assumption may appear
as natural, when dealing with continuum dynamics the extension of the mass-
form along virtual flows must be the object of an explicit statement (see Ansatz
3.17.1).

Remark 2.2.2 In the literature Hamilton’s principle is always stated in the
context of perfect dynamics, is concerned with regular trajectories and the sta-
tionarity condition is imposed for any flow ϕλ ∈ C1(C ;C) , whose virtual ve-
locity field vϕ ∈ C1(C ;TC) vanishes at the end points of the path [2], [8], [3].
The basic step towards a general formulation of the law of dynamics consists in
a suitable modification of the statement of Hamilton’s principle, dropping out
the assumption that the virtual velocity field vanishes at the end points of the
path and allowing for singularities of the trajectory. The proper way to perform
the modification follows from the discussion of the abstract action principle of
section 2.1.2, when specialized to the velocity phase-space of lagrangian dynam-
ics.

Remark 2.2.3 The original definition of stationarity in the calculus of varia-
tions, and hence also of Hamilton’s principle in dynamics, is unsatisfactory
from the epistemological point of view. Indeed, it is a natural requirement that a
property, characterizing a special class of paths, be formulated so that any piece
of a special path is special too and the chain of two subsequent special paths is
special too. The formulation of stationarity in terms of flows whose velocity
vanishes at the end points of the path does not fulfill this natural requirement.

2.2.1 The action one-form
We preliminarily recall some properties of flows in the tangent bundle of a
manifold. Let ϕλ ∈ C1(C ;C) be a flow in the configuration manifold and
Tϕλ ∈ C1(TC ;TC) the lifted flow induced, in the velocity phase-space, by the
tangent functor, according to the definition

(Tϕλ · v)(τC(v)) := TτC(v)ϕλ · v(τC(v)) ,
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for all vector field, i.e. v ∈ C1(C ;TC) with TτC ◦ v = idC .
We have the commutative diagram

TC Tϕλ−−−−→ TC

τC

y yτC

C ϕλ−−−−→ C

⇐⇒ τC ◦ Tϕλ = ϕλ ◦ τC ∈ C1(TC ;C) .

The canonical flip kTTC ∈ C1(TTC ;TTC) defined by:

kTTC (∂µ=0 ∂λ=0 c(λ, µ)) = ∂λ=0 ∂µ=0 c(λ, µ) , ∀ c ∈ C2(<× < ;C) ,

is characterized by the projection properties τTC◦kTTC = TτC , TτC◦kTTC =
τTC , and by the involutivity property kTTC◦kTTC = idTTC (see Lemma 1.3.6).
By Lemma 1.3.8, the velocity of the lifted flow is given by:

vTϕ := ∂λ=0 Tϕλ = kTTC ◦ Tvϕ ∈ C1(TC ;TTC) ,

and, from the relation TτC ◦ kTTC = τTC , we get the commutative diagram:

TC
Tvϕ−−−−→ TTC

vTϕ

y τTC

y
TTC TτC−−−−→ TC

⇐⇒ TτC ◦ vTϕ = τTC ◦ Tvϕ .

Moreover, since the tangent functor fulfils the commutative diagram:

TC
Tvϕ−−−−→ TTC

τC

y τTC

y
C

vϕ−−−−→ TC

⇐⇒ τTC ◦ Tvϕ = vϕ ◦ τC ,

the velocity field vϕ is τC-related to the bi-velocity field vTϕ , as expressed by
the commutative diagram:

TC
vTϕ−−−−→ TTC

τC

y TτC

y
C

vϕ−−−−→ TC

⇐⇒ TτC ◦ vTϕ = vϕ ◦ τC .

Hamilton’s principle may be formulated in terms of the integral of an action
one-form, by introducing a suitable space, the velocity-time state-space.

Let I be an open time interval and J ⊂ < an open real interval.
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• A pseudo-time is a stricly increasing scalar function θ ∈ C1(I ; J) of the
dynamical time t ∈ I of classical mechanics: t2 > t1 =⇒ θ(t2) > θ(t1) .

• A path in the configuration manifold is a map γ ∈ C1(I ;C) .

In the configuration-time manifold C×I a path γI := γ×θ−1 ∈ C1(J ;C×I)
is a product map with θ−1 ∈ C1(J ; I) and γ ∈ C1(I ;C) . Its image is denoted
by γI := γI(J) . In a time-parametrized path the pseudo-time is the identity
map: θ = id I .

• The lifted path in the velocity-time state-space is described by the tangent
map TγI = Tγ × Tθ−1 ∈ C1(TJ ;TC× TI) .

We have the commutative diagram:

TI
Tγ−−−−→ TC

τ I

y yτC

I
γ−−−−→ C

⇐⇒ τC ◦ Tγ = γ ◦ τ I ∈ C1(TI ;C) .

The tangent space Te0
V to a linear space V at a point e0 ∈ V , is identified

with the linear space V itself, by assuming, for any e ∈ V , the equivalences
{e0 , e} ' {0 , e} ' e .

By performing this identification for all tangent spaces Te0V , the trivial
tangent bundle V ×V reduces to the linear space itself, i.e. TV ' V . If the
space V is the real line < and I ⊆ < , we may set TI ' < .

It is useful to introduce the cartesian projector prTC ∈ C1(TC × I ;TC) ,
defined by

prTC(v, t) := v , ∀v ∈ TC , t ∈ I .
The basic tool to define the action one-form, is Legendre transform.

• The action functional associated with the Lagrangian is defined by:

At(v) := 〈dfLt(v),v〉 , v ∈ TC .

• The Hamiltonian Ht ∈ C1(T ∗C ;<) is the functional Legendre-conjugate
to the Lagrangian and the energy of the system Et ∈ C1(TC ;<) is defined
by the relation: Et := Ht ◦ dfLt , so that

Lt(v) + Et(v) = At(v) = 〈dfLt(v),v〉 .
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The Poincaré-Cartan one-form θLt ∈ C1(TC ;T ∗TC) is defined by the iden-
tity:

(θLt ·Y)(v) := 〈dfLt(v), TτC(v) ·Y(v)〉 , ∀Y(v) ∈ TvTC ,

In terms of the cotangent map, it is the horizontal-valued form given by (see
Definition 1.3.11):

θLt := T ∗τC ◦ (idTC , dfLt) .

Setting X(vt) = v̇t = ∂τ=t vτ , from the relation

vt = ∂τ=t τC(vτ ) = TτC(vt) · ∂τ=t vτ = TτC(vt) · v̇t ,

we infer that TτC(vt) ·X(vt) = vt , so that

(θLt ·X)(vt) = 〈dfLt(vt), TτC(vt) ·X(vt)〉 = 〈dfLt(vt),vt 〉 = At(vt) .

Defining the pull-back

θL := prTC↓θLt ∈ C1(TC× I ;T ∗(TC× I)) ,

and noting that prTC↑{X(v) ,Θ(t)} = X(v) , we have that

(θL · (X ,Θ))(v, t) = (θLt ·X)(v) ,

for all (X ,Θ)(v, t) = (X(v) ,Θ(t)) ∈ TvTC× TtI .

• The Lagrangian action one-form ω1
L ∈ C1(TC×I ;T ∗(TC×I)) is defined

by
ω1
L(v, t) := (θL − E dt)(v, t) ,

where E(v, t) := Et(v) and, with a little abuse of notation, t(v , t) = t . Then,
for a tangent vector (Y(v) ,Θ(t)) ∈ TvTC× TtI , we have:

〈dt, (Y(v) ,Θ(t))〉 = Θ(t) so that 〈dt, (Y(v) , 1t)〉 = 1t .

We recall hereafter some useful relations. Being

〈Et(v)dt, (X(v) ,Θ(t))〉 = Et(v) Θ(t) , v ∈ TC , t ∈ I ,

we have that

ω1
L(v, t) · (v̇t , 1t) = At(v)− Et(v)〈dt, (v̇t , 1t)〉 = At(v)− Et(v) = Lt(v) ,
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and also

ω1
L(Tϕλ(v), t) · (Tϕλ↑v̇t , 1t) = Lt(Tϕλ(v)) ,

ω1
L(v, t) · (vTϕ(v) , 0) = 〈dfLt(v), TvτC · vTϕ(v)〉

= 〈dfLt(v),vϕ(τC(v))〉 .

Indeed, for any curve v ∈ C1(I ;TC) in the velocity phase-space, setting

v̇t := ∂τ=t vτ = Ttv · 1t ,

and recalling the relation between the push and the tangent map:

(ϕλ↑vt) ◦ϕλ = Tϕλ(vt) ,

we have that: ∂τ=t Tϕλ(vτ ) = T 2ϕλ(vt) · v̇t = (Tϕλ↑v̇t)Tϕλ(vt) and

TTϕλ(vt)τC · ∂τ=t Tϕλ(vτ ) = ∂τ=t (τC ◦ Tϕλ)(vτ )

= ∂τ=t (ϕλ ◦ τC)(vτ )

= TτC(vt)ϕλ · ∂τ=t τC(vτ )

= TτC(vt)ϕλ · vt .

2.2.2 Geometric Hamilton principle
The test flows for Hamilton’s principle in the configuration manifold are vari-
ations of the trajectory induced by flows ϕλ ∈ C1(C ;C) with velocity field
vϕ = ∂λ=0ϕλ ∈ C1(C ;TC) . When synchronous variations are considered,
there is an induced flow ξλ := prC↓ϕλ × prI↓id I ∈ C1(C × I ;C × I) in the
configuration-time state-space, so that

ξλ(x, t) = (prC↓ϕλ × prI↓id I)(x, t) = {ϕλ(prC(x, t)) ,prI(x, t)} = {ϕλ(x) , t} .

By applying the tangent functor, the flow ϕλ ∈ C1(C ;C) induces, in the ve-
locity phase-space, a lifted phase-flow Tϕλ ∈ C1(TC ;TC) with phase-velocity
field

vTϕ = ∂λ=0 Tϕλ = kTTC ◦ Tvϕ ∈ C1(TC ;TTC) ,

where kTTC ∈ C1(TTC ;TTC) is the canonical flip (see Section 1.3.7).
In the classical Hamilton’s principle synchronous variations are considered

and the related action principle may be stated as follows.
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Proposition 2.2.2 (Synchronous action principle) The trajectory of a con-
tinuous dynamical system in the configuration manifold is a time-parametrized
piecewise regular path γ ∈ C1(Pat(I) ;C) with velocity v = γ̇ fulfilling the
stationarity condition

∂λ=0

∫
I

L(Tϕλ(v)) dt=

∮
∂I

〈dfL(v), δv 〉 dt ,

for any virtual flow ϕλ ∈ C1(C ;C) with vϕ = ∂λ=0ϕλ ∈ C1(γ ;TC) such
that δv := vϕ(τC(v)) is an infinitesimal isometry at γ . The trajectory in the
velocity-time state-space fulfils the action principle expressed by the following
stationarity condition for the one-form ω1

L ∈ C1(TC× I ;T ∗(TC× I)) :

∂λ=0

∫
Tξλ(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · {vTϕ , 0} ,

for any virtual flow ξλ := prC↓ϕλ × prI↓id I ∈ C1(C× I ;C× I) .

Proof. From the commutative diagram

TC Tϕλ−−−−→ TCyτC

yτC

C ϕλ−−−−→ C

⇐⇒ τC ◦ Tϕλ = ϕλ ◦ τC ∈ C1(TC ;C) ,

taking the derivative ∂λ=0 , we infer the relation:

TC
vTϕ−−−−→ TTC

τC

y yTτC

C
vϕ−−−−→ TC

⇐⇒ TτC ◦ vTϕ = vϕ ◦ τC ∈ C1(TC ;TC) .

Then, being ∂Γ = ∂(Tγ) = ∂Tγ(I) = Tγ(∂I) , we have that:∮
∂Γ

ω1
L · (vTϕ , 0) =

∮
∂I

〈dfL(v), δv〉 dt ,

and, being Tξλ(Γ) = (Tξλ ◦ Tγ)(I) = T (ξλ ◦ γ)(I) , we have that:∫
Tξλ(Tγ)

ω1
L =

∫
I

ω1
L(Tϕλ(v), t) · (Tϕλ↑v̇ , 1) dt =

∫
I

L(Tϕλ(v)) dt .

This proves the equivalence of the two formulations. �
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If the initial and final configurations are held fixed by the virtual flow, the
boundary term vanishes being δv = 0 at the end points of γ . This assumption
is usually made in literature to formulate Hamilton’s principle [214], [2], [8].
More in general, the vanishing of the boundary term is equivalent to assume
that the virtual velocity fulfils a equiprojectivity condition at the end points of
γ , that is 〈dfL(v), δv〉b = 〈dfL(v), δv〉a where I = [a, b] .

2.2.3 Asynchronous action principle
Asynchronous variations of the trajectory are expressed by considering, in addi-
tion to the flow ϕλ ∈ C1(C ;C) in the configuration space, a flow θλ ∈ C1(I ;<)
in the time domain, with vϕ = ∂λ=0ϕλ ∈ C1(C ;TC) and Θ = ∂λ=0 θλ ∈
C1(I ;T<) .

So we have a product flow ϕλ×θλ ∈ C1(C×< ;C×<) in the configuration-
time state-space.

In the velocity-time state-space the lifted flow is Tϕλ × Tθλ ∈ C1(TC ×
T< ;TC× T<) with velocity (vTϕ , vθ) ∈ C1(TC× T< ;TTC× T 2<) .

Each path of the one-parameter family ϕλ ◦ γ ∈ C1(I ;C) generated by
the action of the flow ϕλ ∈ C1(C ;C) , with ϕ0 = idC , on the trajectory
γ ∈ C1(I ;C) is parametrized by a pseudo time θλ ∈ C1(I ;<) , with θ0 = id I .

Accordingly, the action of the flow ϕλ × θλ ∈ C1(C× I ;C×<) transforms
the trajectory γI = γ × id I ∈ C1(I ;C × I) , into the trajectory ξλ ◦ γI =
(ϕλ × θλ) ◦ γI ∈ C1(< ;C×<) according to the law:

(γ(t) , t)→ ((ϕλ ◦ γ)(t) , θλ(t)) = ((ϕλ ◦ γ ◦ θ−1
λ )(θλ(t)) , θλ(t)) , ∀t ∈ I .

Setting:
γλ := ϕλ ◦ γ ◦ θ−1

λ ,

the virtual velocity along the flow is given by:

∂λ=0 γλ = ∂λ=0 (ϕλ ◦ γ ◦ θ−1
λ ) = vϕ ◦ γ − Tγ ·Θ ∈ C1(< ;TC) ,

where Θ = ∂λ=0 θλ = −∂λ=0 θ
−1
λ is the pseudo-time dilation rate in the asyn-

chronous variation. For subsequent developments it is crucial to observe that:

Lemma 2.2.1 Given a flow θλ ∈ C1(I ;<) with velocity Θ = ∂λ=0 θλ ∈
C1(I ;TI) and the maps f ∈ C1(< ;<) and E ∈ C1(TC×< ;<) , the following
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relations hold

∂λ=0 (θλ↑1t)θλ(t) = ∂τ=t Θ(τ) ,

∂λ=0 f(θλ(t)) = ∂τ=t f(τ) Θ(t) ,

∂λ=0Eθλ(t)(vt) (θλ↑1t)θλ(t) = ∂τ=tEτ (vt) Θ(τ) .

Proof. By a direct computation we get

∂λ=0 (θλ↑1t)θλ(t) = ∂λ=0 Tθλ(t) · 1t = T∂λ=0 θλ(t) · 1t

= TΘ(t) · 1t = Θ̇(t) = ∂τ=t Θ(τ) ,

∂λ=0 f(θλ(t)) = ∂τ=t f(τ) ∂λ=0 θλ(t) = ∂τ=t f(τ) Θ(t) ,

so that

∂λ=0Eθλ(t)(vt) (θλ↑1t)θλ(t) = ∂λ=0Eθλ(t)(vt) + Et(vt) ∂λ=0 (θλ↑1t)θλ(t)

= ∂τ=tEτ (vt) Θ(t) + Et(vt) ∂τ=t Θ(τ)

= ∂τ=tEτ (vt) Θ(τ) ,

and the result is proven. �

The asynchronous action principle (A.A.P.) for the dynamical trajectory is
expressed by the following statement.

Proposition 2.2.3 (A.A.P.) The trajectory in the velocity-time state-space
TC × I is a lifted path Γ = Tγ ∈ C1(I ;TC × I) such that the differential
one-form ω1

L ∈ C1(TC× I ;T ∗TC× T ∗I) fulfils the stationarity condition:

∂λ=0

∫
Tξλ(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (vTϕ ,Θ) ,

for any flow ξλ = prC↓ϕλ×prI↓θλ ∈ C1(C×I ;C×<) , with velocity fields vϕ =
∂λ=0ϕλ ∈ C1(C ;TC) and Θ = ∂λ=0 θλ ∈ C1(I ;T<) with vϕ ∈ C1(γ ;TC)
infinitesimal isometry at γ .
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Proof. To provide an expression of the A.A.P. variational condition in terms
of the Lagrangian, we need an explicit evaluation of the one-form:

ω1
L(v, t) := θL(v, t)− E(v, t) prTI↓dt .

Defining the energy one-form η ∈ C1(TC × TI ;T ∗TC × T ∗I) by η(vt, t) :=
Et(vt) prTI↓dt , we may write ω1

L := θL − η . Then, being
TτC(vt) · vTϕ(vt) = (TτC · vTϕ)(vt) = vϕ(τC(vt)) = δvt ,

and 〈Tθλ(t)id<, (θλ↑1t)θλ(t) 〉 = (θλ↑1t)θλ(t) , we have that∮
∂ΓI

ω1
L · (vTϕ ,Θ) =

∮
∂I

〈dfLt((vt)), δvt 〉 −
∮
∂I

Et(vt) Θ(t) .

On the other hand, being θL := prTC↓θLt and prTC ◦ (Tϕλ × θλ) ◦ γI =
T (ϕλ ◦ γ) , we have that∫

Tξλ(ΓI)

ω1
L =

∫
Tξλ(ΓI)

θL − η

=

∫
Tϕλ(Γ)

θLt −
∫
Tξλ(ΓI)

η ,

so that ∫
Tξλ(ΓI)

ω1
L =

∫
I

At(Tϕλ(vt)) dt

−
∫
I

Eθλ(t)(Tϕλ(vt)) (θλ↑1t)θλ(t) dt .

By Leibniz rule, the derivative of the last integral may be split into

∂λ=0

∫
I

Eθλ(t)(Tϕλ(vt)) (θλ↑1t)θλ(t) dt

= ∂λ=0

∫
I

Et(Tϕλ(vt)) dt+ ∂λ=0

∫
I

Eθλ(t)(vt) (θλ↑1t)θλ(t) dt .

By Lemma 2.2.1 have that ∂λ=0Eθλ(t)(vt) (θλ↑1t)θλ(t) = ∂τ=tEτ (vt) Θ(τ) .
Then, being∮

∂I

Et(vt) Θ(t) =

∫
I

∂τ=tEτ (vτ ) Θ(τ) dt

=

∫
I

∂τ=tEτ (vt) Θ(τ) dt+

∫
I

∂τ=tEt(vτ ) Θ(t) dt ,
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the A.A.P. may be written as

∂λ=0

∫
I

At(Tϕλ(vt)) dt−
∮
∂I

〈dfLt(vt), δvt 〉

= ∂λ=0

∫
I

Et(Tϕλ(vt)) dt− ∂τ=t

∫
I

Et(vτ ) Θ(t) dt .

Being Lt +Et = At , the independency of time and velocity variations and the
arbitrarity of time variations, the A.A.P. may be split into:

∂λ=0

∫
I

Lt(Tϕλ(vt)) dt =

∮
∂I

〈dfLt(vt), δvt 〉 ,

∂τ=tEt(vτ ) = dEt(vt) · v̇t = 0 .

The former is the new form of Hamilton’s principle introduced earlier in Prop.
2.2.2, while the latter is the statement of conservation of energy for time depen-
dent lagrangians: the energy functional is dragged by the motion.

This means that the convective Lie derivative of the energy functional along
the trajectory (i.e. the directional derivative along a tangent to the trajectory)
vanishes at any time. The total time rate is then equal to the partial time
derivative evaluated at fixed velocity. �

We shall see that the conservation of energy is a consequence of Hamilton’s
principle and hence the enlargment of the test flows to include also asynchronous
flows in the velocity-time state-space is permitted since it does not impose fur-
ther conditions to the motion.

Hamilton’s principle, which deals with the special case of a time-flow θλ ∈
C1(I ;<) equal to the identity, will be called the synchronous action principle
(S.A.P.).

2.2.4 Free asynchronous action principle
A more general variational condition, which will be called the free asynchronous
action principle (F.A.A.P.), may be formulated by considering a path ΓI ∈
C1(I ;TC× I) in the velocity-time state-space, with cartesian projection Γ :=
prTC◦ΓI ∈ C1(I ;TC) on the velocity phase-space, defined by (Γ(t) , t) = ΓI(t) .

Virtual flows FlYλ ∈ C1(TC ;TC) in the velocity phase-space are assumed
to be projectable. This means that for each λ ∈ I the invertible map FlYλ ∈
C1(TC ;TC) is fiber-preserving and hence projects to an invertible map ϕλ ∈
C1(C ;C) in the configuration space.
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By Lemma 1.3.16, virtual bivelocities Y = ∂λ=0 FlYλ ∈ C1(TC ;TTC) are
bivector fields, i.e. τTC ◦ Y = idTC , which are decomposable as sum of two
contributions:

Y = V + vTϕ ,

where V ∈ C1(TC ;TTC) is a vertical bivector field, i.e. TτC ◦V = 0 .

Proposition 2.2.4 (Free asynchronous action principle) A trajectory in
the velocity-time state-space is a path Γ ∈ C1(I ;TC × I) such that the one-
form ω1

L ∈ C1(TC× I ;T ∗(TC× I)) fulfils the stationarity condition,

∂λ=0

∫
(FlYλ ×FlΘλ )(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (Y ,Θ) ,

for all virtual flows FlYλ ∈ C1(TC ;TC) and FlΘλ ∈ C1(I ; I) such that the flow
FlYλ ∈ C1(TC ;TC) projects to a flow ϕλ ∈ C1(C ;C) in the configuration space
whose velocity vϕ ∈ C1(γ(I) ;TC) is an infinitesimal isometry of the projected
trajectory γ = τC ◦ Γ .

Proof. By theorem 2.1.1, Euler differential condition of stationarity on the
velocity (X(vt) , 1t) ∈ T(vt ,t)ΓI at regular points along the trajectory is given
by:

dω1
L(vt, t) · (X(vt) , 1t) · (Y(vt) ,Θ(t)) = 0 ,

and the jump condition at singular points of the trajectory is given by:

[[ω1
L · (X , 1)]](vt ,t) · (Y(vt) ,Θ(t)) = 0 .

Recalling that ω1
L = θL − η , we may write the differential condition as:

dθLt(vt) ·X(vt) ·Y(vt) = dη(vt, t) · (X(vt) , 1t) · (Y(vt) ,Θ(t)) .

The computation of the exterior derivative of the energy one-form by Palais
formula requires the extension of the tangent vector (X(vt) , 1t) ∈ T(vt ,t)ΓI to
a vector field Ḟ ∈ C1(TC × I ;TTC × TI) by pushing it along the phase-flow
FlYλ × θλ ∈ C1(TC×< ;TC×<) , according to the relation:

Ḟ(FlYλ (vt), θλ(t)) := (FlYλ ↑X(vt) , θλ↑1t)(FlYλ (vt) ,θλ(t)) .

Palais formula tells us that

dη(vt, t) · (X(vt) , 1t) · (Y(vt) ,Θ(t)) = d(X(vt) ,1t)〈η, (Y ,Θ)〉

− d(Y(vt) ,Θ(t))〈η, Ḟ 〉+ 〈η,L(Y ,Θ)Ḟ 〉(vt, t) .
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Since, by the chosen extension, the Lie derivative L(Y ,Θ)Ḟ vanishes, we may
evaluate as follows:

d(X(vt) ,1t)〈η, (Y ,Θ)〉= ∂τ=t 〈η(vτ , τ), (Y(vτ ) ,Θ(τ))〉
= ∂τ=t 〈Eτ (vτ ) idT<(τ),Θ(τ)〉
= ∂τ=tEτ (vτ ) Θ(τ)

= ∂τ=tEτ (vt) Θ(τ) + ∂τ=tEt(vτ ) Θ(t) ,

and, by Lemma 2.2.1:

d(Y(vt) ,Θ(t))〈η, Ḟ 〉= ∂λ=0Eθλ(t)(FlYλ (vt)) 〈dt, θλ↑1t 〉

= ∂λ=0Eθλ(t)(vt) θλ↑1t + ∂λ=0Et(FlYλ (vt))

= ∂τ=tEτ (vt) Θ(τ) + ∂λ=0Et(FlYλ (vt)) .

Summing up, the terms ∂τ=tEτ (vt) Θ(τ) cancel one another, in agreement with
the tensoriality of the exterior derivative, and, being

∂λ=0Et(FlYλ (vt)) = dEt(vt) ·Y(vt) ,

we get:

dη(vt, t) · (X(vt) , 1t) · (Y(vt) ,Θ(t)) = ∂τ=tEt(vτ ) Θ(t)− dEt(vt) ·Y(vt) .

The differential condition takes then the canonical expression:

dθLt(vt) ·X(vt) ·Y(vt) = ∂τ=tEt(vτ ) Θ(t)− dEt(vt) ·Y(vt) ,

which, by the arbitrarity of Θ(t) ∈ TtI , is equivalent to{
dθLt(vt) ·X(vt) ·Y(vt) = −dEt(vt) ·Y(vt) ,

∂τ=tEt(vτ ) = dEt(vt) ·X(vt) = 0 .

By the skew symmetry of dθL we have that dθLt(vt) ·X(vt) ·X(vt) = 0 . The
latter condition may then be dropped, being implied by the former one which
is Hamilton’s equation in lagrangian form. �
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The conclusion of the previous proposition is in accordance with the analysis
performed, in the context of perfect dynamical sistems, by G.A. Deschamps
([48], section 7.7) and by Abraham & Marsden ([2], Theorem 5.1.13), on the
basis of a formal treatment which follows E. Cartan original one [30].

In the next Lemma 2.2.2 we show that the fulfilment of the canonical equa-
tion implies that an integral curve of the field X is indeed a velocity curve
for a trajectory in the configuration manifold. To this end let us resume
for convenience the contents of Lemma 1.3.16. By definition, a virtual flow
FlYλ ∈ C1(TC ;TC) in the velocity phase-space is fiber preserving so that the
projected virtual flow ϕλ ∈ C1(C ;C) on the configuration manifold is well-
defined according to the commutative diagrams:

TC
FlYλ−−−−→ TC Y−−−−→ TTC

τC

y τC

y yTτC

C ϕλ−−−−→ C
vϕ−−−−→ TC

⇐⇒
{
ϕλ ◦ τC = τC ◦ FlYλ ∈ C1(TC ;C) ,

vϕ ◦ τC = TτC ◦Y ∈ C1(TC ;TC) .

Since the map Tϕλ ∈ C1(TC ;TC) is an automorphism which also projects to
ϕλ ∈ C1(C ;C) , the correction flow FlVλ ∈ C1(TC ;TC) defined by:

FlVλ := FlYλ ◦ (Tϕλ)−1 ⇐⇒ FlYλ = FlVλ ◦ Tϕλ ,

projects to the identity: τC ◦FlVλ = idC ◦ τC . The velocity of the flow FlYλ ∈
C1(TC ;TC) is thus split into:

Y(vt) = ∂λ=0 FlYλ (vt) = ∂λ=0 FlVλ (vt) + ∂λ=0 Tϕλ(vt)

= V(vt) + vTϕ(vt) ,

with TτC(vt) ·V(vt) = 0 , which means that V(vt) ∈ TvtTτC(vt)C ≡ TτC(vt)C
is a vertical bivector.

Hamilton’s canonical equation is accordingly split into:{
dθLt(vt) ·X(vt) · vTϕ(vt) = −〈dEt(vt),vTϕ(vt)〉 ,

dθLt(vt) ·X(vt) ·V(vt) = −〈dEt(vt),V(vt)〉 .

The following result, first given in [4], reveals the role of vertical virtual bive-
locities. The proof we give is original.
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Lemma 2.2.2 If the linear map d2
fLt(v) ∈ BL (TτC(v)C ;T ∗τC(v)C) is invertible,

the fulfillment of the variational condition

dθLt(v) ·X(v) ·V(v) = −〈dEt(v),V(v)〉 ,

for any vertical bivector V(v) ∈ TvTτC(v)C ' TτC(vt)C , is equivalent to require
that TvτC ◦X(v) = v i.e. that X(v) is second order along the lifted trajectory.

Proof. Let us denote by FX(FlVλ (v)) := (FlVλ ↑X ◦ FlVλ )(v) the extension of
a vector field X(v) ∈ TvTC performed by pushing it along the flow FlVλ ∈
C1(TC ;TC) . Then Palais’ formula gives:

dθLt(v) ·X(v) ·V(v) = dX(v)(θLt ·V)(v)− dV(v)(θLt · FX)(v) .

The first term on the r.h.s. vanishes since θLt is horizontal:

(θLt ·V)(v) = 〈dfLt(v), TτC(v) ·V(v)〉 = 0 .

Observing that τC ◦ FlVλ = τC , and recalling the definition of the canonical
soldering form J := Vl (TC ,τC ,C) ◦ (τTC , TτC) , the second term evaluates to:

dV(v)(θLt · FX)(v) = ∂λ=0 〈dfLt(FlVλ (v)), TτC(FlVλ (v)) · TFlVλ (v) ·X(v)〉

= ∂λ=0 〈dfLt(FlVλ (v)), T (τC ◦ FlVλ )(v) ·X(v)〉

= ∂λ=0 〈dfLt(FlVλ (v)), TτC(v) ·X(v)〉

= 〈d2
fLt(v) ·V(v), (VlTC ◦ (τTC , TτC))(v) ·X(v)〉

= 〈d2
fLt(v) · J(v) ·X(v),V(v)〉 ,

where the last equality holds by the symmetry of d2
fLt(v) ∈ BL (TτC(v)C2 ;<) =

BL (TvTτC(v)C2 ;<) . Setting V(v) = J(v) · Z(v) , we get the equality

〈dθLt(v) ·X(v),J(v) · Z(v)〉 = −〈d2
fLt(v) · J(v) ·X(v),J(v) · Z(v)〉 ,

for any Z(v) ∈ TvTC , that is:

J∗(v) · dθLt(v) ·X(v) = −J∗(v) · d2
fLt(v) · J(v) ·X(v) .

On the other hand, being Et = Ht ◦ dfLt and dfHt ◦ dfLt = idTC and noting
that 〈dEt(v),V(v)〉 = 〈dfEt(v),V(v)〉 , we have:

dfEt(v) = dfHt(dfLt(v)) · d2
fLt(v) = d2

fLt(v) · v = d2
fLt(v) ·C(v) ,
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where C ∈ C1(TC ;VTC) is the Liouville vector field defined by C(v) :=
Vl (TTC ,τTC ,TC)(v ,v) (see Definition 1.8.17). Then, the assumption in the
statement writes:

J∗(v) · dθLt(v) ·X(v) = −J∗(v) · dfEt(v) = −J∗(v) · d2
fLt(v) ·C(v) .

If the linear map d2
fLt(v) ∈ BL (TτC(v)C ;T ∗τC(v)C) is invertible, we infer that

J(v) · X(v) = C(v) which, by injectivity of the vertical lift, is equivalent to
TτC(v) · X(v) = v , characteristic property of second order bivectors on the
trajectory (see Section 1.3.9). �

Recalling that
At(vt) = 〈θLt(vt),X(vt)〉 ,

and the homotopy formula

LXθLt = d(θLt ·X) + dθLt ·X ,

the equation of motion

dθLt(vt) ·X(vt) = −dEt(vt) ,

may be written as

LXθLt(vt) = dAt(vt)− dEt(vt) = dLt(vt) .

Then on TC the equation of motion writes LXθLt = dLt . It follows that

dLXθLt = LXdθLt = ddLt = 0 .

This means that the two-form dθLt is drifted by the motion.

2.2.5 Law of motion in the configuration manifold
Setting X(vt) = ∂τ=t vτ = v̇t , Hamilton’s canonical equation for the trajec-
tory in the phase space is equivalent to the variational condition

dθLt(vt) · v̇t · vTϕ(vt) = −dEt(vt) · vTϕ(vt) .

An explicit expression in terms of the Lagrangian is provided by the next result.
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Theorem 2.2.1 (Law of dynamics) Hamilton’s canonical equation for the
trajectory is equivalent to the differential condition:

∂τ=t 〈dfLτ (vτ ), δvτ 〉= ∂λ=0 Lt(Tϕλ · vt) ,

and the jump conditions

〈 [[dfLt(vt)]], δvt 〉 = 0 ,

for all flows ϕλ ∈ C1(C ;C) such that δv is an infinitesimal isometry.

Proof. Palais formula yields the expression:

dθLt(vt) · v̇t · vTϕ(vt) = dv̇t(θLt · vTϕ)− dvTϕ(vt)(θLt · Ḟ)

+ (θLt · LvTϕḞ)(vt) ,

where Ḟ ∈ C1(TC ;TTC) is the extension of the vector v̇t ∈ TvtΓ performed
by pushing it along the phase-flow Tϕλ ∈ C1(TC ;TC) , that is:

Ḟ(Tϕλ(vt)) := (Tϕλ↑v̇t)Tϕλ(vt) .

Then the Lie derivative LvTϕḞ(vt) vanishes. Evaluating the first term we get:

dv̇t(θLt · vTϕ) = ∂τ=t 〈dfLτ (vτ ), TτC(vτ ) · vTϕ(vτ )〉

= ∂τ=t 〈dfLτ (vτ ),vϕ(τC(vτ ))〉 = ∂τ=t 〈dfLτ (vτ ), δvτ 〉 .
To evaluate the second term, we recall that TvtτC · v̇t = vt and

TTϕλ(vt)τC · Tϕλ↑v̇t = TTϕλ(vt)τC · ∂τ=t Tϕλ(vτ )

= ∂τ=t (τC ◦ Tϕλ)(vτ ) = ∂τ=t (ϕλ ◦ τC)(vτ )

= Tϕλ · Tv̇tτC(vt) = Tϕλ(vt) ,

so that

(θL · Ḟ)(Tϕλ(vt)) = 〈dfLt(Tϕλ(vt)), TTϕλ(vt)τC · Tϕλ↑v̇t 〉

= 〈dfLt(Tϕλ(vt)), Tϕλ(vt)〉 .
Hence we get:

dvTϕ(vt)(θLt · Ḟ) = ∂λ=0 (θLt · Ḟ)(Tϕλ(vt))

= ∂λ=0 At(Tϕλ(vt)) = dAt(vt) · vTϕ(vt) .
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Summing up:

dθLt(vt) · v̇t · vTϕ(vt) = ∂τ=t 〈dfLτ (vτ ), δvτ 〉

− dAt(vt) · vTϕ(vt) .

Being At = Lt + Et , the explicit form of Hamilton’s canonical equation is
given by

∂τ=t 〈dfLτ (vτ ), δvτ 〉 = dLt(vt) · vTϕ(vt) ,

with dLt(vt) · vTϕ(vt) = ∂λ=0 Lt(Tϕλ(vt)) . �

The law of dynamics states that the time-rate of increase of the virtual power
of the kinetic momentum along the trajectory is equal to the rate of variation
of the Lagrangian along any flow whose velocity at the actual configuration is
an admissible infinitesimal isometry.

In the author’s knowledge, the general law of dynamics in a non-linear con-
figuration manifold contributed above, is not quoted in the literature. This law
provides the most general formulation of the governing rules of dynamics in
terms of the Lagrangian of the system.

Remark 2.2.4 To evaluate the expression of the law of dynamics in the form
derived above, it is compelling to assign the flows ϕλ ∈ C1(C ;C) at least in
a neighborhood of τC(vt) ∈ γ and not just the initial velocity vϕ(τC(vt)) at
the actual configuration τC(vt) ∈ γ . By tensoriality, the flows ϕλ ∈ C1(C ;C)
leading to the same value of vTϕ(vt) ∈ TvtTC are equivalent. Anyway, by in-
troducing a connection, we shall see that this expression of the law of dynamics is
equivalent to one in which virtual flows enters in the analysis only through their
virtual velocity, thus revealing that dynamical equilibrium depends only on the
kinematical constraints pertaining to the body-placement under consideration.

Remark 2.2.5 In the variational expression of the law of dynamics, the test
fields vϕ ∈ C1(γ ;TC) are infinitesimal isometries at the trajectory γ ∈ C1(I ;C).
This rigidity constraint has a basic physical meaning since it reveals that the
dynamical equilibrium at a given configuration is independent of the material
properties of the body. The evaluation of the equilibrium configuration requires
in general to take into account the constitutive properties of the material and
hence to get rid of the rigidity constraint. This task can be accomplished in
complete generality by the method of Lagrange multipliers. In continuum me-
chanics, the Lagrange multipliers in duality with the rigidity constraints are
called the stress fields in the body [201], (see Sections 3.17 and 3.5.3).
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Remark 2.2.6 The law of dynamics can be directly deduced from Hamilton’s
principle in the extended form provided by proposition 2.2.2. Indeed, by applying
the fundamental theorem of calculus, the principle may be rewritten as:∫

I

∂λ=0 Lt(Tϕλ(vt)) dt=

∫
I

∂τ=t 〈dfLτ (vτ ), δvτ 〉 dt .

By the arbitrarity of the flow ϕλ ∈ C1(C ;C) and the piecewise continuity of
the integrands, we get the result.

Remark 2.2.7 The general expression of the law of dynamics implies, as a triv-
ial corollary, a statement which extends to continuum dynamics E. Noether’s
theorem as formulated in [154], [8], [127], [3]. Indeed from the law of dynamics
we directly infer that

∂λ=0 Lt(Tϕλ(vt)) = 0 ⇐⇒ ∂τ=t 〈dfLτ (vτ ), δvτ 〉 = 0 ,

while the extension of Noether’s theorem consists in the weaker statement:

Lt(Tϕλ(vt)) = Lt(vt) =⇒ ∂τ=t 〈dfLτ (vτ ), δvτ 〉 = 0 .

2.2.6 The Legendrian functor
The Legendre transform associated with a regular Lagrangian Lt ∈ C1(TC ;<)
induces the covariant Legendrian functor Leg between the categories of tangent
and cotangent bundles over the base manifold C .

The Legendrian functor, transforms a morphism f ∈ Ck(TC ;TC) into a
morphism Leg(f) ∈ Ck(T ∗C ;T ∗C) defined by the commutative diagram:

TC f−−−−→ TC

dfLt

y ydfLt
T ∗C Leg(f)−−−−→ T ∗C

⇐⇒ Leg(f) ◦ dfLt := dfLt ◦ f .

This means that the morphisms f ∈ Ck(TC ;TC) and Leg(f) ∈ Ck(T ∗C ;T ∗C)
are dfLt-related. If the Lagrangian is regular, we have that dfHt = (dfLt)

−1

and TdfHt = (TdfLt)
−1 . The Legendrian functor is then invertible, according

to the commutative diagram:

TC Leg−1(g)−−−−−−→ TC

dfHt

x xdfHt
T ∗C g−−−−→ T ∗C

⇐⇒ Leg−1(g) ◦ dfHt := dfHt ◦ g .
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Let ϕλ ∈ C1(C ;C) be a flow with velocity field vϕ ∈ C1(C ;TC) and Tϕλ ∈
C1(TC ;TC) the lifted flow with velocity field vTϕ ∈ C1(TC ;TTC) .

The flow Leg(Tϕλ) := dfLt ◦ Tϕλ ◦ dfHt ∈ C1(T ∗C ;T ∗C) , is defined
according to the commutative diagrams:

C τC←−−−− TC dfHt←−−−− T ∗C

ϕλ

x Tϕλ

x Leg(Tϕλ)

x
C τC←−−−− TC dfHt←−−−− T ∗C

⇐⇒


τC ◦ Tϕλ = ϕλ ◦ τC ,

dfHt ◦ Leg(Tϕλ) = Tϕλ ◦ dfHt ,

τ ∗C ◦ Leg(Tϕλ) = ϕλ ◦ τ ∗C ,

and its velocity vLeg(Tϕ) := TdfLt◦vTϕ◦dfHt = dfLt↑vTϕ ∈ C1(T ∗C ;TT ∗C)
by the commutative diagrams:

TC TτC←−−−− TTC TdfHt←−−−− TT ∗C

vϕ

x vTϕ

x vLeg(Tϕ)

x
C τC←−−−− TC dfHt←−−−− T ∗C

⇐⇒


TτC ◦ vTϕ = vϕ ◦ τC ,

TdfHt ◦ vLeg(Tϕ) = vTϕ ◦ dfHt ,

Tτ ∗C ◦ vLeg(Tϕ) = vϕ ◦ τ ∗C .

2.2.7 Hamiltonian description
A general form of the action principle for a trajectory Γ∗I ∈ C1(I ;T ∗C× I) in
the covelocity-time state-space, is expressed by the variational condition:

∂λ=0

∫
(FlYλ ×FlΘλ )(Γ∗(I))

ω1 =

∮
∂Γ∗(I)

ω1 · (Y ,Θ) ,

for any time-flow FlΘλ ∈ C1(I ; I) with velocity vector field Θ ∈ C1(I ;TI)
and any automorphic flow FlYλ ∈ C1(T ∗C ;T ∗C) , with projected flow ϕλ ∈
C1(C ;C) defined by the commutative diagram:

T ∗C
FlYλ−−−−→ T ∗C

τ∗C

y τ∗C

y
C ϕλ−−−−→ C

⇐⇒ τ ∗C ◦ FlYλ = ϕλ ◦ τ ∗C .

We set v∗t = prT∗C ◦ Γ∗I(t) , so that Γ∗I(t) = (v∗t , t) . Localizing the action
principle, the differential condition reads:

dθC(v∗t ) ·X(v∗t ) ·Y(v∗t ) = −〈dHt(v
∗
t ),Y(v∗t )〉 , ∀Y(v∗t ) ∈ Tv∗t

T ∗C .
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The flows FlYλ ∈ C1(T ∗C ;T ∗C) and Leg(Tϕλ) := dfLt ◦ Tϕλ ◦ dfHt ∈
C1(T ∗C ;T ∗C) both project to the same base-flow ϕλ ∈ C1(C ;C) . If the map
Tϕλ is invertible, then Leg(Tϕλ) is invertible too and we may define the map
FlVλ := FlYλ ◦ (Leg(Tϕλ))−1 ∈ C1(T ∗C ;T ∗C) and write:

FlYλ = FlVλ ◦ Leg(Tϕλ) ,

with the flow FlVλ ∈ C1(T ∗C ;T ∗C) such that τ ∗C ◦ FlVλ = τ ∗C .
Then, by Leibniz rule, we have the virtual velocity split:

Y(v∗t ) = ∂λ=0 FlYλ (v∗t ) = ∂λ=0 FlVλ (v∗t ) + ∂λ=0 Leg(Tϕλ)(v∗t )

= V(v∗t ) + vLeg(Tϕ)(v
∗
t ) ,

and the verticality property:

∂λ=0 (τ ∗C ◦ FlVλ ) = Tτ ∗C(v∗t ) ·V(v∗t ) = 0 ,

so that V(v∗t ) ∈ Tv∗t
T ∗τ∗C(v∗t )C ' T ∗τ∗C(v∗t )C . The differential condition may thus

be split into:{
dθC(v∗t , t) ·X(v∗t ) · vLeg(Tϕ)(v

∗
t ) = −〈dHt(v

∗
t ),vLeg(Tϕ)(v

∗
t )〉 ,

dθC(v∗t , t) ·X(v∗t ) ·V(v∗t ) = −〈dfHt(v
∗
t ),V(v∗t )〉 ,

The second equations is fulfilled if and only if the velocity of the base trajectory
associated with Γ∗ is Legendre conjugate to the velocity X(v∗t ) of Γ∗ , as is
clarified by the next result.

Lemma 2.2.3 The fulfillment of the differential condition

dθC(v∗t ) ·X(v∗t ) ·V(v∗t ) = −〈dfHt(v
∗
t ),V(v∗t )〉 ,

for any vertical vector V(v∗t ) ∈ Tv∗t
T ∗τ∗C(v∗t )C = T ∗τ∗C(v∗t )C , is equivalent to re-

quire that:
Tτ ∗C(v∗t ) ·X(v∗t ) = dfHt(v

∗
t ) .

Proof. By Palais formula with X(v∗t ) ∈ Tv∗t
T ∗C extended to a vector field

Ḟ∗(FlVλ (v∗t )) := (FlVλ ↑X)(FlVλ (v∗t )) pushed along the flow FlVλ ∈ C1(T ∗C ;T ∗C) :

dθC(v∗t ) ·X(v∗t ) ·V(v∗t ) = dX(v∗t )(θC ·V)(v∗t )− dV(v∗t )(θC · Ḟ∗)(v∗t ) ,
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with dX(v∗t )(θC ·V)(v∗t ) = ∂τ=t 〈v∗τ , Tτ ∗C(v∗τ ) ·V(v∗τ )〉 = 0 and

dV(v∗t )(θC · Ḟ∗)(v∗t ) = ∂λ=0 〈θC(FlVλ (v∗t )), (FlVλ ↑X)(FlVλ (v∗t ))〉

= ∂λ=0 〈FlVλ (v∗t ), Tτ
∗
C(FlVλ (v∗t )) · TFlVλ (v∗t ) ·X(v∗t )〉

= ∂λ=0 〈FlVλ (v∗t ), T (τ ∗C ◦ FlVλ )(v∗t ) ·X(v∗t )〉
= ∂λ=0 〈FlVλ (v∗t ), Tτ

∗
C(v∗t ) ·X(v∗t )〉

= 〈∂λ=0 FlVλ (v∗t ), Tτ
∗
C(v∗t ) ·X(v∗t )〉

= 〈V(v∗t ), Tτ
∗
C(v∗t ) ·X(v∗t )〉 .

By the arbitrarity of V(v∗t ) ∈ Tv∗t
T ∗τ∗C(v∗t )C = T ∗τ∗C(v∗t )C , the differential condi-

tion may be written as dfHt(v
∗
t ) = Tτ ∗C(v∗t ) ·X(v∗t ) . �

Remark 2.2.8 In the lecture notes by F. Gantmacher [72] and in the nice
book by V.I. Arnold [8], the action principle of dynamics is formulated in
the covelocity-time state-space, that is, in the product space T ∗C× I , with the
covelocity-phase-space T ∗C one-to-one related to the velocity state-space TC
by means of the Legendre transform. The action principle is stated, in the
special context of rigid-body dynamics and in finite dimensional configuration
manifolds, as an extremality property of the integral of the one form θ −H dt
along the trajectory Γ∗ in the covelocity-time state-space.

The extremality property stated in [72, chap.3, sec.17], and in [8, chap.IX,
sec.C ] considers arbitrary flows with the initial and the final configurations of
the trajectory held fixed and it is claimed that the class of trajectory-variations
in the covelocity-time state-space is greatly enlarged with respect to the ones
considered in the usual statement of Hamilton’s principle. In [8] this result is
attributed to the extremality property of the Legendre transformation under
a convexity assumption on the Lagrangian. The analysis developed in the pre-
vious sections clarifies the situation. The class of trajectory-variations may be
enlarged to include arbitrary flows in the covelocity-phase-space, which project
to well-defined flows in the configuration manifold. This enlargement is exactly
what is needed to get, as a natural condition of the variational action principle,
the Legendre transform between the momentum along the trajectory in the
covelocity-phase-space and the velocity of the projected trajectory in the configu-
ration manifold. The enlargement to asynchronous flows in the covelocity-time
state-space is instead performed for free, due to the energy conservation law.
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2.2.8 Non-potential forces
When non-potential forces are considered acting on the mechanical system, the
action principle and the relevant Euler conditions, must be suitably modified.
The appropriate version of the action principle may be derived, from the abstract
version stated in proposition 2.1.5, by defining the force forms as follows.

Non-potential forces acting on the mechanical system, are represented by a
time-dependent field of one-forms Ft ∈ C1(γ ;T ∗C) on the trajectory in the
configuration manifold, so that Ft(x) ∈ T ∗xC with x ∈ γ . To formulate the
law of dynamics on the velocity-time state space we need first to express forces
as one-forms on the velocity bundle. Physical consistency requires that force
forms be represented by horizontal forms on the velocity bundle since the virtual
work must vanish for a vanishing velocity of the base point in the configuration
manifold. The correspondence between force one-forms Ft ∈ C1(γ ;T ∗C) acting
along the trajectory in the configuration manifold, and horizontal one-forms
ft ∈ C1(Γ ;T ∗TC) acting along the lifted trajectory in the velocity bundle is
the bijection defined by: ft := T ∗τC · Ft , where T ∗τC = (TτC)∗ , so that:

ft(vt) ·Y(vt) := 〈T ∗τC · Ft(τC(vt)),Y(vt)〉 ,

= 〈Ft(τC(vt)), TτC ·Y(vt)〉 , ∀Y(vt) ∈ TvtT
∗C ,

In the velocity-time state-space, at regular points of the trajectory, forces are
represented by force two-forms defined by: α2

reg(vt, t) := dt∧ ft(vt) . From the
definition it follows that:

[α2
reg · (Y ,Θt) · (X , 1)](vt, t) = (dt ∧ ft(vt)) · (Y(vt) ,Θt) · (X(vt) , 1t)

= (ft(vt) ·X(vt)) Θt − ft(vt) ·Y(vt) ,

and, for synchronous virtual velocities:

[α2
reg · (Y , 0) · (X , 1)](vt, t) = −ft(vt) ·Y(vt) .

Impulsive forces at singular points x ∈ Γ are described by one-forms At(x) ∈
T ∗xC and, on the lifted trajectory in the tangent bundle, by horizontal one-forms
α1

sing ∈ T ∗TC defined by α1
sing = T ∗τC ·At , that is:

α1
sing(vt) ·Y(vt) = 〈At(τC(vt)), TτC ·Y(vt)〉 .

In the Hamiltonian description, the force two-form in the covelocity bundle is
defined as

α2
reg(v∗, t) := −(f ∧ dt)(v∗, t) , (v∗ , t) ∈ γ∗ ,
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where f(v∗, t) = ft(v
∗) and, with abuse of notation, t(v∗, t) = t . Given a field

of force one-forms Ft ∈ C1(C ;T ∗C) on the configuration manifold, the induced
field of force one-forms on the covelocity bundle is defined by

ft := T ∗τ ∗C · (Ft ◦ τ ∗C) = θC · (Ft ◦ τ ∗C) ∈ C1(T ∗C ;T ∗T ∗C) ,

where θC = T ∗τ ∗C = (Tτ ∗C)∗ ∈ C1(T ∗C ;T ∗T ∗C) . Then

〈ft,Y 〉 := 〈θC · (Ft ◦ τ ∗C),Y 〉 = 〈Ft ◦ τ ∗C, Tτ ∗C ·Y 〉 ∈ C1(T ∗C ;<) ,

or explicitly

ft(v
∗) ·Y(v∗) := 〈θC · Ft(τ ∗C(v∗)),Y(v∗)〉 ,

= 〈Ft(τ ∗C(v∗)), Tτ ∗C ·Y(v∗)〉 , ∀Y(v∗) ∈ Tv∗T
∗C .

Impulsive forces at singular points are one-forms α1
sing ∈ T ∗T ∗C defined by

α1
sing ·Y := 〈At ◦ τ ∗C, Tτ ∗C ·Y 〉 ∈ C1(T ∗C ;<) ,

where At(x) ∈ T ∗xC .

2.2.9 Action principle in the covelocity space
Trajectories in the velocity-time state-space and in the covelocity-time state-
space are related by: prT∗C ◦ Γ∗ := dfL ◦ prTC ◦ Γ .

Definition 2.2.1 The free asynchronous action principle for the trajec-
tory Γ∗ ∈ C1(I ;T ∗C× I) in the covelocity-time state-space, is expressed by the
stationarity condition:

∂λ=0

∫
(FlYλ ×FlΘλ )(Γ∗I )

ω1 =

∫
∂Γ∗I

ω1 · (Y ,Θ)

+

∫
Γ∗I

α2
reg · (Y ,Θ) +

∫
sing(Γ∗I )

α1
sing · (Y ,Θ) .

If the trajectory in the covelocity-time state-space is parametrized with time,
we have that

α2
reg(v∗t , t) · (X(v∗t ) , 1t) · (Y(v∗t ) ,Θ(t)) =− ft(v

∗
t ) ·X(v∗t ) Θ(t)

+ ft(v
∗
t ) ·Y(v∗t ) .
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The Euler-Lagrange differential condition of stationarity

(dω1 −α2
reg)(v∗t , t) · (X(v∗t ) , 1t) · (Y(v∗t ) ,Θ(t)) = 0 ,

then becomes

dθC(v∗t ) ·X(v∗t ) ·Y(v∗t ) = dX(v∗t )Ht(v
∗
t ) Θ(t)− dY(v∗t )Ht(v

∗
t )

− ft(v
∗
t ) ·X(v∗t ) Θ(t) + ft(v

∗
t ) ·Y(v∗t ) ,

and, splitting, we get{
dθC(v∗t ) ·X(v∗t ) ·Y(v∗t ) = (ft(v

∗
t )− dHt(v

∗
t )) ·Y(v∗t ) ,

dX(v∗t )Ht(v
∗
t ) = ft(v

∗
t ) ·X(v∗t ) ,

for all Y(v∗t ) ∈ Tv∗t
T ∗C such that sym∇(Tτ ∗C(v∗t ) ·Y(v∗t )) = 0 .

The former is the general form of Hamilton’s canonical law of dynamics
while the latter, which expresses the energy conservation law, is a consequence
of the former and can be dropped.

Being Tτ ∗C(v∗t ) ·X(v∗t ) = dfHt(v
∗
t ) , we have that

ft(v
∗
t ) ·X(v∗t ) = 〈Ft(v∗t ), dfHt(v

∗
t )〉 .

In the case of potential forces, there exists a scalar function P ∈ C1(T ∗C×I ;<)
such that

f(v∗, t) = dP (v∗, t) .

We define β1 := −Pdt(v∗, t) to get α2
reg = dβ1 .

Then, setting Pt(v∗) := P (v∗, t) , Hamilton’s canonical law may be written
as

dθC(v∗t ) ·X(v∗t ) ·Y(v∗t ) = d(Pt −Ht)(v
∗
t ) ·Y(v∗t ) ,

for all Y(v∗t ) ∈ Tv∗t
T ∗C such that sym∇(Tτ ∗C(v∗t ) ·Y(v∗t )) = 0 .

2.2.10 Action principle in the Pontryagin bundle
The action principle can be reformulated in terms of both velocity and kinetic
momentum by introducing the Pontryagin vector bundle πP ∈ C1(PC ;C)
which is the Whitney sum PC := TC⊕T ∗C of the tangent and the cotangent
bundles, defined as the vector bundle whose fibers are the direct sums of tangent
and cotangent spaces:

TC⊕ T ∗C := {vP := (v ,v∗) ∈ TC⊕ T ∗C : πP(vP) := τC(v) = τ ∗C(v∗)} .
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Figure 2.3: Lev Semenovich Pontryagin (1908 - 1988)

The canonical one-form θP(vP) ∈ T ∗vP
PC is defined by

〈θP,XP 〉(vP) := 〈v∗, TπP ·XP(vP)〉 , ∀XP(vP) ∈ TvP
PC ,

and the evaluation functional eval ∈ C1(PC ;<) is given by

eval(vP) := 〈v∗,v〉 ,

The Pontryagin energy functional EP ∈ C1(PC ;<) is then defined by

EP(vP) := eval(vP)− L(v) = 〈v∗,v〉 − L(v) .

We may now state the following result.

Lemma 2.2.4 The fulfillment of the differential condition

dθP(vP) ·XP(vP) ·VP(vP) = −〈dfEP(vP),V(vP)〉 ,

for any vertical vector V(vP) ∈ TvP
PπP(vP)C , is equivalent to require that:{

v∗= dfL(v) ,

v = TπP(vP) ·XP(vP) .

Proof. Let us consider the extension ḞP := FlVP

λ ↑XP of the vector field
XP(vP) ∈ TvP

T ∗C along the trajectory by pushing it along the flow FlVP

λ ∈
C1(PC ;PC) . Then Palais formula gives

dθP(vP) ·XP(vP) ·VP(vP) = dXP(vP)(θP ·VP)(vP)− dVP(vP)(θP · ḞP)(vP) ,
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with dX(vP)(θP ·VP)(vP) = ∂τ=t 〈v∗(τ), TπP(vP(τ)) ·VP(vP(τ))〉 = 0 and

dVP(vP)(θP · ḞP)(vP) = ∂λ=0 〈θP(FlVP

λ (vP)), (FlVP

λ ↑XP)(FlVP

λ (vP))〉

= ∂λ=0 〈FlVP

λ (v∗t ), TπP(FlVP

λ (vP)) · TFlVP

λ (vP) ·XP(vP)〉
= ∂λ=0 〈FlVP

λ (vP), T (πP ◦ FlVP

λ )(vP) ·XP(vP)〉
= ∂λ=0 〈FlVP

λ (vP), TπP(vP) ·XP(vP)〉
= 〈w∗, TπP(vP) ·XP(vP)〉 ,

where by verticality πP ◦ FlVP

λ = πP and the pair (w ,w∗) ∈ PC is defined
by the vertical lift:

vl PC(vP) · (w ,w∗) = VP(vP) .

On the other hand we have that

〈dfEP(vP),VP(vP)〉 = deval(vP) ·VP(vP)− dfL(v) ·w .

A direct computation gives

deval(v ,v∗) · (w ,w∗) = lim
λ→0

1

λ

[
〈v∗ + λw∗,v + λw〉 − 〈v∗,v〉

]
= 〈v∗,w〉 − 〈w∗,v〉 .

Hence the differential condition in the statement may be written as

〈v∗ − dfL(v),w〉+ 〈w∗,v − TπP(vP) ·XP(vP)〉 = 0 .

By the arbitrarity of (w ,w∗) ∈ PC the result follows. �

The action principle for a trajectory ΓPI in the extended Pontryagin
bundle PC× I is expressed by the variational condition:

∂λ=0

∫
(FlYλ ×FlΘλ )(ΓPI)

ω1 =

∫
∂ΓPI

ω1 · (Y ,Θ) ,

for any time-flow FlΘλ ∈ C1(I ; I) with velocity vector field Θ ∈ C1(I ;TI) and
any automorphic flow FlYλ ∈ C1(PC ;PC) , with projected flow ϕλ ∈ C1(C ;C)
defined by the commutative diagram:

PC
FlYλ−−−−→ PC

πP

y πP

y
C ϕλ−−−−→ C

⇐⇒ πP ◦ FlYλ = ϕλ ◦ πP .
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2.2.11 Symplectic and contact manifolds
The basic property of the canonical two-form dθC ∈ Λ2(TC ;<) is its weak
nondegeneracy (Theorem 1.13.2, page 230):

dθC(v∗) ·X(v∗) ·Y(v∗) = 0 , ∀Y(v∗) ∈ Tv∗T
∗C =⇒ X(v∗) = 0 .

Then we say that

Definition 2.2.2 (Exact symplectic manifold) The velocity phase-space TC ,
endowed with the exact two-form dθLt ∈ Λ2(TC ;<) , is an exact symplectic
manifold.

In a symplectic manifold Hamilton’s equation

dθC(v∗t ) ·X(v∗t ) ·Y(v∗t ) = (ft(v
∗
t )− dHt(v

∗
t )) ·Y(v∗t ) , ∀Y(v∗t ) ∈ Tv∗t

T ∗C ,

admits a unique solution (if any).
On the other hand, recalling that the action one-form is given by

ω1(v∗t , t) := prT∗C↓θC(v∗t )− η(v∗t , t) ,

we have that
dω1(v∗t , t) := prT∗C↓dθC(v∗t )− dη(v∗t , t) ,

so that, normalizing the time velocity to the unity, Euler’s differential condition
of stationarity writes

(dω1 −α2
reg)(v∗t , t) · (X(v∗t ) , 1t) · (Y(v∗t ) ,Θ(t)) = 0 ,

for all Y(v∗) ∈ Tv∗T
∗C and all Θ(t) ∈ TtI .

Since the normalized solution X(v∗t ) ∈ Tv∗t
T ∗C of Euler’s differential con-

dition is also the unique solution of Hamilton’s equation, we infer that the
form dω1(v∗, t) ∈ Λ2(Tv∗T

∗C× TtI ;<) has a 1-D kernel.
Then we have that

Definition 2.2.3 The covelocity-time state-space T ∗C × I , endowed with the
exact two-form dω1 ∈ Λ2(TC× I ;<) , is an exact contact manifold.

If the Lagrangian has a nonsingular fiber derivative, the velocity-time state-
space TC× I , endowed with the exact two-form dω1

L ∈ Λ2(TC× I ;<) , is also
an exact contact manifold.
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2.2.12 Constrained Hamilton’s principle
The proof of the classical Maupertuis’ principle given in [2], Theorem 3.8.5
on page 249 , considers a trajectory in the configuration manifold and its asyn-
chronous variations in the configuration manifold in which end-points and in-
stantaneous energy are held fixed while varying start and end-time instants.
Asynchronous variations are needed since there could be no path joining the
end-points with the same constant energy and the same start and end-time,
other than the given trajectory. The treatment in [2] is developed in terms of
coordinates.

Our approach provides instead an intrinsic formulation of a constrained
Hamilton’s principle (CHP) in the velocity-time state-space, thus allowing
for a direct application of Lagrange’s multipliers method to show its equiva-
lence to the geometric form of Hamilton’s principle in Proposition 2.2.4 which
will be calledUHP (Unconstrained Hamilton Principle). No asynchronous vari-
ations are needed since the CHP is formulated as a geometric action principle
in the velocity-time state-space. Moreover the energy conservation constraint
must be imposed pointwise only on the virtual velocities and not along the varied
trajectories. The idea underlying the proof is the following. It is straightfor-
ward to see that a trajectory fulfilling the UHP is also solution of the CHP
in which the energy conservation constraint is imposed on test velocity fields.
Not trivial is the converse implication, that the geometric trajectory provided
by the CHP is also solution of the UHP. The non-trivial part of the proof
is based on Lagrange’s multipliers method and this in turn relies upon Ba-
nach’s closed range theorem in Functional Analysis. In this respect we notice
that improper applications of Lagrange’s multipliers method outside its range
of validity have led, also in recent times, to erroneous statements and results in
mechanics, as discussed in [209]. We formulate a variational statement of the
CHP valid for any dynamical system, including time-dependent lagrangians
and non-potential or time-dependent forces. Impulsive forces are not explicitly
considered for brevity but could be easily accounted for. The classical Mau-
pertuis’ least action principle will be later directly recovered under the special
assumption of conservativity. A more general principle which we still call Mau-
pertuis’ principle is got under the assumption that the energy and the force
do not depend directly on time.

The Poincaré-Cartan one-form θL ∈ C1(TC × I ;T ∗(TC × I)) in the
velocity-time state-space is defined along the trajectory ΓI ⊂ TC× I by:

〈θL, (Y ,Θ)〉(vt, t) := 〈θLt ,Y 〉(vt) ,
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and the energy functional E ∈ C1(ΓI ;<) is given by E(vt, t) := Et(vt) with
(vt , t) = Γ(t) .

Lemma 2.2.5 Defining the energy one-form η ∈ C1(TC× I ;T ∗(TC× I)) :

η(vt, t) := E(vt, t) dt ,

the exterior derivative yields the formula:

[dη · (Y , 0) · (X , 1)](vt, t) = dEt(vt) ·Y(vt) .

Proof. The computation may be performed by Palais formula by extending
the vector (X(vt) , 1t) ∈ T(vt ,t)ΓI to a field F ∈ C1(TC × I ;T (TC × I)) by
pushing it along the flow Fl

(Y,0)
λ ∈ C1(ΓI ;TC× I) , according to the relation:

F(Fl
(Y,0)
λ (vt, t)) := (FlYλ ↑X(vt) , 1t)(FlYλ (vt) ,t) .

Then Palais formula tells us that

dη(vt, t) · (Y(vt) , 0t) · (X(vt) , 1t) = d(Y(vt) ,0t)〈η,F 〉
− d(X(vt) ,1t)〈η, (Y , 0)〉+ 〈η,L(Y ,0)F 〉(vt, t) .

Since, by the chosen extension, the Lie derivative L(Y ,0)F vanishes, we may
evaluate as follows:

d(X(vt) ,1t)〈η, (Y , 0)〉 = ∂τ=t 〈η(vτ , τ), (Y(vτ ) , 0)〉 = ∂τ=tEτ (vτ )〈 dτ, 0〉 = 0 ,

d(Y(vt) ,0t)〈η,F 〉 = ∂λ=0Et(FlYλ (vt)) 〈dt, 1t 〉 = ∂λ=0Et(FlYλ (vt)) .

Summing, being ∂λ=0Et(FlYλ (vt)) = dEt(vt) ·Y(vt) , we get the result. �

Theorem 2.2.2 (Constrained Hamilton Principle) A trajectory ΓI in the
velocity-time state-space TC × I of a dynamical system governed by a time-
dependent energy Et ∈ C1(Γ ;<) and subject to time-dependent forces Ft ∈
C1(γ ;T ∗C) , where γ = τC(Γ) , is a 1-D submanifold ΓI ⊂ TC × I fulfilling
the geometric action principle:

∂λ=0

∫
Fl

(Y,0)
λ (ΓI)

θL =

∮
∂ΓI

θL ·Y ,

for any virtual velocity field fulfilling the energy conservation law:

Y(vt) ∈ ker((dEt − ft)(vt)) ⊂ TvtTC .
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Proof. Let us prove that the above statement, denoted CHP (Constrained
Hamilton Principle), is equivalent to the action principle in Proposition 2.2.4,
denoted UHP (Unconstrained Hamilton Principle). Indeed the latter, in the
synchronous case, being ω1

L = θL − η may be written as:

∂λ=0

∫
Fl

(Y,0)
λ (ΓI)

θL −
∮
∂ΓI

θL · (Y , 0) =

∫
ΓI

(dη +α2
reg) · (Y , 0) ,

for any field Y ∈ C1(Γ ;TTC) . Along a time-parametrized trajectory, by
Lemma 2.2.5 we have that

(dη +α2
reg) · (Y , 0) · (X , 1)(vt, t) = (dEt − ft)(vt) ·Y(vt) .

Hence clearly the UHP implies the CHP. The converse implication is proved
by comparing Euler’s conditions for both action principles. By the extrusion
formula, the expression of the UHP becomes:∫

ΓI

(dθL − dη −α2
reg) · (Y , 0) = 0 , ∀Y ∈ C1(Γ ;TTC) ,

and the expression of the CHP may be written as:∫
ΓI

dθL · (Y , 0) = 0 , ∀ (Y , 0) ∈ ker((dη +α2
reg) · (X , 1)) .

Moreover, being

[dθL · (Y , 0) · (X , 1)](vt, t) = dθLt ·Y(vt) ·X(vt) ,

the UHP and CHP are respectively equivalent to the Euler’s conditions:

dθLt ·X(vt) ·Y(vt) = (ft − dEt)(vt) ·Y(vt) , ∀Y ∈ C1(Γ ;TTC) ,

dθLt ·X(vt) ·Y(vt) = 0 , ∀Y(vt) ∈ ker((ft − dEt)(vt)) .

By the non-degeneracy of the two-form dθLt the former equation admits a
unique solution X(vt) ∈ TvtTC . The solution of the latter homogeneous equa-
tion is instead definite to within a scalar factor. The former condition clearly
implies the latter one, in the sense that the solution of the former is also a
solution of the latter. The converse implication, that there is a solution of the
latter which is also solution of the former, is proved by Lagrange’s multi-
plier method. The argument is as follows. Setting fE(vt) := (ft − dEt)(vt) ∈
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T ∗vtTC = BL (TvtTC ;<) , the subspace im(fE(vt)) = < is trivially closed and
hence ker(fE(vt))

0 = im(fE(vt)
′) by Banach closed range theorem [122].

Here fE(vt)
′ ∈ BL (< ;T ∗vtTC) is the dual operator. The latter condition writes

dθLt ·X(vt) ∈ ker(fE(vt))
0 and hence the result above ensures the existence

of a µ(vt) ∈ < such that

dθLt(vt) ·X(vt) ·Y(vt) = 〈fE(vt)
′ · µ(vt),Y(vt)〉 , ∀Y(vt) ∈ TvtTC ,

equivalent to dθLt(vt) ·X(vt) = µ(vt) fE(vt) . Then the field X(vt)/µ(vt) is
solution of both Euler’s conditions. The Lagrange’s multipliers provide a
field of scaling factors to get the right time schedule along the trajectory. �

According to Lemma 2.2.2, Euler differential condition ensures that the
trajectory Γ ∈ C1(I ;TC) is the lifting to the tangent bundle of the trajectory
γ ∈ C1(I ;C) , so that vt = Γ(t) = ∂τ=t γ(τ) . Then the virtual flow may be
defined as FlYλ = Tϕλ ∈ C1(TC ;TC) with ϕλ ∈ C2(C ;C) and the virtual
velocity is given by Y = vTϕ = ∂λ=0 Tϕλ ∈ C1(TC ;TTC) .

The variational condition of the constrained principle of Theorem 2.2.2
can then be written explicitly, in terms of the action functional At(vt) :=
〈dfLt(vt),vt 〉 associated with the Lagrangian and of the virtual flow in the
configuration manifold as

∂λ=0

∫
I

At(Tϕλ(vt)) dt =

∮
∂I

〈dfLt(vt),vϕ(τC(vt))〉 dt ,

with virtual velocities fulfilling conservation of energy, i.e.:

dEt(vt) · vTϕ(vt) = Ft(vt) · vϕ(τC(vt)) .

The action functional is also referred to in the literature as the reduced action
functional, to underline that the energy term is missing in comparison with
Hamilton’s stationarity principle for the lagrangian Lt := At − Et . We un-
derline that, in spite of the explicit appearance of flow and tangent flow in the
expression of the principle, only the virtual velocity vϕ(τC(vt)) along the tra-
jectory γ = τC(Γ) is influent in the formulation of the law of dynamics. In fact
virtual flows with coincident initial velocities provide the same test condition.
This basic property, which is here hidden by the imposition of the constraint
of energy conservation, may be proven on the basis of the equivalent geometric
Hamilton’s principle, by introducing a connection in the configuration mani-
fold to get a generalized formulation of Lagrange’s law of dynamics [?], [?].
The CHP may be stated with an equivalent formulation in which the constraint
of energy conservation on the virtual velocities is imposed in integral form.
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Theorem 2.2.3 (Constrained Hamilton principle: an equivalent form)
A trajectory ΓI of a dynamical system in the velocity-time state-space TC× I
is a path fulfilling the geometric action principle:

∂λ=0

∫
Fl

(Y,0)
λ (ΓI)

θL =

∮
∂ΓI

θL ·Y ,

for any tangent field Y ∈ C1(Γ ;TTC) such that∫
I

dEt(vt) ·Y(vt) dt =

∫
I

〈Ft(vt), TτC ·Y(vt)〉 dt .

Proof. A trajectory fulfils the action principle of Proposition 2.2.4 and hence a
fortiori the constrained principle of Theorem 2.2.3 and then again a fortiori the
weaker condition of the principle in Theorem 2.2.2. Since this latter is equivalent
to the action principle of Proposition 2.2.4, the circle of implications is closed
and the assertion is proven. �

2.2.13 Maupertuis’ least action principle
In the presentation of the least action principle, we shall not follow the standard
treatment due to Maupertuis, Euler, Lagrange and Jacobi [8], but will
instead derive the result by a direct specialization of the constrained geometric
Hamilton principle.

When the lagrangian L ∈ C1(TC ;<) is time-independent and the system
is subject to time-independent forces F ∈ C1(γ ;T ∗C) , the constraint of energy
conservation on the virtual velocity field is independent of time. Then the
projected trajectory in the velocity phase-space can be arbitrarily parametrized
and the CHP directly yields an extended version of Maupertuis’ principle in
which the dynamical system is not necessarily conservative.

Theorem 2.2.4 (Maupertuis principle) In a dynamical system governed by
a time-independent lagrangian functional L ∈ C1(TC ;<) and subject to time-
independent forces F ∈ C1(γ ;T ∗C) , the trajectories are 1-D submanifolds Γ ⊂
TC of the velocity phase-space with tangent vectors X(v) := ∂µ=λ Γ(µ) ∈ TvΓ ,
with v := Γ(λ) , fulfilling the homogeneous Euler’s condition:

dθL(v) ·X(v) ·Y(v) = 0 , X(v) ∈ TvTC ,

for any virtual velocity field fulfilling the energy conservation law: Y(v) ∈
ker((T ∗τC ◦ F − dE)(v)) ⊂ TvTC . The associated geometric action principle
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in the phase-space TC is expressed by the variational condition:

∂λ=0

∫
FlYλ (Γ)

θL =

∮
∂Γ

θL ·Y ,

stating the stationarity of the action integral of the Poincaré-Cartan one-
form θL = T ∗τC ◦ (idTM , dfL) for all virtual flows FlYλ ∈ C1(TC ;TC) with
an energy conserving virtual velocity Y(v) ∈ ker((T ∗τC ◦ F− dE)(v)) .

Figure 2.4: Pierre Louis Moreau de Maupertuis (1698 - 1759)

An alternative statement can be deduced from the one in Theorem 2.2.3.
The Maupertuis principle of Theorem 2.2.4 is a geometric action principle
whose solutions are determinate to within an arbitrary reparametrization. The
relevant Euler condition is homogeneous in the trajectory velocity and hence
provides the geometry of the trajectory but not the time law according to which
it is travelled by the dynamical system. Anyway, if the dynamical trajectory
in the velocity-time state space is projected on the velocity phase-space, both
Maupertuis’ principle and energy conservation are fulfilled. Therefore the time
schedule is recoverable from the initial condition on the velocity by imposing con-
servation of energy along the geometric trajectory evaluated by Maupertuis’
principle. For conservative systems the statement in Theorem 2.2.4 specializes
into the classical formulation of the least action principle due to Maupertuis
[43, 44], Euler [64], Lagrange [108], Jacobi [92, 93] which has been repro-
duced without exceptions in the literature, see e.g. [109], [2], [8], [3]. The
principle deduced from Theorem 2.2.4 is however more general than the clas-
sical one because it is formulated without making the standard assumption of
fixed end-points of the base trajectory in the configuration manifold and also
without assuming that the trajectory developes in a constant energy leaf. In-
deed our statement underlines that the constant energy constraint is imposed
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only on virtual velocities in the velocity phase-space and not on the trajectory
velocity.

Remark 2.2.9 In the papers [74] and [75] the authors claim that the classi-
cal Maupertuis’ principle for conservative systems can be given an equiva-
lent formulation by assuming that the trajectory is varied under the assumption
of an invariant mean value of the energy (they call this statement the general
Maupertuis’ principle GMP). The sketched proof provided in these papers is
however inficiated by the misstatement that the fulfilment of the original Mau-
pertuis’ principle (MP), in which the energy is constant under the variations,
implies the fulfilment of the GMP. But this last variational condition has more
variational test fields and hence the converse is true. The implication proved in
[74] and [75], that GMP implies MP, is then trivial and the nontrivial con-
verse implication is missing. Theorem 2.2.3 shows that the pointwise condition:
(dE ·Y)(vt) = 0 , and the integral condition on the virtual velocity field:

∂λ=0

∫
I

E(FlYλ (vt)) dt =

∫
I

(dE ·Y)(vt) dt = 0 ,

lead to equivalent formulations of the classical Maupertuis’ principle.

The long controversy concerning the least action principle, initiated with the
ugly dispute in 1751 between Maupertuis and Samuel König who claimed
that Maupertuis had plagiarized a previous result due to Leibniz who com-
municated it to Jacob Hermann in a letter dated 1707 . Voltaire, in support
of König on one side, and d’Alembert and Euler and the king of Prussia
Frederick the Great, in support of Maupertuis, on the other side, were
involved in the dispute, but the original draft of the incriminating letter was
never found.

In [8], footnote on page 243 , Arnold says:
In almost all textbooks, even the best, this principle is presented so that it

is impossible to understand (C. Jacobi, Lectures on Dynamics, 1842 - 1843). I
do not choose to break with tradiction. A very interesting "proof" of Mauper-
tuis principle is in Section 44 of the mechanics textbook of Landau and Lifšhits
(Mechanics, Oxford, Pergamon, 1960).

In [2], footnote on page 249 , Abraham& Marsden write:
We thank M. Spivak for helping us to formulate this theorem correctly. The

authors, like many others (we were happy to learn), were confused by the stan-
dard textbook statements.

The formulation given above should end the long and laborious track followed
by this principle. Here a statement of Maupertuis least action principle as a
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special case of a general variational principle of dynamics has been provided
with a simple and clear mathematical proof.

2.3 Dynamics in a manifold with a connection
Let us assume that the configuration manifold C be endowed with an affine
connection ∇ and with the associated parallel transport. We denote by cτ,t⇑
the parallel transport along a curve c ∈ C1(I ;C) from the point c(t) ∈ C to
the point c(τ) ∈ C , setting ct,τ⇓ := cτ,t⇑ .

A vector field v ∈ C1(C ;TC) is parallel transported along c ∈ C1(I ;C) if
its covariant derivative along the tangent vanishes:

∇ċtv = 0 , ∀ t ∈ I .
Then v(c(τ)) = cτ,t⇑v(c(t)) , ∀ τ, t ∈ I . The covariant derivative of a vector
field v ∈ C1(C ;TC) may be expressed in terms of parallel transport as:

∇ċtv = ∂τ=t cτ,t⇓v(c(τ)) .

Indeed, if v(c(τ)) = cτ,t⇑v(c(t)) , then ∇ċtv = 0 .
The parallel transport of a covector field ω ∈ C1(C ;T ∗C) is defined by

〈cτ,t⇑ω(c(t)),w〉 = 〈ω(c(t)), cτ,t⇓w〉 , ∀w ∈ Tc(τ)C ,

so that the parallel transport of the duality pairing is invariant:

〈cτ,t⇑ω(c(t)), cτ,t⇑v(c(t))〉 = 〈ω(c(t)),v(c(t))〉 , ∀v(c(t)) ∈ Tc(t)C .

Accordingly, the covariant derivative of a covector field ω ∈ C1(C ;T ∗C) along
the vector ċt ∈ TctC is defined by

〈∇ċtω,vt 〉= ∂τ=t 〈cτ,t⇓ω(c(τ)),vt 〉

= ∂τ=t 〈ω(c(τ)), cτ,t⇑vt 〉 , ∀vt ∈ Tc(t)C .

Let us consider the vector field v ∈ C1(C ;TC) which is the extension of the
velocity vt := ∂τ=t γ(τ) of the trajectory performed by dragging it along the
flow ϕλ ∈ C2(C ;C) :

v(ϕλ(τC(vt))) := Tϕλ(vt) , ⇐⇒ v := ϕλ↑vt ,
so that v(τC(vt)) = vt . Setting ϕλ⇑ := ϕ0,λ⇑ we have that

Tϕλ(vt) = ϕλ⇑ϕλ⇓Tϕλ(vt) = ϕλ⇑ϕλ⇓v(ϕλ(τC(vt))) .
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• The base derivative of a functional f ∈ C1(TC ;<) at v ∈ TC along a
vector vϕ(τC(v)) ∈ TτC(v)C is defined by:

〈dbf(v),vϕ(τC(v))〉 := ∂λ=0 f(ϕλ⇑v) .

The definition is well-posed since the r.h.s. depends linearly on vϕ(τC(v)) ∈
TτC(v)C for any fixed v ∈ TC .

The base derivative provides the rate of change of f ∈ C1(TC ;<) when the
base point τC(v) ∈ C is dragged by the flow while the velocity v ∈ TC is
parallel transported along the flow.

Let tors(v,u) = ∇vu−∇uv− [v,u] ∈ TC be the evaluation of the torsion
of the connection ∇ on the pair v,u ∈ TC .

The next statement provides the form taken by the law of dynamics in terms
of a connection in the configuration manifold.

Proposition 2.3.1 (The law of dynamics under a linear connection) In
terms of a linear connection ∇ on the configuration manifold C , the differential
law of dynamics

∂λ=0 Lt(Tϕλ(vt)) = ∂τ=t 〈dfLτ (vτ ),vϕ(τC(vτ ))〉 ,

takes the form

〈∂τ=t dfLτ (vτ ) +∇vt(dfLt ◦ vt)− dbLt(vt),vϕ(τC(vt))〉

= 〈dfLt(vt),tors(vϕ,vt)(τC(vt))〉 ,
or

∂τ=t 〈dfLτ (vτ ), γτ,t⇑vϕ(τC(vt))〉− 〈dbLt(vt),vϕ(τC(vt))〉

= 〈dfLt(vt),tors(vϕ,vt)(τC(vt))〉 ,

for any virtual velocity field vϕ = ∂λ=0ϕλ ∈ C1(C ;TC) which is an admissible
infinitesimal isometry at the configuration τC(vt) .

Proof. Being

∂λ=0 Lt(Tϕλ(vt)) = ∂λ=0 Lt(v(ϕλ(τC(vt))))

= ∂λ=0 Lt(ϕλ⇑ϕλ⇓v(ϕλ(τC(vt)))) ,

by Leibniz rule, we get:

∂λ=0 Lt(v(ϕλ(τC(vt)))) = ∂λ=0 Lt(ϕλ⇑vt) + ∂λ=0 Lt(ϕλ⇓v(ϕλ(τC(vt)))) .
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By definition of the covariant derivative in terms of the parallel transport:

∇vϕv(τC(vt)) := ∂λ=0ϕλ⇓v(ϕλ(τC(vt))) ,

being ϕλ⇓v(ϕλ(τC(vt))) ∈ TτC(vt)C , we have that

∂λ=0 Lt(ϕλ⇓v(ϕλ(τC(vt)))) = 〈dfLt(vt),∇vϕv(τC(vt))〉 .
Hence, by definition of the base derivative dbLt(vt) ∈ C1(TC ;T ∗C) , we get

∂λ=0 Lt(v(ϕλ(τC(vt)))) = 〈dbLt(vt),vϕ(τC(vt))〉
+ 〈dfLt(vt),∇vϕv(τC(vt))〉 .

On the other hand, denoting by γτ,t := γτ◦γ−1
t ∈ C1(C ;C) the displacement

along the trajectory, we may write

∂τ=t 〈dfLτ (vτ ),vϕ(τC(vτ ))〉 = ∂τ=t 〈dfLτ (vτ ), γτ,t⇑ γτ,t⇓vϕ(τC(vτ ))〉 ,
and applying the Leibniz rule:

∂τ=t 〈dfLτ (vτ ),vϕ(τC(vτ ))〉= 〈dfLt(vt), ∂τ=t γτ,t⇓vϕ(τC(vτ ))〉

+ ∂τ=t 〈dfLτ (vτ ), γτ,t⇑vϕ(τC(vt))〉 .
By definition of covariant derivative, the first term at the r.h.s. is written as:

〈dfLt(vt), ∂τ=t γτ,t⇓vϕ(τC(vτ ))〉= 〈dfLt(vt),∇vtvϕ(τC(vt))〉 .
The second term at the r.h.s. may be evaluated as follows:

∂τ=t 〈dfLτ (vτ ), γτ,t⇑vϕ(τC(vt))〉= ∂τ=t 〈γτ,t⇓ dfLτ (vτ ),vϕ(τC(vt))〉

= 〈∂τ=t dfLτ (vt),vϕ(τC(vt))〉

+ 〈∂τ=t γτ,t⇓ dfLt(vτ ),vϕ(τC(vt))〉 ,
with

〈∂τ=t γτ,t⇓ dfLt(vt),vϕ(τC(vt))〉= 〈∇vt(dfLt ◦ v),vϕ(τC(vt))〉 .
The law of dynamics may then be written as

〈∂τ=t dfLτ (vt) +∇vt(dfLt ◦ vt),vϕ(τC(vt))〉+ 〈dfLt(vt),∇vtvϕ(τC(vt))〉

= 〈dbLt(vt),vϕ(τC(vt))〉+ 〈dfLt(vt),∇vϕv(τC(vt))〉 .
Recalling that tors(vϕ,vt) := ∇vϕv − ∇vvϕ − [vϕ,v] , and observing that
[vϕ,v] = 0 by definition of the vector field v ∈ C1(C ;TC) , the statement is
proven. �
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Remark 2.3.1 The form taken by the law of dynamics in a configuration mani-
fold endowed with a connection hides the direct implication of Noether’s theo-
rem. Indeed, to recover the general law of dynamics, one should be able to follow
backwards the steps in the proof of proposition 2.3.1 and this is a rather involved
path of reasoning to be envisaged.

2.3.1 Poincare’s law of dynamics
A connection on the configuration manifold is induced by a local frame by defin-
ing as distant parallel transport the one that leaves invariant the components
of a vector in the moving frames (repére mobile) while changing the base point.
This connection has vanishing curvature and the torsion evaluated on any pair
of vectors ux,vx ∈ TxC is the negative of the Lie brackets of their extensions
by distant parallel transport u,v ∈ TC such that u(x) = ux Indeed

tors(ux,vx) := ∇uxv −∇vxu− [u,v](x) = −[u,v](x) ,

being ∇uxv = ∇vxu = 0 . Then the Lie bracket [u,v] is tensorial and the
general formula for the law of dynamics gives:

〈∂τ=t dfLτ (vt) +∇vt(dfLt ◦ vt) = dbLt(vt),vϕ(τC(vt))〉

+ 〈dfLt(vt), [vt ,vϕ(τC(vt))]〉 ,

which is the coordinate-free version of the law of dynamics found by Poincaré
in 1901 , see [9].

2.3.2 Lagrange’s law of dynamics
If the connection ∇ is torsion-free, the differential law of dynamics takes the
form of Lagrange’s differential condition:

〈∂τ=t dfLτ (vt) +∇vt(dfLt ◦ vt)− dbLt(vt),vϕ(τC(vt))〉 = 0 .

The Lagrange differential condition holds a fortiori in any configuration
manifold C which is a riemannian manifold with the Levi-Civita connection,
which is metric-preserving and torsion-free. In particular it holds in any linear
configuration manifold C with the canonical connection by translation and also
in the configuration manifold C when the local connection is induced by a chart
(repére naturel), since these connections are torsion-free (and curvature-free).
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In rigid-body dynamics, or more in general in a perfect dynamical system,
the test velocity may be omitted. Then, in a riemannian configuration manifold,
we have the following Lagrange’s equation of perfect dynamics:

∂τ=t dfLτ (vt) +∇vt(dfLt ◦ vt) = dbLt(vt) .

2.3.3 Hamilton’s law of dynamics
Hamilton’s law of dynamics is deduced from Lagrange’s law by a translation
in terms of covectors v∗ ∈ T ∗C by means of Legendre’s transform. We
assume that Lt ∈ C2(C ;<) is a regular Lagrangian, which means that the fiber
derivative dfLt ∈ C1(TC ;T ∗C) is a vector bundle isomorphisms. In fact the
projected base map, defined by the commutative diagram:

TC dfLt−−−−→ T ∗C

τC

y yτ∗C
C id C−−−−→ C

⇐⇒ τ ∗C ◦ dfLt = idC ◦ τC = τC ∈ C1(TC ;C) .

is the identity on C and then invertible. The assumption is thus equivalent to
require that the fiber derivative is fiberwise bounded and linear, with a bounded
linear inverse.

The Hamiltonian Ht ∈ C1(T ∗C ;<) is fiberwise defined as the potential of
the inverse map (dfLt)

−1 ∈ C1(T ∗C ;TC) with the additive constant fixed by
the Legendre transformation rule:

Lt(v) +Ht(v
∗) = 〈v∗,v〉 ,

{
v = dfHt(v

∗)∈ TC ,
v∗= dfLt(v) ∈ T ∗C .

The following proposition yields the basic result for the formulation of the canon-
ical Hamilton’s law of dynamics. The special case in linear spaces is referred
to as Donkin’s theorem ( 1854 ) in [72].

Lemma 2.3.1 (Base derivatives of Legendre transforms) In a manifold
C with a connection ∇ and parallel transport ⇑ , the Lagrangian and the Hamil-
tonian functional fulfill the relation: dbHt + dbLt ◦ dfHt = 0 .
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Proof. The Legendre transform gives:

Ht(ϕλ⇑v∗) + Lt(dfHt(ϕλ⇑v∗)) = 〈ϕλ⇑v∗, dfHt(ϕλ⇑v∗)〉 ,

and, by definition of base derivative, we have:

∂λ=0Ht(ϕλ⇑v∗) = 〈dbHt(v
∗),vϕ(τ ∗C(v∗t ))〉 .

Then, recalling that dfLt ◦ dfHt is the identity and that ϕλ⇓ dfHt(ϕλ⇑v∗) ∈
Tτ∗C(v∗)C for any λ ∈ < , Leibniz rule gives:

∂λ=0 Lt(dfHt(ϕλ⇑v∗)) = ∂λ=0 Lt(ϕλ⇑ϕλ⇓ dfHt(ϕλ⇑v∗))

= 〈dbLt(dfHt(v
∗)),vϕ(τ ∗C(v∗))〉

+ 〈dfLt(dfHt(v
∗)), ∂λ=0ϕλ⇓ dfHt(ϕλ⇑v∗)〉

= 〈dbLt(dfHt(v
∗)),vϕ(τ ∗C(v∗))〉

+ 〈v∗, ∂λ=0ϕλ⇓ dfHt(ϕλ⇑v∗)〉 .

By definition the parallel transport preserves the duality pairing, so that

∂λ=0 〈v∗,ϕλ⇓ dfHt(ϕλ⇑v∗)〉 = ∂λ=0 〈ϕλ⇑v∗, dfHt(ϕλ⇑v∗)〉 .

In conclusion: 〈dbHt(v
∗),vϕ(τ ∗C(v∗))〉 + 〈dbLt(dfHt(v

∗)),vϕ(τ ∗C(v∗))〉 = 0 ,
for any vector vϕ(τ ∗C(v∗)) ∈ Tτ∗C(v∗)C , and the result is proven. �

From Proposition 2.3.1 and Lemma 2.3.1 we then get:

Proposition 2.3.2 (Hamilton’s canonical equations) If the configuration
manifold C is endowed with an affine connection ∇ , the differential law of
dynamics takes the form{〈∂τ=t dfLτ (vt) +∇vtv

∗
t + dbHt(v

∗
t ),vϕ(τ ∗C(v∗t ))〉 = 〈v∗t ,tors(vϕ,vt)(τ

∗
C(v∗t ))〉 ,

vt = dfHt(v
∗
t ) .

If the connection ∇ is torsion-free, the differential law of dynamics takes the
form of Hamilton’s canonical equations:{〈∂τ=t dfLτ (vt) +∇vtv

∗ + dbHt(v
∗
t ),vϕ(τ ∗C(v∗t ))〉 = 0 ,

vt = dfHt(v
∗
t ) ,
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for any virtual velocity field vϕ = ∂λ=0ϕλ ∈ C1(C ;TC) which is an admissible
infinitesimal isometry at each point of γ , and Hamilton’s canonical equations
of perfect dynamics are given by:{

∂τ=t dfLτ (vt) +∇vtv
∗
t = −dbHt(v

∗
t ) ,

vt = dfHt(v
∗
t ) .

2.3.4 Action principle in the covelocity-time state-space
The invariance property stated in proposition 2.1.1 shows that Hamilton’s
canonical laws of dynamics may be deduced by translating the action principle
from the velocity-time state-space into the covelocity-time state-space, by means
of the Legendrian functor.

To this end we introduce the one-form θ = dfLt↑θL ∈ C1(T ∗C ;T ∗T ∗C) as
the Legendre transformed of θL ∈ C1(TC ;T ∗TC) :

θ(dfLt(v)) · dfLt↑δv := θL(v) · δv , ∀v ∈ TC , ∀ δv ∈ TvTC ,

where dfLt↑δv ∈ TdfLt(v)T
∗C . Then, being τ ∗C = τC ◦ dfHt , we have that

θ(v∗) · δv∗= θL(dfHt(v
∗)) · dfHt↑δv∗

= 〈dfLt(dfHt(v
∗)), TτC(dfHt(v

∗)) · dfHt↑δv∗ 〉
= 〈v∗, Tτ ∗C(v∗) · δv∗ 〉 = 〈v∗, Tτ ∗C ◦ δv∗ 〉 .

The one-form θ = dfLt↑θL ∈ C1(T ∗C ;TT ∗C) is then independent of the
Lagrangian. Accordingly, in the covelocity-time state-space T ∗C× TI we may
define the one-form: ω1 = dfLt↑ω1

L ∈ C1(T ∗C× I ;TT ∗C× TI) by

ω1(dfLt(v)) · dfL↑δv := ω1
L(v) · δv , ∀v ∈ TC , ∀ δv ∈ TvTC ,

where dfLt↑δv ∈ TdfLt(v)T
∗C , so that

ω1((v∗ , t)) = θ(v∗)−H(v∗, t)dt , ∀v∗ ∈ T ∗C .

Hamilton’s action principle in the velocity-time state-space:

∂λ=0

∫
Tϕλ(γ)

ω1
L =

∮
∂γ

ω1
L · (vTϕ , 0) ,
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may then be rewritten for the trajectory dfLt ◦ γ ∈ C1(TI ;T ∗C × TI) in the
covelocity-time state-space, as the variational condition:

∂λ=0

∫
dfLt(Tϕλ(γ))

ω1 =

∫
∂dfLt(γ)

ω1 · (vLeg(Tϕ) , 0) ,

for any flow ϕλ ∈ C1(C ;C) such that the velocity field vϕ ∈ C1(C ;TC) is an
infinitesimal isometry of γ ∈ C .

Localizing, the differential condition reads:

dθ(v∗t ) ·X(v∗t ) · vLeg(Tϕ)(v
∗
t ) = −〈dHt(v

∗
t ),vLeg(Tϕ)(v

∗
t )〉 ,

with vLeg(Tϕ) = dfLt↑vTϕ(v∗t ) = dfLt↑(kC ◦ Tvϕ)(v∗t ) ∈ Tv∗t
T ∗C , for all

vϕ ∈ C1(C ;TC) which is an infinitesimal isometry of γ ∈ C .

2.4 Perfect dynamics
In the context of perfect dynamics, as defined in section 2.1.9 on page 307,
some general qualitative properties are available. Some classical results will be
illustrated in the sequel on the basis of the previous analysis.

2.4.1 Integral invariants
In the next section it is shown that Hamilton’s canonical equations of dynam-
ics may be equivalently enunciated as an invariance property. This invariance
property is the key which leads to the definition and the investigations on canon-
ical transformations, which Jacobi has applied as a very effective tool for the
closed form solution of problems in perfect dynamics.

2.4.2 Poincaré-Cartan integral invariant
Let us give a preliminary definition.

• The flow associated with the vector field XH
t ∈ C1(T ∗C ;TT ∗C) solution

of the Hamilton’s equation is called the phase-flow FlHτ,t ∈ C1(T ∗C ;T ∗C)
associated with the hamiltonian Ht ∈ C1(T ∗C ;<) .

From the abstract result of proposition 2.1.7 we infer the following statement.
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Theorem 2.4.1 (Poincaré-Cartan integral invariant) In the covelocity-time
state-space T ∗C × I , the integral of the action one-form ω1 around any loop
surrounding a given ray-tube, is invariant, i.e.:∮

l1

ω1 =

∮
l2

ω1 ,

for any two such loops l1, l2 .

From theorem 2.1.8 we infer that

• the invariance of the Poincaré-Cartan integral is equivalent to Hamil-
ton’s equations.

2.4.3 Poincaré relative integral invariant
By projecting on the covelocity-phase-space, we get the following classical result
due to Poincaré.

Theorem 2.4.2 (Poincaré relative integral invariant) The integral of the
canonical one-form θ around any loop l ∈ T ∗C in the covelocity-phase-space is
invariant under the action of the phase-flow FlHτ,t ∈ C1(T ∗C ;T ∗C) associated
with any hamiltonian Ht ∈ C1(T ∗C ;<) :∮

l

θ =

∮
FlHτ,t(l)

θ ,

Proof. A closed loop in the covelocity-phase-space T ∗C can be seen as the pro-
jection of a loop surrounding a ray-tube at a fixed time, so that the hamiltonian
one-form

ω1(v∗, t) := θ(v∗)−Ht(v
∗) dt ∈ T ∗(v∗,t)(T ∗C× I) ,

reduces to ω1 = θ . �

A differential k-form is called a relative integral invariant of a phase-flow if
its integral on any closed k-chain is invariant under the action of the phase-flow.
A differential k-form whose integral on any k-chain is invariant under the action
of a phase-flow is said to be an absolute integral invariant of the phase-flow.

Poincaré relative integral invariant is a universal integral invariant since
the invariance property is independent of the hamiltonian and hence holds for
any phase-flow.

Theorem 2.4.3 The canonical two-form ω2 = −dθ is an absolute universal
integral invariant and its Lie derivative along any phase-flow vanishes.

354



Perfect dynamics Giovanni Romano

Proof. The boundary ∂c2 of any 2-chain c2 in T ∗C is closed since ∂∂c2 = 0 .
Then from theorem 2.4.2 and Stokes formula, it follows that, for any phase-
flow: ∫

c2

ω2 = −
∮
∂c2

θ = −
∮

FlHτ,t(∂c2)

θ = −
∮
∂FlHτ,t(c

2)

θ =

∫
FlHτ,t(c

2)

ω2 .

By the arbitrarity of the 2-chain, Reynolds’ transport formula implies that

∂τ=t

∫
FlHτ,t(c

2)

ω2 =

∫
c2

LXH
t
ω2 = 0 , ∀ c2 ⇐⇒ LXH

t
ω2 = 0 ,

and the result is proven. �

2.4.4 Canonical transformations
We are led to give the following definition.

• A canonical flow FlXτ,t ∈ C1(T ∗C ;T ∗C) , with associated vector field X ∈
C1(T ∗C ;TT ∗C) , is a flow in the covelocity-phase-space which drags the
canonical two-form ω2 :

LXt
ω2 = 0 or equivalently FlXτ,t↓ω2 = ω2 .

The result in Theorem 2.4.3 may then be expressed by stating that

• A hamiltonian phase-flow is a canonical flow.

A basic characterization of canonical transformations is provided by the next
proposition.

Theorem 2.4.4 (Canonical transformation of Hamilton’s equations) A
transformation is canonical iff it preserves Hamilton’s canonical equations, in
the sense that the corresponding pull back yields the same Hamilton’s equations
in which both the vector field and the Hamiltonian are pulled back, i.e.

ω2 ·Xt = dHt ⇐⇒ ω2 ·ϕ↓Xt = d(ϕ↓Ht) .
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Proof. Let us consider Hamilton’s equations

ω2 ·Xt = dHt ,

in the variational form:

ω2 ·Xt ·Y = dHt ·Y , ∀Y ∈ T ∗C ,

Performing a pull back by a diffeomorphism ϕ ∈ C1(T ∗C ;T ∗C) :

ϕ↓(ω2 ·Xt ·Y) = ϕ↓(dHt ·Y) ,

being:
ϕ↓(ω2 ·X ·Y) = ϕ↓ω2 ·ϕ↓Xt ·ϕ↓Y ,

ϕ↓(dHt ·Y) = ϕ↓(dHt) ·ϕ↓Y = d(ϕ↓Ht) ·ϕ↓Y ,

Hamilton’s equations are transformed into:

ϕ↓ω2 ·ϕ↓Xt = d(ϕ↓Ht) .

It is then apparent that the hamiltonian structure is preserved if and only if:

ϕ↓ω2 = ω2 ,

that is if the diffeomorphism ϕ ∈ C1(T ∗S ;T ∗S) is canonical. �

2.4.5 Lee Hwa-Chung theorem
The exterior product is natural with respect to a push, i.e.:

ϕ↓(ω2 ∧ ω2) = ϕ↓ω2 ∧ϕ↓ω2 ,

and hence all exterior powers of ω2 are dragged by a canonical transformation.
If the configuration manifold is n-dimensional, we get n absolute integral

invariants of order 2k by taking the integrals of {ω2k} for k = 1, . . . , n over
2k-dimensional submanifolds and n corresponding relative integral invariants
of order k integrating along the boundaries of such manifolds.

These invariants are universal integral invariants since the one-form θ and
the two-form ω2 , and hence the invariance property, do not depend on the
particular hamiltonian flow considered.

In 1947 the chinese scientist Lee Hwa-Chung proved the uniqueness of
these universal integral invariants [72]. For k = 1 his theorem can be stated as
follows.
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Theorem 2.4.5 (Lee Hwa-Chung theorem) All 1-th order universal relative
integral invariants are proportional to Poincaré integral invariant.

2.4.6 Liouville’s theorem
If the configuration manifold C is n-dimensional, the n-th power of ω2 is a
volume 2n-form on the 2n-dimensional cotangent bundle T ∗C . Hence we get
the following classical result.

Theorem 2.4.6 (Liouville theorem) The volume of the covelocity-phase-space
T ∗C is invariant under the action of a canonical transformation.

Figure 2.5: Joseph Liouville (1809 - 1882)

A classical application of Liouville’s theorem is to ergodic theory.
A nice example of a qualitative description of the properties of motion is pro-

vided by the following proposition due to Poincaré. We will denote by ϕk(w∗)
the image of w∗ ∈ T ∗C thru the k-th iterate of the map ϕ ∈ C1(T ∗C ;T ∗C) .

Theorem 2.4.7 (Return theorem) Let ϕ ∈ C1(T ∗C ;T ∗C) be a volume
preserving diffeomophism which maps a bounded open submanifold into itself.
Then, given a point v∗ ∈ T ∗C and a neighbourhood U(v∗) , there exists a point
w∗ ∈ U(v∗) such that ϕk(w∗) ∈ U(v∗) for some k > 0 .

Proof. Let us set U = U(v∗) for convenience. All the images ϕh(U) for any
h ≥ 0 have the same volume by assumption. Then the boundedness of the
submanifold requires that ϕh(U) ∩ ϕk(U) 6= ∅ for some h > k > 0 , so that
ϕ(h−k)(U) ∩ U 6= ∅ .

357



Perfect dynamics Giovanni Romano

2.4.7 Hamilton-Jacobi equation
The description of the law of dynamics expressed by Hamilton-Jacobi equa-
tion stands to the action principle and to the related Euler stationarity condi-
tion as Huygens picture of geometrical optics stands to Fermat’s least time
principle and to the geodesic stationarity condition. The two approach consist
respectively in describing the characteristic property of the ray or trajectories
in the state space on one hand, and the evolution of the propagation fronts as
hypersurphaces in the state space, on the other.

Figure 2.6: Christiaan Huygens (1629 - 1695)

Let γ ∈ C1(I ;C) be the trajectory, in the time interval I , of a dynamical
system in the configuration manifold. In the configuration-time state-space the
corresponding trajectory is γ := γ × id I ∈ C1(I ;C× I) .

• A trajectory between the points {x0, t0} ∈ C × I and {x, t} ∈ C × I of
the configuration-time state-space, is said to belong to a central field if for
any (ξ , τ) ∈ Ux×Ut , with Ux×Ut open submanifold of C×I containing
(x , t) , there exists a unique trajectory carrying (x0 , t0) to (ξ , τ) . This
assumption is fulfilled if the time interval (t0 , t) is sufficiently small [8].

Each trajectory γ ∈ C1(I ;C× I) of the central field in the configuration-time
state-space, is lifted to a phase-trajectory Γ := Tγ ∈ C1(TI ;TC× TI) in the
velocity-time state-space.

The Legendre transform maps the trajectory Γ ∈ C1(TI ;TC× TI) , into
a trajectory Γ∗ = dfLt ◦ Γ ∈ C1(TI ;T ∗C × TI) , in the covelocity-time state-
space. Let us recall that

ω1((v∗t , t)) · (v̇∗t , 1t) = 〈v∗t , dfHt(v
∗
t )〉 −Ht(v

∗
t )〈dt, 1t 〉

=ω1
L((vt , t)) · (X(vt) , 1t) = 〈dfLt(vt),vt 〉 − Et(vt)〈dt, 1t 〉 = Lt(vt) .
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By the rule for change of integration domain, the action integral may then be
given one of the following equivalent expressions:

S(Γ∗) :=

∫
Γ∗
ω1 = S(Γ) :=

∫
Γ

ω1
L = S(γ) :=

∫
I

Lt(γ̇0t) dt .

• The eikonal functional J ∈ C1(C × I ; Fun(C × I)) , given by J(x, t) :=
S(γ) with x = γt ∈ C , is well-defined by the centrality assumption.

• The eikonal one-form j ∈ C1(C×I ;T ∗(C×I)) is the differential one-form
defined at (x , t) ∈ C× I by

j(x, t) := v∗t (x)−Ht(v
∗
t (x)) dt

= dfLt(vt(x))− Et(vt(x)) dt ,

that is:
jt ◦ τC := dfLt − Et dt .

It is associated with a central field of trajectories, in the sense that the kinetic
momentum v∗t = dfLt(vt) ∈ T ∗τC(vt)

C is the Legendre conjugate to the veloc-
ity vt = γ̇t ∈ TxC along the trajectory γ ∈ C1(I ;C) at the point (x , t) with
x = τC(vt) = γt .

Let us consider an asynchronous flow ϕλ×θλ ∈ C1(C×I ;C×I) which drags
the trajectory γI = (γ , id I) ∈ C1(I ;C×I) in the configuration-time manifold,
starting at the point (x0 , t0) ∈ C× I and ending at the point (x , t) ∈ C× I ,
into a one-parameter family of trajectories γIλ ∈ C1(I ;C×I) joining the point
(x0 , t0) ∈ C× I with the point (ϕλ(x) , θλ(t)) ∈ C× I , and defined by

γIλ := (ϕλ ◦ γ , θλ) .

Then we have the following result.

Theorem 2.4.8 (Integrability of eikonal one-form) The eikonal one-form
j ∈ C1(C× I ;T ∗(C× I)) associated with a central field of trajectories of a dy-
namical system, is locally exact and its potential J ∈ C1(C× I ; Fun(C× I)) is
the eikonal functional:

j = dJ .
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Proof. Let us denote by ΓIλ ∈ C1(I ;TC× I) the path which is the lifting of
γIλ ∈ C1(I ;C× I) in the velocity-time phase-space, so that Γλ := Tγλ · 1 , and
by (vTϕ(vt) ,Θ(t)) ∈ TvtTC× TtI the velocity along the asynchronous virtual
flow Tϕλ × θλ ∈ C1(TC× TI ;TC× TI) . The extrusion formula:

∂λ=0

∫
(Tϕλ×θλ)(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (vTϕ ,Θ) +

∫
ΓI

d(ω1
L · (vTϕ ,Θ)) .

and Euler’s condition of extremality for a trajectory in the velocity-time state-
space:

dω1
L · (v̇t , 1t) · (vTϕ(vt) ,Θt) = 0 ,

provide the expression of the variation of the action integral:

∂λ=0

∫
(Tϕλ×θλ)(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (vTϕ ,Θ)

=

∮
∂ΓI

θL(vt) · vTϕ(vt)− Et(vt) ·Θ(t) .

Being TτC(vt) · vTϕ(vt) = vϕ(τC(vt)) , we have that

θL(vt) · vTϕ(vt) = 〈dfLt(vt), TτC(vt) · vTϕ(vt)〉 = 〈dfLt(vt),vϕ(τC(vt))〉 .

Hence, taking into account that the initial point (x0 , t0) ∈ C× I of the trajec-
tories is left fixed by the flow, so that vϕ(x0, t0) = 0 , and observing that

〈dJt(τC(vt)),vϕ(τC(vt))〉= 〈dfLt(vt),vϕ(τC(vt))〉 ,
∂τ=t Jτ (τC(vt)) ·Θ(t) = −Et(vt) ·Θ(t) ,

we get:
dJt(τC(vt)) = dfLt(vt) ⇐⇒ dJt ◦ τC = dfLt ,

∂τ=t Jτ (τC(vt)) = −Et(vt) ⇐⇒ ∂τ=t Jτ ◦ τC = −Et .
Then, by the definition jt ◦ τC := dfLt − Etdt , we get:

jt = dJt + (∂τ=t Jτ ) dt ,

which is the result. �
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Remark 2.4.1 In the literature dealing with dynamical systems whose config-
uration manifold is finite (say n ) dimensional, the eikonal one-form:

j(x, t) = v∗t (x)−Ht(v
∗
t (x))dt ∈ T ∗(x,t)(C× I) ,

is written in terms of components with respect to a pair of dual natural bases,
{∂qi} ⊂ TC and {dqi} ⊂ T ∗C , induced by a local chart (ϕ ,U) , as:

j(q, t) = p · dq −Ht(q, p)dt ,

where q = ϕ(x) and dq ⊂ T ∗C is the dual frame to the natural frame ∂q ∈ TC .
Note that, to simplify, the same notation has been used for the one form j
and for Ht as functions of different variables. The result of theorem 2.4.8 is
formulated in the theorem on p.254 in [8], chapter IX (Canonical formalism)
section 46−C , devoted to evaluating the differential of the action. But the linear
combination p · dq :=

∑n
i=1 pidq

i appears also in the definition of the canonical
one-form at the beginning of chapter VIII (Symplectic manifolds) on p.202 of
[8]. Hence the linear combination p · dq is pretended to denote the component
expression of the one-form v∗t ∈ T ∗C as well as the canonical one form θ(v∗t ) ∈
T ∗TC . These are, however, fairly distinct objects with completely different
properties and a carefully distinct notation should be adopted for their component
expressions. In fact, the eikonal one-form j(q, t) = p · dq −Ht(q, p)dt ∈ T ∗C×
T ∗I is, according to Theorem 2.4.8, an exact form. On the other hand, the
canonical one-form θ(v∗t )−Ht(v

∗
t )dt ∈ T ∗v∗t T

∗C× T ∗t TI , which in [8] was still
denoted by p·dq−Ht(q, p)dt , has a nonvanishing exterior derivative which is the
nondegenerate symplectic two-form. It is then not even closed. Its component
expression should rather be written as {p · dq , 0 · ∂q} −Ht(q, p){dt , 0} .

Remark 2.4.2 From theorem 2.4.8 we infer the formula

∂λ=0 S(γ(λ)) =

∮
∂γ

〈dfLt(vt),vϕ(τC(vt))〉 − Et(vt) Θ .

which is referred to as Schwinger’s principle in [87]. Its equivalence with
Euler condition can be shown by a proof analogous to the one in theorem 2.1.8.
By Stokes theorem, given any cycle c ∈ C1(< ;Uξ × Uτ ) , being ∂c = 0 , we
have that: ∮

c

j =

∮
c

v∗t −Ht(v
∗
t )dt =

∫
c

dJ =

∫
∂c

J = 0 .
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Figure 2.7: Julian Schwinger (1918 - 1994)

This property of path independence is usually stated in the form∮
c

〈j, ċ〉dt=

∮
c

(〈v∗t , ċ〉 −Ht(v
∗
t ))dt

=

∮
c

(〈dfLt(vt), ċ− vt 〉+ Lt(vt))dt = 0 ,

and the latter is known as Hilbert’s path independent integral, see e.g. [214].
Further, a covector field v∗ ∈ C1(C × I ;T ∗C) , such that the corresponding
eikonal one-form v∗ −Hdt ∈ T ∗C× T ∗I , is locally exact, is called a Mayer’s
field [214].

Figure 2.8: Christian Gustav Adolph Mayer (1839 - 1907)

Theorem 2.4.9 (Hamilton-Jacobi equation) The eikonal functional J ∈
C1(U(ξ)× I ;<) fulfils the Hamilton-Jacobi equation:

∂τ=t Jτ (x) +Ht(dJt(x)) = 0 ,
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that is: ∂τ=t Jτ +Ht ◦ dJt = 0 .

Proof. Combining the relations provided in Theorem 2.4.8:{
dJt ◦ τC = dfLt ,

∂τ=t Jτ ◦ τC = −Et ,

and the definition Et := Ht ◦ dfLt , we get the result. �

2.5 Geometrical Optics
We owe to the greek scientist Heron of Alexandria the first statement about
the shortest path followed by reflected light rays.

Figure 2.9: Heron of Alexandria (10 - 70)

About one thousand years later, the muslim scientist Ibn al-Haytham,
considered the father of optics for his book Book of Optics (Kitab al Manazir),
extended this principle to refraction of light and provided many extraordinary
contributions to optics, calculus, mechanics based on a scientific methodology.

Figure 2.10: Ibn al-Haytham (965 - 1039)
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The definitive statement of the action principle of geometrical optics is due
to Pierre de Fermat in a letter dated January 1st 1662 to Cureau de la
Chambre. This was, with any evidence, the first variational statement of a
general physical law.

Fermat’s principle is intimately related to the concept of a geodesic and
indeed may be enunciated by stating that a ray of light is a geodesic path in
the euclidean space endowed with a piecewise regular riemannian metric tensor
field, the optical tensor.

The principle provides a formidable motivation for Riemann’s idea of a
metric field varying from point to point and also undergoing discontinuities
across singularity surfaces.

This last situation is similar to the one in which geodesic paths are drawn on
the surface of a parallelepiped, as is made to fasten a string around a gift-box.

The calculus of variations of geometrical optics has a peculiar feature in com-
mon with geodesics: the Lagrangian functional is a continuous, convex (in fact
sublinear) functional on the velocity phase-space which is not fiber-differentiable
at the origin.

The conjugacy correspondence between vectors and covectors induced by the
fiber derivative of the Lagrangian is no more one-to-one, but rather multivocal
and maximal monotone.

These aspects of simple problems in calculus of variations are understated
in most treatments, including authoritative articles [94].

To commute from the lagrangian to the hamiltonian description we need the
Fenchel transform between convex functionals as described in Chapter 4.

The complementary description of light propagation in terms of wave fronts
is based on the eikonal equation which is the counterpart of Hamilton-Jacobi
partial differential equation of mechanics, when dealing with a Lagrangian func-
tional which is sublinear, hence convex, but non everywhere fiber-differentiable.

2.5.1 Optical index
To illustrate the basics of geometrical optics, let us consider an optical medium in
a riemannian manifold (M ,g) and denote by S1(TxM,g) and by B1(TxM,g)
the unit sphere and the closed unit ball at x ∈M according to the metric g .

The fiber subbundle of the tangent bundle whose fibers are the unit spheres
(balls) in the tangent spaces, will be accordingly denoted by S1(TM,g) ⊂ TM
(B1(TM,g) ⊂ TM ).
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The optical metric is a square integrable metric tensor field n ∈ BL (TM2 ;<)
whose point-values nx ∈ BL (TxM2 ;<) are symmetric and positive definite
tensors describing the light propagation properties.

The optical index or index of refraction n ∈ C0(S1(TM,g) ;<) is the fiber-
sublinear functional defined, at each point x ∈M , by:

n(vx) := ‖vx‖n =
√

nx(vx,vx) ,

with vx ∈ S1(TxM,g) ⊂ TxM an arbitrary versor in the tangent space.
The optical index is the reciprocal of the dimensionless scalar light speed

c ∈ C0(S1(TxM,g) ;<) , which is the ratio between the light speed in vacuum
and the one in the optical medium at x :

n(vx) =
1

c(vx)
:= ‖vx‖n , ∀vx ∈ S1(TxM,g) .

Being a norm associated with a metric tensor field, the optical index is a positive,
closed and fiber-sublinear functional on the tangent bundle:

n(vx + ux)≤ n(vx) + n(ux) , vx,ux ∈ TxM ,

n(αvx) = |α|n(vx) , α ∈ < ,

n(vx)≥ 0 , vx ∈ TxM .

The optical metric, being positive definite, is nondegenerate. Considered as a
bounded linear operator, the optical index n ∈ BL (TM ;T ∗M) , is invertible
to n−1 ∈ BL (T ∗M ;TM) . In turn this inverse operator defines a metric in the
cotangent space n−1 ∈ BL (T ∗M2 ;<) . We set qn(v) := ‖v‖2n .

The fiber derivative of the convex optical index functional is well-defined for
v 6= 0 and is given by the covector field

dfn(v) =
nv

‖v‖n
, ∀v ∈ S1(M,g) .

The optical index functional is everywhere fiber-subdifferentiable and its fiber-
subdifferential at v = 0 is the unit ball in the optical metric:

∂fn(0) = B1(TM,n) .

From Convex Analysis [179], [90], [91], [191], we know that the optical index is
the support functional of the unit ball B1(T ∗M,n−1) :

n(v) = sup{〈v∗,v〉 − tB1(T∗M,n−1)(v
∗) | v∗ ∈ T ∗M} .
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Accordingly, its convex conjugate is the indicator of the unit ball B1(T ∗M,n−1) :

tB1(T∗M,n−1)(v
∗) = sup{〈v∗,v〉 − n(v) | v ∈ TM} ,

which is everywhere fiber-subdifferentiable.

• The fiber-subdifferential of the unit ball indicator at the point v∗ ∈ T ∗M
is the convex outward normal cone NB1(T∗M,n−1)(v

∗) to the unit ball
B1(T ∗M,n−1) .

• If ‖v∗‖n−1 < 1 then v∗ ∈ T ∗M is internal to the unit ball and the normal
cone degenerates to the null vector.

• If ‖v∗‖n−1 = 1 then v∗ ∈ S1
x(T ∗M,n−1) and the normal cone at v∗ ∈

T ∗M is the half-line generated by n−1(v∗) ∈ TM .

The optical length functional

Optical Length(γ) :=

∫
I

‖vt‖n dt ,

associated to a regular path γ ∈ C1(I ; M) , is the time expended by light in
propagating thru the path. The integral is independent of the parametrization
of γ ∈ C1(I ; M) .

In most physical problems, the path γ ∈ C0(I ; M) is only piecewise regular.
In optics singularities occur at discontinuity surfaces between two media with
different optical indexes.

A regularity patchwork Pat(I) is a finite family of open, non overlapping
segments such that the union of their closures covers the interval I . If the
path is continuously differentiable in each element of the patchwork, we write
γ ∈ C1(Pat(I) ; M) .

Let us consider a flow ϕλ ∈ C1(M ; M) in the optical medium. The flow
velocity field vϕ = ∂λ=0ϕλ ∈ C1(M ;TM) at a point τC(vt) ∈M is denoted
by vϕt := vϕ(τC(vt)) .

The flow is said to be a virtual flow according to the patchwork Pat(I) if
its velocity is a virtual velocity, that is tangent to the patchwork interelement
boundaries.

2.5.2 Fermat’s principle
length

Let us now provide a precise statement of the basic variational principle of
geometrical optics.
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Definition 2.5.1 (Fermat’s principle) A light ray is a piecewise regular path
γ ∈ C1(Pat(I) ; M) with an extremal optical length, that is:

∂λ=0

∫
Pat(I)

‖ϕλ↑vt‖n dt=

∫
∂Pat(I)

〈 nvt
‖vt‖n

,vϕt 〉 dt ,

for any virtual flow ϕλ ∈ C1(M ; M) in the optical medium.

Figure 2.11: Pierre de Fermat (1601 - 1665)

According to Fermat’s variational principle, the light rays are thus geodesic
paths in the riemannian manifold (M ,n) , (see Proposition 1.14.11).

Remark 2.5.1 In the literature (see e.g. [94], [8]) Fermat’s principle is usu-
ally enunciated by stating that the time expended by light, in propagating thru
a ray segment joining two given points, is extremal in the class of varied paths
sharing the same end points.

In isotropic optical media, the optical metric is proportional to the euclidean
metric, so that n = n2g and

‖vt‖n = n ‖vt‖g ,
nvt
‖vt‖n

= n
gvt
‖vt‖g

.

The extremality condition in Fermat’s principle may then be written as

∂λ=0

∫
Pat(I)

n ‖ϕλ↑vt‖g dt=

∫
∂Pat(I)

〈n gvt
‖vt‖g

,vϕt 〉 dt .
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The boundary integral is the product of the slowness times the rate of increase
of the length of the ray due to the variation induced by the flow. It follows
that Fermat’s principle may be enunciated by stating that the time expended by
light is extremal with respect to any virtual variation of the path. In the general
anisotropic case, this interpretation is no more feasible, contrary to the usual
claim (see e.g. [8]). In this respect our remark 2.5.3, which deals with to the
laws of reflection and refraction at the surfaces of discontinuity for the optical
tensor, should also be consulted.

Fermat’s variational principle may be interpreted in terms of the action
principle of dynamics, as stated in Definition 3.15.3, by taking the phase man-
ifold to be the tangent manifold TM and the Lagrangian L ∈ C0(TM ;<) to
be the convex optical index functional n ∈ C0(TM ;<) , which is the pointwise
support functional of the unit ball in the Riemann manifold (M ,n) . The epi-
graph of the optical index functional is a closed convex cone. The Hamiltonian
is the indicator functional of the closed unit ball B1

x(T ∗M,n−1) :

H(v∗) := sup{〈v∗,v〉 − n(v) | v ∈ TM}= tB1(T∗M,n−1)(v
∗) .

The Lagrangian L = n ∈ C0(TM ;<) is only positively homogeneous (and not
homogeneous, as incorrectly affirmed in [94]) and has the same differential at all
points along the (open) straight half-lines from the origin (excluded).

The Hamiltonian vanishes in the closed unit ball (according to the opti-
cal norm) where the covectors are constrained to remain (it is not identically
vanishing, as incorrectly affirmed in [94]).

The one-form ω1(v∗t ) = θ(v∗t )−H(v∗t ) dt is given by

ω1(v∗t ) = θ(v∗t ) , ∀v∗t ∈ B1(T ∗M,n−1) ,

At a point v∗ ∈ B1(T ∗M,n−1) , the evolution velocity belongs to the closed
convex cone NB1(T∗M,n−1)(v

∗) normal to the closed unit ball B1(T ∗M,n−1) .
It follows that the evolution velocity along a ray is either zero or has an

undetermined amplitude. No time-evolutive condition then follows from this
extremality condition.

2.5.3 Eikonal equation
The eikonal functional Jt ∈ C1(M ;<) is such that dJt = v∗t ∈ C0(M ;T ∗M) ,
see Theorem 2.4.8.
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The Hamilton-Jacobi equation for the eikonal functional gives:

∂τ=t Jτ (x) +H(dJ(x)) = 0 .

Since H = tB1(T∗M,n−1) , this equation splits into

∂τ=t Jτ (x) = 0 ,

dJt(x) ∈ B1
x(T ∗M,n−1) .

By the former condition, the eikonal functional does not depend explicitly on the
evolution parameter t ∈ I and, by the latter condition, its derivative belongs
to the unit ball, in the cotangent bundle, according to the optical metric. This
property is expressed by the eikonal inequality ‖dJ‖n−1 ≤ 1 . The discussion
at the end of section 2.5.1, shows that during light propagation the eikonal
functional is solution of the nonlinear partial differential equation

‖dJ‖n−1 = 1 ,

which is called the eikonal equation.
Let us set n = gN , with N ∈ BL (TM ;TM) so that

dJ = n∇nJ = gN∇nJ = g∇gJ .

The vector ∇gJ ∈ TM was called by Hamilton the normal slowness of the
wave front. Indeed, in terms of the gradient ∇gJ ∈ TM it is

‖dJ‖2n−1 = ‖∇nJ‖2n = n(∇nJ,∇nJ) = g(N−1∇gJ,∇gJ) = 1 .

In isotropic optical media, being n = n2g , that is N = n2I , we have that

‖dJ‖2n−1 = ‖∇nJ‖2n = n−2 g(∇gJ,∇gJ) = n−2 ‖∇gJ‖2g = 1 ,

so that ‖∇gJ‖g = n = 1/c .

2.5.4 Light evolution
To find an ordinary differential equation for the light propagation along a ray,
we may modify the statement of Fermat principle in order to deal with a
fiber-differentiable Lagrangian.
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Proposition 2.5.1 (A light evolution principle) A ray of light is a path
γ ∈ C1(Pat(I) ; M) which, when the speed of its parametrization is proportional
to the speed of light, fulfils the variational condition:

∂λ=0

∫
Pat(I)

1
2 ‖ϕλ↑vt‖2n dt=

∫
∂Pat(I)

n(vt,vϕt) dt ,

whose Euler differential condition is:

1
2 (Lvϕn)(vt,vt) = ∂τ=t n(vτ ,vϕτ ) ,

with the jump conditions

〈 [[n(vt)]],vϕ(τC(vt))〉 = 0 ,

for any virtual flow ϕλ ∈ C1(M ; M) .

Proof. Firstly we remark that, by definition:

‖ϕλ↑vt‖2n = (ϕλ↓n)(vt,vt) ,

and that, by assumption, ‖vt‖n :=
√

n(vt,vt) = n(vt) = α > 0 . Then

∂λ=0

√
(ϕλ↓n)(vt,vt) =

∂λ=0 (ϕλ↓n)(vt,vt)

2
√

n(vt,vt)
= 1

2α (Lvϕn)(vt,vt) ,

and the variational condition in the statement of Fermat principle may be
written

1
2

∫
Pat(I)

(Lvϕn)(vt,vt) dt =

∫
∂Pat(I)

n(vt,vϕt) dt ,

which is equivalent to

1
2

∫
Pat(I)

(Lvϕn)(vt,vt) dt =

∫
Pat(I)

∂τ=t n(vτ ,vϕτ ) dt ,

and, by the arbitrarity of the virtual flow, to the differential and the jump
conditions in the statement. �
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Proposition 2.5.2 (Differential equation of light rays) In an optical me-
dium (M ,n) with a connection ∇ , a path γ ∈ C1(I ; M) , whose parametrization-
speed is proportional to the speed of light, is a light-ray if and only if it fulfills
the differential equation:

∂τ=t nτC(vτ )(vτ ,χτ,t⇑vϕt) = 1
2 〈dbqn(vt),vϕt 〉+ 〈(nτC(vt)vt)Tors(vt),vϕt 〉 ,

which may be also written as

∇vt(nτC(v)v) = 1
2 dbqn(vt) + (nτC(vt)vt)Tors(vt) .

Proof. We have that

1
2 (Lvϕn)(vt,vt) = 1

2 ∂λ=0 nϕλ(τC(vt))(ϕλ↑vt,ϕλ↑vt) .

The velocity along the path may be extended to a vector field v ∈ C1(M ;TM)
by pushing it along the flow ϕλ ∈ C1(M ; M) according to the relation:

v(ϕλ(τC(vt))) := ϕλ↑vt .

Then, writing ϕλ↑vt = ϕλ⇑ϕλ⇓ϕλ↑vt and applying Leibniz rule, we get

1
2 (Lvϕn)(vt,vt) = 1

2 ∂λ=0 nϕλ(τC(vt))(ϕλ⇑vt,ϕλ⇑vt)

+ nτC(vt)(∂λ=0ϕλ⇓ϕλ↑vt,vt)

= 1
2 〈dbqn(vt),vϕt 〉+ nτC(vt)(∇vϕt

v,vt) .

Similarly, defining the trajectory-flow χτ,t ∈ C1(M ; M) by χτ,t ◦ γt = γτ , we
have that

∂τ=t nτC(vτ )(vτ ,vϕτ ) = ∂τ=t nτC(vτ )(vτ ,χτ,t⇑χτ,t⇓vϕτ )

= ∂τ=t nτC(vτ )(vτ ,χτ,t⇑vϕt) + nτC(vt)(∇vtvϕ,vt)

= 〈∇vt(nτC(v)v),vϕt 〉+ nτC(vt)(∇vtvϕ,vt) .

By definition of the vector field v ∈ C1(M ;TM) we have that [vϕ,v] = 0 and
hence

Tors(v) · vϕ = tors(v,vϕ) = ∇vvϕ −∇vϕv .

The differential condition of proposition 2.5.1 may then be written as

1
2 〈dbqn(vt),vϕt 〉 = 〈∇vt(nτC(v)v),vϕt 〉+ nτC(vt)(vt,Tors(vt) · vϕt) .

and the statement is proven. �
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Remark 2.5.2 In the riemannian manifold (M ,n) , endowed with the con-
nection ∇ induced by local charts, the torsion vanishes and the differential
equations of a light-ray becomes

∇vt(nτC(v)v) = 1
2 dbqn(vt) .

In a connection which preserves the optical metric, we have that dbqn = 0 and
∇vtnτC(v) = 0 , so that

〈∇vt(nτC(v)v),w 〉 = dvtnτC(v)(v,w)− nτC(vt)(vt,∇vtw) = nτC(vt)(∇vtv,w) ,

for any w ∈ C1(M ;TM) , Hence, in the Levi-Civita connection associated
with the optical metric, which is torsion-free and optical-metric preserving, the
differential equations of a light-ray becomes ∇vtv = 0 .

Remark 2.5.3 In isotropic optical media, the jump condition

〈 [[n(vt)]],vϕ(τC(vt))〉 = 0 ,

reads
〈 [[ng(vt)]],vϕ(τC(vt))〉 = 0 ,

for any virtual flow ϕλ ∈ C1(M ; M) . Since the velocities of virtual flows are
tangent to the discontinuity surface, the law of reflection and Snell’s law of
refraction in isotropic media are immediately deduced. In general anisotropic
optical media, Snell’s law is not adequate to describe the refraction properties.

Figure 2.12: Willebrord Snellius (1580 - 1626)
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2.5.5 Dynamics vs Optics
Fermat’s principle in optics postulates that the integral of the optical length
density along a ray is an extremal with respect to the variation induced by any
virtual flow.

Hamilton’s action principle in dynamics postulates that the integral of
the Lagrangian along a trajectory is an extremal with respect to the variation
induced by any virtual flow.

A basic difference is that the optical length of a path is independent of its
parametrization, while the Hamilton’s action integral depends on the parame-
trization of the trajectory.

This is quite natural since Fermat’s principle for optical rays was not in-
tended to evaluate the speed of light along a ray, but only the image of the ray.
In fact the speed of light is considered as a constitutive property of the optical
medium.

In mechanics, on the contrary, both the image of the trajectory and its
time-law are governed by Hamilton’s action principle.

There are two main ways to provide a formulation of dynamics which is
independent of the trajectory parametrization.

The older way was first formulated by Maupertuis and then made precise
by Euler, Lagrange and Jacobi. Its classical statement is concerned with
the case in which the energy of the system is constant along the trajectory.
The idea is to consider a constant energy submanifold of the tangent bundle
and to restrict to it the differental condition of stationarity. As a consequence
the canonical two-form becomes a contact form with a one-dimensional kernel
made of characteristic vectors. The corresponding integral line provides the
geometric description of the trajectory in the velocity phase-space. A suitable
reparametrization permits to recover a full description of the trajectory. Arbi-
trary variations of the velocity in the constant energy submanifold are allowed
for, in the action principle.

The other, more recent, way is due to E. Cartan and has been formulated
as an action principle by Arnold. The underlying idea is to enlarge the velocity
phase-space to a velocity-time state-space. As a consequence the canonical two-
form becomes a contact form once more and variations in velocity and time are
considered in the action principle. In our formulation no end-point conditions
are appended and velocity variations are assumed to be projectable vector fields.
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2.6 Symplectic structure
The peculiar form of Hamilton’s system of ordinary differential equation for the
momentum v̇∗ ∈ Tv∗T

∗C , suggests to endow the covelocity-phase-space T ∗C
of a special kind of geometry in which the role of the symmetric and positive
definite metric tensor g of riemannian geometry, is played by a skew-symmetric,
closed and weakly non-degenerate differential two-form ω2 : A detailed account
of these geometrical structures can be found in [8] for the finite dimensional
case. Symplectic infinite dimensional spaces are dealt with in [127].

We will not treat this topic in detail here. Instead we will show how some
basic results of classical mechanics may be directly inferred from the skew-
symmetric structure of Hamilton’s equations.

Let us consider a differentiable manifold M and a differential two-form ω2

on M such that:

• the form ω2 ∈ C1(M ; Λ2(M)) is closed:

dω2 = 0 ,

• the form ω2 ∈ C1(M ; Λ2(M)) is non degenerate:

ω2 ·X = 0 ⇐⇒ X = 0 , X ∈ TC .

The pair {M,ω2} is called a symplectic manifold.

• We say that a time-dependent vector field XHt ∈ C1(M ;TM) admits an
hamiltonian functional Ht ∈ C2(M ;<) if

ω2 ·XHt = dHt .

The non degeneracy of ω2 ensures that hamiltonian vector field corresponding
to a given hamiltonian functional is unique.

A necessary condition in order that the vector field XHt ∈ C1(M ;TM) be
hamiltonian is that

d(ω2 ·XHt) = ddHt = 0 .

If the manifold is star shaped the previous condition is also sufficient by Poincaré
lemma (see section 1.9.13 on page 181).
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2.6.1 Poisson brackets
Let ϕKt,s ∈ C1(M ; M) be the flow of a vector field XKt ∈ C1(M ;TM) and
Ht ∈ C2(C ;<) be a time dependent functional. Then

• The time-convective derivative of Ht ∈ C2(M ;<) along the flow gener-
ated by XKt is given by

(Lt,XKt
Ht)s(x) = ∂t=s Ht(ϕ

K
t,s(x)) = ∂t=s (ϕKt,s↓Ht)(x) , x ∈M .

We have that
Lt,XKt

Ht = LXKt
Ht + ∂τ=t Hτ ,

where ∂τ=t Hτ is the partial time derivative and LXKt
Ht is the spatial direc-

tional derivative of the functional Kt along the vector XKt , also called the
autonomous Lie derivative along the time-dependent flow generated by XKt

(see section 1.4.7 on page 93).

Figure 2.13: Siméon Denis Poisson (1781 - 1840)

• The Poisson bracket of two time dependent functionals Ht,Kt ∈ C2(M ;<)
is the functional [Kt, Ht] ∈ C2(M ;<) defined by

[Kt, Ht] := ω2 ·XHt ·XKt = dHt ·XKt = LXKt
Ht = Lt,XKt

Ht−∂τ=t Hτ ,

which is skew-symmetric in Ht and Kt .

As a direct consequence we derive an invariance result which is a special exten-
sion of Noether’s theorem [8]:

For time dependent fields we have that:
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• The Poisson bracket of two time dependent functionals vanishes iff each
one of them is dragged along the flow generated by the hamiltonian vector
field corresponding to the other:

[Kt, Ht] = −[Ht,Kt] = 0 ⇐⇒ LXHt
Kt = −LXKt

Ht = 0

⇐⇒


Lt,XKt

Kt = ∂tKt

Lt,XKt
Ht = ∂tHt .

Hence in particular (drag of the energy):

• Any time dependent functional is dragged along the flow generated by its
hamiltonian vector field:

[Ht, Ht] = 0 ⇐⇒ LXHt
Ht = Lt,XKt

Ht − ∂τ=t Hτ = 0

⇐⇒ Lt,XKt
Ht = ∂τ=t Hτ .

For time independent fields the previous result may be stated as follows.

• The vanishing of the Poisson bracket of two time independent functionals
is necessary and sufficient in order that each one of them be constant along
the flow generated by the hamiltonian vector field corresponding to the
other:

[H,K] = −[K,H] = 0 ⇐⇒ LXH
K = −LXK

H = 0 .

From this result we infer that (conservation of energy):

• Any time independent functional is constant along the flow generated by
its hamiltonian vector field:

[H,H] = 0 ⇐⇒ LXH
H = 0 .

2.6.2 Canonical transformations
Until now we have made no use of the closedness of the symplectic two-form
ω2 ∈ C1(M ; Λ2(M)) . The reason why this assumption is made will be clarified
hereafter. To this end we recall the definition of canonical flow (see section
2.4.4).
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• A flow FlXt,s ∈ C1(M × I ; M × I) is said to be canonical if it drags the
symplectic two-form ω2 ∈ C1(M ; Λ2(M)) :

LXtω
2 = 0 or equivalently FlXt,s↓ω2 = ω2 .

The closedness of the symplectic two-form ω2 ∈ C1(M ; Λ2(M)) opens the
way to a proof of the next theorem which does not make direct recourse to
Poincaré’s relative integral invariant.

Theorem 2.6.1 The flow of a time dependent hamiltonian vector field is canon-
ical.

Proof. By the homotopy formula and the closedness of the symplectic two-form,
we have that:

LXHt
ω2 = dω2 ·XHt + d(ω2 ·XHt) = d(ω2 ·XHt) .

Hence, if XHt ∈ C1(M ;TC) is a hamiltonian vector field: ω2 ·XHt = dHt , we
infer that

ddHt = d(ω2 ·XHt) = LXHt
ω2 = 0 .

As a consequence of this result we have the following important property.

Theorem 2.6.2 The Lie bracket of two hamiltonian vector fields is an hamil-
tonian vector field and its hamiltonian is the Poisson bracket of the two hamil-
tonians:

ω2 · [XKt ,XHt ] = d [Kt, Ht] .

Proof. The result is a direct consequence of the following equality between
one-forms:

d [Kt, Ht] = d(LXKt
Ht) = LXKt

(dHt) = LXKt
(ω2 ·XHt)

= ω2 · LXKt
XHt = ω2 · [XKt ,XHt ] .

The fourth equality holds since, by the property LXKt
ω2 = 0 and Leibniz rule,

we have that
LXKt

(ω2 ·XHt) ·X = LXKt
(ω2 ·XHt ·X)− ω2 ·XHt · LXKt

X

= LXKt
ω2 ·XHt ·X + ω2 · LXKt

XHt ·X

+ω2 ·XHt · LXKt
X− ω2 ·XHt · LXKt

X

= ω2 · LXKt
XHt ·X = ω2 · [XKt ,XHt ] ·X .
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As a corollary we may state that:

• The flows of two time dependent hamiltonian vector fields commute if and
only if the Poisson bracket of the two hamiltonians is locally constant
on M . Indeed the commutation of flows of two vector fields is equivalent
to the vanishing of their Lie bracket and, by the non degeneracy of the
symplectic form, we have that:

[XHt ,XKt ] = 0 ⇐⇒ ω2 · [XHt ,XKt ] = 0 ⇐⇒ d [Ht,Kt] = 0 .

From this result we get another extension of Noether’s theorem [8].

Theorem 2.6.3 The Poisson brackets of any triplet of possibly time dependent
functionals Ht,Kt, Lt ∈ C2(M ;<) fulfil the Jacobi’s identity:

[[Ht,Kt], Lt] + [[Lt, Ht],Kt] + [[Kt, Lt], Ht] = 0 .

Proof. We have that

[[Ht,Kt], Lt] + [[Lt, Ht],Kt] =

= [[Lt, Ht],Kt]− [[Kt, Ht], Lt] =

= (LXKt
LXLt

− LXLt
LXKt

)Ht

= [XKt ,XLt ]Ht .

Then, summing up twice the Jacobi triplet, we get an equality between a sum
of second derivatives and a sum of first derivatives of the three functionals. The
equality implies that the triplet must vanish.

As a direct consequence, we get the Poisson theorem.

Theorem 2.6.4 (Poisson theorem) Let us assume that two time dependent
functionals Kt, Lt ∈ C2(M ;<) are dragged by the flow generated by the hamil-
tonian vector field associated with a time dependent functional Ht ∈ C2(M ;<) .
Then their Poisson bracket is also dragged by the flow.
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Proof. We have that: [[Kt, Lt], Ht] = −[[Ht,Kt], Lt] − [[Lt, Ht],Kt] = 0 and
hence

[[Kt, Lt], Ht] = LXHt
[Kt, Lt] = Lt,XKt

[Kt, Lt]− ∂τ=t [Kτ , Lτ ] = 0 .

The classical Poisson theorem for time independent functionals reads:

Theorem 2.6.5 If two time independent functionals K,L ∈ C2(M ;<) are
invariant along the flow generated by the hamiltonian vector field associated
with a time dependent functional Ht ∈ C2(M ;<) , then their Poisson bracket
is also invariant.

2.6.3 Integral invariants
Time independent forms

Let us recall the following definitions:

• A k-form ωk ∈ C(M ; Λk(M)) is said to be an integral invariant of a
transformation ϕ ∈ C(M ; M) if the integral of ωk ∈ C(M ; Λk(M)) on
any k-dimensional manifold N ⊆M is not changed by the transformation:∫

N
ωk =

∫
ϕ(N)

ωk =

∫
N
ϕ↓ωk , ∀N ⊆M ⇐⇒ ϕ↓ωk = ωk .

The treatment developed in section 2.4.1 shows that the symplectic two-form
ω2 ∈ C1(M ; Λ2(M)) is an integral invariant of any hamiltonian flow, that is a
universal integral invariant.

• A k-form ωk ∈ C(M ; Λk(M)) is said to be a relative integral invariant
of a transformation ϕ ∈ C(M ; M) if the integral of ωk ∈ C(M ; Λk(M))
on any closed k-dimensional manifold N ⊆ M is not changed by the
transformation:∫

N
ωk =

∫
ϕ(N)

ωk =

∫
N
ϕ↓ωk , ∀N ⊆M such that ∂N = 0 .

We have that

• If a k-form ωk ∈ C(M ; Λk(M)) is a relative integral invariant of ϕ ∈
C(M ; M) , then the (k+1)-form of dωk ∈ C(M ; Λk+1(M)) is an integral
invariant of the transformation.
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Indeed for any k-dimensional submanifold N ⊆M we have∫
N
dωk =

∫
∂N
ωk =

∫
ϕ(∂N)

ωk =

∫
∂ϕ(N)

ωk =

∫
ϕ(N)

dωk .

The converse statement holds only if any k-dimensional submanifold is the
boundary of a (k + 1)-dimensional submanifold.

• The one-form dH is an integral invariant for the flow of the time inde-
pendent hamiltonian H , since the zero-form H is an integral invariant
(and hence a fortiori a relative integral invariant).

• A time independent k-form ωk ∈ C(M ; Λk(M)) is an integral invariant
of a flow ϕt,s ∈ C(M ; M) if the time derivative along the flow of its
integral on any dragged k-dimensional manifold N ⊆M is equal to zero

∂τ=t

∫
ϕτ,s(N)

ωk =

∫
ϕt,s(N)

LXt ω
k =

∫
N
ϕt,s↓LXt ω

k

=

∫
N
∂τ=t ϕτ,s↓ωk = 0 ,

where we have recalled the formula

ϕt,s↓LXtω
k = ∂τ=t ϕτ,s↓ωk .

Hence a time independent k-form ωk ∈ C(M ; Λk(M)) is an integral invariant
of a flow ϕt,s ∈ C(M ; M) iff its Lie derivative vanishes identically along the
flow or equivalently if the time derivative of its pull back vanishes identically
(the form is dragged by the flow):

LXt
ωk = 0⇐⇒ ∂τ=t ϕτ,M↓ωk = 0

⇐⇒ ϕt,M↓ωk = ωk .

Time dependent forms

• A time dependent k-form ωkt ∈ C(M ; Λk(M)) is a dragged integral of a
flow ϕt,s ∈ C(M ; M) with velocity field Xt ∈ C(M ;TM) if the time
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derivative along the flow of its integral on any dragged k-dimensional
manifold N ⊆M is equal the integral of its partial time derivative:

∂τ=t

∫
ϕτ,s(N)

ωkτ =

∫
ϕt,s(N)

Lt,Xt
ωkt =

∫
N
ϕt,s↓(Lt,Xt

ωkt )

=

∫
N
∂τ=t (ϕτ,s↓ωkτ ) ,

where we have made use of the transport formula:

∂τ=t

∫
ϕτ,s(N)

ωkτ =

∫
ϕt,s(N)

Lt,Xt ω
k
t ,

and have recalled that

ϕt,M↓LXt
ωkt = ∂τ=t ϕ

∗
τ,sω

k
τ .

If a dragged integral k-form ωk ∈ C(M ; Λk(M)) is time independent we have
that

∂τ=t

∫
ϕτ,s(N)

ωk =

∫
ϕt,s(N)

LXt
ωk , ∀N ⊆M ,

and hence the k-form ωk ∈ C(M ; Λk(M)) is an integral invariant iff

LXt
ωk = 0 .

2.7 Conclusions
About two centuries after Lagrange’s and Hamilton’s genial discoveries and
almost one century after Emmy Noether’s masterpiece have passed away. In
the meantime a simple extension of Hamilton’s action principle was at hand
waiting to be discovered. This extension reveals that Noether’s celebrated
result is a direct consequence of a more general way of stating the law of dy-
namics.

We would like to feel that Hilbert’s and Einstein’s praises for Noether’s
contribution of an invariant result in dynamics are also of support for the ideas
presented in this chapter. The extendend version of Hamilton’s action principle
applyies in a natural way to piecewice regular paths and yields the corresponding
jump conditions at singular points. The simple treatment based on standard
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Figure 2.14: Albert Einstein (1879 - 1955)

calculus, was only achieved afted a translation of Hamilton’s action principle in
geometrical differential terms and a subsequent analysis performed by the tools
of calculus on manifolds. This revealed how to rewrite Hamilton’s principle and
opened the way for the direct proof of the law of dynamics [?]. Remarkably, the
proof of this more general result is definitely simpler than the special, classical
one of Lagrange’s law of dynamics in a manifold with torsionless connection.
The result is directly extendable to other problems of calculus of variations and
in particular to the analysis of the properties of geodesic paths on a manifold.
The dynamics of deformable bodies has been discussed in detail by a direct
application of the general results and by pointing out some peculiar issues which
deserve special attention. The principles of elastodynamics have been derived
by a simple introduction of a hyperelastic constitutive law.
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Chapter 3

Continuum Mechanics

In this chaper is devoted to an introduction of basic principles of nonlinear Con-
tinuum Mechanics. A geometric description of Cauchy’s model of a continuous
body is provided as the tangent bundle associated to a 3D compact and con-
nected embedded submanifold of the euclidean space. The rigidity condition
and the relevant axiomatic definitions of static and dynamic equilibrium, in the
actual and in the reference placement, are provided.

3.1 Bodies and deformations
According to Cauchy’s model, a continuous material body, briefly a contin-
uum is a set of particles identified with the points x ∈ B of a differentiable
submanifold, referred to as the reference placement, embedded in the ambient
euclidean space {S ,g} . The euclidean space is endowed with the standard
metric tensor field g(x) ∈ BL (TxS2 ;<) which is constant according to the
standard connection induced by the distant parallel transport by translation.

We will denote by TS the tangent bundle to the euclidean space, in which
each linear tangent space TxS may be identified with the linear space of trans-
lations V .

In a mechanical theory, experimental tests provide measurements of the
lenght of the material fibers (tangent vectors) at the points of a placement
ϕ(B) ⊂ S of the body in the ambient space, described by a smooth configura-
tion map ϕ ∈ C1(B ;S) which is assumed to be a diffeomorphism between B
and ϕ(B) .
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Figure 3.1: Augustin Louis Cauchy (1789 - 1857)

The results of metric measurements can be interpreted by substituting the
standard metric tensor g(x) at x ∈ B with a configuration-induced metric
tensor (ϕ↓g)(x) ∈ BL (TxB2 ;<) defined, at any x ∈ B , by:

(ϕ↓g)x(a,b) := gϕ(x)(Txϕ · a, Txϕ · b) , ∀a,b ∈ TxB .

Here the differential Txϕ ∈ BL (TxB ;Tϕ(x)S) at x ∈ B of the configuration
map is the linear map which transforms each vector h ∈ TxB into the corre-
sponding vector Txϕ · h ∈ Tϕ(x)S .

The tangent map Tϕ ∈ C0(TB ;TS) is accordingly defined by

(Tϕ ◦ v)(x) := Txϕ · v(x) ∈ Tϕ(x)S ,

for any vector field v ∈ C1(B, TB) .
In differential geometric terms, the tensor field ϕ↓g on B is called the pull-

back of the metric tensor field g on ϕ(B) according to the map ϕ ∈ C1(B ;S) .
In terms of the tangent map it is defined as

(ϕ↓g)x(u(x),v(x)) := gϕ(x)((Tϕ ◦ u)(x), (Tϕ ◦ v)(x)) ,

for any pair u,v ∈ C1(B ;TB) of tangent vector fields.
The metric tensor g(x) ∈ BL (TxB2 ;<) may be considered as a linear iso-

morphism g(x) ∈ BL (TxB ;T ∗xB) defined by

〈gx(a),b〉 := gx(a,b) , ∀a,b ∈ TxB .

A linear operator A(x) ∈ BL (TxB ;TxB) is then associated with the tensor
(gA)(x) ∈ BL (TxB2 ;<) , defined, at each x ∈ B , by the identity:

(gA)(a,b) := 〈(g ◦A)(a),b〉 = g(Aa,b) , ∀a,b ∈ TxB .
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Accordingly, we have that (ϕ↓g)x = g((Txϕ)T · Txϕ) . The metric change

1
2 ((ϕ↓g)x − gx) ,

at a point x ∈ B due to the configuration map ϕ ∈ C1(B ;S) is called the
Green’s strain at that point. It is then defined as (onehalf of) the gap between
the g-symmetric operator (Txϕ)T ·Txϕ ∈ BL (TxB ;TxB) and the identity. The
reason why it is convenient to adopt a factor 1

2 will be apparent later on when
dealing with equilibrium boundary conditions.

If only lenght measurements are available, the configuration-induced metric
tensor ϕ↓g may be evaluated as follows. Firstly we remark that what are
needed are the values of the metric tensor ϕ↓g on pairs of vectors taken from
a basis, to get the corresponding symmetric Gram matrix:

Gramϕ↓g(e1, e2, e3) =

∣∣∣∣∣∣
ϕ↓g(e1, e1) ϕ↓g(e1, e2) ϕ↓g(e1, e3)
ϕ↓g(e2, e1) ϕ↓g(e2, e2) ϕ↓g(e2, e3)
ϕ↓g(e3, e1) ϕ↓g(e3, e2) ϕ↓g(e3, e3)

∣∣∣∣∣∣
whose diagonal elements are the squared lenghts of the transformed basis vec-
tors while elements out of diagonal are the inner products between pairs of
transformed basis vectors.

All the elements of the Gram matrix may be evaluated by considering the
tetrahedron with sides e1 , e2 , e3 e3 − e2 , e3 − e1 and e2 − e1 , generated
by the basis vectors, and measuring the squared lenghts of the sides of the
transformed tetrahedron. Indeed, the parallelogram formula yields:

ϕ↓g(ei + ej , ei + ej) = 2 (ϕ↓g(ei, ei) +ϕ↓g(ej , ej))−ϕ↓g(ei − ej , ei − ej) ,

and the polarization formula gives:

4ϕ↓g(ei, ej) = ϕ↓g(ei + ej , ei + ej)−ϕ↓g(ei − ej , ei − ej) ,

or equivalently:

2ϕ↓g(ei, ej) = ϕ↓g(ei, ei) +ϕ↓g(ej , ej)−ϕ↓g(ei − ej , ei − ej) .

The volume change due to the configuration map ϕ ∈ C1(B ;S) is expressed by
the jacobian determinant which is the ratio between the configuration-induced
volume form and the standard one: ϕ↓µg = Jϕ µg , with Jϕ(x) = det(Txϕ) .

Given a basis {e1, e2, e3} , we have that

µ2
g(e1, e2, e3) = det(Gramg(e1, e2, e3)) ,

(ϕ↓µg)2(e1, e2, e3) = det(Gramϕ↓g(e1, e2, e3)) ,
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see Section 1.1.3.
Then the absolute value of the jacobian determinant is equal to the square

root of the ratio between the determinants of the Gram matrix of any basis
with respect to the metrics ϕ↓g and g :

J2
ϕ =

det(Gramϕ↓g(e1, e2, e3))

det(Gramg(e1, e2, e3))
.

The metric changes at a point of a n-dimensional manifold are described by
lenght measurements along the (n+ 1)n/2 sides of a non-degenerated simplex,
i.e. a convex polyhedron with n+1-vertices in the n-dimensional tangent space.
In the 3D euclidean space the simplex is a tetrahedron.

Figure 3.2: tetrahedron

3.2 Kinematics and Equilibrium
A precise statement of the axiom of dynamical equilibrium requires to define
in a proper way the linear kinematical space made up of the velocities of the
virtual motions that the body is allowed to undergo at any fixed instant of time.

The very concept of force system is based on the specification of the kine-
matical space and on its topological properties since force systems are work-
conjugate to the virtual velocities and the relevant the duality pairing is called
the virtual work.

The ideas underlying the definition of the kinematical space are twofold.
From a physical point of view we must recognize that the body under investi-
gation is chosen in an arbitrary way and hence any kinematical definition must
be reproducible on any part of a given one.

On the mathematical side the requirement is that the topological properties
must ensure the existence of boundary traces and a basic closedness property.

Dually force systems are assumed to be bounded linear functionals over the
fields of the topological kinematical space. This means that the virtual work
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of a given force system may be made as small as desired by taking the virtual
velocity field in a sufficiently small neighbourhood of the null field.

Mathematical minded people will find a brief but precise account of the
relevant aspects in section 3.5.2 and in the references quoted therein.

Preliminarily, in section 3.2.1, we will adopt a heuristic approach to provide
the basic ideas without the burden of functional analysis concepts and tools
that are needed to appreciate the mathematical treatment.

3.2.1 Basic ideas
The reproducibility requirement is fulfilled by allowing for virtual velocities
to be discontinuous on the borders of a patchwork made of an arbitrary but
finite number of sub-bodies. In this way it is possible to apply the equilibrium
condition to any part of any body.

This is the kinematic counterpart of the well-known Euler-Cauchy prin-
ciple stating that, if a body is in equilibrium, then any of its parts is also in
equilibrium.

Real bodies may usually be considered as composed by a finite number of
continuous simple sub-bodies in which the admissible velocities are required to
have no discountinuity surfaces. Moreover, on the boundary of these simple
sub-bodies, the admissible velocities are subject to prescribed linear or affine
conditions. All these are called constraint conditions.

More complex, nonlinear conditions are also considered and imposed as re-
lations between dual entities described by multivalued maps. A well-developed
theory exists for multivalued maps with maximal monotone graphs. Linear or
affine relations are described by constant-valued monotone multivalued maps.
These more general conditions are called constitutive laws.

The velocities which meet the continuity constraint and homogeneous bound-
ary constraint are assumed to belong to a linear space, the space of conforming
velocities. If this space is finite dimensional, any basis is called a set of degrees
of freedom.

Force system are defined as dual entities of the virtual velocities performing
virtual power in a linear fashion. They can be added one another and multiplied
by reals, thus forming a linear space.

The physical idea of frictionless, firm and bilateral constraints, is modeled
by requiring that the reactive force systems exerted by the constraints must
perform a null virtual power for any conforming virtual velocity field.

In imposing the equilibrium condition on a system of forces, we may consider
both conforming or non-conforming virtual velocities. To detect and evaluate a
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reactive force system we must consider a non-conforming rigid virtual velocity
field and impose that the virtual power performed by active and reactive force
systems vanishes. This approach provides sufficient informations on reactive
force systems only for some special one-dimensional structural models composed
by beam elements, referred to as non-redundant structural models.

In the general case, constitutive laws describing the material behavior must
be provided to get further informations able to detect the reactive force systems.

Mechanics is founded on the concept of equilibrium first enunciated in varia-
tional terms by Johann Bernoulli in 1717 in a letter to Pierre Varignon.
This could be considered at right the cornerstone for the beginning of a matem-
atical theory of mechanics.

Figure 3.3: Johann Bernoulli (1667 - 1748)

Figure 3.4: Pierre Varignon (1654 - 1722)

In its modern formulation, the axiom of equilibrium states that:

• At any configuration ϕ ∈ C1(B ;S) of a body B , a system of forces acting
on it is in equilibrium if it performs a null virtual power for any virtual
motion of the body which starts as an infinitesimal isometry.
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A virtual motion is called an infinitesimal isometry if it causes no rate of
change of the metric properties of the body, that is the lenght of any path drawn
in the body has a vanishing time-rate of variation.

Let us denote by Rig(ϕ(B)) , or simply Rig , the linear space of virtual
infinitesimal isometries, also called rigid-body virtual velocities, and by f the
force system acting on the body, at the current placement ϕ(B) .

A formal statement of the axiom of dynamical equilibrium is then expressed
by the variational condition

〈f ,v〉 = 0 , ∀v ∈ Rig(ϕ(B)) .

A celebrated kinematical result, stated, in the context of euclidean space, by
Leonhard Euler in the middle of the XVII century and extended to rieman-
nian manifolds by Wilhelm Killing in the last decades of the XIX century,
shows that infinitesimal isometries of a body are velocity fields characterized by
the vanishing of the symmetric part of their spatial derivative in the a body.
This implies that every connected component of the body undergoes a motion
with a constant spatial derivative. The issue is discussed in detail in the next
section.

Figure 3.5: Leonhard Euler (1707 - 1783)

3.2.2 Euler, Kelvin, Helmholtz and Lagrange’s theorems
To provide a mathematical definition of a virtual infinitesimal isometry, let us
consider a motion ϕ ∈ C1(B×I ;S) dragging the body B in the ambient space.

The virtual velocity field v ∈ C1(ϕ(B) ;TS) of the body at the placement
ϕ(B) under the virtual flow Flvλ , is given by: v = ∂λ=0 Flvλ .
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A virtual infinitesimal isometry is characterized by the vanishing of the Lie
derivative of the metric tensor along the virtual spatial flow:

Lvg := ∂λ=0 Flvλ↓g = 0 .

In a riemannian manifold {S ,g} with the Levi-Civita connection ∇ , the
Lie derivative of the metric tensor, along a vector field v ∈ C1(ϕ(B) ;TS) , is
provided by Euler’s distorsion rate formula:

1
2Lvg := 1

2∂λ=0 Flvλ↓g = g ◦ (sym∇v) ,

(see secton 1.14.4). In particular this formula holds in the euclidean space
{S ,can} with the canonical connection induced by translations.

In a ambient manifold S endowed with an affine connection ∇ let us
consider a motion described by a flow Flvτ,tC

1(S ;S) associated with a time-
dependent velocity vector field vt ∈ C1(S ;TS) .

• The acceleration field is defined, according to Euler’s formula for the
acceleration (1770), by the material time derivative of the velocity vector
field along its flow:

at = ∇t,vtv := ∂τ=t vτ +∇vtvt .

Definition 3.2.1 The acceleration field is the material vector field defined as
the parallel time derivative of the material velocity vector field along the motion:

aϕ = ∇ϕ,tvϕ := ∂τ=tϕτ,t⇓vϕ,τ .

Figure 3.6: William Thomson, lord Kelvin (1824 - 1907)
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Theorem 3.2.1 (Kelvin’s kinematical theorem) Let {S ,g} be a rieman-
nian manifold with the Levi-Civita connection ∇ . In a body motion ϕ ∈
C1(B × I ;S) , let vTE ∈ C1(TE ;TS) and aTE ∈ C1(TE ;TS) be the spatial
descriptions of the related velocity and acceleration. Further, let us assume that
the time-dependence of the spatial description of the velocity field be smooth.
Then the time rate of the circulation of the velocity field around any material
loop c ∈ C1(I ; TS) is equal to the circulation of the acceleration:

∂τ=t

∮
ϕsp
τ,t(c)

gvTE,τ =

∮
c

gaTE,t .

The circuitous integral at the r.h.s. vanishes if and only if the acceleration is
the gradient of a potential, i.e. if there exists a scalar functional fE ∈ C1(E ;<)
such that gaTE = dF fE , with the fiber derivative referring to the time-fibration
πI,E ∈ C1(E ; I) . Under this assumption, the circulation of the velocity field,
around any loop dragged by the motion, is a constant of the motion.

Proof. By Reynolds’s transport theorem:

∂τ=t

∮
ϕsp
τ,t(c)

gvTE,τ =

∮
c

Lϕ,t(gvTE) .

with the convective time-derivative given by:

Lϕ,t(gvTE) = ∂τ=tϕ
sp
τ,t↓(gvTE,τ ◦ϕsp

τ,t)

= ∂τ=t gvTE,τ + ∂τ=tϕ
sp
τ,t↓(gvTE,t ◦ϕsp

τ,t)

= g(∂τ=t vTE,τ ) + LvTE,t
(gvTE)

= g(∂τ=t vTE,τ ) + g(LvTE,t
vTE) + (LvTE,t

g)vTE,t .

Euler’s distorsion rate formula tells us that the Lie-derivative of the metric
tensor may be written in terms of the Levi-Civita connection as follows:

LvTE,t
g = g(∇vTE,t · vTE,t) + g(∇vTTE,t · vTE,t) ,

and being ∇g = 0 , we have, for any w ∈ TS :
g((∇vTE,t)

T · vTE,t,w) = g(vTE,t,∇wvTE,t) = 1
2dw(gvTE,t · vTE,t) ,

so that ∮
c

g((∇vTE,t)
T · vTE,t) = 1

2

∮
c

d(g(vTE,t,vTE,t)) = 0 ,

The result then follows by Euler formula for the spatial description of the
acceleration: aTE,t = ∂τ=t vTE,τ +∇vTE,t · vTE,t . �
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Corollary 3.2.1 (Flux of the vorticity) Under the same assumptions states
in Theorem 3.2.1, in a body motion ϕ ∈ C1(B× I ;S) , the time-rate of the flux
of the vorticity rot vTE,t of the velocity field through any surface dragged by the
flow, is equal to the flux of the vorticity rot aTE,t of the acceleration field. If
the acceleration is the gradient of a potential, the flux of the vorticity rot vTE,t
through any surface dragged by the flow, is a constant of the motion.

Proof. Applying Theorem 3.2.1 to the boundary of a surface Σ ⊂ TS belonging
to the spatial trajectory, by Stokes formula we get:∫

Σ

µ · rot aTE,t =

∫
Σ

d(gaTE,t) =

∮
∂Σ

gaTE,t = ∂τ=t

∮
∂ϕsp

τ,t(Σ)

gvTE,τ

= ∂τ=t

∫
ϕsp
τ,t(Σ)

d(gvTE,τ ) = ∂τ=t

∫
ϕsp
τ,t(Σ)

µ · (rot vTE,τ ) ,

and the result follows. �

In a motion described by a flow Flvτ,tC
1(S ;S) associated with a time-

dependent velocity vector field vt ∈ C1(S ;TS) , the material time derivative of
a vector field ut ∈ C1(S ;TS) along the flow is defined by:

u̇t := ∂τ=t uτ +∇vtut .

Definition 3.2.2 (Material lines) The integral curves of a time-dependent
spatial vector field ut ∈ C1(S ;TS) are material lines if the vector field is
dragged by the flow describing the motion, to within a proportionality, due to
the arbitrarity of the parametrization, that is:

µ · Flvτ,t↓uτ · ut = 0 ,

which expresses proportionality between the vector field and its pull-back along
the flow.

Theorem 3.2.2 (Helmholtz’s kinematical theorem) Let S be a configu-
ration manifold endowed with a torsion-free connection ∇ . In a motion de-
scribed by the flow Flvτ,t ∈ C1(S ;S) , the integral curve of a time-dependent
vector field ut ∈ C1(S ;TS) is a material line if and only if

µ · Lt,vtut · ut = µ · (u̇t −∇utvt) · ut = 0 .
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Figure 3.7: Hermann Ludwig Ferdinand von Helmholtz (1821 - 1894)

Proof. Taking the time derivative, the materiality condition becomes

∂τ=t µ · Flvt,τ↑uτ · ut = µ · Lt,vtut · ut = 0 .

Vanishing of the torsion tells us that Lvtut = ∇vtut −∇utvt and hence

Lt,vtut = ∂τ=t uτ +∇vtut −∇utvt = u̇t −∇utvt .

and the result is proven. �

Corollary 3.2.2 (Materiality of vortex lines) If the acceleration is the gra-
dient of a potential, the vortex lines are material lines.

Proof. By noting that

µ · rot at = Lt,vt(µ · rot vt) = (Lvtµ) · rot vt + µ · (Lt,vtrot vt) ,

by the skew-symmetry of Lvtµ we infer that (Lvtµ) · rot vt · rot vt = 0 and
hence that

µ · rot at · rot vt = µ · (Lt,vtrot vt) · rot vt ,

and the result follows from Theorem 3.2.2. �

The following classical result is a simple application of the notion of convec-
tive time-derivative.

Theorem 3.2.3 (Lagrange’s kinematical theorem) Let the surface Σ ⊂
TS , drawn in the spatial trajectory, be described as a level set of the scalar
function f ∈ C1(TE ;<) defined on the trajectory. Then the surface is material
if the scalar function is time-invariant along the trajectory, i.e.

ft = ϕsp
τ,t↓fτ ,

or equivalently:
Lϕ,tf = ∂τ=t fτ + LvTE,t

ft = 0 .
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3.2.3 Euler’s kinematical theorem
Euler’s condition for an infinitesimal isometry is that:

Eul(v) := sym∇v = 0 .

In the euclidean space {S ,g} Euler’s condition implies that the skew-symmetric
part of the derivative ∇v(x) ∈ BL (TxS ;TxS) is constant in each connected
body, a consequence of the following pointwise result.

Theorem 3.2.4 (Euler’s kinematical theorem) The vanishing, at a point
x ∈ ϕ(B) , of the derivative of the symmetric part sym∇v of the gradient of
a vector field v ∈ C2(ϕ(B) ;TS) implies the vanishing of the derivative of the
gradient at the same point, i.e.:

∇ (sym∇v)(x) = 0 =⇒ ∇2v(x) = 0 .

Proof. Let h1,h2,h ∈ TS be arbitrary constant vector fields and denote by
dh the directional derivative along h ∈ TS . By assumption:

dhg(dh1v,h2) + g(dh2v,h1) = g(d2
hh1

v,h2) + g(d2
hh2

v,h1) = 0 .

By substituting h1 with h and h2 with h , we get two more relations, so that

i) g(d2
hh1

v,h2) + g(d2
hh2

v,h1) = 0 ,

ii) g(d2
h1hv,h2) + g(d2

h1h2
v,h) = 0 ,

iii) g(d2
h2h1

v,h) + g(d2
h2hv,h1) = 0 .

Since the second directional derivative is symmetric, it follows that

g(d2
h1h2

v,h) = 0 , ∀h1,h2,h ∈ TS ,
and hence ∇2v = 0 . �

Euler’s kinematical theorem provides a simple representation formula for
infinitesimal isometries, as illustrated below.

Let the speed v be regular (say in C2(ϕ(B) ;TS) ) in a connected body
ϕ(B) . Then, from the condition sym∇v(x) = 0 for any x ∈ ϕ(B) , we in-
fer that ∇v(x) = W , with W a skew-symmetric operator. An infinitesimal
isometry v is then characterized by the following equivalent properties:

i) v(x)− v(y) = W (x− y) , ∀x,y ∈ ϕ(B) ,

ii) g(v(x)− v(y),x− y) = 0 , ∀x,y ∈ ϕ(B) , equiprojectivity ,

iii) v(x) = v0 + W (x− x0) = v0 + ω × (x− x0) , ∀x ∈ ϕ(B) .
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To show that ii) implies i) , we rewrite it as

g(v(x + λh)− v(x),h) = 0 , ∀h ∈ ϕ(B) , λ ∈ < ,

then take the derivative ∂λ=0 to get

g(∇v(x) · h,h) = 0 , ∀h ∈ ϕ(B) ⇐⇒ sym∇v(x) = 0 .

The last formula provides the classical representation of a simple infinitesimal
isometry as the sum of two vector fields:

• a translational velocity field with speed v0 , characterized by the linear
operator Tra ∈ BL (TS ; C∞(ϕ(B) ;TS)) defined by

Tra(v0)(x) = v0 , ∀x ∈ ϕ(B) ,

• plus a rotational velocity field about the pole x0 with angular speed ω ,
characterized by the linear operator Rotx0

∈ BL (TS ; C∞(ϕ(B) ;TS))
defined by

Rotx0
(ω)(x) = ω × (x− x0) , ∀x ∈ ϕ(B) .

The angular speed ω is in a one-to-one relation with skew-symmetric tensor
W by the formula Wh = ω × h , ∀h ∈ TS which is equivalent to

µg · ω = g ·W .

To prove this, recall that the cross product × between vectors is defined by the
identity

µg(a,b, c) = g(a× b, c) , ∀a,b, c ∈ TS ⇐⇒ (µg · a) · b = g · (a× b) ,

so that, ∀h, c ∈ TS , we have

(µgω)(h, c) = µg(ω,h, c) = g(ω × h, c) = g(Wh, c) = (gW)(h, c) ,

which ends the proof.
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3.2.4 Cardinal equations of statics
The virtual work, performed by a system of forces acting on a body undergoing
a simple infinitesimal isometry, can be expressed in terms of two characteristic
vectors.

To see this, we define the linear operators, Res , adjoint of Tra , and
Momx0 , adjoint of Rotx0 , by the identities:

〈f ,Tra(v0)〉= g(Res(f),v0) , ∀v0∈ TS ,
〈f ,Rotx0

(ω)〉= g(Momx0
(f),ω) , ∀ω ∈ TS .

The vectors Res(f) and Momx0(f) are respectively called the resultant force
and the resultant moment of the force system f . Then, being

〈f ,v〉 = 〈f ,Tra(v0)〉+ 〈f ,Rotx0(ω)〉 = g(Res(f),v0) + g(Momx0(f),ω) ,

the vanishing of the virtual work for any simple infinitesimal isometry is equiv-
alent to require that

Res(f) = 0 , Momx0
(f) = 0 .

These are called the cardinal equations of statics.

3.3 Conservation of mass
Let us consider in the euclidean space S a continuous body, whose reference
placement is an embedded submanifold B ⊂ S , undergoing a motion γt ∈
C1(B ;S) with t ∈ I , an open time interval, and ϕ0 the identity.

The evolution of the body in space, defined by ϕτ,t = γτ ◦ γt−1 , maps the
position of a particle at time t into its position at time τ .

The corresponding trajectory tracked by the body in the time interval I is
the dragged submanifold

TraI(ϕ) :=
⋃
t∈I

γt(B) .

The inertial and gravitational properties of the body are described by a time-
dependent positive scalar field, the mass-density per unit volume of the current
placement γt(B) .
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The spatial description of the mass-density along the trajectory is a scalar
field ρt ∈ C1(TraI(ϕ) ;<) . The corresponding material description is the
scalar field provided by the composition ρ0t = ρt ◦ γt ∈ C1(B ;<) .

The total mass of the body at time t is given by

Mt =

∫
γt(B)

ρt µ ,

where µ is the standard volume form in the euclidean space S .
The principle of conservation of mass states that for all bodies

Mτ = Mt , ∀ τ, t ∈ I .

Let Ω = γt(B) ⊂ S be the placement of the body at time t ∈ I .
Introducing the time-dependent mass-form mt = ρt µ and recalling the for-

mula relating the integrals over diffeomorphic manifolds, we express the principle
of conservation of mass as:∫

Ω

mt =

∫
ϕτ,t(Ω)

ϕτ,t↑mt =

∫
ϕτ,t(Ω)

mτ .

Being valid for all bodies, the principle of conservation of mass can be localized
as follows. Since

ϕτ,t↑(ρtµ) = (ϕτ,t↑ρt)(ϕτ,t↑µ)

ϕτ,t↑µ = det(Tϕt,τ )µ

ϕτ,t↑ρt = ρt ◦ϕt,τ ,
we get

ϕτ,t↑mt = mτ ⇐⇒ ρt ◦ϕt,τ = det(Tϕτ,t) ρτ .

The principle of conservation of mass may then be formulated by stating that

• the mass-form is dragged by the flow.

In terms of time-rates the principle of conservation of mass states that, along
any motion of any body at any instant, the time derivative of the total mass
must vanish.

Let vt ∈ C1(γt(B) ;TS) be the velocity of the motion. By Reynolds
transport theorem we get

∂τ=t Mτ = ∂τ=t

∫
ϕτ,t(Ω)

mτ =

∫
Ω

Lt,vmt =

∫
Ω

(∂τ=t mτ + Lvmt) = 0 ,
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where ϕt,τ↑mt denotes the pull-back of the mass-form, with the mass density
frozen at time t , and

• Lv mt := ∂τ=t ϕt,τ↑mt is the convective (or Lie) derivative along the
flow. For scalar spatial fields it coincides with the directional derivative
along the flow.

• Lt,v mt := ∂τ=t mτ + Lvmt is the convective time-derivative of the
mass-form. For scalar spatial fields it coincides with the material time-
derivative.

The local version of the principle of conservation of mass in rate form, amounts
to require that, along any trajectory of the body B the convective time-derivative
of the mass-form vanishes at any time:

Lt,v mt = Lt,v (ρt µ) = 0 .

To express the principle in terms of the scalar mass-density, we recall that the
convective time-derivative (or material time-derivative) of the mass-density is
given by

Lt,v ρ := ∂τ=t ρτ + Lvρt = ∂τ=t ρτ +∇vρt .

Then, being by definition Lv µ = (div v)µ , the principle of conservation of
mass is written as:

∂τ=t

∫
ϕτ,t(Ω)

ρτ µ =

∫
Ω

Lt,v (ρt µ)

=

∫
Ω

∂τ=t ρτ µ+

∫
Ω

Lv (ρt µ)

=

∫
Ω

(∂τ=t ρτ + Lv ρt)µ+

∫
Ω

ρt Lv µ

=

∫
Ω

(Lt,v ρt + ρt div v)µ .
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or, recalling that Lv (ρµ) = L(ρv) µ , as

∂τ=t

∫
ϕτ,t(Ω)

ρτ µ =

∫
Ω

Lt,v (ρt µ)

=

∫
Ω

(∂τ=t ρτ + L(ρtv))µ

=

∫
Ω

(∂τ=t ρτ + div (ρt v))µ

=

∫
Ω

∂τ=t ρτ µ+

∫
∂Ω

ρt g(v,n) (µn) = 0 .

Again, by localizing, we infer the following equivalent forms of the differential
law of mass conservation:

Lt,v ρ+ ρ div v = 0 ⇐⇒ ∂tρ+ div (ρv) = 0 .

By taking account of the positivity of the mass-density, it follows that the ve-
locity field is solenoidal at an instant of time iff the total time-derivative of the
mass-density along the motion vanishes at that time i.e.

Lt,v ρ = 0 ⇐⇒ div v = 0 .

3.3.1 Mass flow thru a control volume
Let Ct ⊂ TraI(ϕ,B) ⊂ S be a control-volume travelling, in the trajectory
tracked by a body B in a time interval I , according to a flow Fluτ,t ∈ C1(S ;S),
with a time-dependent velocity field ut ∈ C1(S ;TS) . The time rate of change
of the mass included in the travelling control-volume is provided by the transport
formula

∂τ=t

∫
Fluτ,t(Ct)

ρτ µ =

∫
Ct

∂τ=t ρτ µ+

∫
Ct

Lut (ρt µ) .

By the principle of conservation of mass, in the motion of a body with velocity
v ∈ C1(ϕ(B) ;TS) we have that

Lt,v (ρtµ) = ∂τ=t ρτ µ+ Lv (ρt µ) = 0 .
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Hence

∂τ=t

∫
Fluτ,t(Ct)

mτ =

∫
Ct

∂τ=t ρτ µ+

∫
Ct

Lu (ρt µ)

= −
∫

Ct

Lv (ρt µ) +

∫
Ct

Lu (ρt µ)

=

∫
Ct

Lu−v (ρt µ) =

∫
Ct

Lρt(u−v) µ =

∫
Ct

div (ρt (u− v))µ

= −
∮
∂Ct

g(ρt (v − u),n) (µn) = −
∮
∂Ct

mt · (v − u) .

Since n is the outward normal to the boundary ∂Ct of the control-volume and
v − u is the relative velocity of the motion of the body with respect to the
travelling control-volume, we may state that:

• The time rate of change of the mass included in a control-volume, travel-
ling in the trajectory of a body, is equal to the inflow of mass-density thru
the surface bounding the control-volume.

This alternative form of the principle of conservation of mass has the typical
aspect of a balance law.

3.4 Euler equations of dynamics
According to Jean d’Alembert’s point of view, the equations of dynamics,
for a continuous body in motion in the euclidean space, are recovered from the
cardinal equations of statics by adding, to the applied forces, the inertial term
due to the field of momentum rate that the body undergoes in its motion with
respect to an inertial reference system.

The acceleration of a material particle is the time derivative of its speed.
If the ambient space is a manifold S with an affine connection ∇ and the
spatial velocity field of a particle along the trajectory is given, the acceleration is
evaluated by taking the material time-derivative, according to Euler’s formula:

at = ∇t,vtv := ∂τ=t vτ +∇vtv .

In the usual euclidean setting, the connection is the one induced by the parallel
transport by translation.
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Figure 3.8: sir Isaac Newton (1643 - 1727)

Following d’Alembert’s idea, the original statement of Newton’s law of
particle dynamics may be rewritten in variational terms as∫

γt(B)

g(at, δv(γt)) mt = 〈ft, δv(γt)〉 , ∀ δv(γt) ∈ rig(Ωt) ∩Conf(Ωt) ,

where the test fields are virtual velocity fields δv(γt) ∈ C0(Ωt ;TΩt
S) , with

Ωt = γt(B) , which are rigid and conforming to the linear constraints. Note
that the symbol δ has no meaning by itself, it is the composed symbol δv that
denotes a virtual velocity field.

Figure 3.9: Jean Le Rond d’Alembert (1717 - 1783)

A more general way to state the law of dynamics for a continuous body
with a variable mass was envisaged by Leonhard Euler. Hereafter we state
a variational formulation of Euler’s law in the general setting of a riemannian
ambient manifold {S ,g} with g ∈ C1(S2 ;<) the metric tensor field.

If not otherwise specified, the connection will be assumed to be the Levi-
Civita connection induced by the metric field.
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Let us denote by ϕτ,t := ϕτ ◦ϕ−1
t ∈ C1(TraI(ϕ,B) ; TraI(ϕ,B)) the flow

along the trajectory, and by ϕτ,t⇑ the parallel transport along the trajectory,
from the placement Ωt = γt(B) to the placement Ωτ = γτ (B) .

In variational form, Euler’s law of motion may be stated as

∂τ=t

∫
Ωt

g(vτ ,ϕτ,t⇑ δv(γt)) mτ = 〈ft, δv(γt)〉 , ∀ δv(γt) ∈ rig(Ωt)∩Conf(Ωt) ,

for any rigid velocity field δv(γt) ∈ C0(Ωt ;TΩtS) . Being mt = ρt µ , Euler’s
law may be restated as

∂τ=t

∫
Ωτ

g(ρτvτ ,ϕτ,t⇑ δv(γt))µ = 〈ft, δv(γt)〉 , ∀ δv(γt) ∈ rig(Ωt)∩Conf(Ωt) ,

where the vector field ρtvt ∈ C0(Ωt ;TΩtS) is the kinetic momentum per unit
volume at time t ∈ I .

The statement of Euler’s law requires to extend, the virtual velocity field
δv(γt) ∈ C0(Ωt ;TΩt

S) at the placement Ωt , to a virtual velocity field δvϕ ∈
C1(TraI(ϕ,B) ;TS) defined along the trajectory, according to the translation
rule:

δvϕ(ϕτ,t(x)) := ϕτ,t⇑ δv(γt)(x) , ∀x ∈ γt(B) ,

so that δvϕ(x) = δv(γt)(x) and

∇vtδvϕ = ∂τ=t ϕτ,t⇓ϕτ,t⇑ δv(γt) = ∂τ=t δv(γt) = 0 .

Euler’s and d’Alembert’s laws of dynamics are equivalent if conservation of
mass holds, as stated by the next proposition.

Theorem 3.4.1 In a riemannian configuration manifold {S ,g} endowed with
a metric connection, Euler’s law of dynamics, is equivalent to d’Alembert’s
law of dynamics by conservation of mass: Lt,vt m = 0 in γt(B) .

Proof. Let us recall that, for a scalar field f ∈ C1(γt(B) ;<) convective and
the material time derivatives coincide, that is: Lt,vtf = ∇t,vtf . Moreover we
have that

∇t,vtg = ∇vtg = 0 , metric connection,

∇t,vtδvϕ = ∇vtδvϕ = 0 , parallel transport,

at := ∇t,vtvt , material time derivative,
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and hence

Lt,vt g(vt, δvϕ) = ∇t,vtg(vt, δvϕ)

= (∇vtg)(vt, δvϕ) + g(∇t,vtvt, δv) + g(vt,∇t,vtδvϕ)

= g(at, δv) .

By the transport theorem we get:

∂τ=t

∫
Ωτ

g(vτ ,ϕτ,t⇑ δv) mτ =

∫
Ωt

Lt,vt (g(vt,ϕτ,t⇑ δv) m)

=

∫
Ωt

g(vt, δvϕ) (Lt,vt m) + (Lt,vt g(vt, δvϕ)) mt

=

∫
Ωt

g(at, δv) mt ,

and the result follows. �

3.4.1 Gauss principle for affine constraint
We owe to Gauss the original idea underlying the following kinematical property
which is here rephrased with a more general statement.

Definition 3.4.1 (Constraint compatibility) Let us consider a continuous
system whose velocity fields at a given placement are subject to an affine kine-
matical constraint expressed in implicit form by means of a linear constraint
map. By performing any smooth extension of the linear constraint map to a
homomorphism defined in a neighborhood of that placement, a path in the con-
figuration manifold, emerging from the placement, will be said to be compatible
with the constraint if the velocity field along it fulfills the constraint condition.

Lemma 3.4.1 (Gauss lemma) Given any two accelerations, evaluated at a
given placement along paths compatible with an affine kinematical constraint
and sharing the same velocity field at that placement, their difference fulfills the
corresponding linear constraint.
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Proof. Let (TC , τC ,C) be the tangent bundle over the configuration manifold
and (F ,πCF ,C) be the vector bundle chosen to provide an implicit representa-
tion of the constraint by the homomorphism F ∈ C1(TC ;F) (fibre respecting
and fibre-linear morphism) over the identity:

TC F−−−−→ F

τC

y yπCF

C id C−−−−→ C

with F ◦ πCF = τC .

Along a path γ ∈ C2(I ;C) in the configuration manifold, the affine constraint
at time t ∈ I is implicitly described by the condition

(F ◦ v)(t) = α(γt) , t ∈ I ,
where v(t) := ∂τ=t γτ,t and α ∈ C1(C ;F) is a section of (F ,πCF ,C) . Then,
differentiating with respect to time, we get:

∂τ=t (F ◦ v)(τ) = ∂τ=tα(γτ ) .

Let us observe that ∂τ=t (F ◦ v)(τ) = TvtF · v̇t and ∂τ=tα(γτ ) = Tγtα · vt .
Then, fixing a linear connection in the configuration manifold and defining the
corresponding acceleration at = ∇tv := ∂τ=t γt,τ⇑vτ ∈ TγtC , we have that:

v̇t = Vl (TC,τC,C)(vt ,at) + H(vt ,vt) ∈ TvtTC .

Hence
TvtF · v̇t = dfF(vt) · at + TvtF ·H(vt,vt) = Tγtα · vt .

The fiber linearity of F ∈ C1(TC ;F) tells us that dfF(vt) = F . The time
derivative of the constraint identity may thus be written as:

F(at) + TvtF ·H(vt,vt) = Tγtα · vt .
If γ ∈ C2(I ;C) is another path compatible with the constraints and sharing
with γ ∈ C2(I ;C) the placement γt and the velocity vt at time t ∈ I , we
have that

F(at) + TvtF ·H(vt,vt) = Tγtα · vt .
Comparing the two expressions, it follows that

F(at) = F(at) ,

which, by the fiber linearity of the constraint map F ∈ C1(TC ;F) , is equivalent
to F(at − at) = 0 . �
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Let us now consider a riemannian ambient manifold {S ,g} , with met-
ric tensor field g : S 7→ BL (TS2 ;<) , in which the motion of a constrained
continuous dynamical system takes place. Affine constraints are considered so
that, at a placement Ωt ⊂ S , the conforming virtual velocity fields δv(γt) ∈
C1(Ωt ;TΩt

S) are bound to take values into a vector subbundle Conf(Ωt)
of the tangent bundle TΩt

S . Denoting by mt the mass-form on Ωt and by
at ∈ C1(Ωt ;TΩt

S) acceleration field, d’Alembert’s law of motion writes:

〈ft, δv(γt)〉 − 〈σt, 1
2Lδv(γt)g〉 =

∫
Ωt

g(at, δv(γt)) mt , ∀ δv(γt) ∈ Conf(Ωt) .

We define the symmetric positive definite bilinear form:

Gauss(a ,b) :=

∫
Ωt

g(a,b) mt ,

where a,b ∈ C0(Ωt ;TS) are tangent vector fields.

Theorem 3.4.2 (Gauss principle) In a dynamical system whose velocity fields
are subject to an affine kinematical constraint at a given placement, the dynam-
ical acceleration field minimizes the mean square deviation, evaluated according
to the mass volume form, of the acceleration fields pertaining to paths compatible
with a smooth extension of the constraint and sharing the same velocity field at
the given placement, from a dynamical acceleration field corresponding to a less
stringent kinematical constraint.

Proof. Let us denote by A the set of acceleration fields at time t ∈ I pertain-
ing to paths compatible with an extension of the constraint Conf(Ωt) at the
placement Ωt and emerging from it with a given initial velocity field. Assuming
that Conf(Ωt) ⊆ Conf0(Ωt) , d’Alembert law of Dynamics gives∫

Ωt

g(a0t, δv(γt)) mt = 〈ft, δv(γt)〉 − 〈σt, 1
2Lδv(γt)g〉 , ∀ δv(γt) ∈ Conf0(Ωt) ,∫

Ωt

g(at, δv(γt)) mt = 〈ft, δv(γt)〉 − 〈σt, 1
2Lδv(γt)g〉 , ∀ δv(γt) ∈ Conf(Ωt) ,

with at ∈ A and hence∫
Ωt

g(at − a0t, δv(γt)) mt = 0 , ∀ δv(γt) ∈ Conf(Ωt) .
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By Lemma 3.4.1, at,at ∈ A implies that at − at ∈ Conf(Ωt) , so that∫
Ωt

g(at − a0t,at − at) mt = 0 , ∀at ∈ A , at ∈ A .

Writing at − a0t = at − at + at − a0t , we get Pythagoras formula:∫
Ωt

g(at−a0t,at−a0t) mt =

∫
Ωt

g(at−at,at−at) mt+

∫
Ωt

g(at−a0t,at−a0t) mt ,

which, setting distGauss(a ,b) :=
√

Gauss(a− b ,a− b) , can be stated as a
minimum distance property:

distGauss(at ,a0t) = min
at∈A

distGauss(at ,a0t) .

If the point of minimum at ∈ A is unique, it will fulfill d’Alembert’s laws of
Dynamics. �

The squared Gaussian distance was called by Gauss the constraint. Gauss
minimum principle was laid as the foundation of Analytical Dynamics by H.R.
Hertz in his book on Principles of Mechanics [89]. The Gaussian constraint
was called the curvature by Hertz who treated mainly the case of free motions.
Gauss principle is equivalent to the Gibbs-Appell equations of dynamics [?].

Theorem 3.4.3 (Gibbs-Appell equation) The law of dynamics in the am-
bient manifold may be written as

df 1
2Gauss(at,at)·δv(γt) = 〈ft, δv(γt)〉−〈σt, 1

2Lδv(γt)g 〉 , ∀ δv(γt) ∈ Conf(Ωt) .

Proof. The equivalence with d’Alembert’s law of dynamics is apparent. �

3.4.2 Dynamics of a travelling control volume
The case of a variable mass can be conveniently dealt with by writing the equa-
tions of dynamics in terms of a control volume travelling along the trajectory
and of the spatial velocity field

vsp(x, t) := v(p(x, t), t) ,

where p(x.t) is the particle passing through x at time t ∈ I .
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Figure 3.10: Heinrich Rudolf Hertz (1857 - 1894)

Figure 3.11: Paul Emile Appell (1855 - 1930)

Let Ct ∈ S be a control-volume travelling, in the trajectory TraI(γ) ⊂ S
tracked by a body in a time interval I , according to a flow Fluτ,t ∈ C1(S ;S),
with time dependent velocity field ut ∈ C1(S ;TS) .

The divergence theorem gives:∫
Ωt

Lg(ρtvsp
t ,δv(γt))ut µ =

∫
Ωt

div (g(ρtv
sp
t , δv(γt))ut)µ

=

∮
∂Ωt

g(ρtv
sp
t , δv(γt)) g(ut,n) ∂µ

=

∮
∂Ωt

g(vsp
t , δv(γt)) mt · ut ,

since, for all a,b ∈ TxΩt :

g(ut,n) ∂µ · a · b = g(ut,n)µ · n · a · b = µ · ut · a · b .
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Figure 3.12: Josiah Willard Gibbs (1839 - 1903)

Let Ct ∈ S be a control-volume at time t ∈ I , travelling, in the trajectory
TraI(ϕ) ⊂ S tracked by a body in a time interval I , according to a flow
Fluτ,t ∈ C1(S ;S), with time dependent velocity field ut ∈ C1(S ;TS) . Then

∂τ=t

∫
Fluτ,t(Ct)

g(vτ , γτ,t⇑ δv(γt)) mτ =

∫
Ct

Lt,ut (g(vsp
t , γτ,t⇑ δv(γt)) mt)

=

∫
Ct

g(∂τ=t ρτvτ , δv(γt))µ+

∫
Ct

g(ρtvt, ∂τ=t γτ,t⇑ δv(γt))µ

+

∫
Ct

Lut(g(ρtv
sp
t , δv(γt))µ) ,

where ∫
Ct

Lut(g(ρtv
sp
t , δv(γt))µ) =

∮
∂Ct

g(vsp
t , δv(γt)) mt · ut .

By subtracting the expressions above written for the travelling control volume
Fluτ,t(Ct) and for the placement along the trajectory γτ,t(Ωt) , with Ct = Ωt ,
we get the relation

∂τ=t

∫
Fluτ,t(Ct)

g(vsp
τ , δv(γt)) mτ − ∂τ=t

∫
γτ,t(Ωt)

g(vsp
τ , δv(γt)) mτ =

= −
∮
∂Ct

g(vsp
t , δv(γt)) mt · (vsp

t − ut)

= −
∮
∂Ct

g(vsp
t , δv(γt)) mt ·wt .
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Euler’s law of motion for the travelling control-volume may then be stated as

∂τ=t

∫
Fluτ,t(Ct)

g(vsp
τ , δv(γt)) mτ = 〈ft, δv(γt)〉 −

∮
∂Ct

g(vsp
t , δv(γt)) mt ·wt ,

for any rigid virtual velocity field δv(γt) ∈ C(Ωt ;TΩt
S) extended along the

trajectory TraI(γ) by pointwise parallel tranport.
The boundary integral provides the virtual work of the equivalent bound-

ary force system (thrust) acting on a travelling control volume due to the
momentum-loss per unit time. Here vsp

t is the absolute spatial velocity field
of the material particles crossing the boundary of the control volume at time
t ∈ I and wt := vsp

t −ut is the relative spatial velocity of the material particles
with respect to the crossed boundary points of the control volume.

We have that mt · wt = g(ρtwt,n) ∂µ where the term g(ρtwt,n) is the
mass leaving the control volume per unit time and unit surface area (surficial
mass-loss rate).

It is apparent that the thrust vanishes if either the absolute velocity of the
particles at the control-volume boundary vanishes, i.e. vsp

t := wt + ut = 0 , or
the surficial mass-loss rate vanishes i.e. g(ρtwt,n) = 0 .

3.5 The stress fields
In general, we need to know how the material body changes locally its shape
under the action of a force system (by means of constitutive relations) and to
impose that the local changes of shape be compatible with the kinematics of
the body as a whole.

The problem so posed is a very hard one to be solved in general, also with
computational approachs based on suitable discretizations of the continuous
problem (i.e. finite element methods and similar ones).

Effective methods are now at hand for bodies whose geometry doesn’t change
significantly during the dynamical evolution. For such problems a linearized
analysis may lead to satisfactory results with a comparatively low computational
effort and provides an iterative tool in nonlinear solution algorithms. Basic to
the theory, is however the mathematical representation, of a force system acting
in dynamical equilibrium on the body, as a field of pointwise stresses in the
body.

This representation was envisaged for non-viscous fluids by Jacob, Johann
and Daniel Bernoulli and by Euler during the course of the XVIII cen-
tury. The complete characterization for continuous bodies, including solids, is
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Figure 3.13: Jacob (Jacques) Bernoulli (1654 - 1705)

Figure 3.14: Daniel Bernoulli (1700 - 1782)

essentially due to Cauchy in 1827 . Cauchy’s geometrical approach was based
on imposing the translational equilibrium to a coin-shaped and to a tetrahedral
domain suitably contracting to a point.

A similar, elegant approach, more recently proposed by Walter Noll, is
based on the equilibrium of a triangular prisma, also suitably contracting to a
point [199].

We will not follow these approaches because, although fascinating for sim-
plicity and skillfulness, they do not provide a satisfactory scenic view of the
matter, since no explicit reference is made to basic duality arguments. More-
over, their application requires more regularity assumptions than needed.

The modern point of view, which has been first stressed in recent times
by the author [199], [201], is based on the application of a reasoning that we
owe to Lagrange, a master of Cauchy, and is well-known as the method of
Lagrangian multipliers. According to Truesdell and Toupin [233], the idea
of applying this method to the definition of a stress field in a body is due to
Gabrio Piola as fas as 1833 [172]. Anyway, Lagrange’s multipliers method
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has gained its full soundness, about one century later (1934), by the tools of
functional analysis that we owe mainly to the genius of Stefan Banach [14].

3.5.1 Lagrange multipliers
The method of Lagrange’s multipliers was originarily envisioned to deal with
the problem of finding the solution to an extremality problem of a functional
under constraint’s condition on its argument. We need a most general version
of the method and a precise mathematical formulation is provided hereafter.
We preliminarily recall that a Banach space is a linear topological space en-
dowed with a norm and complete in the induced norm-topology: each Cauchy
convergent sequence of elements converges towards an element of the space.

Figure 3.15: Joseph-Louis Lagrange (1736 - 1813)

In most applications Banach spaces are indeed Hilbert spaces since the
norm derives from an inner product, a positive definite symmetric bilinear form.

Lagrange’s multipliers provide a tool to express the value of a continuous
linear functional over a Banach space of test fields when its value is known to
vanish on a linear subspace of admissible test fields. which are in the kernel of
a continuous linear operator providing an implicit representation of the linear
constraints.

Theorem 3.5.1 (Lagrange’s multipliers) Let α1 ∈ T ∗xC be a one-form at a
point x ∈ C of a manifold C modeled on a Banach space, and let πA : A 7→ C
be a vector subbundle of the tangent bundle TC . Let us assume that the linear
fiber Ax := {v ∈ A | πA(v) = x} at x ∈ C is implicitly represented as Ker Gx

where Gx ∈ BL (TxC ;E) is a bounded linear operator with closed range in a
Banach space E . Then, the orthogonality condition

〈α1,v 〉 = 0 , ∀v ∈ Ax = Ker Gx ,
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is equivalent to require that there exists a λα ∈ E∗ such that

〈α1,v 〉 = 〈λα,Gx · v 〉 , ∀v ∈ TxC .

Proof. Let us denote by G∗x ∈ BL (E∗ ;T ∗xC) the bounded linear map defined
by the duality condition:

〈G∗x · λ,v〉T∗xC×TxC = 〈λ,G · v〉E∗×E , ∀v ∈ TxC, ∀λ ∈ E∗ ,
which implies that

Ker Gx = (Im G∗x)0 ⊆ TxC .
By assumption Im Gx is a closed linear subspace of E and then Banach’s
closed range theorem ensures that Im G∗x ⊂ T ∗xC is a closed linear subspace
and that:

Im G∗x = (Ker Gx)0 ,

where (Ker Gx)0 := {v∗ ∈ T ∗xC | 〈v∗,v〉T∗xC×TxC = 0 , ∀v ∈ Ker Gx} . The
condition α1 ∈ (Ker Gx)0 is thus equivalent to α1 ∈ Im G∗x and this means
that there exists a λα ∈ E∗ such that α1 = G∗x · λα , or, equivalently, such
that

〈α1,v〉 = 〈G∗x · λα,v〉 = 〈λα,Gx · v〉 , ∀v ∈ TxC ,
and the statement is proved. �

In applications to mechanics of continua, C is the configuration manifold
and the vector subbundle pC ∈ C1(A ;C) of the tangent bundle TC is the
disjoint union of the linear subspaces of infinitesimal isometries of the body, at
each configuration.

The linear operator Gx ∈ BL (TxC ;E) provides the tangent strain at the
configuration x ∈ C , corresponding to a virtual velocity field v ∈ TxC .

The one-form α1 ∈ T ∗xC is a force system acting on the body at the place-
ment x ∈ C corresponding to the actual configuration and the duality pairing
〈α1,v〉 provides the virtual work performed by the force system α1 for the
velocity field v ∈ TxC .

The Lagrange’s multipliers method may be given a naïve mechanical in-
terpretation, based on the following idea: the condition that the virtual work
〈α1,v〉 vanishes for any infinitesimal isometry means that the virtual work
depends in fact on the tangent strain associated with the velocity field. For
non-isometric velocities the virtual work may thus be expressed by the duality
pairing between the tangent strain field associated with the velocity field and a
dual stress field.

This is exactly what has been proved in Theorem 3.5.1 whose mechanical
version takes the name of theorem of virtual work (see section 3.5.3).
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The requirement that the linear map Gx ∈ BL (TxC ;E) has a closed range,
is a technical one which is required since the space of kinematic fields is not finite
dimensional. The issue will be discussed in the next section by endowing the
linear kinematical space of virtual velocities with a suitable Hilbert’s topology.

It is noteworthy that most linear differential operators governing classical
problems of Mathematical Physics fulfill suitable closed range requirements of
their restrictions to any closed subspace of the Banach space of definition. This
is at the basis of most existence results.

Although the title of the next section 3.5.2 could induce to think that only
mathematical minded people should feel themselves interested in reading it, the
ideas there proposed are of a genuine operative nature and correspond to what
structural engineers put into the computational machinery to solve structural
problems formulated in terms of a continuous model.

In this respect it is intriguing to highlight the natural resemblance between
our general idea of a finite patchwork of regularity and computational methods
of the finite element type.

3.5.2 Mathematical subtleties
Let us consider a virtual spatial flow Flvλ ∈ C1(S ;S) dragging the body B in
the space. The corresponding virtual velocity field v ∈ C1(ϕ(B) ;TS) of the
body at the placement ϕ(B) is given by v = ∂λ=0 Flvλ .

The kinematical space is defined by requiring that the kinematic field v
be g-square integrable on the current placement ϕ(B) and that the tangent
deformation sym∇v be a piecewice g-square integrable operator-valued dis-
tribution on a patchwork Patv(ϕ(B)) of nonoverlapping submanifolds whose
union is a covering for ϕ(B) . This means that any two submanifolds of the
patchwork intersect only at boundary points and that their union contains the
whole current placement ϕ(B) .

The patchwork may vary from one kinematic field to another one and is
named the regularity patchwork of the kinematic field. We will refer to these
kinematic field as Green regular kinematic fields.

The pre-Hilbert kinematical space endowed with the topology induced by
the mean square norm of the kinematic fields and of the regular part of the
corresponding tangent deformation, is denoted by Kin(ϕ(B)) , or simply by
Kin .

The subspace Rig ⊂ Kin of rigid kinematic fields is characterized by the
property that sym∇v vanishes on every element of the regularity patchwork
Patv(ϕ(B)) .

413



The stress fields Giovanni Romano

Force systems acting on the body at the placement ϕ(B) belong to the
linear space For := Kin∗ which is the topological dual of Kin .

The kinematic fields v ∈ Kin which share a common regularity patchwork
Pat(ϕ(B)) form a linear closed subspace Kin(Pat(ϕ(B))) , the Pat-regular
kinematic space, which is a Hilbert space, i.e. a linear inner product space
which is complete as a metric space, for the topology inherited by Kin .

Figure 3.16: David Hilbert (1862 - 1943)

The boundary ∂Pat(ϕ(B)) of the regularity patchwork is the collection of
the boundaries of all the elements of the patchwork.

We say that affine kinematical constraints act on the body if boundary con-
ditions are imposed on the fields of the Pat-regular kinematical space and define
a closed flat manifold of admissible kinematical fields Adm ⊂ Kin(Pat(ϕ(B))) .
The closed linear space tangent to the manifold of admissible kinematical fields
is denoted by Conf ⊂ Kin(Pat(ϕ(B))) and its elements are called conforming
kinematical fields.

Due to linearity and closedness, the conformity space Conf is a Hilbert
space for the topology inherited by Kin .

When the conformity space Conf is endowed with this hilbertian topology,
it can be proven that the differential operator sym∇ fulfills Korn’s inequality:

‖v‖+ ‖sym∇v‖ ≥ α (‖v‖+ ‖∇v‖) , ∀v ∈ Conf ,

where ‖‖ is the mean square norm on ϕ(B) .
Korn’s inequality states that the hilbertian topology of any conformity kine-

matic space is equivalent to the inner product topology of the Sobolev space
H1(Pat(ϕ(B))) , induced by the norm on the r.h.s. of the inequality.

Indeed symmetric and skew-symmetric components split the space of bounded
linear operators into the sum of closed linear subspaces which are orthogonal
supplements according to the usual inner product.
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The inequality
‖∇v‖ ≥ ‖sym∇v‖ , ∀v ∈ Kin ,

is a simple consequence of the pointwise inequality

‖L(x)‖g ≥ ‖sym L(x)‖g ,

which follows from Pythagoras theorem.
The validity of Korn’s inequality implies that the image thru sym∇ of

any closed linear subspace Conf ⊂ Kin is closed and that the null-space of
sym∇ is finite dimensional. These two properties imply in turn the validity of
Korn’s inequality, [195], [201]. The mathematical construction described above
opens the way to rely upon the Lagrange’s multiplier method, introduced in
theorem 3.5.1, to get the proof of the existence of a square integrable stress
field equivalent to the force system acting in dynamical equilibrium on a body
under arbitrary linear constraints defining a closed linear subspace of conforming
kinematical fields. This representation result is discussed in detail in the next
section.

3.5.3 Virtual work theorem
A load system ` ∈ Load acting on the body placed at ϕ(B) , is an element
of the Hilbert space Load := Conf∗ topological dual of Conf . Let a load
` ∈ Load meet the variational equilibrium condition:

〈`,v〉 = 0 , ∀v ∈ Conf ∩Rig .

Then theorem 3.5.1 ensures that there exists a (not necessarily unique) g-square
integrable field T : ϕ(B) 7→ BL (TS ;TS) on the placement ϕ(B), whose point-
values are g-symmetric operators, fulfilling the following virtual work identity :

〈`,v〉 =

∫
Pat(ϕ(B))

〈T, sym∇v〉g µ , ∀v ∈ Conf .

Here 〈·, ·〉g is the inner product between linear operators induced by the metric
g (see Section 1.1.4).

A Lagrange multiplier T(ϕ(x)) ∈ BL (Tϕ(x)S ;Tϕ(x)S) for the rigidity
constraint sym∇v = 0 is called a Cauchy stress state.

The Cauchy stress tensor

σ∗(ϕ(x)) ∈ BL (T ∗ϕ(x)S2 ;<) = BL (T ∗ϕ(x)S ;Tϕ(x)S) ,
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is the twice contravariant tensor defined by the relation

T = σ∗ ◦ g , σ∗ = T ◦ g−1 ,

where the linear operator g = g[ ∈ BL (Tϕ(x)S ;T ∗ϕ(x)S) is the metric tensor.

Then, being 1
2 Lvg = g◦sym∇v , according to the duality between the space

BL (Tϕ(x)S2 ;<) of twice covariant tensors and the space BL (T ∗ϕ(x)S2 ;<) of
twice contravariant tensors, we have that

〈T, sym∇v〉g = 〈σ∗ ◦ g,g−1 ◦ 1
2 Lvg〉g = 〈σ∗, 1

2 Lvg〉 .

The virtual work identity may then be written, in terms of tensor fields in the
current placement, as

〈`,v〉 =

∫
Pat(ϕ(B))

〈σ∗, 1
2 Lvg〉 µ , ∀v ∈ Conf .

Remark 3.5.1 The assumption of a symmetric Cauchy stress tensor σ∗ ∈
BL (T ∗ϕ(x)S2 ;<) and hence of a g-symmetric Cauchy stress operator T ∈
BL (Tϕ(x)S ;Tϕ(x)S) is a natural choice due to the g-symmetry of the Euler’s
operator sym∇v ∈ BL (Tϕ(x)S ;Tϕ(x)S) and not a provable theorem, in spite
of the common claim in textbooks on continuum mechanics. The choice of a
non g-symmetric Cauchy stress field T ∈ BL (Tϕ(x)S ;Tϕ(x)S) is a permissible
one but not a convenient one. Indeed the ineffective skew-symmetric part of
it would perform virtual work for the symmetric Euler’s operator and would
thus lead, through integration by parts, to a representation of the force system
which includes body couples per unit volume [199]. But still worse thing would
come, since all the nice and useful properties of the spectrum of a symmetrizable
operator would be lost. Thus, Cauchy’s choice of a symmetric stress tensor
provides the most convenient representation of a system of forces in equilibrium.

3.5.4 Boundary value problems
Boundary value problems are characterized by the following property.

• The closed linear subspace Conf ⊂ Kin of conforming kinematical fields
includes the whole linear subspace of kinematical fields with vanishing
boundary values.
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The basic tool in boundary value problems governed by a linear differential
operator Diff of order n , is Green’s formula of integration by parts:∫

Pat(ϕ(B))

〈T,Diffv〉g µ =

∫
Pat(ϕ(B))

g(AdjDiffT,v)µ

+

∫
∂Pat(ϕ(B))

g(FluxT,Valv) ∂µ ,

{ ∀v ∈ Kin ,

∀T ∈ Stress .

where AdjDiff is a differential operator of order n said to be the formal
adjoint of Diff . The boundary integral is over the duality pairing between two
fields of the type FluxT and Valv where the differential operators Flux
and Val are n-tuples of normal derivatives of order from 0 to n−1 in inverse
sequence, to that the duality pairing is the sum of n terms such that in the
k-th term the normal derivatives of thee two fields appear respectively to the
order k and n− 1− k .

In boundary value problems of continuum mechanics, it is assumed that a
loading `{b ,t} ∈ Load is associated with a patchwork Pat{b ,t}(ϕ(B)) and
is composed by a vector field b ∈ L2(ϕ(B) ;V ) of body force densities, i.e.
forces per unit volume, and a vector field t ∈ L2(∂Pat(ϕ(B)) ;V ) of boundary
tractions, i.e. forces per unit area, according to the definition:

〈`{b ,t},v〉 :=

∫
ϕ(B)

g(b,v)µ+

∫
∂Pat{b ,t}(ϕ(B))

g(t,v) ∂µ , ∀v ∈ Kin .

Then we have the following result.

Theorem 3.5.2 (Cauchy’s differential law of equilibrium) In a boundary
value problem, a stress field T in equilibrium with a load `{b ,t} , i.e. fulfilling
the virtual work identity

〈`{b ,t},v 〉 =

∫
Pat(ϕ(B))

〈T, sym∇v 〉g µ , ∀v ∈ Conf ,

has a distributional divergence DivT whose restriction to each element Elem ∈
Pat(ϕ(B)) of the patchwork is g -square integrable with −DivT = b .

Proof. In boundary value problems the test fields in the principle of virtual
work may be taken to be kinematical fields with vanishing boundary values in
each element Elem ∈ Pat{b ,t}(ϕ(B)) , so that

〈`,v〉 =

∫
Elem

g(b,v)µ =

∫
Elem

〈T, sym∇v〉g µ , ∀v ∈ Ker Val (Elem) .
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Hence, by the definition of distributional divergence DivT :∫
∂Elem

〈DivT,v〉g µ := −
∫
∂Elem

〈T, sym∇v〉g µ , ∀v ∈ Ker Val (Elem) ,

we infer that∫
Elem

〈DivT,v〉g µ :=

∫
Elem

g(b,v)µ , ∀v ∈ Ker Val (Elem) ,

that is the meaning of the piecewise equality −DivT = b . �

Stress fields whose distributional divergence DivT is piecewise representable
by a square integrable field are said to be Green regular stress fields and we
will write T ∈ Stress denoting by PatT the regularity patchwork.

The Green regularity of stress and kinematic fields ensures that all the
terms in the relevant Green’s formula are well defined, so that:∫

Pat(ϕ(B))

〈T, sym∇v〉g µ =

∫
Pat(ϕ(B))

g(−DivT,v)µ

+

∫
∂Pat(ϕ(B))

g(FluxT,Valv) ∂µ ,

{ ∀v ∈ Kin ,

∀T ∈ Stress .

where FluxT = Tn with n outward unit normal to the boundary ∂Elem ∈
∂Pat(ϕ(B)) , of a patchwork Pat finer than Patv and PatT , and Valv =
v|∂Pat(ϕ(B)) is the boundary value of the field v ∈ Kin , i.e. its restriction to
∂Pat(ϕ(B)) .

Remark 3.5.2 The partial order relation Pat1(ϕ(B)) ≺ Pat2(ϕ(B)) , to be
read: Pat2(ϕ(B)) finer than Pat1(ϕ(B)) , means that every element of the
patchwork Pat2(ϕ(B)) is included in an element of the patchwork Pat1(ϕ(B)) .
A patchwork finer then a given pair of patchworks is provided by the grid
Pat2(ϕ(B)) ∧ Pat1(ϕ(B)) of the two patchwork defined as the one whose ele-
ments are intersections of two elements of the given pair of patchworks. The set
of all patchworks is then a direct set under the order relation finer than.

Theorem 3.5.3 (Cauchy’s boundary law of equilibrium) In a boundary
value problem, let T be a stress field in equilibrium with a load `{b ,t} , i.e.
fulfilling the virtual work identity

〈`{b ,t},v 〉 =

∫
Pat(ϕ(B))

〈T, sym∇v 〉g µ , ∀v ∈ Conf ,
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and Pat∗(ϕ(B)) a patchwork finer than the grid Pat{b ,t}(ϕ(B))∧Pat(ϕ(B)) .
Then the jump

[[Tn]] := T+n+ + T−n− = T+n+ −T−n+ ,

of the flux Tn across the interfaces + and − between the element of the
patchwork Pat∗(ϕ(B)) is such that

[[Tn]] = t+ + t− + Conf⊥ ,

where the field t is extended to zero outside its domain of definition.

Proof. From the virtual work identity and Green’s formula we get

〈`{b ,t},v〉 :=

∫
ϕ(B)

g(b,v)µ+

∫
∂Pat∗(ϕ(B))

g(t,v) ∂µ

=

∫
Pat∗(ϕ(B))

g(−DivT,v)µ

+

∫
∂Pat∗(ϕ(B))

g(Tn,v) ∂µ , ∀v ∈ Conf ,

and by Cauchy’s differential law of equilibrium (Theorem 3.5.2) we infer that∫
∂Pat∗(ϕ(B))

g(t,v) ∂µ =

∫
∂Pat∗(ϕ(B))

g(Tn,v) ∂µ , ∀v ∈ Conf ,

and hence the result. �

Let us now observe that the virtual work∫
Patv(ϕ(B))

〈T, sym∇v〉g µ , v ∈ Kin ,

is well-defined for any (even nonconforming) kinematic field v ∈ Kin .
Then, by making recourse to Green’s formula, we may define the reac-

tive force system r(t,b,T) , associated with a body force field b , a boundary
traction field t and a stress field T ∈ Stress , by the relation

〈r,v〉 :=

∫
Pat(ϕ(B))

〈T, sym∇v〉g µ−
∫
Pat(ϕ(B))

g(b,v)µ−
∫
∂Pat(ϕ(B))

g(t,v)µ

=−
∫
Pat(ϕ(B))

g(div T + b,v)µ+

∫
∂Pat(ϕ(B))

g(Tn− t,v)µ , v ∈ Kin ,
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where Pat is a patchwork finer than Patv , PatT and Pat{b ,t}(ϕ(B)) .
Due to the density of the linear space C∞0 (Elem) of infinitely differentiable

field with compact support in the space L2(Elem) of square integrable vec-
tor fields on each element Elem , and being C∞0 (Elem) ⊂ Ker Val (Elem) ,
choosing v ∈ Ker Val (Elem) , we infer that div T = −b and hence that

〈r,v〉 =

∫
∂Pat(ϕ(B))

g(Tn− t,v)µ = 0 , ∀v ∈ Kin .

We underline the well-known characteristic property of linear constraints:

〈r,v〉 = 0 , ∀v ∈ Conf ⇐⇒ r ∈ Conf⊥ ,

stating that reactive force systems perform no virtual work for conforming vir-
tual displacements.

3.5.5 Referential dynamical equilibrium
In finite deformation analyses of a dynamical equilibrium problem of a continu-
ous body, the current placement of the body is an unknown of the problem. It
is then be convenient to refer the state variables to a reference placement B .

Moreover the concept of elastic behavior requires to assume an elastic po-
tential which is a function of the configuration change from a reference natural
placement of the body. These motivations require to express the equilibrium
condition in terms of fields defined in a reference placement B .

To this end, from section ?? on page ??, we recall that

• the pull-back of a twice covariant tensor β ∈ BL (Tϕ(x)S ;T ∗ϕ(x)S) from
ϕ(x) ∈ ϕ(B) to x ∈ B is given by:

g−1
x (ϕ↓β) = dϕT (g−1

ϕ(x)β) dϕ ,

• the pull-back of a twice contravariant tensor α∗ ∈ BL (T ∗ϕ(x)S ;Tϕ(x)S)

from ϕ(x) ∈ ϕ(B) to x ∈ B is given by:

(ϕ↓α∗) gx = dϕ−1(α∗gϕ(x)) dϕ
−T .

Accordingly, the pull-back of the tangent deformation tensor from the actual
placement ϕ(B) to the reference placement B is given by:

ϕ↓( 1
2Lvg) = ϕ↓(g(sym∇v)) = g(dϕT sym (∇v)dϕ) .
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The pull-back of the symmetric stress tensor σ∗(ϕ(x)) ∈ BL (T ∗ϕ(x)S ;Tϕ(x)S)

from the actual placement ϕ(B) to the reference placement B is given by:

ϕ↓σ∗= ϕ↓(Tg−1) = dϕ−1Tdϕ−Tg−1 .

To provide an expression of the virtual work in terms of operators defined in
the reference placement, we introduce:

• The Kirchhoff stress tensor k∗(ϕ(x)) ∈ BL (T ∗ϕ(x)S ;Tϕ(x)S) which is
the symmetric twice contravariant tensor defined by k∗ := Jϕ s∗ . The
mixed form K(ϕ(x)) ∈ BL (Tϕ(x)S ;Tϕ(x)S) is then given by K := JϕT .

• The Piola-Kirchhoff stress which is the symmetric twice contravariant
tensor s∗(x) ∈ BL (T ∗xS ;TxS) related to the Kirchhoff stress by the
pull-back correspondence:

s∗ := ϕ↓k∗ .

Figure 3.17: Gustav Robert Kirchhoff (1824 - 1887)

Their mixed forms S(x) ∈ BL (TxS ;TxS) and K(ϕ(x)) ∈ BL (Tϕ(x)S ;Tϕ(x)S) ,
given by S = s∗g and K = k∗g , are related by

S = ϕ↓(Kg−1)g = dϕ−1Kdϕ−T ,

and the following invariance property holds:

〈K, sym∇v〉g ◦ϕ= 〈S, dϕT sym (∇v) dϕ〉g
= 〈S, sym (dϕT∇(v ◦ϕ))〉g .
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The virtual work identity may thus be written as

〈f ,v〉=
∫
Patv(ϕ(B))

〈T, sym∇v〉g µ

=

∫
Patv(ϕ(B))

J−1
ϕ 〈K, sym∇v〉g µ

=

∫
Pat(v◦ϕ)(B)

(〈K, sym∇v〉g ◦ϕ)µ

=

∫
Pat(v◦ϕ)(B)

〈S, dϕT sym (∇v) dϕ〉µ

=

∫
Pat(v◦ϕ)(B)

〈dϕS,∇(v ◦ϕ)〉g µ ,

where Jϕ = det(dϕ) is the Jacobian deteminant of the configuration map.

Let us now assume that the divergence field div (dϕS) is piecewise square
integrable according to a regularity patchwork PatS(B) .

Then Green’s formula yields

〈f ,v〉=
∫
Pat(B)

〈dϕS,∇(v ◦ϕ)〉g µ

= −
∫
Pat(B)

〈div (dϕS),v ◦ϕ〉g µ +

∫
∂Pat(B)

〈dϕS nB,v ◦ϕ〉g (∂µ)

where Pat(B) is a patchwork finer than PatS(B)∧Pat(v◦ϕ)(B) and nB is the
outward unit normal to the elements of Pat(B) .

Green’s formula states that the system of referential forces may be repre-
sented by

• a field of body forces −div (dϕS) and

• a field of surface tractions (dϕS) nB .

Introducing the Piola stress field P := dϕS , we may state that the system
of referential forces are composed by

• a field of body forces −div P and

• a field of surface tractions P nB .
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3.6 Kinematics of continua
The peculiar geometric feature of continuous dynamical systems is that three
differentiable structures are playmates: the ambient space, a finite dimensional
riemannian manifold without boundary (S ,g) (usually the flat euclidean 3D
space) in which motions take place, the body, a finite dimensional manifold B
with boundary describing the geometrical properties of the continuous body,
and the configuration space, the infinite dimensional manifold C , describing
the kinematics of the body in the ambient space.

The configuration space is a manifold of maps which are Ck(B ;S) embed-
dings of the body manifold B into the ambient manifold (S ,g) , i.e. injective
maps ξ ∈ Ck(B ;S) such that the placements ξ(B) are submanifolds of S and
the co-restricted maps ξ ∈ C1(B ; ξ(B)) are diffeomorphisms [99].

The theory of continuous dynamical systems is a field theory and it is essen-
tial to express differential properties of the configuration space in terms of the
ones of the ambient space.

When morphisms, flows and tensor fields in the configuration space and
the ambient space are to be distinguished, a superscript (·)C will be used to
denote quantities pertaining to the former, when there are analogous quantities
pertaining to the latter. Geometrical objects in the two manifolds will be labeled
by the prefixes C- and S- respectively.

A trajectory in the configuration manifold is a piecewise smooth time-parametri-
zed path γ ∈ C1(I ;C) defined on a compact time interval I . The speed along
the trajectory is the vector field vC

γ ∈ C1(γ ;Tγ) , with τC ◦ vC
γ = idC , de-

fined by vC
γ(γt) := ∂τ=t γτ . The lifted trajectory in the velocity phase-space is

Γ ∈ C1(I ;TC) , with Γ := vC
γ ◦ γ = Tγ · 1 where 1 ∈ C1(I ;TI) is the unit

section, so that τ I ◦ 1 = id I and γ ◦ τC = τC ◦ Γ .
A virtual flow ϕC

λ ∈ C1(γ ;C) in the configuration manifold is such that its
velocity field vC

ϕ = ∂λ=0ϕ
C
λ ∈ C1(γ ;TC) is continuous at singular points of

the trajectory. The virtual velocity field along the trajectory, as a function of
time, is denoted by δvC := vC

ϕ ◦γ ∈ C1(I ;TC) . A virtual flow FlΘλ ∈ C1(I ;<)

along the time axis enters in the definition of an asynchronous flow ϕC
λ×FlΘλ ∈

C1(γ × I ;C × <) in the configuration-time manifold. Virtual time-flows are
assumed to have a null velocity Θt ∈ TtI at singular time-instants. A vanishing
velocity Θ of the virtual flow at every time t ∈ I defines a synchronous flow
ϕC
λ × id I ∈ C1(γ × I ;C× I) in the configuration-time manifold. For short, we

will set vC
t := vC

γ(γt) and δv(γCt ) := vC
ϕ(γt) = ∂λ=0ϕ

C
λ(γt) emphasizing that

δvC is a unique symbol so that δ by itself is meaningless.
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In the velocity-time state-space the lifted trajectory is ΓI ∈ C1(I ;TC× I) ,
with ΓI(t) = (Γ(t) , t) ∈ C1(I ;TC × I) . Trajectory images will be denoted
by γ := γ(I) ⊂ C , Γ := Γ(I) ⊂ TC and ΓI := Γ × I ⊂ TC × I , so that
γ = τC ◦ Γ .

3.7 Position fibration
The next result, which is plausible on an intuitive ground, is an essential tool
for the theory developed in the sequel. It is quoted by J.E. Marsden and T.J.R.
Hughes in Ref. [127], Box 4.2, property (ii) page 170. Rigorous proofs are
provided, in the context of the theory of manifolds of maps, by H.I. Eliasson
in Ref. [54], Theorem 5.2 page 186, and by R.S. Palais in Ref. [164], Theorem
13.6 page 51.

Lemma 3.7.1 (Identification) Let C := Ck(B ;S) . Then there is a natural
identification between the vectors vC

ξ ∈ TξC of the tangent space at a configu-
ration ξ ∈ Ck(B ;S) and the tangent vector fields vξ ∈ Ck(ξ(B) ;TS) on the
placement ξ(B) , with τS ◦ vξ = id ξ(B) .

For our porposes it is convenient to provide an interpretation of this result
in terms of a fibration map, which we call the position map. This map is a
suitable analytical tool for the definition of a connection in a manifold of maps,
as induced from a given connection in the codomain manifold.

Definition 3.7.1 (Position map) The position map is a surjective submer-
sion p ∈ C1(C ;S) which provides the position p(ξ) of particle p ∈ B at the
configuration ξ ∈ C1(B ;S) :

p(ξ) := ξ(p) ∈ ξ(B) .

In the configuration space of a continuous body, to any particle p ∈ B there
corresponds a fiber bundle, denoted by (C ,p ,S) , whose fiber over the position
ξ(p) ∈ S is the equivalence class of all configurations ζ ∈ C1(B ;S) mapping the
particle into that position. The surjective tangent map Tξp ∈ BL (TξC ;Tp(ξ)S)
induces a fiber-linear correspondence between tangent spaces:

vp(ξ) = Tξp · vC
ξ ,

where vC
ξ ∈ TξC and vp(ξ) ∈ Tp(ξ)S .
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Given a field of tangent vectors on a placement ξ(B) of the body, the tangent
map Tξp samples the vector tangent at the position of the particle p ∈ B .
In geometric terms this relation is expressed by saying that the vector field
v ∈ C1(S ;TS) is p-related to the vector field vC ∈ C1(C ;TC) , according to
the commutative diagram:

C vC

−−−−→ TC

p

y yTp

S v−−−−→ TS

⇐⇒ v ◦ p = Tp ◦ vC .

By uniqueness of the solution of an ODE, the p-relatedness above is equivalent
to the following commutative diagram for the respective flows:

C
Flv

C
λ−−−−→ C

p

y yp

S Flvλ−−−−→ S

⇐⇒ Flvλ ◦ p = p ◦ Flv
C

λ .

For any fixed configuration ξ ∈ C1(B ;S) , by varying p ∈ B the vector vp(ξ)

spans the vector field which, according to Lemma 3.7.1, can be identified with
the tangent vector vC

ξ ∈ TξC .

3.8 Force systems
A force acting at a configuration ξ ∈ C at time t ∈ I is a one-form ft ∈
T ∗ξC . Let us assume that the ambient space is an n-D riemannian manifold
{S ,g} with volume n-form µ induced by the metric tensor g . By Lemma
3.7.1 every virtual velocity δvC ∈ TξC can be identified with a vector field
δv ∈ C1(Ωξ ;TS) with τS ◦ δv = idΩξ and Ωξ = ξ(B) .

Then each pair of covector fields bt ∈ C1(Ωξ ;T ∗S) (body forces), with
τ ∗S ◦ bt = idΩξ , and tt ∈ C1(∂Ωξ ;T ∗S) (boundary tractions), with τ ∗S ◦ tt =
id ∂Ωξ , defines a one-form ft ∈ T ∗ξC by:

〈ft, δvC 〉 :=

∫
Ωξ

〈bt, δv〉µ+

∫
∂Ωξ

〈tt, δv〉 ∂µ ,

where δvp(ξ) = Tξp · δvC
ξ and ∂µ := µn is the volume (n − 1)-form on the

boundary ∂Ωξ , n being the outward normal.
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To formulate the law of dynamics on the tangent bundle we need to express
forces as one-forms on that bundle. Physical consistency requires that force
forms be represented by horizontal one-forms on the tangent bundle since the
virtual work at a configuration must vanish for a vanishing virtual velocity field
on the corresponding placement. Between a force one-form ft ∈ T ∗γtC and the
horizontal one-form Ft ∈ T ∗ΓtTC on the lifted trajectory in the tangent bundle
there is a linear isomorphism defined by

〈Ft(vC
t ),Y(vC

t )〉 := 〈ft(τC(vC
t )), TvC

t
τC ·Y(vC

t )〉 , ∀Y(vC
t ) ∈ TvC

t
TC .

In the velocity-time state-space forces are represented by force two-forms defined
by

F2
t (v

C
t , t) := dt ∧ Ft(v

C
t ) .

From the definition it follows that

[F2
t · (X , 1t) · (Y ,Θt)](vt, t) = (dt ∧ Ft(v

C
t )) · (X(vC

t ) , 1t) · (Y(vC
t ) ,Θt)

= Ft(v
C
t ) ·Y(vC

t )− (Ft(v
C
t ) ·X(vC

t )) Θt ,

where X(vC
t ),Y(vC

t ) ∈ TvC
t
TC and Θt ∈ TtI . For synchronous virtual veloci-

ties Θt = 0 we get:

[F2
t · (X , 1t) · (Y , 0)](vC

t , t) = Ft(v
C
t ) ·Y(vC

t ) .

Impulsive forces at singular points γt ∈ γ are described by one-forms αt(γt) ∈
T ∗γtC . The virtual work performed for any virtual velocity is well-defined by the
assumed continuity of virtual velocity fields at singular points of the trajectory.
The lifted trajectory Γ : I → TC in the tangent bundle is discontinuous at
singular points of the base trajectory γ : I → C since there the velocity field
suffers a jump, say from v− to v+ .

Definition 3.8.1 (Virtual velocity field on the tangent bundle) A virtual
velocity of the trajectory Γ ⊂ TC is a vector field Y ∈ C1(Γ ;TTC) which
projects to a vector field vϕ ∈ C1(γ ;TC) with γ = τC ◦ Γ , i.e.

TτC ◦Y = vϕ ◦ τC .

A well-posed definition of impulsive forces on the lifted trajectory Γ : I → TC
is based on the following property.
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Lemma 3.8.1 A virtual velocity field Y ∈ C1(Γ ;TC) is such that, in corre-
spondence to jumps from v− to v+ of the velocity field of the projected trajec-
tory γ = τC ◦Γ , the virtual velocities Y− ∈ Tv−TC and Y+ ∈ Tv+TC project
to the same horizontal part:

Tv−τC ·Y− = Tv+τC ·Y+ .

Proof. Since Y ∈ C1(Γ ;TTC) projects to a vector field vϕ ∈ C1(γ ;TC) we
have that

Tv−τC ·Y−= vϕ(τC(v−))

Tv+τC ·Y+ = vϕ(τC(v+)) .

The result follows from the equality vϕ(τC(v−)) = vϕ(τC(v+)) , due to the
continuity of vϕ ∈ C1(γ ;TC) at τC(v−) = τC(v+) ∈ C . �

From Lemma 3.8.1 we infer that impulsive forces at discontinuity points of
the lifted trajectory Γ : I → TC are horizontal one-forms α1

sing(v− ,v+) ∈
(Tv−TC× Tv+TC)∗ well-defined by:

α1
sing(v− ,v+)·(Y− ,Y+) = 〈αt(τC(v−)), Tv−τC·Y− 〉 = 〈αt(τC(v+)), Tv+τC·Y+ 〉 .

For brevity, we will set α1
sing(vC

t ) · Y(vC
t ) := α1

sing(v− ,v+) · (Y− ,Y+) at
singular time-instants t ∈ I .

Remark 3.8.1 The definition of a force acting on a mechanical system given
above is classical and differs from the one recently given in in Refs. [162, 239],
where force fields are considered as fiber preserving maps ft ∈ C1(TC ;T ∗C) .
Classically, a force acting on a mechanical system at a configuration ξ ∈ C
is an element of the cotangent space T ∗ξC . The virtual power performed for a
virtual velocity δv(γCt ) ∈ TξC is the scalar 〈ft, δv 〉(γCt ) ∈ < . The force acting
on a body at a given configuration may depend on relative velocity fields between
the body and its sorroundings but, in general, is not related to the velocity field
of the body (with respect to some reference frame). The dependence of a force
on parameters, such as relative velocity, friction coefficients, electric charges,
electromagnetic fields etc., is to be modeled as a constitutive property, for in-
stance a multivalued maximal monotone relation between dual fields of forces
and velocities. Moreover a dependence of force on body’s velocity would violate
Galilei’s principle of relativity.
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3.9 The law of dynamics
In the geometric action principle of dynamics the state-space is either the
velocity-time bundle TC×I or the covelocity-time bundle T ∗C×I , respectively
in the Lagrangian and the Hamiltonian description. The Liouville one-form
on the cotangent bundle θ ∈ T ∗v∗T ∗C whose variational definition is:

〈θ(v∗),Y(v∗)〉 = 〈v∗, Tv∗τ
∗
C ·Y(v∗)〉 , ∀Y(v∗) ∈ Tv∗T

∗C .

The exterior derivative dθ(v∗) is a weakly non-degenerate [3] two-form on T ∗C :

〈dθ ·X,Y 〉(v∗) = 0 , ∀Y(v∗) ∈ Tv∗T
∗C =⇒ X(v∗) = 0 .

The counterpart in the tangent bundle is the Poincaré-Cartan one-form
θLC

t
(vC) ∈ T ∗vCTC , defined by means of the Legendre transform as:

〈θLC
t
,Y 〉(vC) = 〈dfLC

t (vC), TτC ·Y(vC)〉 , ∀Y(vC) ∈ TvCTC .

The hamiltonian action one-form is given by

ω1(v∗, t) := θ(v∗)−HC
t (v∗) dt ∈ T ∗(v∗ ,t)(T ∗C× I) ,

where dt ∈ C1(TI ;TI) is the differential of the identity on I and the Hamil-
tonian HC

t ∈ C2(T ∗C ;<) is Legendre conjugate to the lagrangian functional
LC
t ∈ C2(TC ;<) . In the lagrangian description the action one-form is given by:

ω1
L(vC, t) := θLC

t
(vC)− EC

t (vC) dt ∈ T ∗(vC ,t)(TC× I) ,

where EC
t (vC) := HC

t (dfL
C
t (vC)) is the energy functional.

Let us now state the geometric action principle. The proper definition of
test vector fields for continuous systems is delayed until the next section. We
set: 〈α1

sing, (Y , 0)〉(vC
t , t) := 〈α1

sing,Y 〉(vC
t ) .

Proposition 3.9.1 (Geometric action principle) The lifted trajectory ΓI ⊂
TC×I in the velocity-time state-space, fulfils the asynchronous action principle:

∂λ=0

∫
(FlYλ ×FlΘλ )(ΓI)

ω1
L =

∮
∂ΓI

ω1
L · (Y ,Θ)−

∫
ΓI

F2
t · (Y ,Θ)−

∫
sing(ΓI)

α1
sing · (Y , 0) ,

for any virtual velocity field Y ∈ C1(Γ ;TTC) projecting to a velocity field
vC
ϕ ∈ C1(γ ;TC) which is a test field at γ and any time-velocity Θ ∈ C1(I ;TI)
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vanishing at singular time-instants. Setting (X(vC
t ) , 1t) = ∂τ=t ΓI(τ) , the vari-

ational condition above is equivalent, along the lifted trajectory, to the differen-
tial condition

[(dω1
L − F2

t ) · (X , 1) · (Y ,Θ)]((vC
t , t)) = 0 ⇐⇒

[dω1
L · (X , 1) · (Y ,Θ)]((vC

t , t)) = Ft(v
C
t ) ·Y(vC

t )− (Ft(v
C
t ) ·X(vC

t )) Θt

and, at the singularities sing(Γ) , to the jump condition

[[ω1
L(vC

t ) · (Y(vC
t ) , 0)]] = (α1

sing ·Y)(vC
t ) .

The differential condition in the geometric action principle 3.9.1 is equivalent
to the pair of equations: (dθLC

t
·X ·Y)(vC

t ) = 〈Ft − dEt,Y 〉(vC
t ) ,

(dEt ·X)(vC
t ) = (Ft ·X)(vC

t ) .

The latter equation, which is due to variations with a nonvanishing time-velocity
Θ ∈ C1(I ;TI) (asynchronous variations), states conservation of energy and is
a consequence of the former equation by setting Y = X . It follows that the
geometric action principle 3.9.1 may be equivalently formulated by considering
synchronous variations of the trajectory. The former equation is an expression
of the geometric Hamilton’s equation. To see this, let ϕC

λ ∈ C1(γ ;C) be the
projection of the flow FlYλ ∈ C1(TγC ;TC) according to the relation TτC ◦
FlYλ = ϕC

λ ◦ τC and let TϕC
λ ∈ C1(TγC ;TC) be the lifted flow. Then the

vector fields vC
Tϕ = ∂λ=0 Tϕ

C
λ ∈ C1(TγC ;TTC) and Y ∈ C1(TγC ;TTC) have

the same horizontal part. Hence Y = vC
Tϕ + V , with V ∈ C1(TγC ;TTC)

a vertical vector field. The condition (dθLC
t
·X ·V)(vC

t ) + 〈dEt,V〉(vC
t ) = 0

for all vertical vectors V(vC
t ) ∈ TvC

t
TτC(vC

t )C may be shown to be equivalent
to require that TvC

t
τC · X(vC

t ) = vC
t , which means that X(vC

t ) = v̇C
t . The

equation then writes:

dθLC
t
(vC
t ) · v̇C

t · vC
Tϕ(vC

t ) = 〈ft,vC
ϕ 〉(τC(vC

t ))− 〈dEt,vC
Tϕ 〉(vC

t ) .

If the trajectory is assumed to be the lifted of a path in the configuration
manifold, according to the relation Γ = vC ◦ γ , synchronous variations may
be performed by the lifted virtual flows Tϕλ ∈ C1(TγC ;TC) . On the paths
drifted by the flow, the lagrangian functional is computed by evaluating the
velocity of a synchronously varied trajectory which is equal to the push of the
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velocity of the trajectory. Indeed, recalling that vC
t = vC(γt) := ∂τ=t γτ , by

the chain rule we have:

∂τ=tϕ
C
λ(γτ ) = (TϕC

λ ◦ vC)(γt) .

Moreover, a direct computation gives:

ω1
L(TϕC

λ(vC
t ), t) · (TϕC

λ↑v̇C
t , 1t) = LC

t (TϕC
λ(vC

t )) ,

ω1
L(vC

t , t) · (vC
Tϕ(vC

t ) , 0) = 〈dfLC
t (vC

t ),vC
ϕ 〉 ,

and hence we infer that:∫
(TϕC

λ×Fl0λ)(ΓI)

ω1
L =

∫
I

LC
t ◦ TϕC

λ ◦ vC
γ ◦ γ dt ,∮

∂ΓI

ω1
L(vC

t ) · (vC
Tϕ(vC

t ) , 0) =

∮
∂I

〈dfLC
t (vC

t ), δv(γCt )〉 ,∫
ΓI

F2
t · (vC

Tϕ , 0) =

∫
I

〈ft,vC
ϕ 〉 ◦ γ dt ,∫

sing(ΓI)

〈α1
sing, (v

C
Tϕ , 0)〉(vC

t ) =

∫
sing(I)

〈αt,vC
ϕ 〉 ◦ γt .

The geometric action principle 3.9.1 can then be expressed (in a non-geometric
form) in terms of the time-parametrized trajectory γ ∈ C1(I ;C) , as follows.

Theorem 3.9.1 (Action principle and law of dynamics) The trajectory of
a continuous dynamical system in the configuration manifold is a piecewise
smooth path γ ∈ C1(T (I) ;C) fulfilling the extremality principle:∮

∂I

〈dfLC
t (vC

t ), δv(γCt )〉 − ∂λ=0

∫
I

LC
t ◦ TϕC

λ ◦ vC ◦ γ dt

=

∫
I

〈ft,vC
ϕ 〉 ◦ γ dt+

∫
sing(I)

〈αt,vC
ϕ 〉 ◦ γ .

This non-geometric form of the action principle is equivalent to the differential
condition

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 − ∂λ=0 L
C
t (TϕC

λ(vC
t )) = 〈ft(γt), δv(γCt )〉 ,

and to the jump conditions

〈 [[dfLC
t (vC

t )]], δv(γCt )〉 = 〈αt(γt), δv(γCt )〉 ,
for any virtual flow ϕC

λ ∈ C1(γ ;C) with velocity δv(γCt ) = vC
ϕ(γt) ∈ testγtC .
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Proof. A standard localization procedure yields the result. �

The differential condition in Theorem 3.9.1 may be written in alternative
forms by observing that the time derivative in the differential condition splits
into:

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 = 〈∂τ=t dfL
C
τ (vC

t ), δv(γCt )〉+LvC
t
〈dfLC

t ◦vC
t , δv(γCt )〉 ,

and that, being vC
Tϕ = ∂λ=0 Tϕ

C
λ = k ◦ TvC

ϕ = k ◦ T∂λ=0ϕ
C
λ , with k ∈

C1(TTC ;TTC) the canonical flip [99, ?], we have the equalities:

∂λ=0 L
C
t (TϕC

λ(vC
t )) = 〈TLt ◦ vt, ∂λ=0 Tϕ

C
λ ◦ vC

t 〉 = 〈TLC
t ◦ vC

t ,v
C
Tϕ ◦ vC

t 〉

= 〈TLC
t ◦ vC

t ,k ◦ TδvC ◦ vC
t 〉 .

From the equality ∂λ=0 L
C
t (TϕC

λ(vC
t )) = 〈TLC

t ◦vC
t ,k◦TδvC◦vC

t 〉 we infer that
this term depends on the flow only through the restriction δvC = ∂λ=0ϕ

C
λ ◦ γ

of the virtual velocity field to the trajectory γ , as it should be since also the
other two terms in the differential law enjoy the same property. In fact the term
expressing the virtual power of forces depends only on the virtual velocity at
time t .

3.10 The law of dynamics in terms of a connec-
tion

Our first goal is a generalized version of Lagrange’s law of dynamics which
proves that, at each point of the trajectory in the configuration manifold, the
law of dynamics is tensorial and is expressed by the vanishing of a linear form
on the linear subspace of test vectors. The proof of this tensoriality result,
which is basic for the foundation of continuum dynamics, is provided in Theorem
3.10.1 and requires a linear connection to be fixed in the configuration manifold.
Later, in section 3.11, we show that a connection is naturally induced in the
configuration manifold by a given connection in the ambient manifold.

As a preliminary result we provide a split formula generalizing the usual
partial differentiation formula valid in linear spaces adopted e.g. in Refs. [151,
127, 165]. This decomposition was provided hereabove in Chapter 1 and later
and independently introduced for vector bundles in Ref. [?] where the base
derivative is called the parallel derivative and the fiber-covariant derivative is
called the fiber derivative.
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Lemma 3.10.1 (A split formula) Let N be a manifold, p ∈ C1(E ; M) a
fiber bundle with a connection ∇ and f ∈ C1(E ;N) a morphism. Then, for any
section s ∈ C1(M ;E) of the fiber bundle, the map tangent to the composition
f ◦ s ∈ C1(M ;N) may be uniquely split as sum of the fiber-covariant derivative
and the base derivative:

T (f ◦ s) = T f ◦ T s = dff(s) · ∇s + dbf(s) .

Proof. Denoting by Flvλ⇑ = FlHv

λ ∈ C1(E ;E) the parallel transport along the
flow associated with a vector field v ∈ C1(M ;TM) , by the definitions and the
chain rule we have that:

dff(sx) · ∇vxs = Txf · PV · Tvxs = Txf · ∇vxs

= Txf · ∂λ=0 Flvλ⇓ sFlvλ(x) = ∂λ=0 f(Flvλ⇓ sFlvλ(x)) ,

dbf(sx) · vx = Txf · PH · Tvxs = Txf ·Hvxs

= Txf · ∂λ=0 Flvλ⇑ sx = ∂λ=0 f(Flvλ⇑ sx) ,

so that Tx(f ◦ s) · vx = dffsx · ∇vxs + dbfsx · vx . �

Let Ωt = γt(B) be the placement of the body at time t ∈ I along the
trajectory γ ∈ C1(I ;C) . The displacement along the trajectory is described by
the diffeomorphism γτ,t := γτ ◦ γt−1 ∈ C1(Ωt ; Ωτ ) .

Theorem 3.10.1 (Generalized Lagrange’s law of motion) Let ∇C be a
linear connection in the configuration manifold C with parallel transport ⇑
and torsion torsC . The law of motion is then expressed by:

〈∂τ=t dfL
C
τ (vC

t ), δv(γCt )〉+〈∇C
vC
t
dfL

C
t (vC

γ), δv(γCt )〉 − 〈dbLC
t (vC

t ), δv(γCt )〉

+〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉 = 〈ft(γt), δv(γCt )〉 ,

or, in terms of parallel transport:

∂τ=t 〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉− 〈dbLC
t (vC

t ), δv(γCt )〉

+〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉 = 〈ft(γt), δv(γCt )〉 .

for any virtual velocity δv(γCt ) ∈ testγtC .
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Proof. The differential law of motion writes:

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 − ∂λ=0 L
C
t (TϕC

λ(vC
t )) = 〈ft(γt), δv(γCt )〉 ,

Recalling that δv(γCt ) := vC
ϕ(γt) , the Leibniz rule for the time-derivative gives:

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 = 〈∂τ=t dfL
C
τ (vC

t ), δv(γCt )〉+∇vC
t
〈dfLC

t (vC
γ),vC

ϕ 〉 ,

and, by Leibniz rule for the covariant derivative:

∇C
vC
t
〈dfLC

t (vC
γ),vC

ϕ 〉 = 〈∇C
vC
t
dfL

C
t (vC

γ), δv(γCt )〉+ 〈dfLC
t (vC

t ),∇C
vC
t
vC
ϕ 〉 .

On the other hand, defining the vector field FϕC(vC
t ) ∈ C1(C ;TC) as the

extension of the trajectory velocity by push along the virtual flow:

(FϕC(vC
t ) ◦ϕC

λ)(γt) = (ϕC
λ↑vC

t ◦ϕC
λ)(γt) = TϕC

λ(vC
t ) ,

the second term at the l.h.s. of the law of motion writes:

∂λ=0 L
C
t (TϕC

λ(vC
t )) = ∂λ=0 (LC

t ◦ FϕC(vC
t ) ◦ϕC

λ)(γt)

= 〈T (LC
t ◦ FϕC(vC

t )), δv(γCt )〉 ,

and the split formula of Lemma 3.10.1 yields:

〈T (LC
t ◦ FϕC(vC

t )), δv(γCt )〉= 〈dfLC
t (vC

t ),∇C
δv(γC

t )FϕC(vC
t )〉+ 〈dbLC

t (vC
t ), δv(γCt )〉 .

The l.h.s. of the law of motion of Theorem 3.9.1 may then be written as

∂τ=t 〈dfLC
τ ◦ vC

τ , δv(γCτ )〉 − ∂λ=0 L
C
t (TϕC

λ(vC
t ))

= 〈∂τ=t dfL
C
τ (vC

t ), δv(γCt )〉+ 〈∇C
vC
t
dfL

C
t (vC

γ), δv(γCt )〉 − 〈dbLC
t (vC

t ), δv(γCt )〉

+〈dfLC
t (vC

t ),∇C
vC
t
δvC −∇C

δv(γC
t )FϕC(vC

t )〉 ,

Let us then consider a virtual flow ϕC
λ ∈ C1(γ ;C) and its velocity field vC

ϕ ◦
ϕC
λ := ∂µ=λϕ

C
µ . Then the Lie bracket [FϕC(vC

t ) ,vC
ϕ] vanishes since

−[FϕC(vC
t ) ,vC

ϕ] = [vC
ϕ ,FϕC(vC

t )] = LvC
ϕ
FϕC(vC

t ) = ∂λ=0ϕ
C
λ↓FϕC(vC

t )

= ∂λ=0ϕ
C
λ↓ϕC

λ↑vC
t = ∂λ=0 vC

t = 0 .
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Hence, by the tensoriality of the torsion of a connection, we have that:

torsC(vC
t , δv(γCt )) :=∇C

vC
t
δvC −∇C

δv(γCt )FϕC(vC
t )− [FϕC(vC

t ) ,vC
ϕ]

=∇C
vC
t
δvC −∇C

δv(γCt )FϕC(vC
t ) .

Substituting we get the first result. Then, by expressing the covariant derivative
in terms of parallel transport:

〈∇C
vC
t
dfL

C
t (vC

γ), δv(γCt )〉= ∂τ=t 〈γτ,t⇓ dfLC
t (vC

τ ), δv(γCt )〉

= ∂τ=t 〈dfLC
t (vC

τ ), γτ,t⇑ δv(γCt )〉 ,

and applying the Leibniz rule to write:

〈∂τ=t dfL
C
τ (vC

t ), δv(γCt )〉+ ∂τ=t 〈dfLC
t (vC

τ ), γτ,t⇑ δv(γCt )〉

= ∂τ=t 〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉 ,

the second formula follows. �

3.11 Induced connection
There is a natural way of endowing the configuration space C , an infinite di-
mensional manifold of maps, with a connection induced by a given one in the
finite dimensional ambient space S , to which the codomains of the configuration
embeddings belong.

Lemma 3.11.1 (Induced connection) To any connection in ambient space
S there corresponds a connection in the configuration space C .

Proof. The correspondence in the statement is best described in terms of
parallel transport of a tangent vector along a C-curve γ ∈ C1(I ;C) from a
configuration γt0 to another γt1 . By Lemma 3.7.1 a vector vC

t0 ∈ Tγt0C is a
vector field vC

t0 ∈ C1(γt0(B) ;TS) with τS◦vC
t0 = id γt0 (B) . A pointwise parallel

transport of each vector vC
t0(x) , with x ∈ γt0(B) , along the S-curve γ(x) ∈

C1(I ;S) in the ambient manifold yields a vector field vC
t1 ∈ C1(γt1(B) ;TS) ,

with τS ◦ vC
t1 = id γt1 (B) . This is the vector vC

t1 ∈ Tγt1C result of the parallel
transport along the C-curve γ ∈ C1(I ;C) . �
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The construction in Lemma 3.11.1 is equivalently described by the following
statement. If the vector fields u,v ∈ C1(S ;TS) are p-related to the vector
fields uC,vC ∈ C1(C ;TC) , then the parallel transport Flvλ⇑u is p-related to
the parallel transport Flv

C

λ ⇑uC , according to the commutative diagram:

C
Flv

C
λ ⇑uC

−−−−−−→ TC

p

y yTp

S Flvλ⇑u−−−−→ TS

⇐⇒ Flvλ⇑u ◦ p = Tp ◦ Flv
C

λ ⇑uC .

Lemma 3.11.2 (Induced covariant derivative) Let ∇ be the covariant deriva-
tive associated with the connection in the ambient manifold S and ∇C be the
covariant derivative according to the induced connection in the configuration
manifold C . Then the covariant derivatives of p-related vector fields are p-
related:

C
∇C

vC uC

−−−−−→ TC

p

y yTp

S ∇vu−−−−→ TS

⇐⇒ ∇vu ◦ p = Tp ◦ ∇C
vC uC .

Proof. By the properties of the displacement map exposed in section 3.7 and
in the post scriptum of Lemma 3.11.1, we have that:

Tp ◦ Flv
C

λ ⇓uC ◦ Flv
C

λ = Flvλ⇓u ◦ p ◦ Flv
C

λ

= Flvλ⇓u ◦ Flvλ ◦ p .

Tp · ∇C
vC uC = Tp ◦ ∂λ=0 ◦ Flv

C

λ ⇓uC ◦ Flv
C

λ

= ∂λ=0 ◦ Tp ◦ Flv
C

λ ⇓uC ◦ Flv
C

λ

= ∂λ=0 Flvλ⇓u ◦ Flvλ ◦ p

= ∇vu ◦ p .

The commutation property Tp ◦ ∂λ=0 = ∂λ=0 ◦ Tp holds by linearity of the
tangent map Tξp ∈ BL (TξC ;Tp(ξ)S) since the curve λ→ (Flv

C

λ ⇓uC◦Flv
C

λ )(ξ)
evolves in the linear space TξC and its image through Tξp is a curve in the
linear space Tp(ξ)S . �
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Lemma 3.11.3 (Lie brackets) The Lie brackets of p-related vector fields are
p-related:

C [vC ,uC]−−−−−→ TC

p

y yTp

S [v ,u]−−−−→ TS

⇐⇒ [v ,u] ◦ p = Tp ◦ [vC ,uC] .

Proof. This is a basic property of Lie brackets [35, 3]. �

The next result, based on the tensoriality property of the torsion, will be
resorted to as an essential ingredient in the proof of Theorem 3.17.2.

Lemma 3.11.4 (Torsion of the induced connection) Let tors be the tor-
sion of a linear connection in the ambient manifold S and torsC the torsion
of the induced connection in the configuration manifold C . Then

Tξp · torsC(vC
ξ ,u

C
ξ ) = tors(vp(ξ),up(ξ)) .

Proof. By tensoriality, to evaluate the torsion of the connection ∇C on any
pair of C-vectors vC

ξ ,u
C
ξ ∈ TξC , we may perform an extension of these vectors

to vector fields uC,vC ∈ C1(C ;TC) . Then, from Lemmata 3.11.2 and 3.11.3,
we infer that Tp◦ (∇C

vCu
C−∇C

uCv
C− [vC ,uC]) = (∇vu−∇uv− [v ,u])◦p and

hence that the torsion vector fields, of p-related vector fields, are p-related:

C torsC(vC,uC)−−−−−−−−→ TC

p

y yTp

S tors(v,u)−−−−−−→ TS

⇐⇒ Tp ◦ torsC(vC,uC) = tors(v,u) ◦ p .

By tensoriality of the torsion, we have that

torsC(vC,uC)(ξ) = torsC(vC
ξ ,u

C
ξ ) ,

tors(v,u) ◦ p(ξ) = tors(vp(ξ),up(ξ)) .

Hence, by evaluating both members of the relatedness equality at a configuration
ξ ∈ C , we get the result. �
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3.12 The law of motion in the ambient manifold
Let us consider an ambient riemannian manifold {S ,g} with volume form µ
induced by the metric tensor g and a mass form mt = ρt µ related to the
scalar density ρt ∈ C1(Ωt ;<) .

In continuum dynamics, the lagrangian per unit mass at the placement Ωt :=
γt(B) is a function Lt ∈ C2(TΩt

S ;<) . The corresponding lagrangian on the
tangent bundle to the configuration manifold LC

t ∈ C2(TC ;<) is defined by
the integral:

(LC
t ◦ vC

γ)(γt) :=

∫
Ωt

(Lt ◦ vt) mt ,

where vt(p(γt)) = Tγtp · vC
γ(γt) . By Lemma 3.7.1 the tangent vector field

vt ∈ C1(Ωt(B) ;TS) , spanned by vt(p(γt)) when p ranges over B , is identified
with the tangent vector vC

γ(γt) ∈ TγtC .

3.12.1 Virtual velocity fields
A proper formulation of the law of motion for a continuous body, in an ambi-
ent finite dimensional riemannian manifold (S ,g) , needs a sufficiently general
definition of the linear space of spatial virtual velocity fields on the placement
Ωt := γt(B) at time t ∈ I along the trajectory in the ambient manifold. To this
end, let us give the following definitions. A patchwork Pat(Ωt) is a finite family
of open connected, non-overlapping subsets of Ωt , called elements, such that
the union of their closures is a covering for Ωt . The set of all patchworks of Ωt

is a directed set for the relation finer than and the coarsest patchwork finer than
two given ones Pat1(Ωt) and Pat2(Ωt) is the grid Pat1(Ωt)∧Pat2(Ωt) . The
kinematic space Kin(Ωt) is made up of vector fields vt ∈ C1(Ωt ;TΩtS) which
are square integrable with a distributional gradient which is square integrable
in the elements of a patchwork Patvt(Ωt) . This space is pre-Hilbert with the
positive definite symmetric bilinear form:∫

Pat(vt,wt)
(Ωt)

(g(vt,wt) + 〈∇vt,∇wt 〉g)µ ,

where Pat(vt,wt)(Ωt) = Patvt(Ωt)∧Patwt
(Ωt) and 〈·, ·〉g is the inner product

between tensors induced by the metric g . A continuous body at Ωt is defined
by a fixed patchwork Pat(Ωt) and by a closed linear subspace of conforming
virtual displacements Conf(Ωt) ⊂ Kin(Ωt) such that all of its vector fields
have Pat(Ωt) as a regularity patchwork. Then Conf(Ωt) is a Hilbert space

437



The law of motion in the ambient manifold Giovanni Romano

for the topology induced by Kin(Ωt) . Since Conf(Ωt) is a linear space, this
definition includes any linear or affine kinematical constraint.

Non-linear constraints must instead be modeled by suitable constitutive laws
described by fiberwise monotone maximal graphs in the Whitney bundle whose
fiber is the product of tangent vector and covector spaces based at the same
point. In the tangent bundle τS ∈ C1(TS ;S) , the subbundle of infinitesimal
isometries (or rigid body velocities) at the placement Ωt is denoted by rig(Ωt) .
These are vector fields δv(γt) ∈ C1(Ωt ;TΩt

S) characterized by the condition
Lδv(γt)g = 0 .

The property of the Lie derivative: L[u ,v] = [Lu ,Lv] for any pair of tan-
gent vector fields u,v ∈ C1(S ;TS) , ensures that the subbundle rig(Ωt) is
involutive, i.e. that Lug = Lvg = 0 =⇒ L[u ,v]g = 0 , and hence integrable by
Frobenius theorem, see e.g. in Refs. [3, 99].

This property is at the basis of classical analytical dynamics which considers
dynamical trajectories evolving in a leaf of the foliation induced by the rigidity
condition on the velocity fields.

The next Lemma provides an extension, to ambient riemannian manifolds
with arbitrary connection, of Euler’s classical formula for the stretching 1

2 (Lv g) .
By the natural identification BL (TxS ;T ∗xS) = BL (TxS, TxS ;<) , the metric
tensor g(x) ∈ BL (TxS, TxS ;<) is an isomorphism with inverse g−1(x) ∈
BL (T ∗xS ;TxS) .

Lemma 3.12.1 Let {S ,g} be a riemannian manifold, ∇ a connection in S
with torsion tors ∈ Λ2(S ;TS) and Tors(v) the field of linear operators
defined by:

Tors(v) · u = tors(v,u) , ∀v,u ∈ C1(S ;TS) .

Then, for any vector field v ∈ C1(S ;TS) :

1
2 (Lv g) = g ◦ (sym∇v) + 1

2 (∇v g) + g ◦ (sym Tors(v)) .

If ∇ is Levi-Civita, i.e. metric ∇g = 0 and torsion-free Tors = 0, Euler’s
formula for the stretching is recovered: 1

2 (Lv g) = g ◦ (sym∇v) .

Proof. Applying the Leibniz rule to the Lie derivative and to the covariant
derivative, we have that, for any vector fields v,u,w ∈ C1(S ;TS) :

(Lv g)(u,w) = Lv (g(u,w))− g(Lvu,w)− g(u,Lvw) ,

(∇v g)(u,w) = ∇v (g(u,w))− g(∇vu,w)− g(u,∇vw) .
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Since the Lie derivative and the covariant derivative of a scalar field coincide,
we also have that Lv (g(u,w)) = ∇v (g(u,w)) and hence:

(Lv g)(u,w) = (∇v g)(u,w) +g(∇vu,w) + g(u,∇vw)

−g(Lvu,w)− g(u,Lvw) .

Moreover, since tors(v,u) := (∇vu−∇uv)− [v,u] we may write

(Lv g)(u,w) = (∇v g)(u,w) + g(tors(v,u),w) + g(∇uv,w)

+ g(tors(v,w),u) + g(∇wv,u) ,

which gives the result. �

3.12.2 Law of motion
The virtual flow ϕλ,t ∈ C1(Ωt ;S) , dragging a placement Ωt in the ambient
space, is p -related to the virtual flow ϕC

λ,t ∈ C1(γt ;C) of the configuration
γt ∈ C according to the equality ϕλ,t(γt(p)) = p(ϕC

λ(γt)) .
The virtual velocity δv(γt) := ∂λ=0ϕλ,t ∈ C1(Ωt ;TΩtS) at the placement

Ωt is assumed to fulfil the following condition.

Ansatz 3.12.1 (Virtual mass-conservation) Virtual flows drag the mass-
form, i.e. along virtual flows the mass of any sub-body is preserved:

Lδv(γt)mt = 0 ⇐⇒ ∂λ=0

∫
ϕλ,t(P)

mt = 0 , ∀P ⊆ Ωt .

This assumption amounts in defining a proper way of extending the mass-form to
placements of the body outside the trajectory and mimics the one tacitly made in
analytical mechanics in assuming that the material particles retain their mass-
measure along the variations. Setting Tors(v) · u = tors(v,u) , ∀v,u ∈
C1(M ;TM) it is:

Lδv(γt)mt = ∇δv(γt) mt + tr(∇δv(γt) + Tors(δv)(γt)) mt ,

so that virtual conservation of mass involves only the virtual velocity at the
actual placement.
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Theorem 3.12.1 (Law of motion in the ambient manifold) The law of mo-
tion of a continuous dynamical system in the ambient riemannian manifold
{S ,g} is expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ ◦ vτ , δv(γτ )〉mτ − ∂λ=0

∫
ϕλ,t(Ωt)

(Lt ◦ϕλ,t↑vt) mt

=

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ ,

for any virtual flow ϕλ,t ∈ C1(Ωt ;S) at time t ∈ I such that the virtual
velocity field δv(γt) = ∂λ=0ϕλ,t is conforming and isometric, i.e. δv(γt) ∈
Conf(Ωt) ∩ rig(Ωt) .

Proof. According to Theorem 3.9.1, the law of motion in the configuration
manifold is expressed by the variational condition:

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 − ∂λ=0 L
C
t (TϕC

λ(vC
t )) = 〈ft(γt), δv(γCt )〉 .

Setting vp(γt) = Tγtp · vC
γt and δvp(γt) = Tγtp · δvC

γt we have:

〈dfLC
τ (vC

τ ), δv(γCτ )〉=
∫
γτ,t(Ωt)

〈dfLτ ◦ vτ , δv(γτ )〉mτ .

On the other hand:

LC
t (TϕC

λ(vC
t )) = (LC

t ◦ϕC
λ↑vC

t ◦ϕC
λ)(γt) =

∫
ϕλ,t(Ωt)

(Lt ◦ϕλ,t↑vt) mt .

Substituting, we get the result. �

Each one of the two terms at the l.h.s. of the law of motion in Theorem 3.17.1
depends on the choice of the family of virtual flows ϕλ,τ ∈ C1(Ωτ ;TS) with
index τ ∈ I . However, Theorem 3.17.2 proves that the sum of the two terms
at time t ∈ I depends (linearly) only on the virtual velocity at that time, thus
defining a bounded linear functional Fun ∈ Conf∗(Ωt) . This result, which
generalizes Euler’s law of motion, makes an essential recourse to the notion of a
connection in the ambient manifold and of the induced connection in the infinite
dimensional configuration manifold.
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Theorem 3.12.2 (Generalized Euler’s law of motion) Let ∇ be a con-
nection in the ambient manifold S with parallel transport ⇑ and torsion tors .
The law of motion is then expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ −
∫

Ωt

〈dbLt(vt), δv(γt)〉mt

+

∫
Ωt

〈dfLt(vt),tors(vt, δv(γt))〉mt =

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. By Theorem 3.10.1, the l.h.s. of the Lagrange law of motion in the
configuration manifold, according to the connection ∇C there induced by the
connection ∇ in the ambient manifold, writes:

∂τ=t 〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉− 〈dbLC
t (vC

t ), δv(γCt )〉

+〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉 .

Translating in terms of fields in the ambient manifold, by Lemmata 3.11.1 and
3.11.4 we have:

〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉=
∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ ,

〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉=

∫
Ωt

〈dfLt(vt),tors(vt, δv(γt))〉mt ,

〈dbLC
t (vC

t ), δv(γCt )〉= ∂λ=0 L
C
t (ϕC

λ⇑vC
t )

= ∂λ=0

∫
ϕλ,t(Ωt)

Lt(ϕλ,t⇑vt) mt

=

∫
Ωt

∂λ=0ϕλ,t↓[Lt(ϕλ,t⇑vt) mt]

=

∫
Ωt

〈dbLt(vt), δv(γt)〉mt +

∫
Ωt

Lt(vt)Lδv(γt)mt ,

with the last equality inferred by Leibniz rule. Setting Lδv(γt)mt = 0 we get
the result. �
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The next theorem shows that the class of virtual velocities considered in
Theorem 3.17.2 may be enlarged by eliminating the rigidity condition through

the introduction of Lagrange’s multipliers dual to the stretching. The proof
is based on the property that the image, by the differential operator sym∇ , of
any closed subspace of the Hilbert space Conf(Ωt) is a closed subspace of
Sqit(Ωt) , the Hilbert space of square integrable tensor fields on Ωt . In turn
this property is inferred from Korn’s second inequality [69, 51, 195, 201].

Theorem 3.12.3 (Law of motion in terms of a stress field) There exists
at least a square integrable twice contravariant stress tensor field σt ∈ Sqit(Ωt)
such that the law of motion of a continuous dynamical system in the ambient
riemannian manifold {S ,g} is equivalent to the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), δv(γτ )〉mτ − ∂λ=0

∫
ϕλ,t(Ωt)

(Lt ◦ϕλ,t↑vt) mt

=

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ−
∫

Ωt

〈σt,Lδv(γt)g 〉µ ,

for any virtual flow ϕλ,t ∈ C1(Ωt ;S) at time t ∈ I whose virtual velocity field
is conforming, i.e. δv(γt) ∈ Conf(Ωt) .

Proof. The duality between the twice covariant stretching tensor Lδv(γt)g(x) ∈
BL (TxS ;T ∗xS) = BL (TxS, TxS ;<) and the twice contravariant stress tensor
σt(x) ∈ BL (T ∗xS ;TxS) = BL (T ∗xS, T ∗xS ;<) is defined by the linear invariant
of their composition (σt ◦ Lδv(γt)g)(x) ∈ BL (TxS ;TxS) , that is:

〈σt,Lδv(γt)g〉 := I1(σt ◦ Lδv(γt)g) .

Assuming the Levi-Civita connection in {S ,g} , we may set{
σt = Tt ◦ g−1 ,

1
2Lδv(γt)g = g ◦ (sym∇δv(γt)) ,

with Tt(x), sym∇δv(γt)(x) ∈ BL (TxS ;TxS) and the inner product given by
〈Tt, sym∇δv(γt)〉g := 1

2I1(σt ◦ Lδv(γt)g) . The Hilbert space Sqit(Ωt) is
identified with its dual by the Riesz-Fréchet theorem (see e.g. Ref. [240]).
The dual operator (sym∇)∗ ∈ BL (Sqit(Ωt) ; Conf∗(Ωt)) of the kinematic
operator sym∇ ∈ BL (Conf(Ωt) ; Sqit(Ωt)) is then defined by the identity:

〈(sym∇)∗Tt, δv(γt)〉 :=

∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ ,
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for all δv(γt) ∈ Conf(Ωt) . Now, the difference between the r.h.s. and the l.h.s.
of the equation of motion in Theorem 3.17.1 defines a bounded linear functional
Fun ∈ Conf∗(Ωt) , as proven in Theorem 3.17.2. Moreover Korn’s inequality
implies that the linear subspace sym∇(Conf(Ωt)) is closed in Sqit(Ωt) and
Banach’s closed range theorem assures that (sym∇)∗(Sqit(Ωt)) is closed in
Conf∗(Ωt) , (see Ref. [240]). The law of motion expressed by the variational
condition in Theorem 3.17.1 may then be written as:

Fun ∈ (ker sym∇)
◦ ⊂ (ker sym∇∩Conf(Ωt))

◦
= (sym∇)∗(Sqit(Ωt)) ,

where (•)◦ denotes the annihilator, i.e. the closed subspace of bounded linear
functionals vanishing on • .

This means that there exists a stress tensor field Tt ∈ Sqit(Ωt) such that
Fun = (sym∇)∗Tt , that is, for all δv(γt) ∈ Conf(Ωt) :

〈Fun, δv(γt)〉 = 〈(sym∇)∗Tt , δv(γt)〉=
∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ

=

∫
Pat(Ωt)

〈σt, 1
2Lδv(γt)g〉µ .

The proof of the converse result is trivial since for rigid virtual velocity fields
δv(γt) ∈ rig(Ωt) the variational condition above, being Lδv(γt)g = 0 , gives:
〈Fun, δv(γt)〉 = 0 which is the condition in Theorem 3.17.1. �

It is straightforward to see that the law of dynamics of Theorem 3.17.3
implies as a simple corollary a generalized statement of E. Noether’s theorem
for continuous dynamical systems [?]. The energy Et ∈ C1(TΩt

S ;<) per unit
mass is defined by Legendre transform: Et(vt) := 〈dfLt(vt),vt 〉 − Lt(vt) .

3.13 Special forms of the law of motion
From the general law of motion provided in Theorems 3.17.1 and 3.17.2 other
expressions valid under special assumptions may be derived. The following one
is the extension to continuous systems of the law of dynamics formulated by
Poincaré in the context of analytical dynamics for systems described in terms
of vector components in a mobile reference frame [9, ?].

Theorem 3.13.1 (Euler-Poincaré law of motion) Let ∇ be a connection
in the ambient manifold S with a distant parallel transport ⇑ and torsion
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tors . Let moreover S(vx) ∈ C1(U(x) ;TS) be the vector field extension of the
vector vx ∈ TxS in a neighbourhood U(x) ⊂ S by distant parallel transport.
The law of motion is then expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ −
∫

Ωt

〈dbLt(vt), δv(γt)〉mt

−
∫

Ωt

〈dfLt(vt), [S(vt) ,S(δv)(γt)]〉mt =

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. To evaluate the torsion at a given pair of vectors ux,vx ∈ TxS we may
extend them in a neighbourhood U(x) ⊂ S by distant parallel transport to a
pair of vector fields S(ux),S(vx) ∈ C1(U(x) ;TS) so that:

tors(ux,vx) := ∇uxS(vx)−∇vxS(ux)− [S(ux) ,S(vx)]x = −[S(ux) ,S(vx)]x ,

and the result follows from Theorem 3.17.2. �

The standard expression of Poincaré law in a mobile reference frame {ei} ,
with structure constants [ei , ej ] = cki,jek , is recovered by considering the distant
parallel transport S(ux) := ukx ek which keeps constant the components of
the vector ux = ukx ek(x) in the field of reference frames. Then the term
[S(ux) ,S(vx)]x becomes ukx vjx [ek , ej ]x = ukx v

j
x c

i
k,j(x) ei(x) .

The standard bulk lagrangian per unit mass is: Lt = Kt + Pt ◦ τS ∈
C1(TΩt

S ;<) , where Kt = 1
2 g ◦ diag ∈ C1(TΩt

S ;<) is the positive definite
quadratic form of the bulk kinetic energy per unit mass, with diag(v) := (v ,v)
so that Kt(vt) = 1

2 g(vt,vt) , and of Pt ∈ C1(Ωt ;<) is the bulk load potential
per unit mass.

Lemma 3.13.1 Let the ambient manifold {S ,g} be a riemannian manifold
with the Levi-Civita connection ∇ . Then the scalar fields Kt ∈ C1(TΩt

S ;<)
and Pt ∈ C1(Ωt ;<) fulfil the relations:{

dfKt = g ,

dbKt = 1
2 db(g ◦ diag) = 0 ,

{
df(Pt ◦ τS) = 0 ,

db(Pt ◦ τS) = TPt ◦ τS .
Then, being Lt := Kt + Pt ◦ τS with

Kt(vt) := 1
2 〈dfLt(vt),vt 〉 ,

Et(vt) := 〈dfLt(vt),vt 〉 − Lt(vt) ,
we have the relation: Et = 2Kt − Lt = Kt − Pt ◦ τS .
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Proof. Recalling that δv(γt) := ∂λ=0ϕλ,t , by definition of fiber and base
derivative, for any ut,vt, δv(γt) ∈ TΩt

S with τS(ut) = τS(vt) = τS(δv)(γt)
we have that:

〈dfKt(ut),vt 〉= ∂ε=0Kt(ut + εvt) = ∂ε=0
1
2g(ut + εvt,ut + εvt)

= g(ut,vt) ,

〈dbKt(vt), δv(γt)〉= ∂λ=0ϕλ,t↓Kt(ϕλ,t⇑vt) = ∂λ=0Kt(ϕλ,t⇑vt) ◦ϕλ,t = 0 ,

df(Pt ◦ τS)(vt) · δv(γt) = TPt(τS(vt)) · TτS(vt) · ∇vt · δv(γt) = 0 ,

db(Pt ◦ τS)(vt) · δv(γt) = TPt(τS(vt)) · TτS(vt) ·Hvt · δv(γt)

= TPt(τS(vt)) · δv(γt) .

The second equality in the above list holds since the Levi-Civita parallel trans-
port in {S ,g} preserves the metric, that is:

g(ϕλ,t⇑vt,ϕλ,t⇑vt) ◦ϕλ,t = g(vt,vt) .

The last two equalities follow from the verticality of the covariant derivative
and the fact that the horizontal lift is a right inverse to TτS , the tangent map
to the projection, so that TτS(vt) ·Hvt = idTΩtS . �

Theorem 3.13.2 (Euler’s law of motion: special form) Let the lagrangian
per unit mass have the standard form: Lt = Kt + Pt ◦ τS ∈ C1(TΩtS ;<) and
∇ be the Levi-Civita connection in the riemannian ambient manifold {S ,g} .
Then the law of motion writes:

∂τ=t

∫
γτ,t(Ωt)

g(vτ , γτ,t⇑ δv(γt)) mτ =

∫
Ωt

〈TPt(τS(vt)), δv(γt)〉mt

+

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. The result follows from Theorem 3.17.2 since the Levi-Civita connec-
tion is torsion-free and Lemma 3.17.3 gives the equalities 〈dbLt(vt), δv(γt)〉 =
〈TPt(τS(vt)), δv(γt)〉 and 〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉 = g(vτ , γτ,t⇑ δv(γt)) . �
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In the euclidean ambient space, a simple body is defined by the property
that conforming isometric virtual displacement fields are simple infinitesimal
isometries, expressible as the sum of a speed of translation and of an angular
velocity around a pole. Then we recover the classical Euler’s laws for the
time-rate of variation of momentum and of moment of momentum.

Theorem 3.13.3 (d’Alembert’s law of motion) By conservation of mass
the special Euler’s law of motion translates into d’Alembert’s law:∫

Ωt

g(∂τ=t vτ +∇vtv, δv(γt)) mt =

∫
Ωt

〈TPt(τS(vt)), δv(γt)〉mt

+

∫
Ωt

〈bt, δv(γt)〉µ+

∫
∂Ωt

〈tt, δv(γt)〉 ∂µ ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. Applying the transport formula and Leibniz rule we get the identity:

∂τ=t

∫
γτ,t(Ωt)

g(vτ , γτ,t⇑ δv(γt)) mτ =

∫
Ωt

∂τ=t γτ,t↓[g(vτ , γτ,t⇑ δv(γt)) mτ ]

=

∫
Ωt

[∂τ=t g(vτ , γτ,t⇑ δv(γt)) ◦ γτ,t] mt +

∫
Ωt

(g(vt, δv(γt)) ∂τ=t γτ,t↓mτ

=

∫
Ωt

g(∂τ=t γτ,t⇓vτ , δv(γt)) mt +

∫
Ωt

(g(vt, δv(γt))Lt,vt m

=

∫
Ωt

g(∂τ=t vτ +∇vtv, δv(γt)) mt +

∫
Ωt

(g(vt, δv(γt))Lt,vt m ,

where g(vτ , γτ,t⇑ δv(γt))◦γτ,t = g(γτ,t⇓vτ , δv(γt)) since Levi-Civita connec-
tion is metric. Imposing conservation of mass: Lt,vtm := ∂τ=t mτ+Lvtmt = 0 ,
the result follows from Theorem 3.13.2. �

3.14 Boundary value problems
The basic tool in boundary value problems governed by a linear partial differ-
ential operator Diff of order n , is Green’s formula of integration by parts,
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which formally may be written as:∫
Pat(Ωt)

〈•,Diff ◦ 〉µ=

∫
Pat(Ωt)

〈AdjDiff •, ◦〉µ

+

∮
∂Pat(Ωt)

〈Flux •,Val ◦ 〉∂µ ,

where Ωt is a submanifold of a finite dimensional riemannian space {S ,g} ,
Pat(Ωt) is a fixed patchwork, ∂Pat(Ωt) is its boundary, ∂µ is the volume
form induced on the surfaces ∂Pat(Ωt) by the volume form in S and all the
integrals are assumed to take a finite value. The differential operator AdjDiff
of order n is the formal adjoint of Diff . The boundary integral acts on the
duality pairing between the two fields Flux • and Val ◦ with the differential
operators Flux and Val being n-tuples of normal derivatives of order from
0 to n−1 in inverse sequence, so that the duality pairing is the sum of n terms,
whose k-th term is the pairing of normal derivatives of two fields respectively
of order k and n− 1− k .

Boundary value problems are characterized by the property that the closed
linear subspace Conf(Ωt) of conforming test fields includes the whole linear
subspace ker(Val ) of test fields in Kin(Ωt) with vanishing boundary values
on ∂Pat(Ωt) , i.e.

ker(Val ) ⊆ Conf(Ωt) .

Let us assume that the force virtual power 〈ft, δv(γt)〉 is expressed in terms of
forces per unit volume b ∈ Sqiv(Ωt) (Sqiv := square integrable vector fields)
and of forces per unit area (tractions) t ∈ Sqiv(∂Pat(Ωt)) , so that the force
virtual power is given by:∫

Ωt

〈ft, δv(γt)〉mt :=

∫
Ωt

g(bt, δv(γt))µ+

∫
∂Pat(Ωt)

g(tt, δv(γt)) ∂µ .

d’Alembert’s law, may then be rewritten as∫
Ωt

g(∇vtvt, δv(γt)) mt +

∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ

=

∫
Ωt

g(bt, δv(γt))µ+

∫
∂Pat(Ωt)

g(tt, δv(γt)) ∂µ ,

and a standard localization procedure, leads to the differential equation:

−DivTt = bt − ρt · g ◦ ∇vtvt , in Pat∞(Ωt) ,
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and the boundary conditions on the jump [[Ttn]] across the boundary of the
domain Ωt and across the interfaces of the patchwork Pat∞(Ωt) fulfills the
conditions:

Ttn∈ t + Conf◦ , on Ωt

[[Ttn]]∈ t+ + t− + Conf◦ , on sing(Pat∞(Ωt))

where the fields t of surfacial forces are taken to be zero outside their domain
of definition and Pat∞ denotes a patchwork sufficiently fine for the statement
at hand.
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3.15 Continuum Dynamics
A configuration χ ∈ C1(B;S) of a continuous body B ⊂ S in the physical
euclidean space S is an injective map, defined on a reference placement B ⊂ S ,
with the property of being a diffeomorphic transformation onto its range χ(B) .
The configuration manifold C is then a non finite-dimensional manifold of maps,
modeled on a Banach space.

A curve of configurations is described by a one-parameter family of confi-
guration maps χλ ∈ C1(B;S) from a fixed reference placement B .

Definition 3.15.1 (Virtual velocity) A virtual velocity at the configuration
χ ∈ C1(B;S) is a tangent field v ∈ TχC to the configuration manifold.

A virtual velocity v ∈ TχC is identified with the vector field v ∈ C1(χ(B);TS)
on the placement χ(B) and tangent to the physical space S . Then

π ◦ v = idχ(B) ,

where π ∈ C1(TS;S) is the tangent bundle to the physical space S .

3.15.1 Action principle
Let us consider a motion of a continuous body B ⊂ S in the euclidean space
S , that is a time-parametrized trajectory χt ∈ C1(B;S) .

Definition 3.15.2 (Infinitesimal isometry) A velocity field vt ∈ C1(χt(B) ;TS)
of a body B , at the placement χt(B) in a riemannian manifold (e.g. the eu-
clidean space {S ,g} ), is called an infinitesimal isometry if the Euler-Killing
condition

Lvtg = 2 g (sym∇vt) = 0 ,

is fulfilled at all points of the placement χt(B) .

Denoting by µ the volume-form in {S ,g} , at a point vt ∈ TC of the
trajectory in the velocity phase-space, the kinetic energy Kt ∈ C1(TC ;<) is
defined by

Kt(vt) :=
1

2

∫
χt(B)

‖vt‖2 mt ,

where mt = ρtµ is the mass-form and ρt ∈ C0(χt(B) ;<) is the mass density.
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The standard Lagrangian Lt ∈ C1(TC ;<) is given by

Lt(vt) = Kt(vt) + Pt(π(vt)) ,

where Pt ∈ C1(C ;<) is a time-dependent load potential.
If the body is subject to a field of forces per unit volume which is the gradient

of a time-dependent space potential density pt ∈ C1(S ;<) , the load potential
at the configuration χt ∈ C is given by:

Pt(π(vt)) =

∫
χt(B)

pt µ .

The Legendre transform yields the kinetic momentum dfLt(vt) ∈ T ∗χtC cor-
responding to the velocity vt ∈ TχtC :

〈dfLt(vt),v〉 = 〈dfKt(vt),v〉 =

∫
χt(B)

g(vt,v) mt , ∀v ∈ TχtC ,

so that the action functional is twice the kinetic energy:

〈dfLt(vt),vt 〉 = 2Kt(vt) .

The energy functional Et ∈ C1(TC ;<) is defined by

Et(vt) := 〈dfLt(vt),vt 〉 − Lt(vt) = Kt(vt)− Pt(π(vt)) .

To state the action principle, the kinetic energy must be evaluated at placements
of the body dragged by a virtual flow outside the trajectory.

The following question arises then naturally: how to define the mass-form
at placements of the body dragged by the virtual flow?

Although not quoted explicitly in the literature, an answer is compelling and
presumes a choice. The choice conforming with the law of continuum dynamics
is the following:

Ansatz 3.15.1 (Virtual conservation of mass) The mass-form is dragged
along virtual flows, that is, the principle of conservation of mass holds along
virtual flows: ∫

(ϕλ◦χt)(B)

ϕλ↑mt =

∫
χt(B)

mt .

For the principle of conservation of mass see section 3.3.
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From Ansatz 3.15.1 it follows that, if the configuration χt ∈ C , at time t ∈ I
along the trajectory, is varied (dragged) along a virtual flow ϕλ ∈ C1(χt(B) ;S)
and the velocity field vt ∈ C1(χt(B) ;TS) is pushed by the flow to a velocity
field ϕλ↑vt ∈ C1((ϕλ ◦ χt)(B) ;TS) , the kinetic energy is evaluated as:

Kt(ϕλ↑vt) :=
1

2

∫
(ϕλ◦χt)(B)

‖ϕλ↑vt‖2ϕλ↑mt .

If the velocity field is parallel transported along the virtual flow, then, by the
invariance property ‖ϕλ⇑vt‖ = ‖vt‖ , it follows that

Kt(ϕλ⇑vt) :=
1

2

∫
(ϕλ◦χt)(B)

‖ϕλ⇑vt‖2ϕλ↑mt

=

∫
χt(B)

‖vt‖2 mt = Kt(vt) ,

Hence, as a motivation for Ansatz 3.15.1, we observe that

dbKt(vt) := ∂λ=0 Kt(ϕλ⇑vt) = ∂λ=0 Kt(vt) = 0 .

This property reproduces the analogous one in particle dynamics.
The action principle may be

Definition 3.15.3 (Action principle) A trajectory of the system governed by
a piecewise regular differential one-form ω1 on M , is a piecewise regular path
Γ ∈ C1(T (I) ; M) such that the action integral meets the variational condition:

∂λ=0

∫
ϕλ◦Γ

ω1 =

∮
∂Γ

ω1 · vϕ ,

for all virtual flows ϕλ ∈ C1(M ; M) whose virtual velocity vϕ = ∂λ=0ϕλ ∈
Virt(Γ) is tangent to the discontinuity interfaces.

3.16 Elastodynamics
In the action principle, the rigidity constraint can be dropped by introducing,
as Lagrangian multiplier, a field of Cauchy stress tensors T ∈ BL (TS ;TS) at
the placement χt(B) . Accordingly, the differential law of dynamics becomes:

−dθL(vt) ·X(vt) ·Y(vt) = dEt(vt) ·Y(vt)− 〈Ft(π(vt)), Tπ(vt) ·Y(vt)〉

+

∫
χt(B)

〈T, sym∇(Tπ(vt) ·Y(vt))〉g µ , ∀Y(vt) ∈ TvtTC ,
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Choosing Y(vt) = X(vt) and noting that dθL(vt) ·X(vt) ·X(vt) = 0 and that
Tπ(vt) ·X(vt) = vt , we infer the energy theorem for a deformable body:

Proposition 3.16.1 (Energy theorem) Along a trajectory, the power per-
formed by non-potential forces is equal to the rate of increase of the energy of
the body plus the power performed by the stress field in the body:

〈Ft(π(vt)),vt 〉 = dEt(vt) ·X(vt) +

∫
χt(B)

〈T, sym∇vt 〉g µ .

In terms of the total time derivative, being

∂τ=tEτ (vτ ) = ∂τ=tEτ (vt) + dEt(vt) ·X(vt) ,

the energy theorem is rewritten as

∂τ=tEτ (vτ ) +

∫
χt(B)

〈T, sym∇vt 〉g µ = 〈Ft(π(vt)),vt 〉+ ∂τ=tEτ (vt) .

The differential law of dynamics writes:

〈Ft(π(vt)),vϕ(π(vt))〉+ ∂λ=0 Lt(Tϕλ(vt))

= ∂τ=t

∫
χτ (B)

g(vτ ,vϕ(π(vτ ))) mτ +

∫
χt(B)

〈T, sym∇vϕ 〉g µ ,

for all virtual flows ϕλ ∈ C1(C ;C) . It states that

Proposition 3.16.2 (Law of dynamics) The virtual power performed by non-
potential forces plus the rate of variation of the Lagrangian along a virtual flow
is equal to the time-rate of the virtual power performed by the kinetic momentum
field in the body plus the virtual power of the stress field in the body.

In a configuration manifold with the Levi-Civita connection, the differential
law of dynamics may be written as:∫

χt(B)

〈dpt,vϕ(π(vt))〉mt + 〈Ft(π(vt)),vϕ(π(vt))〉

= ∂τ=t

∫
χτ (B)

g(vτ , γτ,t⇑vϕ(π(vt))) mτ +

∫
χt(B)

〈T, sym∇vϕ(π(vt))〉g µ ,

for any virtual velocity vϕ(π(vt)) ∈ Tπ(vt)C .
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Let us denote by Lt,vt = ∂τ=t +Lvt the convective time-derivative at t ∈ I
along the trajectory χτ , with τ ∈ I . Being Lvtvt = 0 it is Lt,vtvt = ∂τ=t vτ
and Reynolds’ transport theorem gives

∂τ=t

∫
χτ (B)

g(vτ ,vϕ(π(vt))) mτ =

∫
χt(B)

Lt,vt(g(vτ ,vϕ(π(vt))) mτ )

=

∫
χt(B)

g(vt,vϕ(π(vt))) (Lt,vtmτ )t +

∫
χt(B)

g(∂τ=t vτ ,vϕ(π(vt))) mt ,

If conservation of mass (Lt,vtmτ )t = 0 holds, we have that:

∂τ=t

∫
χτ (B)

g(vτ ,vϕ(π(vt))) mτ =

∫
χt(B)

g(∂τ=t vτ ,vϕ(π(vt))) mt ,

and Lagrange’s law takes the form of d’Alembert’s principle:∫
χt(B)

g(∇pt − ∂τ=t vτ ,vϕ(π(vt))) mt + 〈Ft(π(vt)),vϕ(π(vt))〉

=

∫
χt(B)

〈T, sym∇vϕ(π(vt))〉g µ ,

which states that the virtual power performed by the force system, including
the inertial force term, is equal to time-rate of increase of the virtual power of
the stress field in the body, for any virtual velocity of the configuration. For
boundary value problems, these integral variational conditions may be localized
into differential equations and boundary condition by means of the relevant
Green’s formula [201]. Indeed, being∫

χt(B)

〈T, sym∇vϕ(π(vt))〉g µ =

∫
χt(B)

g(−div T,vϕ(π(vt)))µ

+

∫
∂χt(B)

g(Tn,vϕ(π(vt))) ∂µ .

3.17 Continuum dynamics
The peculiar geometric feature of continuous dynamical systems is that two
differentiable structures are playmates: the ambient finite dimensional rieman-
nian manifold (S ,g) (usually the flat euclidean 3D space) in which motions
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take place, and the configuration infinite dimensional manifold C , describing
the states of the system. The corresponding tangent bundles are denoted by
τS ∈ C1(TS ;S) and τC ∈ C1(TC ;C) . In discrete systems both manifolds
are finite dimensional, sometimes taken to be coincident. In continuous sys-
tems, points of the configuration manifold are diffeomorphic maps with a fixed
domain, a reference submanifold of the ambient manifold, and with codomains
which are placements, submanifolds of the ambient manifold. To a vector tan-
gent to the configuration manifold at a configuration, there corresponds a field
of vectors tangent to the ambient manifold on the corresponding placement sub-
manifold. The theory of continuous dynamical systems is then a field theory
and it is essential to express differential properties of the configuration mani-
fold in terms of the ones of the ambient manifold. Since morphisms, flows and
tensor fields in the configuration and the ambient manifold must be carefully
distinguished, in this sections and in subsequent ones, a superscript (·)C will
be used to denote quantities pertaining to the former, when there are analogous
quantities pertaining to the latter. Moreover geometrical objects in the two
manifolds will be labeled by the prefixes C- and S- respectively.

3.17.1 The evaluation map
We denote by evalx the evaluator at x ∈ S of fields on S . A trajectory of
a dynamical system through a configuration γt ∈ C1(B ;S) is described by a
time-parametrized C-curve γC ∈ C1(I ;C) with γCt (γt) = γt . The images of
the trajectory are placements Ωτ := γτ (B) with τ ∈ I .

The displacement from the placement Ωt to the placement Ωτ is the diffeo-
morphism: γτ,t := γτ ◦γt−1 ∈ C1(Ωt ; Ωτ ) . To a trajectory in the configuration
manifold, there corresponds a sheaf of trajectories evalx(γτ,t) ∈ C1(I ;S) , also
denoted by evalx(γC(γt)) ∈ C1(I ;S) , through the points x ∈ Ωt = γt(B) , so
that γτ,t(x) = γτ (γt

−1(x)) ∈ Ωτ .
The velocity of a particle p ∈ B is the time-derivative γ̇t(p) = ∂τ=t γτ (p) ∈

Tγt(p)S , and the velocity field at γt ∈ C1(B ;S) , given by vC(γt) = γ̇t ∈
C1(B ;TΩtS) , is a section of the pull-back bundle C1(γt↓TΩtS ;B) . With a little
abuse the same notation is also adopted for the corresponding velocity field on
the position Ωt := γt(B) , given by vC(γt) := ∂τ=t γτ,t ∈ C1(Ωt ;TΩt

S) which
is a section of the vector bundle C1(TΩt

S ; Ωt) . Along the trajectory γC(γt) ∈
C1(I ;C) in the configuration manifold, a virtual flow ϕC(γt) ∈ C1(I ;C) defines
a virtual velocity field given by δvC(γt) := ∂λ=0ϕ

C
λ(γt) ∈ TγtC . A C-curve

ϕC(γ) ∈ C1(I ;C) with ϕC
0 (γ) = γ ∈ C1(B ;S) is associated with a sheaf of

S-curves ϕ(x) = evalx(ϕC(γ)) ∈ C1(I ;S) with ϕ0(x) = x ∈ Ω = γ(B) .
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Then, setting δvC(γ) := ∂λ=0ϕ
C
λ(γ) ∈ TγC and δv(x) := ∂λ=0ϕλ(x) ∈ TxS ,

with x ∈ Ω , we have that

δv(x) := ∂λ=0ϕλ(x) = ∂λ=0 evalx(ϕC
λ(γ)) = evalx(δvC(γ)) ,

with δv ∈ C1(Ω ;TΩS) .

Definition 3.17.1 (Induced connection) The special geometric feature of the
configuration manifold C permits to define a connection induced by a given con-
nection in the finite dimensional ambient manifold S . The procedure is best
described in terms of parallel transport and consists in performing the parallel
transport of a vector field, along a C-curve from one configuration to another
one, by transporting pointwise the vectors along the sheaf of S-curves in the
ambient manifold corresponding to the C-curve. Setting vC = ∂λ=0ϕ

C
λ , the

covariant derivatives are related by the formula:

evalx(∇C
vC uC(γ)) = evalx(∂λ=0ϕ

C
λ⇓uC(ϕC

λ(γ)))

= ∂λ=0ϕλ⇓u(ϕλ(x))

= ∇vu(x) , ∀x ∈ Ω = γ(B) ,

where ϕλ(x) = evalx(ϕC
λ(γ)) and u(x) = evalx(uC(γ)) .

The following result is at the core of the theory of continuous dynamical systems
developed in this paper. Its proof is based on the tensoriality property of the
torsion of a connection and on a simple but tricky geometrical construction of
vector fields associated with a given pair of vectors in the configuration manifold.

The naturality result provided by Lemma 3.17.1 will be resorted to as an
essential ingredient in the proof of Theorem 3.17.2.

Lemma 3.17.1 (Evaluation of the torsion) Let ∇ be a connection in the
ambient manifold S with torsion tors and ∇C be the induced connection in
the configuration manifold C with torsion torsC . Then, the torsion torsC

evaluated at a pair of C-vectors vC
γ ,u

C
γ ∈ TγC is a S-vector field on Ω = γ(B)

whose value at a point x ∈ Ω is equal to the torsion tors evaluated at the pair
of vectors v(x) = evalx(vC

γ ),u(x) = evalx(uC
γ ) ∈ TxS :

evalx(torsC(vC
γ ,u

C
γ )) = tors(v(x),u(x)) ,

i.e. the torsion is natural with respect to the evaluation map.
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Figure 3.18: Sheaf of trajectories

Proof. Let us consider a pair vC
γ ,u

C
γ ∈ TγC of C-vectors, and the plane

spanned by them. A 2-D submanifold of C passing through γ ∈ C and tangent
there to this plane, is generated as follows. First we draw a curve c ∈ C1(I ;C)
having the vector uC

γ ∈ TγC as tangent at c(0) = γ(t) ∈ C and denote the
field of tangent vectors by uC(c(t)) := ∂τ=t c(τ) ∈ C1(c(I) ;TC) . Then the
vector vC

γ ∈ TγC is extended to a vector field vC ∈ C1(c(I) ;TC) along this
curve. Hence an extrusion of the curve c ∈ C1(I ;C) is performed by a flow
ϕC
λ ∈ C1(c(I) ;C) with λ ∈ J and velocity vC = ∂µ=λϕ

C
µ ∈ C1(ϕC

λ(c(I)) ;TC)

such that vC(γ) = vC
γ . This generates a 2-D submanifold Σ ⊂ C around

γ ∈ C . At last the tangent vector field uC ∈ C1(c(I) ;Tc(I)) is extended to a
vector field uC ∈ C1(Σ ;TΣ) .

The extrusion of the curve c ∈ C1(I ;C) defines a chart on Σ with origin
at γ ∈ C and coordinates (t , λ) ∈ I × J ⊂ <2 . The pair of vector fields
vC,uC ∈ C1(Σ ;TΣ) , which at γ ∈ C take the values vC

γ ,u
C
γ ∈ TγΣ , provide

a mobile frame associated with this coordinate system. If the extension of
the vector field uC ∈ C1(c(I) ;Tc(I)) to a vector field uC ∈ C1(Σ ;TΣ) is
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performed by pushing it along the flow ϕC
λ ∈ C1(c(I) ;C) , the frame is natural

and the Lie bracket of the pair vC,uC ∈ C1(Σ ;TΣ) vanishes identically on
Σ ⊂ C . This is the choice which leads to the proof of the naturality property in
the statement. The construction illustrated above reproduces itself at any point
of the manifold Ω ⊂ S thus generating around each x ∈ Ω a 2-D submanifold
Σx ⊂ S spanned by the coordinate system (t , λ) ∈ I × J ⊂ <2 and by the
frame (v ,u) with v ∈ C1(Σx ;TΣx) given by v(y) = evaly(vC(ξ)) where
y ∈ ξ(B) with ξ ∈ Σ and similarly for u ∈ C1(Σx ;TΣx) . Then, in particular,
we have that

evalx([vC ,uC](γ)) = [v ,u](x) = 0 , ∀x ∈ Ω = γ(B) .

By tensoriality, to evaluate the torsion of the connection ∇C at a pair of C-
vectors vC

γ ,u
C
γ ∈ TγC , we may extend them according to the previously illus-

trated procedure.
Then, applying the formula for the torsion of a pair of vector fields, we get:

evalx(torsC(vC
γ ,u

C
γ )) = evalx(torsCγ (vC,uC))

= evalx((∇C
vCu

C −∇C
uCv

C − [vC ,uC])(γ))

= evalx((∇C
vCu

C −∇C
uCv

C)(γ))

= (∇vu−∇uv)(x)

= (∇vu−∇uv − [v ,u])(x)

= tors(v(x),u(x)) ,

the last equality being again due to the tensoriality of the torsion. �

3.17.2 Law of motion
A proper formulation of the law of motion for a continuous body, in an ambi-
ent finite dimensional riemannian manifold (S ,g) , needs a sufficiently general
definition of the linear space of spatial virtual velocity fields on the position
Ωt := γt(B) at time t ∈ I along the trajectory in the ambient manifold. To
this end, let us give the following definitions. A patchwork Pat(Ωt) is a finite
family of open connected, non-overlapping subsets of Ωt , called elements, such
that the union of their closures is a covering for Ωt . The set of all patchworks of
Ωt is a directed set for the relation finer than and the coarsest patchwork finer
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than two given ones Pat1(Ωt) and Pat2(Ωt) is the grid Pat1(Ωt)∧Pat2(Ωt) .
The kinematic space Kin(Ωt) is made up of vector fields vt ∈ C1(Ωt ;TΩt

S)
which are square integrable with a distributional gradient which is square inte-
grable in the elements of a patchwork Patvt(Ωt) . This space is pre-Hilbert
with the positive definite symmetric bilinear form:∫

Pat(vt,wt)
(Ωt)

(g(vt,wt) + 〈∇vt,∇wt 〉g)µ ,

where Pat(vt,wt)(Ωt) = Patvt(Ωt) ∧Patwt
(Ωt) and 〈·, ·〉g is the inner prod-

uct between tensors induced by the metric g . A continuous body at Ωt is
defined by a fixed patchwork Pat(Ωt) and by a closed linear subspace of con-
forming virtual displacements Conf(Ωt) ⊂ Kin(Ωt) such that all of its vector
fields have Pat(Ωt) as a regularity patchwork. Then Conf(Ωt) is a Hilbert
space for the topology induced by Kin(Ωt) . Since Conf(Ωt) is a linear space,
this definition includes any linear or affine kinematical constraint. Non-linear
constraints must rather be modeled by suitable constitutive laws described by
fiberwise monotone maximal graphs in the Whitney bundle whose fiber is the
product of tangent vector and covector spaces [209]. In the tangent bundle
τS ∈ C1(TS ;S) , the subbundle of infinitesimal isometries (or rigid body ve-
locities) at the position Ωt is denoted by rig(Ωt) . These are vector fields
δv(γt) ∈ C1(Ωt ;TΩt

S) characterized by the condition Lδv(γt)g = 0 . The
property of the Lie derivative: L[u ,v] = [Lu ,Lv] for any pair of tangent vector
fields u,v ∈ C1(S ;TS) , ensures that the subbundle rig(Ωt) is involutive, i.e.
that Lug = Lvg = 0 =⇒ L[u ,v]g = 0 , and hence integrable by Frobenius
theorem, see e.g. [3], [99]. This property is at the basis of the classical an-
alytical dynamics which considers dynamical trajectories evolving in a leaf of
the foliation induced by the rigidity condition on the velocity fields. Let ∇
be a connection in the ambient manifold {S ,g} and tors ∈ Λ2(S ;TS) be
the tangent-valued torsion 2-form: tors(v,u) := (∇vu − ∇uv) − [v ,u] , [3].
We quote hereafter a generalized version of Euler’s classical formula for the
stretching 1

2 (Lv g) , valid in an ambient riemannian manifold with an arbitrary
connection.

Lemma 3.17.2 Let {S ,g} be a riemannian manifold, ∇ a connection in S
with torsion tors ∈ Λ2(S ;TS) and Tors(v) the field of linear operators
defined by:

Tors(v) · u = tors(v,u) , ∀v,u ∈ C1(S ;TS) .
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Then, for any vector field v ∈ C1(S ;TS) :

1
2 (Lv g) = g ◦ (sym∇v) + 1

2 (∇v g) + g ◦ (sym Tors(v)) .

If ∇ is Levi-Civita, i.e. metric, ∇v g = 0, and torsion-free, Tors(v) = 0,
Euler’s formula for the stretching is recovered:

1
2 (Lv g) = g ◦ (sym∇v) .

Proof. Applying the Leibniz rule to the Lie derivative and to the covariant
derivative, we have that, for any vector fields v,u,w ∈ C1(S ;TS) :

(Lv g)(u,w) = Lv (g(u,w))− g(Lvu,w)− g(u,Lvw) ,

(∇v g)(u,w) = ∇v (g(u,w))− g(∇vu,w)− g(u,∇vw) .

Since the Lie derivative and the covariant derivative of a scalar field coincide,
we also have that Lv (g(u,w)) = ∇v (g(u,w)) and hence:

(Lv g)(u,w) = (∇v g)(u,w) +g(∇vu,w) + g(u,∇vw)

−g(Lvu,w)− g(u,Lvw) .

Moreover, since tors(v,u) := (∇vu−∇uv)− [v,u] we may write

(Lv g)(u,w) = (∇v g)(u,w) + g(tors(v,u),w) + g(∇uv,w)

+ g(tors(v,w),u) + g(∇wv,u) ,

which gives the result. �

Let Lt ∈ C1(TΩt
S ;<) be the lagrangian per unit mass at the position

Ωt := γt(B) , µ be the volume form in S and mt = ρt µ be the mass form
related to the scalar density ρt ∈ C1(Ωt ;<) .

In continuum dynamics the lagrangian functional on the tangent bundle to
the configuration manifold: LC

t ∈ C1(TC ;<) , is defined by the integral:

(LC
t ◦ vC)(γt) :=

∫
Ωt

(Lt ◦ vt) mt ,

where vt(x) = evalx(vC(γt)) for x ∈ Ωt = γt(B) .
The next theorem provides the expression of the law of dynamics in an

ambient riemannian manifold {S ,g} , independent of a connection. The volume
form µ is the one induced by the metric tensor g .
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Theorem 3.17.1 (Law of motion in the ambient manifold) The law of mo-
tion of a continuous dynamical system in the ambient riemannian manifold
{S ,g} , is expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), δv(γτ )〉mτ −∂λ=0

∫
ϕλ,t(Ωt)

(Lt ◦ϕλ,t↑vt) mt

= 〈FC
t (γt), δv(γCt )〉 ,

for any virtual flow ϕλ,t ∈ C1(Ωt ;S) at time t ∈ I such that the virtual
velocity field δv(γt) := ∂λ=0ϕλ,t ∈ C1(Ωt ;TΩt

S) is conforming and isometric,
i.e. δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. According to Theorem 2.2.1, the law of motion in the configuration
manifold is expressed by Lagrange’s variational condition:

∂τ=t 〈dfLC
τ (vC

τ ), δv(γCτ )〉 − ∂λ=0 L
C
t (TϕC

λ · vC
t ) = 〈FC

t (γt), δv(γCt )〉 ,

where, being vt(x) = evalx(vC(γt)) and δv(γt)(x) = evalx(δvC(γt)) we have
that

〈dfLC
τ (vC

τ ), δv(γCτ )〉=
∫
γτ,t(Ωt)

〈dfLτ (vτ ), δv(γτ )〉mτ ,

where δv(γτ ) := ∂λ=0ϕλ,τ ∈ C1(Ωτ ;TΩτ
S) and ϕλ,t(x) = evalx(ϕC

λ(γt)) .
On the other hand:

LC
t (TϕC

λ · vC
t ) = (LC

t ◦ϕC
λ↑vC

t ◦ϕC
λ)(γt) =

∫
ϕλ,t(Ωt)

Lt(ϕλ,t↑vt) mt .

Substituting, we get the result. �

Each term at the l.h.s. of the law of motion in Theorem 3.17.1 depends
on the choice of the family of virtual flows ϕλ,τ ∈ C1(Ωτ ;TS) with τ ∈ I .
However, in Theorem 3.17.2 it will be proved that the expression at the l.h.s.
of the law of motion defines a bounded linear functional F ∈ Conf∗(Ωt) .

This basic result, which is a generalized version of Euler’s law of motion
makes an essential recourse to the notion of a connection in the ambient manifold
and of the induced connection in the infinite dimensional configuration manifold.
The proof is based on a subtle argument whose key points are the vanishing of
the Lie derivative leading to the expression of covariant derivatives in terms of
the torsion and the tensoriality property of the torsion of a connection. Moreover
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to get the result we need to make an assumption of mass conservation along
virtual flows.

Precisely in the sequel we will assume that, in performing the variations, the
following condition is fulfilled.

Ansatz 3.17.1 (Virtual mass-conservation) The virtual flows drag the mass-
form or equivalently along the virtual flows the mass of any sub-body is preserved,
that is:

Lδv(γt)mt = 0 ⇐⇒ ∂λ=0

∫
ϕλ,t(P)

mt = 0 , ∀P ⊆ Ωt .

This assumption amounts in defining a proper way of extending the mass-form
to positions of the body outside the trajectory and mimics the one tacitly made
in analytical mechanics in assuming that the material particles retain their mass-
measure along the variations.

Theorem 3.17.2 (Generalized Euler’s law of motion) Let ∇ be a con-
nection in the ambient manifold S with parallel transport ⇑ and torsion tors .
The law of motion is then expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ −
∫

Ωt

〈dbLt(vt), δv(γt)〉mt

+

∫
Ωt

〈dfLt(vt),tors(vt, δv(γt))〉mt = 〈FC
t (γt), δv(γCt )〉 ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. By Theorem 3.10.1, the l.h.s. of the law of motion in the configuration
manifold, according to the connection ∇C there induced by the connection ∇
in the ambient manifold, writes:

∂τ=t 〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉− 〈dbLC
t (vC

t ), δv(γCt )〉

+〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉 .

Translating in terms of fields in the ambient manifold, by Lemma 3.17.1 we
have:

〈dfLC
τ (vC

τ ), γτ,t⇑ δv(γCt )〉=
∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ ,

〈dfLC
t (vC

t ),torsC(vC
t , δv(γCt ))〉=

∫
Ωt

〈dfLt(vt),tors(vt, δv(γt))〉mt ,
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〈dbLC
t (vC

t ), δv(γCt )〉= ∂λ=0 L
C
t (ϕC

λ,t⇑vC
t )

= ∂λ=0

∫
ϕλ,t(Ωt)

Lt(ϕλ,t⇑vt) mt

=

∫
Ωt

∂λ=0ϕλ,t↓[Lt(ϕλ,t⇑vt) mt]

=

∫
Ωt

〈dbLt(vt), δv(γt)〉mt +

∫
Ωt

Lt(vt)Lδv(γt)mt .

Setting Lδv(γt)mt = 0 we get the result. �

The law of motion provided by Theorem 3.17.2 defines a bounded linear
functional F ∈ Conf∗(Ωt) . Then the next theorem shows that the rigidity
condition on virtual velocities may be eliminated by introducing a Lagrange’s
multiplier dual to the stretching.

The proof is based on the property that the image by the differential operator
sym∇ of any closed subspace of the Hilbert space Conf(Ωt) is a closed
subspace of Sqit(Ωt) , the Hilbert space of square integrable tensor fields on
Ωt . In turn this property is inferred from Korn’s second inequality [69], [51],
[195], [201].

Theorem 3.17.3 (Law of motion in terms of a stress field) There exists
at least a square integrable twice contravariant stress tensor field σt ∈ Sqit(Ωt)
such that the law of motion of a continuous dynamical system in the ambient
riemannian manifold {S ,g} is equivalent to the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), δv(γτ )〉mτ − ∂λ=0

∫
ϕλ,t(Ωt)

(Lt ◦ϕλ,t↑vt) mt

= 〈FC
t (γt), δv(γCt )〉 −

∫
Ωt

〈σt,Lδv(γt)g 〉µ ,

for any virtual flow ϕλ,t ∈ C1(Ωt ;S) at time t ∈ I whose virtual velocity field
δv(γt) := ∂λ=0ϕλ,t ∈ C1(Ωt ;TΩt

S) is conforming, i.e. δv(γt) ∈ Conf(Ωt) .

Proof. The duality between the twice covariant stretching tensor Lδv(γt)g(x) ∈
BL (TxS ;T ∗xS) = BL (TxS, TxS ;<) and the twice contravariant stress tensor
σt(x) ∈ BL (T ∗xS ;TxS) = BL (T ∗xS, T ∗xS ;<) is defined by the linear invariant
of their composition (σt ◦ Lδv(γt)g)(x) ∈ BL (TxS ;TxS) , that is:

〈σt,Lδv(γτ )g〉 := I1(σt ◦ Lδv(γt)g) .
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By the isomorphisms g[(x) ∈ BL (TxS ;T ∗xS) and g](x) ∈ BL (T ∗xS ;TxS)
with g](x) = (g[)−1(x) , induced by the metric g(x) ∈ BL (TxS, TxS ;<) and
assuming the Levi-Civita connection in {S ,g} , we may set{

σt = Tt ◦ g]

Lδv(γt)g = g[ ◦ (sym∇δv(γt)) ,

with Tt(x), sym∇δv(γt)(x) ∈ BL (TxS ;TxS) , and the inner product given by
〈Tt, sym∇δv(γt)〉g := I1(σt ◦ Lδv(γt)g) . The Hilbert space Sqit(Ωt) is
identified with its dual by the Riesz-Fréchet theorem (see e.g. [240], [196]).
The dual operator (sym∇)∗ ∈ BL (Sqit(Ωt) ; Conf∗(Ωt)) of the kinematic
operator sym∇ ∈ BL (Conf(Ωt) ; Sqit(Ωt)) is then defined by the identity:

〈(sym∇)∗Tt, δv(γt)〉 :=

∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ ,

for all δv(γt) ∈ Conf(Ωt) . Now the difference between the r.h.s. and the
l.h.s. of the equation of motion in Theorem 3.17.1 defines a bounded lin-
ear functional F ∈ Conf∗(Ωt) , as was proven in Theorem 3.17.2. Moreover
Korn’s inequality implies that the linear subspace sym∇(Conf(Ωt)) is closed
in Sqit(Ωt) , see e.g. [196], and Banach’s closed range theorem assures that
(sym∇)∗(Sqit(Ωt)) is closed in Conf∗(Ωt) , [240]. The law of motion ex-
pressed by the variational condition in Theorem 3.17.1 may then be written
as:

F ∈ (ker sym∇)
◦ ⊂ (ker sym∇∩Conf(Ωt))

◦
= (sym∇)∗(Sqit(Ωt)) ,

where (•)◦ denotes the annihilator, i.e. the closed subspace of bounded linear
functionals vanishing on • .

This means that there exists a stress tensor field Tt ∈ Sqit(Ωt) such that
F = (sym∇)∗Tt , that is, for all δv(γt) ∈ Conf(Ωt) :

〈F , δv(γt)〉 = 〈(sym∇)∗Tt , δv(γt)〉=
∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ

=

∫
Pat(Ωt)

〈σt,Lδv(γt)g〉µ .

The proof of the converse result is trivial since for rigid virtual velocity fields
δv(γt) ∈ rig(Ωt) the variational condition above, being Lδv(γt)g = 0 , gives:
〈F , δv(γt)〉 = 0 which is the condition in Theorem 3.17.1. �
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It is straightforward to see that the law of dynamics of Theorem 3.17.3
implies as a simple corollary a generalized statement of E. Noether’s theorem
for continuous dynamical systems, [?]. The energy Et ∈ C1(TΩtS ;<) per unit
mass is defined by Legendre transform: Et(vt) := 〈dfLt(vt),vt 〉 − Lt(vt) .

3.17.3 Special forms of the law of motion
From the general law of motion provided in Theorems 3.17.1 and 3.17.2 other
expressions valid under special assumptions may be derived. The following one
is the extension to continuous systems of the law of dynamics formulated by
Poincaré in the context of analytical dynamics for systems described in terms
of vector components in a mobile reference frame [9], [?].

Theorem 3.17.4 (Euler-Poincaré law of motion) Let ∇ be a connection
in the ambient manifold S with a distant parallel transport ⇑ and torsion
tors . The law of motion is then expressed by the variational condition:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉mτ −
∫

Ωt

〈dbLt(vt), δv(γt)〉mt

−
∫

Ωt

〈dfLt(vt), [S(vt) ,S(δv)(γt)]〉mt = 〈FC
t (γt), δv(γCt )〉 ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. To evaluate the torsion on a given pair of vectors ux,vx ∈ TxS
we may extend them by distant parallel transport to a pair of vector fields
S(ux),S(vx) ∈ C1(S ;TS) so that:

tors(ux,vx) := ∇uxS(vx)−∇vxS(ux)− [S(ux) ,S(vx)] = −[S(ux) ,S(vx)] ,

and the result follows from Theorem 3.17.2. �

The standard bulk lagrangian per unit mass is: Lt = Kt + Pt ◦ τS ∈
C1(TΩt

S ;<) , where Kt = 1
2 g ◦ diag ∈ C1(TΩt

S ;<) is the positive definite
quadratic form of the bulk kinetic energy per unit mass, with diag(v) := (v ,v)
so that Kt(vt) = 1

2 g(vt,vt) , and of Pt ∈ C1(Ωt ;<) is the bulk load potential
per unit mass.

Lemma 3.17.3 Let the ambient manifold {S ,g} be a riemannian manifold
with the Levi-Civita connection ∇ . Then the scalar fields Kt ∈ C1(TΩt

S ;<)
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and Pt ∈ C1(Ωt ;<) fulfil the relations:{
dfKt = g[ ,

dbKt = 1
2 db(g ◦ diag) = 0 ,{

df(Pt ◦ τS) = 0 ,

db(Pt ◦ τS) = TPt ◦ τS .

Then, being Lt := Kt + Pt ◦ τS with

Kt(vt) := 1
2 〈dfLt(vt),vt 〉 ,

Et(vt) := 〈dfLt(vt),vt 〉 − Lt(vt) ,

we have the relation: Et = 2Kt − Lt = Kt − Pt ◦ τS .

Proof. By definition of fiber and base derivative, for any ut,vt, δv(γt) ∈ TΩt
S

with τS(ut) = τS(vt) = τS(δv)(γt) we have that:

〈dfKt(ut),vt 〉= ∂ε=0Kt(ut + εvt) = ∂ε=0
1
2g(ut + εvt,ut + εvt)

= g(ut,vt) ,

〈dbKt(vt), δv(γt)〉= ∂λ=0ϕλ,t↓Kt(ϕλ,t⇑vt) = ∂λ=0Kt(ϕλ,t⇑vt) ◦ϕλ,t = 0 ,

df(Pt ◦ τS)(vt) · δv(γt) = TPt(τS(vt)) · TτS(vt) · ∇vt · δv(γt) = 0 ,

db(Pt ◦ τS)(vt) · δv(γt) = TPt(τS(vt)) · TτS(vt) ·Hvt · δv(γt)

= TPt(τS(vt)) · δv(γt) ,

where δv(γt) := ∂λ=0ϕλ,t .
The second equality in the above list holds since the Levi-Civita parallel

transport in {S ,g} preserves the metric, that is:

g(ϕλ,t⇑vt,ϕλ,t⇑vt) ◦ϕλ,t = g(vt,vt) .

The last two equalities follow from the verticality of the covariant derivative
and the fact that the horizontal lift is a right inverse to TτS , the tangent map
to the projection, so that TτS(vt) ·Hvt = idTΩtS . �
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Corollary 3.17.1 (Euler’s law of motion: special form) Let the lagrangian
per unit mass have the standard form: Lt = Kt + Pt ◦ τS ∈ C1(TΩt

S ;<) and
∇ be the Levi-Civita connection in the riemannian ambient manifold {S ,g} .
Then the law of motion writes:

∂τ=t

∫
γτ,t(Ωt)

g(vτ , γτ,t⇑ δv(γt)) mτ =

∫
Ωt

〈TPt(τS(vt)), δv(γt)〉mt + 〈FC
t (γt), δv(γCt )〉 ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .

Proof. By the metric property of the Levi-Civita connection: ∇g = 0 and
the mass-preserving ansatz on the virtual velocities: Lδv(γt)mt = 0 , we have:

∂λ=0

∫
ϕλ,t(Ωt)

Kt(ϕλ,t⇑vt) mt =

∫
Ωt

∂λ=0ϕλ,t↓[Kt(ϕλ,t⇑vt) mt]

=

∫
Ωt

∂λ=0ϕλ,t↓Kt(ϕλ,t⇑vt) mt +

∫
Ωt

Kt(vt)Lδv(γt)mt = 0 ,

∂λ=0

∫
ϕλ,t(Ωt)

Pt(τS(ϕλ,t⇑vt)) mt =

∫
Ωt

∂λ=0ϕλ,t↓[Pt(τS(ϕλ,t⇑vt)) mt]

=

∫
Ωt

〈dbPt(vt), δv(γt)〉mt +

∫
Ωt

Pt(τS(vt))Lδv(γt)mt ,

with the last integral vanishing. By Lemma 3.17.3 we have that 〈dbPt(vt), δv(γt)〉 =
〈TPt(τS(vt)), δv(γt)〉 and 〈dfLτ (vτ ), γτ,t⇑ δv(γt)〉 = g(vτ , γτ,t⇑ δv(γt)) . More-
over the Levi-Civita connection is torsion-free, that is tors(vt, δv(γt)) = 0 ,
and the result follows from Theorem 3.17.2. �

In the euclidean ambient space, a simple body is defined by the property
that conforming isometric virtual displacement fields are simple infinitesimal
isometries, expressible as the sum of a speed of translation and of an angular
velocity around a pole. Then we recover the classical Euler’s laws for the
time-rate of variation of momentum and of moment of momentum.

Corollary 3.17.2 (d’Alembert’s law of motion) By conservation of mass
the special Euler’s law of motion translates into d’Alembert’s law:∫

Ωt

g(∇vtvt, δv(γt)) mt =

∫
Ωt

〈TPt(τS(vt)), δv(γt)〉mt + 〈FC
t (γt), δv(γCt )〉 ,

for any virtual velocity field δv(γt) ∈ Conf(Ωt) ∩ rig(Ωt) .
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Proof. Applying the transport formula and Leibniz rule we get the identity:

∂τ=t

∫
γτ,t(Ωt)

g(vτ , γτ,t⇑ δv(γt)) mτ =

∫
Ωt

∂τ=t γτ,t↓[g(vτ , γτ,t⇑ δv(γt)) mτ ]

=

∫
Ωt

[∂τ=t g(vτ , γτ,t⇑ δv(γt)) ◦ γτ,t] mt +

∫
Ωt

(g(vt, δv(γt)) ∂τ=t γτ,t↓mτ

=

∫
Ωt

g(∂τ=t γτ,t⇓vτ , δv(γt)) mt +

∫
Ωt

(g(vt, δv(γt))Lt,vt m

=

∫
Ωt

g(∇vtvt, δv(γt)) mt +

∫
Ωt

(g(vt, δv(γt))Lt,vt m ,

where g(vτ , γτ,t⇑ δv(γt))◦γτ,t = g(γτ,t⇓vτ , δv(γt)) since Levi-Civita connec-
tion is metric. Imposing conservation of mass: Lt,vtm := ∂τ=t mτ+Lvtmt = 0 ,
the result follows from Corollary 3.17.1. �

3.17.4 Boundary value problems
The basic tool in boundary value problems governed by a linear partial differ-
ential operator Diff of order n , is Green’s formula of integration by parts,
which formally may be written as:∫

Pat(Ωt)

〈•,Diff ◦ 〉µ=

∫
Pat(Ωt)

〈AdjDiff •, ◦〉µ

+

∮
∂Pat(Ωt)

〈Flux •,Val ◦ 〉∂µ ,

where Ωt is a submanifold of a finite dimensional riemannian space {S ,g} ,
Pat(Ωt) is a fixed patchwork, ∂Pat(Ωt) is its boundary, ∂µ is the volume
form induced on the surfaces ∂Pat(Ωt) by the volume form in S and all the
integrals are assumed to take a finite value. The differential operator AdjDiff
of order n is the formal adjoint of Diff . The boundary integral acts on the
duality pairing between the two fields Flux • and Val ◦ with the differential
operators Flux and Val being n-tuples of normal derivatives of order from
0 to n−1 in inverse sequence, so that the duality pairing is the sum of n terms,
whose k-th term is the pairing of normal derivatives of two fields respectively
of order k and n− 1− k .
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Boundary value problems are characterized by the property that the closed
linear subspace Conf(Ωt) of conforming test fields includes the whole linear
subspace ker(Val ) of test fields in Kin(Ωt) with vanishing boundary values
on ∂Pat(Ωt) , i.e.

ker(Val ) ⊆ Conf(Ωt) .

Let us assume that the force virtual power 〈Ft, δv(γt)〉 is expressed in terms of
forces per unit volume b ∈ Sqiv(Ωt) (Sqiv := square integrable vector fields)
and of forces per unit area (tractions) t ∈ Sqiv(∂Pat(Ωt)) , so that the force
virtual power is given by:

〈FC
t (γt), δv(γCt )〉 :=

∫
Ωt

g(bt, δv(γt))µ+

∫
∂Pat(Ωt)

g(tt, δv(γt)) ∂µ .

d’Alembert’s law, may then be rewritten as∫
Ωt

g(∇vtvt, δv(γt)) mt +

∫
Pat(Ωt)

〈Tt, sym∇δv(γt)〉g µ

=

∫
Ωt

g(bt, δv(γt))µ+

∫
∂Pat(Ωt)

g(tt, δv(γt)) ∂µ ,

and a standard localization procedure, leads to the differential equation:

−DivTt = bt − ρt · g[ ◦ ∇vtvt , in Pat∞(Ωt) ,

and the boundary conditions on the jump [[Ttn]] across the boundary of the
domain Ωt and across the interfaces of the patchwork Pat∞(Ωt) fulfills the
conditions:

Ttn∈ t + Conf◦ , on Ωt

[[Ttn]]∈ t+ + t− + Conf◦ , on sing(Pat∞(Ωt))

where the fields t of surfacial forces are taken to be zero outside their domain
of definition and Pat∞ denotes a patchwork sufficiently fine for the statement
at hand.
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Chapter 4

Elasticity

The theory of elasticity is a fundamental chapter of Mathematical Physics which
leads to results that, under suitable generalizations, can be applied to the ana-
lysis of other constitutive models, describing different physical phenomena, but
sharing in the meanwhile the same formal properties.

This chapter is devoted to an abstract presentation of the characteristic
properties of an elastic behaviour, with a generalized formulation encompassing
constitutive models governed by monotone conservative multivalued relations
which cannot be dealt with by the classical theory.

Constrained elasticity, such as for incompressible materials, is dealt with by
assuming that at each point admissible strains belong to a differentiable mani-
fold. The elastic constitutive law is defined in the general case and specialized
to linear strain spaces and linear elasticity. The issue of linearization of general
nonlinear laws is also briefly investigated.

The treatment of a general monotone and conservative elastic behaviour is
based on the presentation of the theory provided in [200].

The specialization of this general model to the classical one-to-one and possi-
bily linearly elastic behaviour shows that well-known results can be recovered as
special cases of the ones established in the new more comprehensive framework.

The theory is applied to the modelling of several widely adopted constitutive
laws which can be framed into the general scheme of monotone laws governed
by convex potentials.

At the end of the chapter the theory of associated plasticity and viscoplas-
ticity is revisited in the unitary framework provided by the generalized elastic
model.
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4.1 Elastic behaviour
A fundamental assumption for the development of the theory of elasticity is the
existence of a relation between dual vector quantities, representing the kinematic
and static state variables, which depend only upon their actual values and not
on their past history, so that an elastic material is a material without memory.

Moreover an elastic relation enjoys the properties of being invertible and
conservative, and hence both the direct and the inverse constitutive laws admit
a potential.

Starting from the classical scheme of a one-to-one linear relation between
stress and strain, it is possible to develop a general scheme which includes a
much wider class of constitutive relations involving either values and rates of
the kinematic and static state variables encompassing most of the engineering
models of material behaviour.

This general model is called generalized elasticity to recall that its genesis
consists in a suitable extension of the classical linear elastic relation.

Figure 4.1: Thomas Young (1773 - 1829)

4.2 Constrained elastic law
Let us consider a reference placement B and the actual placement Ω = χ(B)
of the body in the euclidean space {S ,g} .

In a general setting, admissible strain fields in B are described by symmetric
tensor fields taking their point values at a particle p ∈ B in a nonlinear finite
dimensional manifold D , called the admissible strain manifold at p ∈ B .

A standard example of a nonlinear manifold of admissible strains is provided
by the assumption of the incompressibility constraint (isochoric replacements).
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The admissible strain manifold is then the unimodular group of symmetric
tensors ε ∈ BL (TpB2 ;<) such that

det Gram(ε) = 1 ,

with Gramij(ε) = ε(di,dj) and {di , i = 1, 2, 3} orthonormal basis in TpB .

Definition 4.2.1 An elastic law on a nonlinear admissible strain mani-
fold D is a vector bundle homomorphism E ∈ C1(TD ;T<) , that is a fiber
preserving, fiber linear and differentiable map from the tangent bundle πD ∈
C1(TD ; D) to the tangent bundle π< ∈ C1(T< ;<) . An elastic law admits an
elastic potential if there exists a map ϕE ∈ C1(D ;<) such that

TϕE = E .

Theorem 4.2.1 (Elastic law) An elastic law is equivalently described by a
cross section of the cotangent bundle T ∗D , that is a differential one-form E ∈
C1(D ;T ∗D) with π∗D ◦ E = idD .

Proof. The vector bundle homomorphism E ∈ C1(TD ;T<) is fiber preserv-
ing and hence defines a base morphism ϕE ∈ C1(D ;<) by the commutative
diagram:

TD
E−−−−→ T<

πD

y yπ<
D

ϕE−−−−→ <

⇐⇒ ϕE ◦ πD = π< ◦ E ∈ C0(TD ;<) .

The elastic law E ∈ C1(TD ;T<) may then be regarded as a field which asso-
ciates with any strain ε ∈ D a linear map E(ε) ∈ BL (TεD ;TϕE(ε)<) . By the
isomorphism between TϕE(ε)< and {ϕE(ε)}×< and the identification between
{α0}×< and < made by setting {α0 , α} ' {0 , α} ' α for all α ∈ < , we may
assume that E(ε) ∈ BL (TεD ;<) = T ∗εD and the vector bundle homomorphism
may be considered as a differential one-form on the admissible strain manifold
D , i.e. E ∈ C1(D ;T ∗D) with π∗D ◦ E = idD . �

The covectors in T ∗εD are the effective stresses at ε ∈ D and the covector
E(ε) ∈ T ∗εD is the stress field elastically associated with the strain ε ∈ D . The
elements of the linear tangent space TεD are called admissible tangent strains
at ε ∈ D . If the manifold D of admissible strains is endowed with a metric
field, there is an isomorphism gD ∈ BL (TD ;T ∗D) and each effective stress
σ ∈ T ∗D can be represented by a tangent strain-like vector g−1

D ◦ σ ∈ TD .
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4.2.1 Elastic potential
The specific work performed at the particle p ∈ B by the elastic stress field
E◦γ ∈ C1(I ;T ∗D) along a loop γ ∈ C1(I ; D) in the admissible strain manifold,
is provided by the circuitation integral∮

γ

E =

∫ b

a

E(γ(λ)) · ∂µ=λ γ(µ) dλ ,

with γ(a) = γ(b) and ∂µ=λ γ(µ) ∈ Tγ(λ)γ ⊂ Tγ(λ)D .
Let us now assume that the 1-D Betti’s number of the admissible strain

manifold D vanishes, i.e. that any loop in D is the boundary of a 2-D sub-
manifold Σ ⊂ D .

Then we may put γ = ∂Σ , and the circuitation of the one-form E along
any loop vanishes if and only if it is a closed form on D , since this means that
its exterior derivative vanishes dE = 0 and then, by Stokes formula:∮

γ

E =

∮
∂Σ

E =

∫
Σ

dE = 0 .

The exterior derivative dE(ε) at ε ∈ D is evaluated by the formula

dE(ε) ·X(ε) ·Y(ε) = dX(ε)(E ·Y)− dY(ε)(E ·X)− E(ε) · [X ,Y](ε) ,

where X,Y ∈ C1(D ;TD) are vector fields of admissible tangent strains.
Being tensorial, the exterior derivative dE(ε) depends only on the point

values X(ε),Y(ε) ∈ TεD . However, none of the terms at the r.h.s. of the
defining equality is tensorial.

We recall that the differential of the functional E · Y ∈ C1(D ;<) at the
point ε ∈ D is the linear map Tε(E · Y) ∈ BL (TεD ;<) such that for all
vectors X(ε) ∈ TεD :

Tε(E ·Y) ·X(ε) := TX(ε)(E ·Y) = dX(ε)(E ·Y) .

In a local chart ϕ ∈ C1(D ;E) , in terms of partial derivatives:

d(ϕ↑E)(ε) ·X(ε) · Y (ε) = dX(ε)(ϕ↑E · Y )(ε)− dY (ε)(ϕ↑E ·X)(ε) ,

where ε ∈ E and X,Y ∈ C1(E ;E) are constant fields, that is they are parallel
transported according to the distant connection by translation in the linear
space E . Then [X ,Y ] = 0 since the corresponding flows commute.
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Let us further assume that the admissible strain manifold is star shaped, i.e.
that it can be homotopically contracted to a point. Then the closedness of the
one-form E ∈ C1(D ;T ∗D) implies, by Poincaré Lemma 1.9.1 on page 183,
that there exists a scalar potential ϕE ∈ C1(D ;<) such that

E = dϕE = TϕE ,

since the exterior differential reduced to the differential, for scalar potentials.
The elastic potential ϕE ∈ C1(D ;<) is given by

ϕE(ε)− ϕE(ε0) =

∮
∂γ

E =

∫
γ

dE ,

where γ is any 1-D chain with boundary ∂γ = ε− ε0 .

4.2.2 Unconstrained elasticity
If the admissible strain manifold D is a linear space, denoting by D∗ the dual
space, the tangent bundle TD is isomorphic to the cartesian product D ×D
and may be identified with the linear space D by setting {ε0 , ε} ' {0 , ε} ' ε
for all ε ∈ D . The cotangent bundle T ∗D is isomorphic to the cartesian
product D × D∗ and may be identified with the dual space D∗ by setting
{ε0 ,σ} ' {0 ,σ} ' σ for all σ ∈ D∗ .

An elastic law on a linear strain manifold D is then a map E ∈ C1(D ; D∗)
and the exterior derivative dE(ε) may be expressed as

dE(ε) ·X(ε) ·Y(ε) = dX(ε)(E ·Y)(ε)− dY(ε)(E ·X)(ε) ,

where ε ∈ D and X,Y ∈ C1(D ; D) are constant fields in the linear space D .
Then, by evaluating the differential Tε(E ·X) ∈ BL (TεD ;<) of the functional
E ·X ∈ C1(D ;<) at the point ε ∈ D , by the constancy of X ∈ C1(D ; D) , we
get that

Tε(E ·X) = TεE ·X(ε) .

and the integrability condition may be written

dE(ε) ·X(ε) ·Y(ε) = dX(ε)(E ·Y)(ε)− dY(ε)(E ·X)(ε)

= TεE ·Y(ε) ·X(ε)− TεE ·X(ε) ·Y(ε) = 0 ,

If moreover the elastic map is linear, that is E ∈ BL (D ; D∗) , we have that

TεE ·X(ε) = lim
λ→0

1

λ
(E(ε+ λX(ε))− E(ε)) = E ·X(ε) ,
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that is
TεE = E ,

and the integrability condition writes

(dE ·X ·Y)(ε) = E ·X(ε) ·Y(ε)− E ·Y(ε) ·X(ε) = 0 .

Then, by considering the elastic map E ∈ BL (D ; D∗) as a twice covariant
tensor E ∈ BL (D2 ;<) , the integrability condition amounts to require that the
elastic tensor be symmetric.

4.2.3 Linearized elasticity
The linearization of an elastic law E ∈ C1(D ;T ∗D) cannot be performed by
the associated tangent map TεE ∈ C1(TεD ;TE(ε)T

∗D) , Indeed it does not
transform a tangent vector δε ∈ TεD at a strain point ε ∈ D into a stress
form but rather into a tangent vector TεE · δε ∈ TE(ε)T

∗D at the stress form
E(ε) ∈ T ∗εD . Then the natural candidate for linearization is the following.

Definition 4.2.2 The incremental form at ε ∈ D of the nonlinear elastic
law E ∈ C1(D ;T ∗D) according to the connection ∇ on D is the map

∇εE ∈ BL (TεD ;T ∗εD) ,

which associates, with any tangent strain δε ∈ TεD , the corresponding tangent
stress δσ(ε) ∈ VE(ε)T

∗D ' T ∗εD which is the covariant derivative of the
elastic law E ∈ C1(D ;T ∗D) along the tangent strain δε ∈ TεD :

δσ(ε) = ∇E · δε .

Let us recall that the covariant derivative of a field of one-forms E ∈ C1(D ;T ∗D)
at ε ∈ D is defined by a formal application of Leibniz rule:

〈∇δ1εE , δ2ε〉 = ∇δ1ε〈E , δ2 〉+ 〈E(ε),∇δ1εδ2 〉 , δ1ε, δ2ε ∈ TεD .

According to the given definition, the linearization of the nonlinear elastic law
E ∈ C1(D ;T ∗D) at a strain ε ∈ D depends on the chosen connection. If
the manifold D is included by the map i ∈ C1(D ; M) into a larger manifold
M endowed with a connection ∇M , it is natural to assume in D the induced
connection, given by

∇D := i↓∇M ,

or explicitly: ∇Dδ1 · δ2ε = ∇M(i↑δ1) · i↑δ2ε .
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In a riemannian manifold {M ,gM} the induced metric on D is gD = i↓gM

and the Levi-Civita connections in {M ,gM} and {D ,gD} are related by
∇D = PM ◦ ∇M or, explicitly:

∇Dδ1 · δ2ε = PM(∇M(i↑δ1) · i↑δ2ε) .

where the morphism PM ∈ C1(TM ;TM) is the orthogonal projector on the
fiberwise linear images of TQ by the tangent inclusion map T i ∈ C1(TQ ;TM) .
Then

δσ(ε) = ∇DE · δε ∈ T ∗εD .

Let us denote by δσD(ε) ∈ TεD the stress vector associated with the one form
δσ(ε) ∈ T ∗εD according to the relation gD ◦ δσD(ε) := δσ(ε) . Then, setting
E = gD ◦ ED and recalling the metric property of the Levi-Civita connection,
we have that

gD ◦ δσD(ε) = ∇D(gD ◦ ED) · δε = gD ◦ ∇DED · δε ,

that is
δσD(ε) = ∇DED · δε = PM(∇M(i↑ED) · i↑δε) .

The relation above may be rewritten in terms of the Weingarten map, intro-
duced in section 1.14.2 on page 241, as

δσD(ε) = ∇M(i↑ED) · i↑δε−W(i↑ED(ε), δε) .

This is the expression of the linearized elastic law proposed in [167]. Since the
Weingarten map is tensorial, bilinear and symmetric, the second term on the
r.h.s. vanishes if the stress E(ε) = gD(ED(ε)) vanishes.

Let us now discuss of a special circumstance under which the dependence of
linearization upon the chosen connection disappears.

If the elastic law admits a potential, that is if E = dϕE = ∇ϕE , the linearized
elastic law is expresed by the hessian of the potential. The hessian is defined,
again by Leibniz rule, as the second covariant derivative, through the identity:

∇δ1ε,δ2εϕE :=∇δ1ε∇δ2ϕE +∇∇δ1εδ2ϕE
=∇ε(∇δ2ϕE) · δ1ε+∇εϕE · ∇δ1εδ2 .

Although the evaluation of the terms at the r.h.s. require that the vectors
δ1ε, δ2ε ∈ TεD be extended to vector fields δ1, δ2 ∈ C1(D ;TD) , their sum,
and hence the l.h.s., is independent of the extension. Then the hessian is a twice
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covariant tensor field. Symmetry of the hessian is ensured if the connection is
torsion-free.

Let ε ∈ D be a critical point of the elastic potential ϕE ∈ C1(D ;<) , that
is a stress-free point: ∇εϕE = E(ε) = 0 . Then, being ∇εϕE · ∇δ1εδ2 = 0 , the
formula for the hessian gives

∇δ1ε,δ2εϕE = ∇δ1ε∇δ2ϕE .

Hence, at a critical point of the elastic potential, the hessian of the elastic
potential is independent of the connection.

This result is a correction of the statement in [127], section 4.1.9 , which
claims, without proof, that if E(ε) = 0 then the linearized elastic law is inde-
pendent of the connection.

4.3 Monotone laws and convex potentials
We shall denote by x a point of the domain Ω occupied by the body. Let
D and S be the dual finite dimensional vector spaces of local strains εx and
stresses σx . The subscript x recalls that we are dealing with local values, such
as the variables appearing in the constitutive relations, of global fields pertaining
to the whole structure. In this section we will deal only with local relations and
hence the subscripts x will be dropped to simplify the notation.

A generalized elastic behaviour E ∈ BL (D ; S) is a relation between the
local strain and stress spaces D and S , such that the graph G(E) ∈ D × S
fulfills the following properties:

i) G(E) is maximal monotone ,

ii) G(E) is conservative ,

iii) dom E ⊂ D and dom E−1 ⊂ S are convex sets .

The definition of a monotone graph consists in extending to a general context
the essential properties of a two-dimensional graph which is drawn giving incre-
ments of the same sign along two cartesian axes. A monotone graph can have
horizontal, upward or vertical lines but no downward lines.

This means that the tangent stiffness of the material is nonnegative even if
the tangent compliance may vanish. Hence, the material has a stable behaviour.

In fig.4.2 a generalized elastic behaviour which is multivalued in both di-
rections is sketched. If a point {ε ,σ} ∈ D × S belongs to the graph of a
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ε

σ

Figure 4.2: Typical generalized ε− σ diagram

generalized elastic relation, we have that

{ε ,σ} ∈ G(E) ⇐⇒ σ ∈ E(ε) ⇐⇒ ε ∈ E−1(σ) .

Figure 4.3: Max August Zorn (1906 - 1993)

Maximality of the graph requires that it can be drawn without lifting the
pencil from the paper and extending (ideally) the graph in both directions so
that it has no ends. From the conceptual point of view this last aspect is the
most delicate to deal with. The proof of the existence of at least one maximal
monotone graph is based on Zorn’s Lemma (or equivalently on the Axiom of
Choice) which is at the logical basis of modern mathematics [240].

• The formal statement of the monotonicity property requires that for any
pair of points {ε1 ,σ1} and {ε2 ,σ2} belonging to D× S it is

〈σ2 − σ1, ε2 − ε1 〉 ≥ 0 ∀ {ε1 ,σ1} , {ε2 ,σ2} ∈ G(E) .
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• The maximality property can be stated as follows: if a point {ε ,σ} can
be added to the graph without violating the property of monotonicity,
then this point must belong to the graph. In formulae:

〈σ − σg, ε− εg 〉 ≥ 0 ∀ {εg ,σg} ∈ G(E) =⇒ {ε ,σ} ∈ G(E) .

The potential theory for monotone multivalued operators is developed herafter
in its essential aspects; readers interested in a more detailed presentation are
referred to [?]

• The conservativity of the map E requires the vanishing of the work associ-
ated with the map E along any closed polyline Π̊ε included in dom E ⊆ D
(see fig.4.4): ∮

Π̊ε

〈E(ε), dε〉 = 0 ∀ Π̊ε ⊆ dom E .

˚Π ε domE⊂
ε 1

ε 2

ε 0

ε n-1

ε n

Figure 4.4: A closed polyline.

It is worth noting that the property of monotonicity of the map E ensures
the existence of the integral along any segment belonging to dom E ; moreover,
even if E(ε) is a set, the value of the integral does not depend on the particular
choice of a point in the set E(ε) .

Actually it can be proved [?] that, by virtue of the monotonicity of the graph
G(E) , the number of points in which the scalar product appearing in the integral
above is multivalued is a set of null measure on any segment. Hence these points
turn out to be inessential in the evaluation of the integral.

Let us now consider an arbitrary polyline Πε in D and let i = 0 . . . n be
the number of its vertices. A refinement of Πε is any polyline included in Πε .
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By virtue of the monotonicity of the graph G(E) (see fig.4.5), the following
formula holds for the integral along a polyline Πε ⊆ dom E :

sup

{n−1∑
i=0

〈σi, εi+1 − εi 〉
}

=

∫
Πε

〈E(ε), dε〉 = inf

{n−1∑
i=0

〈σi+1, εi+1 − εi 〉
}
,

where the
∑

are referred to arbitrary refinements of Πε and the choice of
σi ∈ E(εi) is inessential.

Figure 4.5:

If the map E is conservative, the vanishing of the integral along any closed
polyline Π̊ε implies the property of cyclic monotonicity :

• For any n-tuple {εi} with i = 0 . . . n and εn = ε0 , the following in-
equalities hold:

n−1∑
i=0

〈σi, εi+1 − εi 〉 ≤ 0 ,

n−1∑
i=0

〈σi+1, εi+1 − εi 〉 ≥ 0 ,

where σi ∈ E(εi) .

It is apparent that, vice versa, cyclic monotonicity of E implies conservativity.
Let us now remark that for any n-tuple of points {εi ,σi} ∈ D × S , with

i = 0 . . . n and {εn ,σn} = {ε0 ,σ0} , we have:

n−1∑
i=0

〈σi, εi+1 − εi 〉 = −
n−1∑
i=0

〈σi+1 − σi, εi+1 〉 ,

n−1∑
i=0

〈σi+1, εi+1 − εi 〉 = −
n−1∑
i=0

〈σi+1 − σi, εi 〉 .
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It follows that the cyclic monotonicity of E implies the cyclic monotonicity
of the inverse map E−1 , i.e. for any n-tuple of vectors {σi} with i = 0 . . . n
and σn = σ0 , we have the inequalities:

n−1∑
i=0

〈σi+1 − σi, εi 〉 ≤ 0 ,

n−1∑
i=0

〈σi+1 − σi, εi+1 〉 ≥ 0 ,

where εi ∈ E−1(σi) .
The cyclic monotonicity is then a characteristic property of the graph G(E) .
On the basis of this result we can prove that, if E is conservative, its mul-

tivalued inverse map E−1 is conservative as well:∮
Π̊σ

〈E−1(σ), dσ 〉 = 0 ∀ Π̊σ ⊆ S ,

where Π̊σ is any closed polyline belonging to S .
Therefore the conservativity property is an attribute of the graph G(E) .
To prove the formula above we preliminarily note that the integral along a

polyline Πσ ⊆ dom E−1 fulfills the fundamental formula:

sup

{∑n−1
i=0 〈σi+1 − σi, εi 〉

}
=

∫
Πσ

〈E−1(σ), dσ 〉

= inf

{n−1∑
i=0

〈σi+1 − σi, εi+1 〉
}
,

where the
∑

is referred to an arbitrary refinement of Πσ and the choice of
εi ∈ E−1(σi) is inessential.

By virtue of the cyclic monotonicity of the map E−1 , in the formula above
the sup turns out to be nonpositive and the inf is nonnegative; hence the
integral vanishes and the proof is complete.

For any conservative graph two complementary potentials φ : D 7→ < and
ψ : S 7→ < are associated with the multivalued monotone maps E : D 7→ S and
E−1 : S 7→ D .

Given a finite set of points {εi ,σi} with i = 0, . . . , n + 1 belonging to
G(E) such that {εn+1 ,σn+1} = {ε ,σ} , the two complementary potentials
φ : D 7→ < and ψ : S 7→ < are recovered:

• φ : D 7→ < by integrating along the polyline Πε ⊂ D having vertices
{εi} with i = 0, . . . , n+ 1
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• and ψ : S 7→ < by integrating along the polyline Πσ ⊂ S having vertices
{σi} with i = 0, . . . , n+ 1 .

The properties of the graph G(E) ensure that the polylines Πε and Πσ belong
to the domains of E and of E−1 (see fig.4.6).

σn

σn-1

σ1

σ2

σ σ0

˚Π ε domE⊂
ε 1

ε 2

ε 0

ε n-1

ε n

domE− 1Π σ ⊂

Figure 4.6: Polylines

The complementary potentials φ : D 7→ < and ψ : S 7→ < can thus be
defined on the domains of E : D 7→ S and E−1 : S 7→ D by integrating along
the arbitrary polylines Πε and Πσ , according to the relations:

φ(ε)− φ(εo) =

∫
Πε

E , ψ(σ)− ψ(σo) =

∫
Πσ

E−1 ,

It is convenient to extend the two complementary potentials to extended real
valued functions φ : D 7→ R ∪ {+∞} and ψ : S 7→ R ∪ {+∞} , by setting them
equal to +∞ respectively outside the domains of E and E−1 .

To get the expressions of the potentials in a closed form, the integration can
be conveniently performed along straight segments which join the initial and
end points:

φ(ε)− φ(εo) =

∫ 1

0

〈E [εo + t (ε− εo)], ε− εo 〉dt ,

ψ(σ)− ψ(σo) =

∫ 1

0

〈E−1[σo + t (σ − σo)],σ − σo 〉dt.

The analysis of the properties of the potentials φ and ψ can be carried out
by resorting to the basic properties of the integration of monotone multivalued
maps along polylines. The following equalities can thus be inferred:

φ(ε)− φ(εo) = sup

{n−1∑
i=0

〈σi, εi+1 − εi 〉+ 〈σn, ε− εn 〉
}
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= inf

{n−1∑
i=0

〈σi+1, εi+1 − εi 〉+ 〈σ, ε− εn 〉
}
,

where ε ∈ dom E , σ ∈ E(ε) and

ψ(σ)− ψ(σo) = sup

{n−1∑
i=0

〈σi+1 − σi, εi 〉+ 〈σ − σn, εn 〉
}

= inf

{n−1∑
i=0

〈σi+1 − σi, εi+1 〉+ 〈σ − σn, ε〉
}
,

where σ ∈ dom E−1 and ε ∈ E−1(σ) . Note that the
∑

are referred to
arbitrary refinements of Πε and Πσ .

We recall that:

• the epigraph of a function φ : D 7→ R ∪ {+∞} is the subset epiφ ⊂ E×<
defined by:

{ε , α} ∈ epiφ ⇐⇒ α ≥ φ(ε) .

• a function φ : D 7→ R ∪ {+∞} is convex if its epigraph is convex,

• a function φ : D 7→ R ∪ {+∞} is lower semicontinuous if its epigraph is
closed.

From the supremum formula above, we infer that the epigraph of the poten-
tial φ : dom E 7→ < is convex, being the the intersection of a family of closed
convex sets (closed half-spaces) with the convex set (dom E)×< .

However, we cannot infer that the epigraph of φ : dom E 7→ < is closed,
unless (dom E)×< is closed. An analogous observation holds for the potential
ψ : S 7→ < .

Let us now introduce a basic invariance property which links the potentials
φ : D 7→ R ∪ {+∞} and ψ : S 7→ R ∪ {+∞} .
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In fact we have:

φ(ε)− φ(εo) = sup

{n−1∑
i=0

〈σi, εi+1 − εi 〉+ 〈σn, ε− εn 〉
}

= sup

{n−1∑
i=0

〈σi − σi+1, εi+1 〉+ 〈σn − σ, ε〉
}

+ 〈σ, ε〉 − 〈σo, εo 〉

= − inf

{n−1∑
i=0

〈σi+1 − σi, εi+1 〉+ 〈σ − σn, ε〉
}

+ 〈σ, ε〉 − 〈σo, εo 〉

= ψ(σo)− ψ(σ) + 〈σ, ε〉 − 〈σo, εo 〉 .

so that we have the:

• invariance property :

φ(ε1) + ψ(σ1)− 〈σ1, ε1 〉= φ(ε2) + ψ(σ2)− 〈σ2, ε2 〉 ,

∀ {ε1 ,σ1}, {ε2 ,σ2} ∈ G(E) .

The trinomial I(ε,σ) = φ(ε) + ψ(σ) − 〈σ, ε〉 is then a convex functional,
defined on the product space D× S , which is constant on the graph G(E) .

Assuming {εg ,σg} ∈ G(E) , the monotonicity of the graph implies the fol-
lowing inequalities, equivalent to the property of subdifferentiability [90],[112],[179]:

φ(ε)− φ(εg) ≥ 〈σg, ε− εg 〉 ∀ ε ∈ D ⇐⇒ σg ∈ ∂φ(εg) ,

ψ(σ)− ψ(σg)≥ 〈σ − σg, εg 〉 ∀σ ∈ S⇐⇒ εg ∈ ∂ψ(σg) .

In the above relations, equality holds respectively if and only if we have
{εg ,σg} ∈ G(∂φ) and {εg ,σg} ∈ G(∂ψ) .

The property of subdifferentiability is equivalent to the following inclusions:

G(E) ⊆ G(∂φ) , G(E) ⊆ G(∂ψ) .

It is easy to prove that the graphs G(∂φ) and G(∂ψ) are monotone (in particular
cyclically monotone) and hence the maximality of the graph G(E) yields the
equalities:

G(E) = G(∂φ) = G(∂ψ) .
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On the basis of these properties, we infer that the trinomial invariant I(ε,σ) =
φ(ε) + ψ(σ)− 〈σ, ε〉 assumes on the graph G(E) an absolute minimum.

Actually the property of subdifferentiability is equivalent to require the min-
imum property:

I(ε,σg) ≥ I(εg,σg) , ∀ ε ∈ D , I(εg,σ) ≥ I(εg,σg) , ∀σ ∈ S ,

with equality if and only if:

{ε ,σg} ∈ G(E) and {εg ,σ} ∈ G(E) .

This property implies that the graph G(E) is the minimal set for I(ε,σ) .

• The two complementary potentials φ and ψ are said to be conjugate
one another if the corresponding integration constants are fixed so that
I(ε,σ) vanishes on the graph G(E) .

The following Fenchel’s relations then hold [90], [112], [179]:

φ(ε) + ψ(σ) ≥ 〈σ, ε〉 , ∀ {ε ,σ} ∈ D× S ,

and
φ(ε) + ψ(σ) = 〈σ, ε〉 ⇐⇒ {ε ,σ} ∈ G(E) .

Fenchel’s relations may be rewritten in the form:

φ(ε) = max{〈σ, ε〉 − ψ(σ) | σ ∈ S} , ∀ ε ∈ dom E ,

ψ(σ) = max{〈σ, ε〉 − φ(ε) | ε ∈ D} , ∀σ ∈ dom E−1 .

As observed above, the conjugate potentials are convex but not necessarily lower
semicontinuous, unless their domains are closed.

However, it is possible to carry out a regularization procedure by suitably
modifying the values the potentials at the relative boundary points.

The modification consists in substituting, the value +∞ with the smallest
finite value compatible with the property of convexity. Hence the regularization
can be performed by identifying, at the boundary points of their domains, the
potentials with the lower semicontinuos convex functionals of which they are
the restriction.

The expression of the regularized potentials are obtained by substituting the
max with the sup and allowing the argument to range in the whole linear space.
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In the interior of the domains, the two expressions coincide; at the relative
boundary points equality holds after the regularization operation (closure of the
epigraphs) has been performed:

clφ(ε) = sup{〈σ, ε〉 − ψ(σ) | σ ∈ S} ∀ ε ∈ E ,

clψ(σ) = sup{〈σ, ε〉 − φ(ε) | ε ∈ D} ∀σ ∈ S .

where the symbol clφ denotes the closed convex functional whose epigraph is
the closure of the convex functional φ .

• The regularized potentials are known, in convex analysis, as the Fenchel’s
conjugate convex potentials, and are denoted by ψ∗(ε) and φ∗(σ) [90],
[112], [179], and we have:

ψ∗(ε) = cl φ(ε) , φ∗(σ) = cl ψ(σ) .

• The conjugate potentials ψ and φ are said to be regular if the following
equalities hold:

ψ∗(ε) = φ(ε) , φ∗(σ) = ψ(σ) .

Regular potentials are lower semicontinuous and subdifferentiable at any point
of their domains.

• A regular graph is a graph which is conservative, monotone and maximal
and the such that two convex conjugate potentials associated with it are
regular.

On the basis of the relations

G(∂φ) ⊆ G(∂φ∗) and G(∂ψ) ⊆ G(∂ψ∗) ,

the maximality property ensures that:

G(E) = G(∂φ) = G(∂ψ) = G(∂φ∗) = G(∂ψ∗) .

The convex functionals φ∗ and ψ∗ are subdifferentiable only at the points
in which they coincide respectively with the potentials ψ and φ .

The possible differences between the potentials and their closure is exempli-
fied in figs. 4.7 and 4.8. In fig.4.7 we consider a graph of an elastic behaviour
in which the admissible strains ε must belong to the open set dom E . If ε
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Figure 4.7: Open domain
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Figure 4.8: A potential and its regularization.

approaches to a boundary value, the stress σ goes to the infinity and in the
boundary points the elastic potential φ is, by definition, +∞ .

Whenever the area under the graph has a finite value, the closure of the
potential, or equivalently the functional ψ∗ , is finite even at the boundary
points but it is not subdifferentiable there (see fig.4.8).

In the sequel we will assume that the graphs of the constraint relations are
regular. Accordingly, the tools of the subdifferential calculus can be applied.

In the mechanics of elastic structures, the convex potentials φ and ψ are
respectively denoted the elastic energy and the complementary elastic energy.

In the following section we will show how the results of the theory outlined
before, can be specialized to an elastic strictly monotone behaviour and, in
particular, to a linear elastic behaviour.
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4.3.1 Classical elasticity
By virtue of the monotonicity of the graph G(E) , the potentials φ and ψ turn
out to be convex but, in general, they do not result neither strictly convex nor
differentiable.

In the classical theory of elasticity, the graph G(E) is assumed strictly mono-
tone, i.e. monotone and such that:

〈σ2 − σ1, ε2 − ε1 〉 = 0 =⇒ {ε1 ,σ1} = {ε2 ,σ2}.

Hence the complementary potentials φ and ψ are both strictly convex. Since
strictly convexity of one of them implies the differentiability of the other one, it
follows that both potentials turn out to be differentiable. The elastic behaviour
is then one-to-one and we can write:

σ = E(ε) and ε = E−1(σ).

Figure 4.9: Vito Volterra (1860 - 1940)

If the map E is continuously differentiable, the conservativity property can
be ensured by imposing Volterra’s symmetry condition [235]:

〈TεE · ε1, ε2 〉 = 〈TεE · ε2, ε1 〉 ∀ ε ∈ dom E ∀ ε1, ε2 ∈ D .

If E is conservative, the inverse map E−1 is conservative too and its derivative
is symmetric.

The strict convexity of the potentials implies that their second derivatives
are positive definite (see fig.4.10).

If the elastic operator E ∈ C1(D ; S) is linear, we have that

TεE = E ,
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and the conservativity of the operator E implies its symmetry by virtue of
Volterra’s condition. Further, the strict convexity of the elastic potentials
implies that E and E−1 are positive definite. Accordingly, the potentials φ
and ψ are the positive definite quadratic forms:

φ(ε) =
1

2
〈Eε, ε〉 , ψ(σ) =

1

2
〈σ, E−1σ 〉 ,

which assume the same value when evaluated at any point of the graph G(E) .

ε

σ

ε

σ

Figure 4.10: Nonlinear and linear elasticity

4.4 Global and local potentials
In order to analysing the equilibrium properties of a structural model with a
generalized elastic behaviour, the constitutive relations must be written in global
form, i.e. in terms of fields defined in the whole structure.

In a continuous model the global constitutive strain energy in the body with
a generalized elastic behaviour, is a continuous functional ϕE ∈ C0(HD ;<)
defined in HD = L2(Ω ; D) , the Hilbert space of square integrable strain
fields over the domain Ω occupied by the body.

We show that local subdifferential relations, enforced almost everywhere in
Ω , are equivalently expressed in global form by integrating the relevant convex
functions over the domain Ω .

To this end, let us defined the global elastic energy as the functional over
the elastic strain fields ε ∈ HD expressed by the integral of the specific elastic
energy φx over the whole body domain:

ϕE(ε) =

∫
Ω

φx(εx) dx ,
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where the subscript εx is the value of the field ε ∈ HD at the point x ∈ Ω .
Note that, whenever the local functions are convex, the corresponding global

functional is convex as well, in the relevant fields.
Denoting by d+ the one-sided derivative [179], the subdifferential of the

global generalized elastic energy is locally defined by

σ ∈ ∂ϕE(ε) ⇐⇒ d+ϕE(ε;η) ≥ (( σ , η − ε )) , ∀η ∈ HD ,

where:

d+ϕE(ε;η) =

∫
Ω

d+φx(εx;ηx) dx, (( σ , η − ε )) =

∫
Ω

σx : (ηx − εx) dx,

and the symbol : denotes the scalar product between the local values of dual
fields. The subdifferential of the local elastic energy is given by:

σx ∈ ∂φ(εx) ⇐⇒ dφ(εx;ηx) ≥ σx : (ηx − εx) , ∀ηx ∈ D,

for almost every x ∈ Ω and the following equivalence are easily proved [168]:

σ ∈ ∂ϕE(ε) ⇐⇒ σx ∈ ∂φx(εx) a.e. in Ω.

4.5 Elastic structures
In a structural model the state variables are given by two dual pairs:

• force systems f ∈ F and displacement fields u ∈ V ,

• stress fields σ ∈ HS and strain fields ε ∈ HD ,

where HD = L2(Ω ; D) and HS = L2(Ω ; S) are respectively the Hilbert
spaces of square integrable stress and strain fields in Ω , V is the Hilbert
space of Green-regular displacement fileds in Ω and F is its topological dual,
the linear space of force systems.

Between dual variables a regular generalized elastic relation of the type pre-
viously discussed is imposed.

As schematically depicted in fig. 4.11, the relation between the internal vari-
ables {ε,σ} is monotone nondecreasing while the relation between the external
variables {u, f} is monotone nonincreasing. We denote by:

φ : HD 7→ R ∪ {+∞} , φ∗ : HS 7→ R ∪ {+∞} ,
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σ f

ε u

Figure 4.11: Constraint relations.

the convex conjugate potentials associated with the relation between the internal
variables and by:

γ : V 7→ R ∪ {−∞} , γ∗ : F 7→ R ∪ {−∞} ,
the concave conjugate potentials associated with the relation between the ex-
ternal variables.

For simplicity of notation, we denote by the same symbol ∂ both the sub-
differential operator of a convex functional and the supdifferential of a concave
functional.

The problem of the elastic equilibrium can be written as follows [168], [187]:
B′σ = f

B u = ε

σ ∈ ∂φ(ε)

u ∈ ∂γ∗(f)

, {u, f , ε,σ} ∈ V × F ×HD ×HS ,

which, in terms of displacements and stresses becomes:{
B′σ ∈ ∂γ(u) ,

B u ∈ ∂φ∗(σ) .

Let us then consider the convex admissible domains of the state variables:
Ua = dom γ ⊆ V admissible displacements,

Fa = dom γ∗ ⊆ F admissible forces,

Da = dom φ ⊆ HD admissible strains,

Sa = dom φ∗ ⊆ HS admissible stresses.
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Moreover let us define the domains:

Ca = {u ∈ V | Bu ∈ Da} , Σa = {σ ∈ HS | B′σ ∈ Fa} ,
of the displacements compatible with the admissible strains and of the stresses
in equilibrium with the admissible forces.

4.6 Existence of a solution
In this section we prove the following result.

Theorem 4.6.1 (Existence conditions) The problem of the elastic equilib-
rium admits a solution if and only if the constraint conditions are statically and
kinematically admissible, i.e.

B′Sa ∩ Fa 6= ∅ , BUa ∩ Da 6= ∅ ,
or equivalently:

Sa ∩ Σa 6= ∅ , Ua ∩ Ca 6= ∅ .
The condition of static compatibility B′Sa∩Fa 6= ∅ states that there exists

at least an external admissible force in equilibrium with an internal admissible
force.

The condition of kinematic compatibility BUa ∩ Da 6= ∅ states that there
exists at least an admissible strain which is compatible with an admissible dis-
placement.

The condition of static compatibility in the form Sa ∩ Σa 6= ∅ states that
there exists at least an internal admissible force in equilibrium with an external
admissible force.

The condition of kinematic compatibility in the form Ua ∩ Ca 6= ∅ states
that there exists at least an admissible displacement which corresponds to an
admissible strain.

If there exists a solution, it is apparent that the two conditions of compati-
bility must be satisfied.

The proof that the two conditions above are also sufficient for the existence
of a solution, is much more challenging. We provide here only a possible path
of reasoning.

Firstly, it is convenient to re-state the problem in terms of one state variable:
the displacement u ∈ V . To this end, substituting the condition of elastic
compatibility:

σ ∈ ∂φ(Bu) ,
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in the equilibrium condition we get:

B′∂φ(Bu) ∩ ∂γ(u) 6= ∅ .

Enforcing the subdifferential chain rule [90], [179]:

∂(φ ◦B)(u) = B′∂φ(Bu) ,

we can write the elastic equilibrium condition in the form:

∂(φ ◦B)(u) ∩ ∂γ(u) 6= ∅ ,

or equivalently:
0 ∈ ∂(φ ◦B)(u)− ∂γ(u) , .

By means of the additivity rule of the subdifferentials [?], the relation above
becomes:

0 ∈ ∂(φ ◦B− γ)(u) .

To prove that this subdifferential inclusion admits at least one solution we con-
jecture the following property.

Lemma 4.6.1 (Property of extension) Let f : X 7→ R ∪ {+∞} be a regu-
lar convex potential and fr : X 7→ R ∪ {+∞} its restriction to a closed convex
set C ⊆ dom f :

fr(x) =

{
f(x) if x ∈ C ,
+∞ otherwise .

Then the following formula holds:

im ∂f ⊆ im ∂fr .

Proof. In fig. 4.12 it is shown how the property im ∂f ⊆ im ∂fr can be
conjectured by observing the graphs of f and fr . �

We can now prove proposition 4.6.1.
To prove the existence of a solution, let us consider the restrictions of φ to

BUa ∩ Da and of γ to Ua ∩ Ca . The condition of the kinematic compatibility
ensures that these restrictions have nonempty domains. Further, the extension
property ensures that:

B′∂φ(Da) ⊆ B′∂φ(BUa ∩ Da) , ∂γ(Ua) ⊆ ∂γ(Ua ∩ Ca) ,
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Figure 4.12: Extension property.

and the condition of static compatibility imposes:

B′∂φ(Da) ∩ ∂γ(Ua) 6= ∅ ,

so that, a fortiori, we have: B′∂φ(BUa∩Da)∩∂γ(Ua∩Ca) 6= ∅ . The chain rule
of subdifferential calculus allows us to write the equality:

B′∂φ(BUa ∩ Da) = ∂(φB)(Ua ∩ Ca) ,

so that we have:

∂(φ ◦B)(Ua ∩ Ca) ∩ ∂γ(Ua ∩ Ca) 6= ∅ .

Finally, the additivity rule of the subdifferential calculus yields:

0 ∈ ∂(φ ◦B− γ)(Ua ∩ Ca)

and the proposition 4.6.1 is proved. �

It is worth noting that an analogous process can be repeated by stating the
problem in terms of stresses.

4.7 Limit analysis
The following variational form is thus entailed for the static compatibility con-
dition B′Sa ∩ Fa 6= ∅ , [188]:

inf
f∈Fa

〈f ,v〉 ≤ sup
σ∈Sa

〈σ,Bv〉 ∀ − v ∈ NFa ; Bv ∈ NSa
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while the kinematic compatibility condition BUa ∩ Da 6= ∅ becomes:

sup
ε∈Da

〈τ , ε〉 ≥ inf
u∈Ua

〈τ ,Bu〉 ∀ τ ∈ NDa ;−B′τ ∈ NUa .

Analogously it turns out to be:

Sa ∩ Σa 6= ∅ ⇐⇒ sup
σ∈Sa

〈σ, ε〉 ≥ inf
σ∈Σa

〈σ, ε〉 ∀ ε ∈ NSa ∩ −NΣa

Ua ∩ Ca 6= ∅ ⇐⇒ sup
u∈Ua

〈f ,u〉 ≥ inf
u∈Ca

〈f ,u〉 ∀ f ∈ NUa ∩ −NCa .

The discussion of the static compatibility condition is the field of the static limit
analysis which is synthetically expounded in the sequel. In perfect duality an
analogous treatment can be carried out for the kinematic compatibility condi-
tion which is the object of the kinematic limit analysis. Whenever the static
compatibility condition is fulfilled, the set Sa ∩ Σa is non-empty. Let then
σo ∈ Sa be an admissible stress which is in equilibrium with an admissible ex-
ternal force B′σo = fo ∈ Fa . Further, let LinFa and LinSa be the subspaces
parallel to the linear varieties generated by Fa and Sa .

Let us introduce the definition of collapse mechanism. We shall say that
uo ∈ V is a collapse mechanism if it turns out to be a free mechanism:

−uo ∈ NFa(fo)

which is compatible with a collapse free deformation:

εo = Buo ∈ NSa(σo)

εo 6∈ (LinSa)
⊥

uo 6∈ (LinFa)
⊥

Three different kinds of mechanisms can be distinguished:

uo 6∈ (Lin B′Sa)
⊥ internal collapse ,

uo 6∈ (LinFa)
⊥ external collapse ,

uo 6∈ (Lin B′Sa)
⊥ ∩ (LinFa)

⊥ simultaneous collapse .

Let us prove the following fundamental result:

Proposition 4.7.1 (Fundamental theorem of limit analysis) A collapse mech-
anism does exist if and only if the structure attains a static limit state, that is
if and only if the admissible convex sets B′Sa and Fa are separate.
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Proof. The equation of a hyperplane separating the sets Sa and Σa which
contains a point σo ∈ Sa ∩ Σa is:

〈σ − σo, εo 〉 = 0, σ ∈ S

so that the following inequalities do hold

〈σ − σo, εo 〉 ≤ 0 ∀σ ∈ Sa
〈σ − σo, εo 〉 ≥ 0 ∀σ ∈ Σa;

hence:
sup
σ∈Sa

〈σ, εo 〉 = 〈σo, εo 〉 = inf
σ∈Σa

〈σ, εo 〉

or equivalently:
εo ∈ NSa(σo) ∩ −NΣa(σo)

The result follows then from the formula:

NΣa(σo) = BNFa(B′σo)

which can be obtained by recalling that:

NΣa(σo) = ∂ tΣa (σo)

and observing that, by definition, it turns out to be:

tΣa(σo) = tFa(B′σo) = (tFaB′)(σo) .

By virtue of the chain rule of the subdifferentials we finally get:

∂ tΣa (σo) = ∂(tFaB′)(σo) = B∂ tFa (B′σo)

which provides the result. �

Hence there exists uo ∈ NFa(B′σo) such that εo = Buo .
The strict separation of the domains Fa and B′Sa requires further that

uo ∈ (LinFa)
⊥ or equivalently Buo ∈ (LinSa)

⊥, i.e. uo is a collapse mecha-
nism.

The strain εo = Buo represents the normal to the separating hyperplane of
the convex sets Sa and Σa , while the collapse mechanism uo represents the
normal to the hyperplane separating the convex sets B′Sa and Fa .

The result is sketched in figs. 4.13 and 4.14.
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Figure 4.14:

4.7.1 Loading processes
Let us consider the case in which the convex set of the admissible external forces
is defined as sum of a load variable with an affine law ` = `o + λ `d and of a
fixed convex set of constraint reactions Ra :

Fa = `o + λ`d +Ra

.
We are interested to evaluate the values of the loading parameter λ ∈ <

corresponding to the static limit conditions.
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The condition expressing the admissibility of the load is given by:

〈`o,v〉+ 〈λ`d,v〉+ inf
r∈Ra

〈r,v〉 ≤ sup
σ∈Sa

〈σ,Bv〉 ∀ −v ∈ NRa ; Bv ∈ NSa .

that is:

λ〈`d,v〉 ≤ sup
σ∈Sa

〈σ,Bv〉−〈`o,v〉− inf
r∈Ra

〈r,v〉 ∀ −v ∈ NRa ; Bv ∈ NSa .

Defining the convex set of the admissible loads as:

Λa = B′Sa −Ra

the convex set of the trial mechanisms:

NΛa = {v ∈ V | −v ∈ NRa , Bv ∈ NSa}

and the sublinear functional of the virtual dissipation:

D(v) = sup
`∈Λa

〈`,v〉 − 〈`o,v〉 = sup
σ∈Sa

〈σ,Bv〉 − inf
r∈Ra

〈r,v〉 − 〈`o,v〉,

we can express the admissibility condition of the loading parameter by means
of the following three variational conditions:

0≤ D(v) ∀v ∈ NΛa , 〈`d,v〉 = 0 ,

λ≤ D(v) ∀v ∈ NΛa , 〈`d,v〉 = 1 ,

λ≥ −D(v) ∀v ∈ NΛa , 〈`d,v〉 = −1 ,

which can be equivalently stated in mechanical terms:

• It is non-negative the virtual dissipation associated with any trial mech-
anism for which the unit vector of the loading process performs a null
virtual power.

• The loading parameter must be not greater than the virtual dissipation
associated with every trial mechanism for which the unit vector of the
loading process performs a virtual power of unit value.

• The loading parameter must be not less than the opposite of the virtual
dissipation associated with every trial mechanism for which the unit vector
of the loading process performs a negative virtual power of unit value.
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The first variational condition amounts to imposing that:

`o ∈ Λa + Lin `d

or equivalently that the reference load `o belongs to the cylinder having directrix
Λa and generatrix `d . Provided that the previous condition is satisfied, we set:

λ+= inf{D(v) | v ∈ NΛa , 〈`d,v〉 = 1}
λ−= sup{−D(v) | v ∈ NΛa , 〈`d,v〉 = −1} .

The loading parameter will then turn out to be admissible if and only if:

λ− ≤ λ ≤ λ+

and it will yield a limit static condition when it does attain one of the extremal
values. The contents of the previous discussion are exemplified in fig. 4.15.

O

Λ a + Lin{ℓ d}

λ
+

λ
−

ℓ d

ℓ o

Λ a

ℓ o + λ ℓ d

Figure 4.15:

4.7.2 Combined loading
Let safe multipliers for each loading of a finite family be known. By a simple
geometric argument, it is then possible to find a safe multiplier for any loading
belonging to the conical hull of the family.

To see this, let {fi |∈ i ∈ I} be the family of loadings and {λi > 0 | i ∈ I}
be a set of positive multipliers such that λifi ∈ Λa , the convex set of admissible
loadings.

498



Variational principles Giovanni Romano

Given a loading in the conical hull of the family, i.e. such that f =
∑
i∈I αifi

with αi ≥ 0 ∀ i ∈ I , the positively scaled loading λf , with λ > 0 , will then be
in the conical hull of the loadings λifi with coefficients λ(αi/λi) ≥ 0 ∀ i ∈ I ,
due to the trivial equivalence

f =
∑
i∈I

αifi ⇐⇒ λf = λ
∑
i∈I

αi
λi

(λifi) .

It follows that the scaled loading λf will be in the convex hull of the family
{λifi |∈ i ∈ I} if and only if∑

i∈I
λ (
αi
λi

) = 1 ⇐⇒ 1

λ
=
∑
i∈I

αi
λi
.

This geometrical formula provides a simple way to find a safe multiplier for
a loading which is in the conical hull of a family of loadings with known safe
multipliers.

4.8 Variational principles
We have shown how the problem of elastic equilibrium can be naturally ex-
pressed through the subdifferential inclusions [189]:{

B′σ∈ ∂γ(u) ,

B u ∈ ∂φ∗(σ) .

By invoking Fenchel’s relations we realize that the two previous inclusions
can be equivalently written as:

φ(Bu) + φ∗(σ) = 〈σ,Bu〉 ,
γ(u) + γ∗(B′σ) = 〈σ,Bu〉 .

Recalling that, for every v ∈ V and τ ∈ HS , one has:

φ(Bv) + φ∗(τ ) ≥ 〈τ ,Bv〉 ,
γ(v) + γ∗(B′τ ) ≤ 〈τ ,Bv〉 ,

it follows that, for every v ∈ V , τ ∈ HS , it is:

φ(Bv)− γ(v)≥ −φ∗(τ ) + γ∗(B′τ ) ,

φ(Bu)− γ(u) = −φ∗(σ) + γ∗(B′σ) ,

if and only if a pair {u,σ} is a solution of the problem of the elastic equilibrium.
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We define the convex functional potential energy and the concave functional
complementary energy of the structural model as:

F(u) = φ(Bu)− γ(u) ,

G(σ) = −φ∗(σ) + γ∗(B′σ) .

A solution in terms of displacements and stresses can then be characterized
as a minimum or maximum of these functionals.{

u = arg minF

σ= arg maxG

and they assume the same value at a solution point:

F(u) = G(σ) .

4.8.1 Hellinger-Reissner functional
Let us first examine the problem of elastic equilibrium formulated in terms of
displacements and stresses.

Defining the dual spaces X = V × HS and X ′ = F × HD , the structural
problem assumes the form: ∣∣∣∣ o

o

∣∣∣∣ ∈ A

∣∣∣∣ u
σ

∣∣∣∣
where the operator A : X 7→ X ′ is defined by

A =

∣∣∣∣ −∂γ B′

B − ∂φ∗
∣∣∣∣ .

The operator A is sum of a linear symmetric operator and of two conservative
monotone multivalued operators, respectively nonincreasing and nondecreasing,
in the state variables u and σ .

It follows that the operator A is conservative.
The relevant potential can be obtained in a direct way by integrating along

the ray individuated by the point {u ,σ} :∫ {u,σ}
{o,o}

〈A
∣∣∣∣ ū
σ̄

∣∣∣∣ , ∣∣∣∣ dūdσ̄
∣∣∣∣ 〉 =

=

∫ {u,σ}
{o,o}

{−〈∂γ(ū), dū〉+ 〈B′σ̄, dū〉+ 〈Bū, dσ̄ 〉 − 〈∂φ∗(σ̄), dσ̄ 〉}
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which provides the expression of the potential:

R(u,σ) = −γ(u)− φ∗(σ) + 〈σ,Bu〉 .

This potential, which is the generalization of the potential known in the litera-
ture as the Hellinger-Reissner functional, is convex in u and concave in σ .
A solution of the generalized elastic problem is then a saddle point of R(u,σ) :

{u,σ} = arg min maxR .

The classical extremum and saddle point principles, exposed in Sections ??
and 4.8.1, are elements of a family of stationarity principles equivalent to the
problem of elastic equilibrium.

Their expression can be obtained by a direct approach based on the potential
theory for multivalued monotone operators, as exposed in Section 4.3.

4.8.2 The variational tree
Formulating the problem of generalized elastic equilibrium in terms of all state
variables, we get 

B′σ = f

B u = ε

σ ∈ ∂φ(ε)

u ∈ ∂γ∗(f)

The dual product spaces are X = V×HS×HD×F and X ′ = F×HD×HS×V
and the operator A : X 7→ X ′ governing the structural problem is given by:

A =



O B′ O −IF

B O −ID O

O −IS ∂ϕE O

−IV O O ∂J∗


By integrating along a ray in X , we get the expression of the potential:

L(ε,σ,u, f) = φ(ε) + γ∗(f) + 〈σ,Bu〉 − 〈σ, ε〉 − 〈f ,u〉 ,
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which is convex in ε , concave in f and linear in u and σ . A solution
{ε,σ,u, f} then is a minimum point with respect to ε , a maximum point
with respect to f and a stationarity point with respect to u e σ .

By properly eliminating the state variables, a family of ten potentials are
generated according to the following tree-shaped scheme:

{ε,σ,u, f}

{ε,σ,u} {σ,u, f}

{ε,σ} {σ,u} {u, f}

{ε} {σ} {u} {f}

The variational family consists of the following ten potentials:

L(ε,σ,u, f) = φ(ε) + γ∗(f) + 〈σ,Bu〉 − 〈σ, ε〉 − 〈f ,u〉,

H1(ε,σ,u) = φ(ε)− γ(u) + 〈σ,Bu〉 − 〈σ, ε〉,

H2(σ,u, f) = −φ∗(σ) + γ∗(f) + 〈σ,Bu〉 − 〈f ,u〉,

R1(ε,σ) = φ(ε) + γ∗(B′σ)− 〈σ, ε〉,

R2(σ,u) = −φ∗(σ)− γ(u) + 〈σ,Bu〉,

R3(u, f) = φ(Bu) + γ∗(f)− 〈f ,u〉,

P 1(ε) = φ(ε)− (γ∗B′)∗(ε),

P 2(σ) = −φ∗(σ) + γ∗(B′σ),

P 3(u) = φ(Bu)− γ(u),

P 4(f) = −(φ ◦B)∗(f) + γ∗(f).

All the potentials of the family do assume the same value at a solution point.
The extremum properties of each potential can be easily deduced by evalu-

ating the convexity or concavity property with respect to each argument.

Remark 4.8.1 The expression of the potentials P 1 and P 4 requires the eval-
uation of the conjugate functionals (γ∗ ◦B′)∗ and (φ◦B)∗ . Since they contain
the deformation operator B of the structure, the evaluation of (γ∗ ◦B′)∗ and
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(φ◦B)∗ requires the solution of an auxiliary problem of elastic equilibrium. For
this reason the potentials P 1 and P 4 are not classically quoted in the literature.
The extremum principle corresponding to P 4 can be applied in special circum-
stances in which the non-linearity of the problem is confined to the external
constraint relation.

4.8.3 Variational inequalities
The extremum properties of the functionals of the variational family can be
expressed by requiring that the partial sub(sup)differentials with respect to
each argument contain the null vector of the dual space.

Let us examine the case of the elastic potential functional whose minimum
condition can be written as:

o ∈ ∂F(u) ⇐⇒ F(v)− F(u) ≥ 0 ∀v ∈ V

⇐⇒ dF(u; h) ≥ 0 ∀h ∈ V ,

where d denotes the one-side derivative [179].
By making explicit the expression of F the extremum condition becomes

φ(Bv)− φ(Bu) ≥ γ(v)− γ(u) ∀v ∈ V ,

or equivalently, by virtue of the additivity property of the subdifferentials

dφ(Bu; Bh) ≥ dγ(u; h) ∀h ∈ V .

In the case of linear elasticity the elastic potential turns out to be quadratic. De-
noting by b the bilinear form of the elastic energy, so that φ(u) = 1/2 b (u,u) ,
the variational inequality becomes:

b(u,h) ≥ dγ(u; h) ∀h ∈ V.

Similar results can be written for all the functionals of the family.

4.8.4 Uniqueness of the solution
It has been shown how the issue of the existence of a solution for the problem of
the generalized elastic equilibrium is amenable to a precise answer under very
general hypotheses.

On the contrary the analysis of the properties of the solution set {u, f , ε,σ}
can be performed more effectively by making use of the peculiar properties of
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the problem under examination. Actually, only simple considerations can be
made in the general context.

If the elastic relation E is strictly monotone the potential φ turns is strictly
convex and the solution in terms of deformations is unique. Uniqueness of the
solution in terms of displacements is then guaranteed and it is defined apart
from an additional rigid body which leaves the potential φ unaltered. If the
elastic law E−1 is strictly monotone the solution in terms of stresses is unique;
clearly this implies the uniqueness of the external forces at a solution point.

4.9 Ultraelastic models
The generalized elastic model represents a valuable reference model for treating
the structural problems in which the description of materials behaviour requires
to simulate ultraelastic phenomena like plastic and viscous flows.

Actually a thorough analysis shows that the formal structure of such prob-
lems is completely similar to the ones considered in the previous paragraphs.

It is then possible to deduce in a systematic way the conditions on the
existence and uniqueness of the solution and the variational formulations of the
problem at hand by properly changing the formal treatment of the generalized
elastic model.

Let us explicitly show how it is possible to frame within the reference formal
context described in the paper the following structural models:

i) perfect plasticity,

ii) incremental plasticity,

iii) viscosity,

iv) viscoplasticity,

v) viscoplasticity with work hardening.

4.9.1 Barrier functionals
The constraint relations which have been considered thus far are described by
potentials whose domains represent the admissible convex sets of the state vari-
ables.

In the applications the potentials are usually defined as sum of a regular
convex potential defined on the whole space and the indicator functional of an
admissible convex set.
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For instance let us consider the case of an elastic relation in which a limitation
is imposed to the range of the stresses.

The elastic complementary energy functional is then written as:

φ∗(σ) = ϕ∗(σ) + tSa(σ) ,

where ϕ∗ is strictly convex, hence differentiable, on S . The elastic energy is
provided by the conjugate potential:

φ(ε) = sup{〈σ̄, ε〉 − φ∗(σ̄) | σ̄ ∈ S}.

By recalling that the conjugate potential of the sum of convex functionals is
given by the inf-convolution [179] of the conjugates of the addends, the following
explicit expression can be obtained:

φ(ε) = inf{ϕ(ē) +D(δ̄) | ē + δ̄ = ε} ,

where D = t∗Sa is the support functional of the convex set Sa , defined by

D(ε) = t∗Sa(ε) := sup{〈σ̄, ε〉 | σ̄ ∈ Sa} .

The infimum appearing in the previous formula is attained in correspondence
of the pairs {e , δ} such that:

e ∈ ∂ϕ∗(σ) , δ ∈ NSa(σ) , e + δ = ε ,

with σ conjugate of ε with respect to φ , i.e. : ε ∈ ∂φ∗(σ) .
The potential φ can then be expressed in the form:

φ(ε) = ϕ(e) +D(δ) .

The admissible domain Sa is usually defined as level set of a barrier convex
functional g : S 7→ R ∪ {+∞} :

Sa = {σ ∈ S | g(σ) ≤ 0} .

The relevant indicator can then be rewritten as:

tSa(σ) = tR− [g(σ)] = (tR− ◦ g)(σ) ,

so that:
NSa(σ) = ∂ tSa (σ) = ∂(tR− ◦ g)(σ).
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The subdifferential of the functional tR− ◦ g can be evaluated by virtue of
the following result contributed by the author in [191]

Let m : < 7→ R ∪ {+∞} be a monotone convex function and g : X 7→
R ∪ {+∞} a continuous convex functional.

The composition m ◦ g : X 7→ R ∪ {+∞} is then a convex functional and
the relevant subdifferential at a point x ∈ X , which is not a minimum for g ,
is given by:

∂(m ◦ g)(x) = ∂m (g(x)) ∂g(x) .

Applying the chain rule with m = tR− one obtains:

NSa(σ) = ∂ tR− [g(σ)]∂g(σ) = NR− [g(σ)]∂g(σ) ,

and hence:

δ ∈ NSa(σ) ⇐⇒ δ ∈ λ∂g(σ) where λ ∈ ∂ tR− [g(σ)] .

The parameter λ is the multiplier associated with the barrier functional g .
Let us notice that the following conditions are equivalent one another:

λ ∈ ∂ tR− [g(σ)] ,

g(σ) ∈ ∂ tR+ (λ) ,

λ ≥ 0 , g(σ) ≤ 0 , λg(σ) = 0 .

The last relations are referred to in the literature as complementarity conditions.
By making use of the chain rule, the generalized elastic relation ε ∈ ∂φ∗(σ) ,

can be written, in terms of the indicator of the admissible domain for the
stresses, in the form:

ε ∈ ∂ϕ∗(σ) + ∂ tSa (σ)

and can be expressed in terms of a multiplier as:{
0 ∈ g(σ)− ∂ tR+ (λ)

0 ∈ ∂ϕ∗(σ) + λ∂g(σ)− ε .

We consider then two multivalued operators M− λ : < × S 7→ < and Mσ :
<× S 7→ D defined by:{

M− λ(λ,σ) = g(σ)− ∂ tR+ (λ) ,

Mσ(λ,σ) = ∂ϕ∗(σ) + λ∂g(σ)− ε .
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The operator M− λ(λ,σ) is monotone nonincreasing in λ and conservative,
for any given σ ∈ dom ϕ∗ ∩ dom g . The operator Mσ(λ,σ) is monotone
nondecreasing in σ and conservative, for any given λ ∈ R+ .

The previous inclusions can be written in symbolic form as:

{0, 0} ∈ M(λ,σ) ,

with the operatorM : <× S 7→ < ×D defined by:

M(λ,σ) =M− λ(λ,σ)×Mσ(λ,σ) .

The relevant Lagrangian potential can be evaluated by two successive integra-
tions with respect to the two variables since the same result is obtained if the
order of integration is inverted.

Apart from inessential integration constants, one obtains the following ex-
pression for the potential:

L(λ,σ) = ϕ∗(σ) + λ g(σ)− 〈σ, ε〉 − tR+(λ) ,

which is convex in σ and concave in λ .
The pair {λ,σ} associated with the deformation ε is thus a saddle point

of the potential L :
{λ,σ} = max

λ̄∈R+
min
σ̄
L(λ̄, σ̄).

The equivalence of the two problems expressed in terms of inclusions and of
saddle point is inferred from:

M− λ(λ,σ) = ∂λ L(λ,σ)

Mσ(λ,σ) = ∂σ L(λ,σ)

Remark 4.9.1 A generalized elastic model of the kind just described has been
proposed in [186] to model the behaviour of structures made of elastic materials
with no tensile strenght. In this case, the domain Sa is a convex cone and the
functional g is the indicator of the negative polar S−a . Hence it is:

δ ∈ NSa(σ) ⇐⇒ σ ∈ NS−a (δ)

⇐⇒ σ ∈ Sa, δ ∈ S−a , 〈σ, δ 〉 = 0 .

The case of unilateral external constraints may be similarly dealt with.
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4.9.2 Perfect plasticity
Plastic deformation phenomena, in metallic materials, occur by motion of de-
fects and dislocations of crystalline lattice and immediately take place.

• The plastic deformation flow p ∈ D , referred to an arbitrary evolutive
parameter t ∈ < , measures the rate of stored plastic deformation during
the process.

• The deformation plastic, stored during the described process by the evo-
lution of t ∈ < in the interval I ⊂ < , is so obtained:

εp(I) :=

∫
I

p(t) .

The coneN = NSa(σ) , of the normal outgoing to a domain Sa of admissible
stresses at point σ ∈ Sa is defined by the following condition:

NSa(σ) := {p ∈ D | 〈τ − σ,p〉 ≤ 0 ∀ τ ∈ Sa} .

• The constitutive model which describes plastic phenomena is said to be
model of associate plastic flow if the plastic flow p ∈ D satisfies the
normal law referring to the convex domain Sa which defines admissible
stress fields, see fig. 4.16, that is:

p(t) ∈ NSa(σ(t)) .

The this constitutive model is said to be of associate plasticity.

By definition of normal cone we have that

〈σ,p〉 ≥ 〈τ ,p〉 ∀ τ ∈ Sa .

and that is
〈σ,p〉 = max{〈τ ,p〉 = t∗Sa(p) ∀ τ ∈ Sa} .

The sublinear function t∗Sa(p) , is said to be the plastic dissipation. This is the
Rodney Hill principle or maximum dissipation principle.
Sa is usually defined as set of zero level of an

• interdiction functional f : S → <∪ {+∞} :

Sa = {σ ∈ S : f(σ) ≤ 0} .
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We can write
tSa(σ) = t<− [f(σ)] = [t<−f ](σ) ,

and then
NSa(σ) = ∂ tSa (σ) = ∂[t<−f ](σ) .

In the case of m = t<− we obtain:

NSa(σ) = ∂[t<− ◦ f ](σ) = ∂t<− [f(σ)]∂ f(σ) = N<− [f(σ)]∂ f(σ) .

Then we have that

p ∈ NSa(σ)⇐⇒ p ∈ λ∂f(σ) con λ ∈ ∂t<− [f(σ)] = N<− [f(σ) .

λ is the multiplier associated with the interdiction convex functional f :
S → <∪ {+∞} . Let us note that the following condition:

λ ∈ ∂t<− [f(σ)]⇐⇒ f(σ) ∈ ∂t<+(λ) ,

is equivalent to:
λ ≥ 0 f(σ) ≤ 0 λ f(σ) = 0 .

4.9.3 Incremental plasticity
In associated plasticity the plastic strain increment fulfills the normality rule to
the convex elastic domain [121]:

p ∈ N with N = NSa(σ) ,

where the dot denotes right time derivative.

Prager consistency condition

If plastic flow satisfies the normality law and continuity from right, respect to
the evolutive paramenter, then the orthogonality property holds:

〈σ̇,p〉 = 0 , σ̇ ∈ TSa(σ) , p ∈ NSa(σ) .

Assuming that p is continuous from the right it can be proved that the nor-
mality rule is equivalent to the following incremental law:

p ∈ NT (σ̇) ⇐⇒ σ̇ ∈ NN (p)

⇐⇒ σ̇ ∈ T , p ∈ N , 〈σ̇,p〉 = 0 ,
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where T = N− is the tangent cone to the elastic domain Sa at the point σ .
On expressing the original evolutive form in the incremental one, the convex

domain Sa is thus substituted by the convex cone T .
Hence the formulation of an elastoplastic problem in incremental terms leads

to a structural model completely analogous to the one formulated for elastic no
tension materials.

The next result is due to Jean Jacques Moreau [146] and provides an
useful tool to discuss the constitutive equations in plasticity, viscoplasticity and
incremental elastoplasticity.

Proposition 4.9.1 (Additive decomposition) Let H be a Hilbert space
and f : H → < ∪ {+∞} and f∗ : H → < ∪ {+∞} be two conjugate regular
convex functionals. Let us consider the functionals

φ̂(x,a) :=
1

2
‖x− a‖2H + f(a) ,

ψ̂(x,b) :=
1

2
‖x− b‖2H + f∗(b) .

Each one of the two minimum problems

φ(x) = min
a∈H

φ̂(x,a) ,

ψ(x) = min
a∈H

ψ̂(x,b) ,

admits a unique solution. The respective absolute minimum points A(x) ,B(x) ∈
H are called by Moreau proximal points and are written as:

A(x) = proxf (x) B(x) = proxf∗(x) .

For any x ∈ H the additive decomposition

x = A(x) + B(x)

holds. It follows that we may set

φ(x) =
1

2
‖x−A(x)‖2H + f(A(x)) ,

ψ(x) =
1

2
‖x−B(x)‖2H + f∗(B(x)) .
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The functionals φ : H → <∪{+∞} and ψ : H → <∪{+∞} are differentiable
in the sense of Frechet and we have that

A(x) = dψ(x) , A(x) ∈ ∂f∗(B(x)) ,

B(x) = dφ(x) , B(x) ∈ ∂f(A(x)) .

4.9.4 Viscoplasticity
Metallic materials in high temperatures, and aggregates and polymeric ones in
room temperature, show a viscous behaviour. The viscous flow p ∈ D is the
time derivative of viscous strain. The viscous flow is univocally determined if
stress is well-known. The viscosity law can be written as:

p =
1

τ
dφ(σ) ,

where

• φ : S → < is the dimensionless viscoplastic potential, convex and differ-
entiable,

• τ > 0 is the relaxation time of material.

During viscoplastic behaviour, if stress is higher than a threshold value then
viscous deformations take place. By choosing suitably the viscoplastic potential,
the above formula provides the viscosity law proposed by Piotr Perzyna [170],
Duvaut and Lions [51].

Duvat and Lions model

Let us assume the following viscoplastic potential

φ(σ) := inf
τ∈Sa

1

2
‖σ − τ‖2C .

Let us apply the result of proposition 4.9.1 to the potentials:

φ(σ) = min
τ∈S
{1

2
‖σ − τ‖2S + tSa(τ )} ,

ψ(s) = min
τ∈S
{1

2
‖σ − s‖2S + t∗Sa(s)} .
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By assuming that S be endowed with the inner product in complementary
elastic energy induced by the elastic compliance C : S → D :

(σ, τ )C := 〈Cσ, τ 〉 ,

we may write:

φ(σ) =
1

2
‖σ −Π(σ)‖2C ,

ψ(σ) =
1

2
‖σ −ΠC(σ)‖2C + t∗Sa(ΠC(σ)) ,

with dφ(σ) = C [σ−Π(σ)] . Finally the law introduced by Duvaut and Lions
in [51] is obtained:

p =
1

τ
C [σ −Π(σ)] ,

where Π : S → S is the orthogonal projector onto the convex Sa ⊂ S in
energy of C : S → D and ΠC : S → S is the complementary projector.

Perzyna model

Let us consider the viscoplastic potential:

φ(σ) := (m ◦ g)(σ) ,

where m : < → <+ is the Young function:

m(α) :=


0 , ifα < 0 ,

1

2
α2 , ifα ≥ 0 ,

and g : S → R∪ {+∞} is an non dimensional, convex and differentiable func-
tional. By the chain rule we get the viscosity law proposed by Perzyna in
[170]:

p =
1

τ
〈g(σ)〉 dg(σ) ,

where the Macaulay bracket is the function defined by

〈α〉 :=

{
0 , ifα < 0 ,

α , ifα ≥ 0 .
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Remark 4.9.2 By setting

g(σ) = ‖σ −Π(σ)‖2C = inf
τ∈Sa

‖σ − τ‖2C ,

the viscoplastic potential φ(σ) := (m ◦ g)(σ) has the expression

inf
τ∈Sa

1

2
‖σ − τ‖2C =

1

2
‖σ −Π(σ)‖2C .

Then the model proposed by Duvaut and Lions is a special case of the one for-
mulated by Perzyna.

4.9.5 Finite step viscosity, plasticity and viscoplasticity
Let us consider a model which stands as a generalization of the one proposed
by Perzyna [170] and which allows to cast the three kinds of constitutive
behaviours within a unitary framework.

To this end let us imagine to assign a yield criterion defined by a continuous
convex functional y : S 7→ R ∪ {+∞} with y(0) = 0 , a scalar k which defines
the yield limit and a flow function m : < 7→ R ∪ {+∞} which is assumed to be
convex, monotone nondecreasing and vanishing on <− .

The barrier functional g , whose zero level set defines the elastic domain, is
given by the difference between the functional y and the threshold value k :

g(σ) = y(σ)− k .

The potential is then expressed as chain of the barrier functional and the
flow function:

φ∗ = m ◦ g .
The viscoplastic flow rule is then given by:

p ∈ ∂φ∗(σ) = ∂(m ◦ g)(σ) = ∂m[g(σ)]∂y(σ).

The formulation of viscoplastic problems in kinematic terms requires the
inversion of the constitutive relation and hence the evaluation of the functional
of viscoplastic dissipation:

φ(p) = (m ◦ g)∗(p) ,

which is the conjugate of the viscoplastic potential φ∗ .
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The inverse relation will assume the form:

σ ∈ ∂φ(p) = ∂(m ◦ g)∗(p).

The expression of the functional (m ◦ g)∗ in terms of the conjugates of m
and g is provided by the relation:

(m ◦ g)∗(p) = inf
α
{m∗(α) + t∗epi (g)(p,−α)} ,

where the support functional of the epigraph of g is given by:

t∗epi (g)(p,−α) =



αg∗
(p

α

)
, if α > 0

t∗dom (g)(p), if α = 0

+∞, if α < 0

Hence the following formula does hold:

φ(p) = (m ◦ g)∗(p) = inf
α≥0

m∗(α) +


αg∗

(p

α

)
if α > 0

t∗dom (g)(p) if α = 0


The three different kinds of constitutive behaviour, namely viscoplastic, viscous
and perfectly plastic, can be simulated by properly defining the threshold value
k and the flow function m .

In the following schematic representations we will consider a sublinear yield
functional y as it does occur in the von Mises criterion.

• A viscoplastic flow can be simulated by setting k > 0 , see fig. 4.16 , 4.17 .

• A viscous flow à la Norton-Hoff kind can be simulated by setting k = 0
and hence g = y see fig. 4.18 , 4.19 .

• A perfectly plastic law can be simulated by setting k > 0 and assuming
as flow function the indicator of <− , see fig. 4.20 , 4.21 .

Formulating the evolutive viscoplastic problem in terms of finite steps and
adopting a backward time integration scheme [121], the constitutive law assumes
the form:

εvp − εvpo
∆t

∈ ∂φ∗(σ) = ∂m[g(σ)]∂y(σ) ,
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while the inverse one becomes

σ ∈ ∂φ
(
εvp − εvpo

∆t

)
.

They are completely equivalent to the ones of the generalized elastic model, un-
der the condition that the term εvpo , which records the viscoplastic deformation
at the end of the previous step, is properly accounted for.

σ

φ*g

σ

m

α σ

ε.

k

Figure 4.16: Viscoplasticity: direct potentials.

4.9.6 Incremental elastoplasticity
The behaviour of several metals at ambient temperature is described in a suf-
ficiently thorough way, in the context of a linearized theory, by an incremental
elastoplastic model in which the total strain rate ε̇ ∈ D is the sum of an elastic
part ė ∈ D and of a plastic part p ∈ D :

ε̇ = ė + p .

We note that a superimposed dot stands for the right time derivative and that
the plastic flux is assumed to be continuous from right.

• The elastic strain rate ė ∈ D is a linear and definite positive function of
the stress rate σ̇ ∈ S :

ė = Cσ̇ .
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φ

ε.

m*

β

g*

ε.k

σ

ε.

Figure 4.17: Viscoplasticity: conjugate potentials.

• The plastic flux p ∈ D is tied to the stress rate σ̇ ∈ S by the Prager’s
constistency law:

p ∈ NT (σ̇) = ∂ t T (σ̇) .

Let us denote by

(e1, e2)E := 〈E e1, e2 〉 , ∀ e1 , e2 ∈ D
the bilinear form of the elastic energy and by TC the cone tangent to the convex
CSa ⊂ D at the point e ∈ D . Then Prager’s law may be rewritten as:

p ∈ NTC(σ̇) = ∂E t TC (ė) .

For a convex functional f : D → < ∪ {+∞}, since the symbol ∂E reminds us
that we have to consider the inner product in elastic energy, we have that:

∂Ef(ė) ⇐⇒ f(η)− f(ė) ≥ 〈Eη −Eė,p〉 = 〈η − ė,p〉E .
The decomposition of total strain ε̇ ∈ D in the sum of the elastic part ė ∈ D
and of the plastic part p ∈ D is governed by the following potentials:

φ(ε̇) =
1

2
‖p‖2C + f(ė) = min

η∈D
{1

2
‖ε̇− η‖2E + t TC(η)} ,

ψ(ė) =
1

2
‖ė‖2C + f∗(p) = min

δ∈D
{1

2
‖ε̇− δ‖2E + tNC

(δ)} ,
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σ

g

m

α

σ

φ*

σ

ε.

Figure 4.18: Norton-Hoff viscosity: direct potentials.

where

• t TC is the indicator function of the convex cone TC tangent at the point
e ∈ D to the admissibility domain CSa ⊂ D of the elastic strains,

• t∗TC = tNC
is the support of the convex cone TC which is also the

indicator function of the convex cone NC normal at the point e ∈ D to
the admissibility domain CSa ⊂ D of the elastic strains:

t∗TC(p) := sup {(η,p)E |η ∈ TC} =


0 if p ∈ NC ,

+∞ if p /∈ NC .

Let us note that:

t∗TC(p) = t∗T (p) = sup {〈 τ̇ ,p〉 | τ̇ ∈ T } .

Finally, the properties

ė = dψ(ε̇) , ė ∈ ∂ tNC
(p) ,

p = dφ(ε̇) , p ∈ ∂ t TC (ė) .
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φ

m*

β

g*

σ

ε.

ε.ε.

Figure 4.19: Norton-Hoff viscosity: conjugate potentials.

hold. The expressions of the potentials φ and ψ show that the elastic and
plastic parts of the total strain rate ε̇ ∈ D are the orthogonal projections in
elastic energy respectively onto the tangent cone TC and onto the normal cone
NC to the elastic domain CSa in the strain space. The projection properties
provide a criterion to perform the decomposition of the total strain rate. The
complementarity properties:

ε̇ = ė + p ė ∈ TC p ∈ NC (ė,p)E = 0 ,

or equivalently

ε̇ = ė + Cσ̇ σ̇ ∈ T p ∈ N 〈σ̇,p〉 = 0 ,

hold.

Remark 4.9.3 Whether the surface of the elastic domain Sa is regular, the
decomposition of the total strain rate in the elastic and plastic parts may be
obtained by means the following procedure. Let n be a vector normal to the
domain CSa with unit norm in elastic energy: (n,n)E = 1 . Then

• if (ε̇,n)E ≤ 0 then ė = ε̇ , p = o ,

• if (ε̇,n)E > 0 then p = (ε̇,n)E n , ė = ε̇− p .
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σ
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σ
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Figure 4.20: Perfect plasticity: direct potentials.

4.9.7 Variational principles in incremental elastoplasticity
Let us consider two functionals of the variational family:

P 2(σ̇) = −φ∗(σ̇) + γ∗(B′σ̇) ,

P 3(u̇) = φ(Bu̇)− γ(u̇) ,

which are respectively the generalized potential and complementary energies of
the incremental elastoplastic problem. Let us set

φ(Bu̇) =

∫
Ω

ψ(Bu̇) dx =
1

2

∫
Ω

‖Bu̇−p(Bu̇)‖2E dx =
1

2

∫
Ω

σ̇(Bu̇) · ė(Bu̇) dx ,

where:

• p(Bu̇) is the plastic part of the rate strain Bu̇ ,

• ė(Bu̇) = Bu̇− p̂(Bu̇) is the elastic part of the rate strain Bu̇ ,

• σ̇(Bu̇) = E (Bu̇)− p̂(Bu̇) is the rate stress state.

Substituting these expressions into the functional P 3(u̇) we deduce that the
solution of the incremental elastoplastic problem, in terms of velocity fields, is
obtained by the extremum problem of the convex functional:

φ(Bu̇)− γ(u̇) = min
v̇∈V

[φ(Bv̇)− γ(v̇)] ,
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σ
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Figure 4.21: Perfect plasticity conjugate potentials.

which is known as Greenberg principle.
Dually the solution in terms of stress is obtained by the expression of the

complementary potential ψ∗ of ψ :

ψ∗(σ̇) =
1

2
‖σ̇‖2E + tN (σ̇) .

By setting

φ∗(σ̇) =

∫
Ω

ψ∗(σ̇) dx =
1

2

∫
Ω

‖σ̇‖2E dx + tN (σ̇) ,

and substituting into the functional P 2(σ̇) we get the extremum problem

−φ∗(σ̇) + γ∗(B′σ̇) = max
τ̇∈T

[−φ∗(τ̇ ) + γ∗(B′τ̇ )] .

which is known as Prager-Hodge principle [173].

4.10 Conclusions
The theory of generalized elasticity illustrated in this chapter embodies the prin-
cipal features of inelastic behaviors and provides a simple and unifying frame-
work for addressing the issues of existence and uniqueness of the solution and
its variational characterizations.
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The brief discussion on the viscoplastic behaviors exemplified in the last
paragraph is not exhaustive but provides a hint for the application of the re-
sults of the theory of generalized elasticity to model the inelastic behaviors of
materials and structures.
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Chapter 5

Constitutive behavior

The description of the mechanical properties of materials is a most challenging
task for the design and the safety control of the dynamical behavior of a body
subject to an history of actions. Materials respond in very different ways to the
action of forces acted upon them by external agencies or by neighbouring bodies
and often the response is time dependent in a very complex way.

By far the most important scheme of material behavior is the elastic model.
A naïve description was due to the great experimentist Robert Hooke in
1676 in the form of the famous anagram ceiiinosssttvv of his statement that:
vt tensio sic vis which asserts in latin language the proportionality between the
elongation ((ex)-tensio) and the force (vis).

The modern form of the elastic law was envisaged by George Green in
1841 who, in his work on the propagation of light in cristallized media [81],
conceived the existence of an elastic potential.

The elastic behavior is caracterized by the reversibility of the strain upon
removal of the action (the stress field) and by the vanishing of the work stored
in the material in a closed loop in the strain space.

Material behaviors other than elastic are usually dubbed anelastic. They in-
clude many important physical phenomena such as linear and nonlinear viscos-
ity, plastic strains, thermally induced strains and phase-transition fronts prop-
agating in the material.

We will not deal with the physics underlying these complex phenomena but
will instead provide a synthetic treatment of the mathematical models envisaged
for the description, at the continuum scale, of their most significant features.
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5.1 Single-phase materials
The constitutive behavior of a single-phase material body is characterized by a
natural placement B , a differentiable submanifold embedded in the euclidean
space {S ,g} , by a square integrable metric tensor field ga : B 7→ BL (TM2 ;<) ,
describing the anelastic deformation field in B , and by a differentiable scalar-
valued function

Wp((ϕ↓g)(p),ga(p)) ,

which provides the elastic energy per unit volume at p ∈ B .
Dropping the explicit dependence on p ∈ B of the arguments, the elastic

energy in B is then given by ∫
B
Wp(ϕ↓g,ga) µ .

If the anelastic metric tensor field ga coincides with the standard euclidean
metric g , the material behavior is in the elastic range. If the elastic energy
density is independent of the position p ∈ B , the material is said to be elastically
homogeneous.

The effects of irreversible changes in the microstructure of the material are
taken into account by a assuming constitutive laws describing the variation of
the anelastic metric tensor as a function of other state parameters, such as
temperature, stress, time and a suitable set of internal variables.

The elastic behavior of the material is characterized by the requirement that,
at any point p ∈ B , the Piola-Kirchhoff stress s∗(p) := Jϕϕ↓σ∗ be the
partial derivative of the elastic energy density Wp(ϕ↓g,ga) with respect to the
configuration induced metric tensor:

s∗(p) = ∂1Wp(ϕ↓g,ga) .

This elastic law is due in essence to George Green [81].
The anelastic stress is defined to be the opposite of partial derivative of the

elastic energy density Wp(ϕ↓g,ga) with respect to the anelastic metric tensor:

s∗M(p) := −∂2Wp(ϕ↓g,ga) .

One would like that the constitutive laws retain the same formal expression
when written in terms of the pushed-forward tensors, the Kirchhoff stress
tensor τ ∗ := ϕ↑s∗ and the anelastic stress tensor τ ∗M := ϕ↑s∗M in the current
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placement:
τ ∗(ϕ(p)) = ∂1Wϕ(p)(g,ϕ↑ga) ,

τ ∗M(ϕ(p)) = −∂2Wϕ(p)(g,ϕ↑ga) .

The result provided in section 1.1.5 on page 15 shows that, to get these expres-
sions, we have to define the elastic energy density, in the current placement,
as

Wϕ(p) := Wp ◦ϕ↓ ,
so that the elastic energy in ϕ(B) is given by∫

ϕ(B)

Wϕ(p)(g,ϕ↑ga) ϕ↑µ ,

In passing from a configuration ϕ ∈ C1(B ;S) to a configuration ξ ◦ ϕ ∈
C1(B ;S) , the transformation rule is accordingly given by

W(ξ◦ϕ)(p) = ξ↑Wϕ(p) := Wϕ(p) ◦ ξ↓ ,

or explicitly

W(ξ◦ϕ)(p)(ξ↑g, (ξ ◦ϕ)↑ga) := Wϕ(p)(g,ϕ↑ga) ,

for any diffeomorphism ξ ∈ C1(ϕ(B) ;S) . This transformation rule, dictated
by form invariance of the constitutive laws, may also be written as:

Wϕ(p) = ξ↓W(ξ◦ϕ)(p) := W(ξ◦ϕ)(p) ◦ ξ↑ .

5.2 The covariance constitutive axiom
In the wake of the treatment developed by Marsden and Hughes in [127],
some authors (see e.g. Simo [219]) prefer to start with a seemingly more general
approach to constitutive relations in thermoelasticity and in elastoplasticity. In
the present context, stated in precise terms, their proposal consists in assuming
that the elastic energy density Wϕ(p) at a placement ϕ(B) depends on the
configuration map, on the euclidean metric and on the push-forward of the
anelastic metric tensor:

Wϕ(p)(ϕ,g,ϕ↑ga) .

To get a physically acceptable expression of the elastic energy density, this ap-
proach compels to invoke a covariance constitutive axiom which imposes that, at
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any configuration ϕ ∈ C1(B ;S) and for any diffeomorphism ξ ∈ C1(ϕ(B) ;S) ,
the following equality must hold:

Wϕ(p)(ϕ,g,ϕ↑ga) := W(ξ◦ϕ)(p)(ξ ◦ϕ, ξ↑g, (ξ ◦ϕ)↑ga) .

Defining, for notational convenience, the push-forward of a diffeomorphism by
ξ↑ϕ := ξ ◦ ϕ , the covariance constitutive axiom may be written in the simple
form

Wϕ(p) = ξ↓W(ξ◦ϕ)(p) ,

with the pull-back ξ↓W defined as usual by:

(ξ↓W )ϕ(p)(ϕ,g,ϕ↑ga) := W(ξ◦ϕ)(p)(ξ↑ϕ, ξ↑g, ξ↑ϕ↑ga) .

This pull-back operation consists in changing the configuration ϕ ∈ C1(B ;S)
into ξ ◦ ϕ ∈ C1(B ;S) and the metric tensor g into its push-forward ξ↑g
according to the diffeomorphism ξ ∈ C1(ϕ(B) ;S) .

The covariance axiom states an invariance property under arbitrary diffeo-
morphisms ξ ∈ C1(ϕ(B) ;S) and is then a generalized version of the principle
of material frame indifference, which states invariance under isometric diffeo-
morphisms, characterized by the property ξ↑g = g .

Setting ξ = ϕ−1 the covariance axiom implies that

Wϕ(p)(ϕ,g,ϕ↑ga) = Wp(i,ϕ↓g,ga) ,

with i ∈ C1(B ;B) the identity map. The dependence of the elastic energy
density Wp on the pull-back of the metric tensor, along the configuration map,
and on the anelastic metric tensor, is thus recovered.

We may then conclude that the requirement of form invariance of the consti-
tutive law, with the elastic energy density Wϕ(p) at a placement ϕ(B) written
in terms of the tensors g ,ϕ↑ga is equivalent to the constitutive covariance
axiom with Wϕ(p) written in terms of ϕ,g ,ϕ↑ga .

Remark 5.2.1 By giving to the elastic energy density the special form:

Wp(ϕ↓g − ga) ,

we have that
s∗(p) = s∗M(p) = dWp(ϕ↓g − ga) .
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Remark 5.2.2 The configuration-induced metric and the anelastic metric are
conveniently descibed as linear operators by means of the representation induced
by the euclidean metric g ∈ BL (TS2 ;<) . We then get the (g-symmetric and
positive definite) linear g-operators:

dϕT dϕ ∈ BL (TM ;TM) , Piola-Green operator ,

Ga ∈ BL (TM ;TM) , reference anelastic operator ,

defined by
ϕ↓g = g (dϕT dϕ) , ga = g Ga ,

Different operator representations of the metric tensors may be obtained by
choosing a metric tensor other than g . The choice of the two metrics ga

and ϕ↓g leads to the representation formulae:

ϕ↓g = ga E , ga = (ϕ↓g) E−1 ,

with dϕT dϕ = Ga E .
It is worth noting that the definition of the tensor E could suggest a kind

of chain decomposition of the Piola-Green operator into an elastic and a plastic
part with the elastic operator E acting before the plastic one Ga . Anyway these
representations may not be convenient since the metrics ga and ϕ↓g are time
dependent in an evolutive process.

5.3 Multi-phase materials
To describe the evolution of phase transition phenomena in multi-phase material
bodies, we consider a partition of the natural placement B of the body into
a finite family T (B) of non-overlapping submanifolds. Each element of the
partition T (B) is constituted by a single-phase material Accordingly, the elastic
energy density of the multi-phase material at a particple p ∈ B is given by

Ŵ (p) = W ((ϕ↓g)(p),ga(p),p) .

Phase-transition phenomena are described by a flow χτ,t ∈ C1(B ;B) which
modifies the reference partition T (B) into an evolving one χτ,t(T (B)) at time
τ ∈ I .
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5.4 Material symmetry
Material symmetry at a point of the natural placement of a body is a measure of
the indifference, of the material response due to a change of placement, to a lin-
ear pre-transformation of the tangent space before that the change of placement
takes place.

For an elastic material behavior this property depends on whether the value
of elastic potential be modified or not by a linear pre-transformation of the
tangent space. In the next section we discuss some basic properties of the set of
linear pre-transformation fulfilling the symmetry property for an elastic material
behavior.

Symmetry Groups

Let us preliminarily give a useful definition. If B is a natural placement
of a material body and Q,R ∈ BL (TpB ;TpB) are linear isomorphisms and
g ∈ BL (TpB2 ;<) any tensor at p ∈ B , we define define the tensor Qg ∈
BL (TpB2 ;<) by the identity

(Qg)(a,b) := g(Q−1a,Q−1b) , ∀a,b ∈ TpB ,

The operation Qg , which is reminiscent of the push forward operation, meets
the property:

Q(Rg) = (RQ)g .

The symmetry group G of the elastic body at p ∈ B is then defined as the set
of linear isomorphisms R ∈ BL (TpB ;TpB) such that

W (ϕ↓(Rg)− g) = W (ϕ↓g − g) , ∀ϕ(p) ∈ BL (B ;S) .

Apparently I,−I ∈ G and

Q,R ∈ G =⇒ QR,RQ ∈ G .

Indeed
W (ϕ↓((QR)g)− g) = W (ϕ↓R(Qg)− g)

= W (ϕ↓(Rg)− g)

= W (ϕ↓g − g) ,

which proves also that

Q ∈ G , QR ∈ G =⇒ R ∈ G .
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Hence R ∈ G and R−1R = I ∈ G imply that R−1 ∈ G .
We may then state that:

• the symmetries of an elastic material form a subgroup G of the algebra
of linear isomorphisms, under the operation of composition. The group
G includes the opposite of each of its elements.

• If the symmetry group is the whole unimodular group (that is the subgroup
of isochoric isomorphisms) the material is an elastic fluid.

• If the symmetry group is included in the orthogonal group (that is the
subgroup of isometric isomorphisms) the material is an elastic solid.

• If the symmetry group includes the whole orthogonal group the material
is said to be isotropic, otherwise aelotropic (or anisotropic).

It can be shown that an elastic material, as defined above, can be either a
fluid or a solid. The mathematical statement consists in the property that the
orthogonal group is a maximal subgroup of the unimodular group [21], [156].

• The elastic energy density of an elastically isotropic material can be ex-
pressed in terms of the principal invariants of the g-symmetric elastic
deformation tensor.

5.4.1 Thermally isotropic materials
In an analogous way, we may define the symmetry group GB of an anelastic con-
stitutive relation. For example sake, let the thermal deformation of a material
be described by the linear incremental law

Ġa = Aθ θ̇ ,

where Aθ ∈ BL (TpB ;TpB) is the g-symmetric operator of thermal expansion
and θ̇ is the temperature rate of variation. The metric tensor Ga is uniquely
defined by requiring that, when applied to perform length measurements of the
edges of a non-degenerated symplex at a point in the reference configuration,
it provides the length of the edges of the thermally deformed symplex. An
isotropic thermal expansion requires that

R AθR
T = Aθ , ∀R ∈ SO(3) .
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Any eigenvector e ∈ TpB of Aθ transforms into an eigenvector Re ∈ TpB
of R AθR

T = Aθ with the same eigenvalue. Hence any nonzero vector is an
eigenvector, that is

Aθ(e) = αθ e , ∀ e ∈ TpB .

so that Aθ = αθ I and hence Ga = αθ θ̇ I where αθ ∈ < is the, temperature
dependent, thermal expansion coefficient of the thermally isotropic material.

5.5 Elastic energy rate due to phase transition
To provide a mathematical formulation of the dissipation phenomena due to
phase transition, we consider a virtual motion of the body in the ambient space
S described by a flow ψτ,t ∈ C1(ϕ(B) ;S) starting at the current configuration
ϕ ∈ C1(B ;S) at time t ∈ I .

The time dependence of the free energy density is expressed by

Wτ := W ((ψτ,t ◦ϕ)↓g ,gaτ ) ,

and the free energy of the body at time τ ∈ I is

Eτ :=

∫
B
Wτ µ .

Let us now evaluate the time-rate of the free energy of the body.
In this respect it is important to notice that the time derivative of the free en-

ergy density Wτ cannot be performed in a classical way since the configuration-
induced metric (ψτ,t ◦ϕ)↓g and the phase-describing field pt ◦χt,τ undergo a
jump at the points p ∈ B which are crossed by the evolving interfaces at time
τ ∈ I .

The corresponding Dirac’s impulses at the interfaces may be conveniently
evaluated by adopting the following procedure.

By additivity, the integral over B is written as the sum of integrals over the
elements Pτ of the partition Tτ (B) = χτ,t(T (B)) at time τ ∈ I :

Eτ =

∫
Tτ (B)

Wτ µ :=
∑∫

Pτ
Wτ µ .

Then the time derivative is evaluated by making recourse to the transport for-
mula:

∂τ=t

∫
Pτ
Wτ µ =

∫
P
Ẇµ+

∫
P
Lχ̇(Wµ) .
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where Lχ̇(Wµ) is the Lie derivative of the free energy volume-form Wµ along
the phase-transition describing flow χτ,t ∈ C1(B ;B) , starting at time t ∈ I
with propagation speed χ̇ ∈ C1(B ;TM) .

By formula v) in proposition 1.4.11

Lχ̇(Wµ) = L(W χ̇)µ = div (W χ̇)µ ,

and the divergence theorem, we get the expression

Ė =

∫
T (B)

Ẇµ+

∫
T (B)

Lχ̇(Wµ)

=

∫
T (B)

Ẇµ+

∫
T (B)

L(W χ̇) µ

=

∫
T (B)

Ẇµ+

∫
T (B)

div (W χ̇)µ

=

∫
T (B)

Ẇµ+

∫
∂T (B)

Wg(χ̇,n) (µn) ,

where µn is the area-form induced on the surfaces ∂T (B) by the volume form
µ in B . Since the flow χτ,t ∈ C1(B ;B) leaves the boundary ∂B invariant, we
have that g(χ̇,n) = 0 on ∂B .

Then, defining the jump [[W ]] = W+ − W− across the phase-transition
interfaces and setting n = n− , the outward normal to ∂P− , we get the final
result:

Ė =

∫
T (B)

Ẇ µ−
∫
I
[[W ]] vχ (µn) ,

where I is the set of phase-transition interfaces travelling with normal speed
vχ = g(χ̇,n) .

Since the normal speed points towards the P+ phase, the impulsive term,
provided by the integral over the interfaces, measures the rate of decrease of the
free energy due to the motion of phase-transition fronts.

5.5.1 Dissipation due to phase transition
Phase-transition phenomena are characterized by the continuity of the config-
uration map with a possible finite jump of its differential across the transition
fronts. These singular surfaces are shock-waves and their propagation requires
a dissipation of energy.
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Phase-transition phenomena are dealt with by relying upon the theory of
singular surfaces travelling in the material, in which Maxwell’s jump condition
and Hadamard’s condition for shock waves are the main analytical tools.

Kinematics of shock waves

To deal with discontinuity surfaces travelling in the material body, we consider
the general case in which the configuration map ϕ ∈ C0(B ;S)∩C1(Pat(B) ;S) is
continuous on B and continuously differentiable in each element of the partition
Pat(B) whose interfaces may travel in the material according to a flow χτ,t ∈
C1(B ;B) . By continuity, the derivatives of ϕ along tangent directions on each
side of the interfaces I of T (B) are equal:

dtϕ
+(p) = dtϕ

−(p) , ∀ t ∈ TpI .

It follows that the differential dϕ(p) ∈ BL (TpB ;Tϕ(p)S) must meet at the
interfaces Maxwell jump condition:

[[dϕ]] = [[dϕ]] n⊗ n .

Then, across a shock wave front, the configuration map is continuous and its
differential may undergo a finite jump.

Figure 5.1: James Clerk-Maxwell (1831 - 1879)

The spatial speed (ϕ ◦χ)̇ of the points travelling on the shock wave, prop-
agating in the material with speed χ̇ ∈ C1(B ;TM) , may be evaluated, by the
Leibniz rule, on each side of the shock wave to get:

(ϕ ◦ χ)̇ = ϕ̇+ dχ̇ϕ = v ◦ϕ+ dχ̇ϕ .

531



Elastic energy rate due to phase transition Giovanni Romano

Since the l.h.s. is continuous across the interface, the following jump condition
must be met:

[[v]] ◦ϕ+ [[dϕ]] χ̇ = 0 .

From Maxwell’s jump condition, setting vχ := g(χ̇,n) , we get Hadamard
condition for shock waves:

[[v]] ◦ϕ+ vχ [[dϕ]] n = 0 .

This condition tells us that the velocity field will undergo, across the shock
wave front, a finite jump equal to the opposite of the finite jump of the normal
derivative of the configuration map times the normal speed of propagation of
the shock wave.

Figure 5.2: Jacques Salomon Hadamard (1865 - 1963)

As shown below, Hadamard’s condition plays a basic role in the evaluation
of the dissipation induced by evolving phase transition interfaces.

Evolution problem

The equilibrium of the body at the current configuration is expressed by the
virtual work condition, which, in the reference placement, is written as

〈f ,v〉=
∫
T(v◦ϕ)(B)

〈S,D(ϕ)̇ 〉g µ , ∀ v ∈ Kin

where v = ψ̇ ∈ Kin is the initial speed along the virtual trajectory described
by the flow ψτ,t ∈ C1(ϕ(B) ;S) and D(ϕ)̇ := ∂τ=t (D(ψτ,t ◦ϕ) .

Let us now assume that the virtual speed v ∈ Kin be compatible with the
normal speed of the phase-transition interfaces travelling according to the flow

532



Elastic energy rate due to phase transition Giovanni Romano

χτ,t ∈ C1(B ;B) . This means that the phase-describing partition T (B) is a
regularity patchwork for the virtual speed v ∈ C1(T (B) ;S) and that it fulfils
the Hadamard condition for shock waves:

[[v]] ◦ϕ+ vχ [[dϕ]] n = 0 ,

at the interfaces I of the partition T (B) . Let us express the free energy in
terms of operators W (D(ϕ),∆, p) , with g∆ = ga . The equilibrium condition
is then obtained by imposing the constitutive requirement S = d1W and setting
SB := −d2W . The time derivative in each element P of T (B) is given by

(W (D(ϕ),∆, p))̇ := ∂τ=t(W (D(ψτ,t ◦ϕ),∆τ , pτ ))

= 〈d1W,D(ϕ)̇〉g + 〈d2W, ∆̇〉g

= 〈S,D(ϕ)̇〉g − 〈SB, ∆̇〉g ,
since ṗ = 0 due to the constancy of pτ in each Pτ at any time τ ∈ I .

The equilibrium condition may then be written as

〈f ,v〉=
∫
T (B)

〈S,D(ϕ)̇ 〉g µ

=

∫
T (B)

Ẇ µ+

∫
B
〈SB, ∆̇〉g µ

= Ė +

∫
I
[[W ]] vχ (µn) +

∫
B
〈SB, ∆̇〉g µ .

The virtual work of the force system acting on the body can be split into the
sum of two contributions.

The former is the virtual work performed by the loading ` ∈ Load in
correspondence of the virtual velocity v ◦ ϕ ∈ C1(Pat(B) ;S) . The latter is
the virtual work performed by the reactive forces r acting on the faces of each
phase-transition interface due to the finite jump of the virtual velocity across
the phase-transition interfaces:

〈f ,v〉 = 〈`,v〉+ 〈r,v〉 .
The boundary equilibrium condition at the interfaces implies that [[Pn]] = 0 ,
and hence the reactive term is given by

〈r,v〉= −
∫
I
[[〈Pn,v ◦ϕ〉]]g (µn) = −

∫
I
〈Pn, [[v]] ◦ϕ〉g (µn) .
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The minus sign above is due to the usual notation [[v]] = v+ − v− with
n = n− the outward normal to ∂P− . The equilibrium condition may then be
written as

〈`,v〉= Ė +

∫
I
[[W ]] vχ (µn) +

∫
I
〈Pn, [[v]] ◦ϕ〉g (µn) +

∫
B
〈S, ∆̇〉g µ .

Imposing the fulfilment of Hadamard’s condition for shock waves at the inter-
faces I of phase-transition:

[[v]] ◦ϕ+ vχ [[dϕ]] n = 0 .

we get the following formula for the virtual power balance law:

〈`,v〉= Ė +

∫
I
([[W ]]− g(Pn, [[dϕ]] n)) vχ (µn) +

∫
B
〈SB, ∆̇〉g µ ,

to hold for all spatial speed v ∈ C1(Pat(B) ;S) and for all phase-transition
speed χ̇ ∈ C1(B ;TM) fulfilling Hadamard’s condition.

Now, observing that W = g(Wn,n) , we introduce Eshelby’s tensor:

Y := W I− dϕTP = W I− dϕT dϕS ,

and write the virtual power balance law as

〈`,v〉= Ė +

∫
I

g([[Y]]n,n) vχ (µn) +

∫
B
〈SB, ∆̇〉µ .

Then from the properties

g(n, t) = 0 =⇒ g([[W ]] n, t) = [[W ]] g(n, t) = 0 ,

g(n, t) = 0 =⇒ g([[dϕT ]] Pn, t) = g(Pn, [[dϕ]] t)

= g(Pn, [[dϕ]] (n⊗ n) t) = g(Pn, [[dϕ]]n) g(n, t) = 0 ,

the latter being a consequence of Maxwell’s jump condition, we infer that

g(n, t) = 0 =⇒ g([[Y]]n, t) = 0 ,

that is, the flux of the jump of Eshelby’s tensor at an interface is directed
along the normal to the interface.

Hence, being vχ = g(χ̇,n) , we infer the equality

g([[Y]]n,n) vχ = g([[Y]]n, χ̇) ,
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and the virtual power balance law may be rewritten as

〈`,v〉 = Ė +

∫
I

g([[Y]]n, χ̇) (µn) +

∫
B
〈SB, ∆̇〉g µ .

This result may be phrased by stating that the (virtual) power performed by
the applied load is equal to the (virtual) increase in free energy plus the (vir-
tual) dissipation due to the evolution of phase transition and to the anelastic
deformation rate.

In the actual motion, we get a mechanical statement of the principle of
conservation of the power expended.

Remark 5.5.1 Eshelby’s tensor Y = W I − dϕT dϕS is not g-symmetric,
but symmetry holds with respect to the metric (dϕTg)(p) ∈ BL (TpB, TpB ;<)
defined at p ∈ B by

(dϕTg)(a,b) := g(dϕ−Ta, dϕ−Tb) , ∀a,b ∈ Tp(B) .

This property is a direct consequence of the g-symmetry of the Piola-Kirchhoff
stress tensor S since

(dϕTg)(dϕT dϕS a,b) = g(dϕ−T dϕT dϕS a, dϕ−Tb)

= g(dϕS a, dϕ−Tb) = g(dϕ−1dϕS a,b) = g( S a,b) .

Eshelby’s tensor is then symmetrizable and enjoys all the useful properties of
a symmetric operator.

It has a spectral representation with real eigenvalues since there exists in TpB
a principal basis of mutually orthogonal eigenvectors according to the metric
(dϕTg)(p) . Setting C = dϕT dϕ the symmetry of Eshelby’s tensor can be
written as YC = CYT , a result quoted in [55].

Remark 5.5.2 The previous expression of the virtual power balance law is based
on the analysis developed by Morton Gurtin in discussing the role of what he
calls configurational forces (see [86], formula 1-6). Gurtin’s formula is derived
under the assumption of fixed kinematic boundary conditions, and vanishing
body forces and anelastic deformation rate so that 〈`,v 〉 = 0 and ∆̇ = 0 . In
our notations, his formula reads

−Ė = −
∫
T (B)

〈S,D(ϕ)̇ 〉g µ+

∫
I
[[W ]] g(χ̇,n) (µn) ,

535



Elastic energy rate due to phase transition Giovanni Romano

to hold for all v ∈ C1(T (B) ;S) and χ̇ ∈ C1(B ;TM) fulfilling Hadamard’s
condition for shock waves on I . This is equivalent to

−Ė =

∫
I

g([[Y]]n, χ̇) (µn) =

∫
I

g([[Y]]n,n) vχ (µn) .

He then assumes that Ė = 0 for all vχ concluding that g([[Y]]n,n) = 0 , a
condition which he claims to be often referred to as Maxwell’s relation (but
it has in fact no connection with Maxwell’s jump condition illustrated above).
From the property g([[Y]]n, t) = 0 for all t such that g(n, t) = 0 , he then
concludes that [[Y]]n = 0 at phase-transition interfaces.

We must confess to be unable to find a physical motivation for Gurtin’s
assumption that Ė = 0 for all vχ .

As a consequence, his conclusion that g([[Y]]n,n) = 0 and [[Y]]n = 0
cannot be agreed on, since it implies that the evolution of the phase-transition
interfaces requires no power to be expended, despite of experimental evidences
in solid state physics and fracture mechanics.

Reasoning in the opposite direction, we are led to conclude that the singular
term ∫

I
g([[Y]]n, χ̇) (µn) , χ̇ ∈ C1(B ;TM) ,

provides the (virtual) power dissipated in the motion of the evolving phase-
transition interfaces.

Small displacement formulation

Many engineering applications can be dealt with by a geometrically linearized
formulation. To provide the specialization of the previous theory to this impor-
tant class of problems, it is convenient to re-formulate the analysis in terms of
the displacement field u ∈ C0(B ;TS) ∩ C1(T (B) ;TS) defined by

u(p) = ϕ(p)− p ,

so that du = dϕ − I in T (B) . For the jump across the phase-transition
interfaces I we have the equality [[du]] = [[dϕ]] and hence Eshelby tensor
may be equivalently defined in terms of displacement field as

Yu := W I− duTP = W I− dϕTP + P = Y + P ,

with [[Yu]]n = [[Y]]n since [[Pn]] = 0 .
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In the geometrically linearized theory, the reference and the actual place-
ments of the body are taken to be coincident so that the Piola stress P and
the Cauchy stress T may be identified.

Accordingly Eshelby’s tensor takes the form

Yu = W I− duTT .

5.5.2 Divergence of Eshelby’s tensor
We provide hereafter the expression of the divergence of Eshelby’s tensor in each
phase of the multi-phase material, since the vanishing of the divergence is at
the basis of the invariance property of the J-integral in fracture mechanics. In
each material phase the free energy density is given by

Ŵ (p) = W (D(ϕ)(p),∆(p),p) .

Evaluating the spatial derivative in a direction h ∈ TpB , by the Leibniz’s rule
we have that

g(dŴ ,h) = 〈d1W,dhD(ϕ)〉g + 〈d2W,dh∆〉g + g(d3W,h) ,

where diW , i = 1, 2, 3 are the partial derivatives. By the formula dŴ =
div (W I) we may write

g(d3W,h) + 〈d2W,dh∆〉g = g(div (W I),h)− 〈d1W,dhD(ϕ)〉g ,

which is the formula prodromic to Eshelby’s one.
In terms of Piola’s tensor field P we have that

〈d1W,dhD(ϕ)〉g = 〈S, dhD(ϕ)〉g = 〈P, dh dϕ〉g .

and, accordingly, the formula above becomes

g(d3W,h)− 〈SB, dh∆〉g = g(div (W I),h)− 〈P, dh dϕ〉g .

Recalling that the divergence of a field of operators A ∈ C1(B ;BL (TM ;TM))
is the vector field div A ∈ C0(B ;TM) defined by

g(div A,v) := div (ATv)− 〈A, dv〉g , ∀v ∈ C1(B ;TM) ,

and observing that dhdϕ = d(dhϕ) and setting A = P and v = dhϕ , we get

〈P, dh dϕ〉g = 〈P, d dhϕ〉g = div (PT dhϕ)− g(div P, dhϕ) .
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The differential equilibrium condition, under a body force field b , and the
divergence formula again, with A = dϕT P and v = h , imply that

div P = −b , div (PT dhϕ) = div ((PT dϕ)h) = g(div (dϕT P),h) .

It follows that

g(d3W,h)− 〈SB, dh∆〉g = g(div (W I− dϕT P),h)− g(b, dhϕ) ,

and, in terms of the Eshelby’s operator Y := W I− dϕT P , we may write

g(div Y,h) = g(d3W,h)− 〈SB, dh∆〉g + g(b, dhϕ) .

Hence, in an homogeneous elastic phase, under homogeneous anelastic metric
and no body forces, we may conclude that Eshelby’s operator is solenoidal, i.e.
that div Y = 0 .

5.5.3 Crack propagation
The evaluation of what in fracture mechanics is commonly dubbed the driving
force on travelling cracks can be based on a suitable specialization of the general
expression of the dissipation contributed above. To this end, we consider the
motion of a crack travelling in the material.

Assuming that the crack-tip moves with a translational speed χ̇(p) = χ̇d
directed along its axis (labeled by the unit vector d ), and writing the dissipation
as F χ̇ , the driving force F is given by the relation

F =

∫
I

g([[Y]]n,d) (µn) =

∫
I

g(Y+n+ + Y−n−,d) (µn) .

where n is the outward normal to the crack boundary I , oriented from the
crack (the minus side) towards the surrounding material (the plus side).

Eshelby’s formula for the driving force on translating defects is recovered
under the further assumption that the divergence of Eshelby’s operator van-
ishes inside and outside the defect.

Indeed, denoting by Σ any closed surface surrounding the defect, with out-
ward normal n , we have that∫

I
(Y+n+ + Y−n−) (µn) =

∫
I

Y+n+ (µn) =

∫
Σ

Yn (µn) .

which is Eshelby’s original formula [60], [62], [132].
As illustrated below, this general result finds application in fracture me-

chanics for the evaluation of the dissipation associated with non-cohesive and
cohesive brittle crack propagation.
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J-integral for non-cohesive cracks

Let us consider the motion of a non-cohesive crack travelling in the material.
Since there is no material inside the crack, we may assume that there W− = 0
so that [[W ]] = W+ −W− = W+ . Non-cohesive cracks are characterized by
the property that the interface between the crack and the surrounding material
is traction-free. Denoting by on I the closed interface bounding the crack nose,
that is the terminal crack zone, where g(n,d) is non-vanishing, being Pn = 0 ,
we have that

[[Y]]n = Y+n+ = Y+n+ + Y−n− = W+n+ ,

and the driving force takes the expression

F =

∫
I

g(Y+n+,d) (µn) =

∫
I

g(W+n+,d) (µn) ,

Following James Rice [174] we consider any closed surface Σ enclosing a region
C(Σ) which includes the crack-nose.

The J-integral associated with the surface Σ is then defined as:

J(Σ) :=

∫
Σ

g(Yn,d) (µn) ,

so that J(I) = F . By the divergence theorem and the formula for div Y
derived in section 5.5.2, we then get the following general invariance property:

F = J(Σ)−
∫
C(Σ)

g(div Y,d) (µn)

= J(Σ)−
∫
C(Σ)

g(d3W,d)µ+

∫
C(Σ)

〈SB, dd∆〉g µ−
∫
C(Σ)

g(b, ddϕ)µ .

Special instances of this formula are quoted in [114], [115].
In an homogeneous phase, under homogeneous anelastic metric and no body

forces, the divergence of Eshelby’s tensor field vanishes, i.e. div Y = 0 , and the
driving force F is equal to the J-integral evaluated on any surface Σ . In plane
problems of fracture mechanics, the invariance property J(Σ) = J(I) = F is
commonly referred to as the path independence of the J-integral.

Remark 5.5.3 In the literature on fracture mechanics (see e.g. [175] III-E),
in the wake of Griffith’s treatment, crack propagation criteria are discussed
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in terms of an augmented total potential energy of the body which includes a
so-called separation energy due to newly created crack faces. This is a nice
example of a wrong way to a right result. Not completely right to be honest,
since it is correct only if a geometrically linearized modelization is applicable.
Indeed, in the nonlinear geometrical range, a total potential energy exists only
under conservative loadings and such a requirement is completely extraneous to
the physics of the problem at hand. Fortunately what really enters in the analysis
is the (pseudo)-time derivative of the augmented total potential energy and this
amounts in evaluating a virtual dissipation rate.

Cohesive cracks

Cohesive cracks are characterized by a process zone, extending ahead the crack-
tip, in which cohesive ties oppose the opening of the crack, till the separation
of the crack faces reaches a characteristic value that breaks the cohesive bonds.

In Barenblatt’s model for brittle fracture [15] a nonlinear relation is as-
sumed between the cohesive restraining action and the separation between the
crack faces.

The bond-reactions are variable with the opening, first increasing from the
pointed nose of the process zone until a maximum is reached, and then de-
creasing to zero, in correspondence of a threshold value of the opening, where
breaking of the bonds occurs, at the crack tip.

To provide the expression of the driving force F acting on cohesive cracks,
propagating with a translational speed χ̇(p) = χ̇d , we rely again upon the
general expression of the driving force:

F =

∫
I

g([[Y]]n,d) (µn) ,

where the interface I is the closed contour of the process zone.
Following Rice [174], we make the simplifying assumption that, due to the

slit-shape of the crack, we may set g(n,d) = 0 along the crack faces. Since
the flux-jump [[Y]]n of Eshelby’s tensor is directed along the normal n at the
interface, the contribution of the crack faces to the driving force vanishes. Then
the integral can be extended only to the back-portion B of the interface which
cuts the crack in correspondence of the end of the process zone, where breaking
of the bonds occurs. There g(n−,d) = −1 and Y+ = 0 , Pn = 0 , so that:

F =

∫
B

g(−Y−n−,d) (µn) =

∫
B

g(−Y−n−,d) (µn) =

∫
B
W− (µn) .
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The energy W− is the one accumulated in the cohesive bonds per unit volume
in correspondence of the breaking surface B . Its integral over the surface B
is equal to the area of the Barenblatt diagram for the cohesive bond and its
product by the propagation speed provides the energy release rate due to the
bond breaking.

This result is in accordance with the conclusions obtained by Rice on the
basis of an a priori definition of the J-integral [174].

5.5.4 Conclusions
We owe essentially to Morton Gurtin the approach followed for the descrip-
tion of phase-transition phenomena in which phase-transition fronts are consid-
ered as shock waves travelling in the material [86].

Gurtin’s point of view appears to have been strongly influenced by the
attempt to prove that configurational forces are basics concepts of continuum
physics. His intention of endowing Eshelby’s tensor with properties similar to
Piola’s stress led him to make the assumption that no free energy release rate is
associated with the evolution of phase transition fronts ([86] chapter 1, section b,
page 4). This ansatz cannot be agreed on since the physics of these phenomena
tell us that a dissipation occurs at expenses of a free energy release rate. We have
shown that the balance law, derived from the virtual work principle of mechanics
by a suitable definition of the free energy density for multi-phase materials,
provides the basic expression of the dissipation associated with the evolution of
phase-transition fronts. By applying the theory to crack propagation phenomena
in fracture mechanics, we have shown that the J-integral, introduced a priori in
[174], is in fact a special expression of the general dissipation formula for phase-
transition fronts travelling in the material. Both non-cohesive and cohesive
crack propagation may be directly analyzed by the present theory.

5.6 Noll’s theory of material behavior
The theoretical scheme in Noll’s theory of material behavior is outlined here-
after. Reference is made to the exposition provided in [159] and in [47] with
some modifications.

A material body is a fiber bundle E with base manifold M and typical fiber
a manifold S whose elements are the states s ∈ S of the base material point.
The states manifold S is assumed to be a metric space.
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A map ϕ ∈ C1(S ;D) assign a condition e ∈ E , which is observable and
controllable, to each state. The map ϕ ∈ C1(S ; E) is not injective, in general,
so that many states may be in relation with a given condition. The simplest
instance is that in which states belong to a finite list of linear spaces and con-
ditions are elements of a sublist.

Time changes of conditions are described by process maps P ∈ C1(I ; E)
with I = [ti(P), tf (P)] a time interval. A process may also be considered as
a transformation P ∈ C1(E ; E) which maps the condition P(ti(P)) into the
condition P(tf (P)) . Accordingly, the composition of two subsequent processes
P1 ∈ C1(I1 ; E) and P2 ∈ C1(I2 ; E) with tf (P1) = ti(P2) is denoted by
P2 ◦P1 . The space of admissible processes is denoted by Π .

Changes of state are assumed to be produced by process maps and are de-
scribed by evolution maps which, to any admissible process P ∈ Π assign a
state transformation ψP ∈ C1(S ; S) from a state s ∈ S such that ϕ(s) =
P(ti(P)) ∈ E to the state ψP(s) ∈ S such that ϕ(ψP(s)) = P(tf (P)) ∈ E .

Evolution maps are denoted alternatively by ψ ∈ C1(P × S ; S) or ψP ∈
C1(S ; S) or ψs ∈ C1(P ; S) setting

ψ(P, s) = ψP(s) = ψs(P) .

Let us denote by fre ∈ C1(I ; E) a freezing process with constant value e ∈ E .
The relaxed state s∞ corresponding to the state s ∈ S is the limit of the

evolution along a freezing process as time goes by:

s∞ := lim
tf (fre)→∞

ψs(fre) ,

where e = ϕ(s) . The existence of this limit may be directly assumed, as in [159]
or deduced by other assumptions. In [47] it is proposed to endow the process
space Π with a metric fulfilling the fading distance property that the distance
between two processes, which coalesce after a finite time into a unique process,
goes to zero as time goes by:

P,P1,P2 ∈ Π

tf (P)→∞

}
=⇒ distΠ(P ◦P1,P ◦P2)→ 0 .

Further the elastic region E(s) ⊂ E pertaining to a state s ∈ S is defined
as the maximal set of conditions such that the following properties hold true:
i) the condition ϕ(s) belongs to the elastic region of the state s ∈ S , i.e.
ϕ(s) ⊂ E(s) ⊂ E , ii) the restriction of any evolution map ψs ∈ C0(P ; S)

542



Noll’s theory of material behavior Giovanni Romano

to the space ΠE(s) of elastic processes, that is those evolving into the elastic
region E(s) ⊂ E , is continuous with respect to the pair of metrics, distΠ in
the process space Π and distS in the state space S :

distΠ(P1,P2)→ 0 =⇒ distS(ψs(P1),ψs(P2))→ 0 , P1,P2 ∈ ΠE(s) .

The following properties are readily proved.

Theorem 5.6.1 (Fading memory) The evolution along two elastic processes,
which coalesce after a finite time into a unique elastic process, tend to a unique
state as time goes by

P,P1,P2 ∈ ΠE(s)

tf (P)→∞

}
=⇒ distS(ψs(P ◦P1),ψs(P ◦P2))→ 0 .

Proof. The fading distance property and the continuity of evolutions in the
elastic range provide the result. �

A state ψP(s) with P ∈ Π is said to be accessible from the state s ∈ S via
the process P .

Theorem 5.6.2 (Relaxation) All states accessible from a given state s ∈ S
via an elastic process admit the same relaxed limit:

s∞ := lim
tf (fre)→∞

ψfre
(s) = lim

tf (fre)→∞
(ψfre

◦ψP)(s) , P ∈ ΠE(s) .

Proof. The fading distance property ensures that distΠ(fre−fre ◦P)→ 0 as
tf (fre)→∞ . Moreover, by the continuity of evolutions in the elastic range:

distΠ(fre, fre ◦P)→ 0 =⇒ dists(ψs(fre),ψs(fre ◦P))→ 0 ,

and the chain of the two implications provides the result. �

Denoting by Σ(s) the set of all states accessible from a given state s ∈ S
via an elastic process, the assumption that

s ∈ Σ(s) =⇒ E(s) = E(s) , Σ(s) = Σ(s) ,

makes Σ(s) a family of equivalence classes in S .
According to [47], the change of equivalence class may be seen as a signal

that a plastic deformation has occurred.
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Chapter 6

Thermodynamics

6.1 Thermodynamic state variables and related
potentials

Let us consider a spatial placement of a body in the euclidean space {S ,g}
described by a configuration map ϕt ∈ C1(B ;S) from a reference placement
B ⊂ S , an embedded submanifold of S .

We denote by Ω = ϕ(B) ⊂ S the actual placement of the body and by
ε(ϕ) ∈ L2(B ;D) the deformation field induced at m ∈ B by the configuration
map ϕ ∈ C1(B ;S) and by a ∈ L2(B ;D) the related field of anelastic strains.
The internal energy density U of a body is the functional which provides the
field of the elastic energy density as a function of the elastic strain field

e = ε(ϕ)− a ∈ L2(B ;D) ,

and of the entropy density field η ∈ L2(B ;<) , so that:

Û(m) := U(ε(m),a(m), η(m)) , ∀m ∈ B .

The constitutive thermodynamic relations are expressed by

σ ∈ ∂U{η ,a}(ε) , θ ∈ ∂U{ε ,a}(η) ,

where σ ∈ L2(B ;D) is the stress field conjugate to the strain measure ε ∈
L2(B ;D) and θ ∈ L2(B ;<) is the absolute temperature field.
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By changing the choice of the state variables in the dual pairs {ε ,σ} and
{θ , η} we generate other basic thermodynamic potentials.

The Helmholtz free energy density F(ε, θ) , the enthalpy density H(σ, η)
and the Gibbs free energy density G(σ, θ) , are the Legendre-Fenchel-conjugate
of the internal energy density, according to the complementarity rules

U(ε, η)−F(ε, θ) = 〈η, θ 〉 ,

F(ε, θ)− G(σ, θ) = 〈σ, ε〉 ,

U(ε, η)−H(σ, η) = 〈σ, ε〉 .

Figure 6.1: Josiah Willard Gibbs (1839 - 1903)

The Legendre transformation rules hold pointwise, under the assumption
that the internal energy density Ua(ε, η) is a convex function of each of its two
arguments. By the rules of convex analysis we then infer the following relations
between the thermodynamic potentials:

−F(ε, θ) = inf
η̄∈<
{〈 η̄, θ 〉 − U(ε, η̄)} , Helmholtz free energy density

−G(σ, θ) = inf
ε̄∈D
{〈σ, ε̄〉 − F(ε̄, θ)} , Gibbs free energy density

−H(σ, η) = inf
ε̄∈D
{〈σ, ε̄〉 − U(ε̄, η)} , enthalpy density

The Helmholtz free energy density F(ε, θ) is convex-convex. Indeed its op-
posite is concave in ε , being the infimum of a family of concave functions, and
concave in θ being the infimum of a family of affine functions.
The Gibbs free energy density G(σ, θ) is convex-convex. Indeed its opposite is
concave in σ , being the infimum of a family of affine functions, and concave in
θ being the infimum of a family of concave functions.
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The Kamerlingh Onnes enthalpy density H(σ, η) is convex-convex. Indeed
its opposite is concave in σ , being the infimum of a family of affine functions,
and concave in η being the infimum of a family of concave functions.

Figure 6.2: Heike Kamerlingh Onnes (1853 - 1926)

Being
G(σ, θ)−H(σ, η) = F(ε, θ)− U(ε̄, η) = −〈η, θ 〉 ,

we have also that
H(σ, η) = inf

θ̄∈<
{〈η, θ̄ 〉+ G(σ, θ̄)} ,

or
−G(σ, θ) = inf

η̄∈<
{〈 η̄, θ 〉 − H(σ, η̄)} .

6.2 Conservation of energy
Let us consider a spatial placement of a body B in the euclidean space {S ,g}
described by a configuration map ϕt ∈ C1(B ;S) from a reference placement
B ⊂ S , an embedded submanifold of S .

We denote by Ω = ϕt(B) ⊂ S the placement of the body at time t ∈ I
and by Sym ⊂ BL (V 2 ;<) the space of symmetric tensors on the translations
space V of {S ,g} .

The symmetric Green’s tensor field 1
2 (ϕt↓g − g) is defined in the reference

placement and measures the deformation of B induced by the configuration
map ϕt ∈ C1(B ;S) .

By adopting the subscript 0 to denote quantities pertaining to the reference
placement, we denote the strain tensor field by

ε0 := 1
2 (ϕt↓g − g) .
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Time-dependent anelastic phenomena are simulated, at the continuum level by
a metric tensor field gBt in the reference placement. The anelastic strain tensor
a0 is then defined by

a0 := 1
2 (gBt − g) .

The internal energy density U0t per unit mass is assumed to be a pointwise
function of the values of the strain field ε0 ∈ L2(B ;D) , of the anelastic strain
a0 ∈ L2(M ;D) and of the entropy density field η0 ∈ L2(M ;<) per unit mass:

U0t(ε0(m),a0(m), η0(m)) := U0(ε0t(m),a0t(m), η0t(m)) , ∀m ∈M .

The constitutive relations are expressed pointwise, in the reference placement,
by

σ0t = ρ0t d1U0t(ε0,a0, η0) ,

σ̄0t = −ρ0t d2U0t(ε0,a0, η0) ,

θ0t = d3U0t(ε0,a0, η0) ,

where σ0t, σ̄0t ∈ L2(M ;Sym) are the elastic and the anelastic stress fields and
θ0t ∈ L2(M ;<) is the absolute-temperature field in the reference placement.
The global internal energy is the integral of its density per unit mass:

E0t(ε0,a0, η0) :=

∫
M

U0t(ε0,a0, η0) ρ0t µ ,

where ρ0t is the mass-density per unit volume in the reference placement M .
The internal energy density per unit mass in the placement ϕt(M) is defined

as the push-forward of the one pertaining to the reference placement:

(ϕt↑U0t)(ϕt↑ε0,ϕt↑a0,ϕt↑η0) ◦ϕt := U0t(ε0,a0, η0) .

The point-value of the internal energy at m ∈ M , due to the state variables
evaluated at time t ∈ I in the reference placement, is then equal to the point-
value of the internal energy at ϕt(m) ∈ ϕt(M) , due to the push-forward to
that point of the state variables. Setting

ηt := ϕt↑η0 = η0 ◦ϕ−1
t ,

εt := ϕt↑ε0 = 1
2 (g −ϕt↑g) ,

at := ϕt↑a0 = 1
2ϕt↑(gMt − g) ,

we adopt the simplified notation Ut(εt,at, ηt) := (ϕt↑U0t)(εt,at, ηt) .
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The partial derivatives of Ut and U0t , with respect to their i-th argument,
are related by

di Ut := di (ϕt↑U0t) = ϕt↑(di U0t) .

The constitutive relations are then expressed pointwise, in terms of fields in the
current placement ϕt(M) , by

σt = ρt d1Ut(εt,at, ηt) ,

σ̄t = −ρt d2Ut(εt,at, ηt) ,

θt = d3Ut(εt,at, ηt) .

The elastic and the anelastic stress fields σt, σ̄t ∈ L2(ϕt(M) ;Sym) and the
absolute-temperature field θt ∈ L2(ϕt(M) ;<) , are related to the corresponding
reference fields by

σt ⊗ µ = ϕt↑(σ0t ⊗ µ) = (ϕt↑σ0t)⊗ (ϕt↑µ) ,

σ̄t ⊗ µ = ϕt↑(σ̄0t ⊗ µ) = (ϕt↑σ̄0t)⊗ (ϕt↑µ) ,

θt = ϕt↑θ0t .

The tensor σt ⊗µ is the Truesdell stress tensor. When contracted with the
tangent-strain rate, it provides the volume-form of mechanical working :

(σt ⊗ µ)( 1
2Lvg) = 〈σ, 1

2Lvg〉µ .

By the transformation rule for integrals of volume-forms under a diffeomorphism
and the principle of conservation of mass ϕt∗(ρ0tµ) = ρtµ , the global internal
energy may be written as an integral over the current placement:

E0t(ε0,a0, η0) =

∫
M

U0t(ε0,a0, η0) ρ0t µ =

∫
ϕt(M)

Ut(εt,at, ηt) ρt µ = Et(εt,at, ηt)

where ρt is the mass-density per unit volume in the current placement ϕt(M) .

The First Principle of Thermodynamics asserts that, for any body B at any
time t ∈ I the law of conservation of energy holds:

Ėt := ∂τ=t Eτ =Mt +Qt ,

where Ėt is the time-rate of change of the internal energy, Mt is the mechanical
working, Qt is the heat working.
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In the sequel the subscript t will be often dropped when redundant.
The mechanical working is the power performed by the total force system

acting on the body which includes body forces, inertia forces and boundary
tractions. According to the principle of virtual works, it is given by

M=

∫
ϕ(M)

g(b− ρv̇,v)µ+

∫
∂Pat(ϕ(M))

g(t,v) ∂µ

=

∫
Pat(ϕ(M))

〈σ, 1
2Lvg〉µ =

∫
Pat(ϕ(M))

〈T, sym ∂v 〉g µ ,

• ρ is the spatial mass density along the trajectory,

• v, v̇ are the fields of velocities and accelerations,

• b is the field of body forces per unit volume,

• t is the field of boundary tractions,

• σ = gT is the Cauchy stress tensor field,

• 1
2Lvg = g(sym ∂v) is tangent strain-rate tensor field,

• µ is the volume form induced by the metric g

• µn is the associated surface area form.

The kinetic energy K and the power W performed by applied forces are

K =
1

2

∫
ϕ(M)

g(v,v) ρµ =

∫
M

(g(v,v) ◦ϕ) ρµ ,

W =

∫
ϕ(M)

g(b,v)µ+

∫
∂Pat(ϕ(M))

g(t,v) ∂µ .

The mechanical power is then given by M =W−K̇ and the law of conservation
of the energy may be written as

Ė + K̇ =W +Q .

The principle of conservation of energy is a balance law prescribing a rule to be
fulfilled by any thermodynamical process which evolves starting from a given
thermodynamical status {ϕ , η} of the body.
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Our main target is to show how to adapt the proof of the virtual work
theorem in mechanics to formulate the principle of conservation of energy as a
virtual temperature theorem. This result assesses the existence of a vector field,
representing the cold-flow in the body, which fulfils a virtual balance law. The
analogy with the equilibrium condition of mechanics permits to extend, mutatis
mutandis, propositions and results from one context to the other, once it has
been recognized that both rely upon the same formal mathematical base. This
is indeed the peculiar task of Mathematical Physics.

6.2.1 Virtual temperatures
The linear space Temp(Ω) of Green-regular temperatures is composed by
square integrabile scalar fields θ ∈ Sqif(Ω) whose generalized derivatives are
piecewice regular in Ω according to a regularity patchwork Patθ(Ω) with
boundary ∂Patθ(Ω) and interfaces If(Patθ(Ω)) .

To provide a precise definition, we recall that a distribution on Ω is a linear
functional on C∞0 (Ω ;V ) which is continuous according to the topology induced
by the uniform convergence of every derivative on any compact subset of the
open set Ω . The distributional gradient ∇ is the linear operator which, to any
θ ∈ Temp(Ω) , associates the distribution defined by

〈∇θ,λ〉 := −
∫

Ω

(divλ) θµ , ∀λ ∈ C∞0 (Ω ;V ) ,

and −div is called the formal dual of the gradient operator.
The piecewice regularity consists in requiring that the distributional gradient

∇θ be represented by a Green’s formula:

〈∇θ,λ〉= −
∫

Ω

(divλ) θµ

=

∫
Patθ(Ω)

g(∇θ,λ)µ+

∫
Iθ(Ω)

[[Γθ]] g(λ,n) ∂µ .

where Γθ is the boundary value on ∂Patθ(Ω) of the field θ ∈ Temp(Ω) and

[[Γθ]] = Γθ+ − Γθ− ,

is the jump across the interfaces Iθ(Ω) of the patchwork Patθ(Ω) and n = n−

is the outward normal pointing towards the + face. The square integrable
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vector fields ∇θ ∈ Sqiv(Patθ(Ω)) and scalar fields [[Γθ]] ∈ Sqif(Ifθ(Ω)) are
respectively said to be the regular part and the singular part of the distributional
gradient.

The space Temp(Ω) of virtual temperature fields is a pre-Hilbert space
when endowed with the inner product and norm given by

〈θ1, θ2 〉 :=
∫

Ω

θ1 θ2 µ +

∫
Patθ(Ω)

g(∇θ1,∇θ2)µ ,

‖u‖2 :=

∫
Ω

θ2 µ +

∫
Patθ(Ω)

‖∇θ‖2 µ .

Green-regular temperature fields will be dubbed virtual temperatures.
Given a patchwork Pat(Ω) , the conforming virtual temperatures belong to

a closed linear subspace Conf(Ω) ⊂ Temp(Ω) of fields having Pat(Ω) as
common regularity patchwork. It is a Hilbert space for the topology induced by
Temp(Ω) .

Piecewice constant virtual temperature fields belong to a closed subspace
Const(Ω) ⊂ Temp(Ω) . The fields θ ∈ Const(Ω) are characterized by the
property that the regular part ∇θ of their distributional gradient vanishes on
each element of the regularity patchwork Patθ(Ω) .

Entropy rate systems in the body at the placement Ω are continuous linear
functionals defined on Temp(Ω) and hence belong to the pre-Hilbert space
Temp(Ω)∗ topological dual of Temp(Ω) .

6.2.2 The variational form of the first principle
To get the existence result provided by the theorem of virtual thermal work,
we need to re-formulate the first principle of thermodynamics as a variational
condition. To this end we begin by providing a definition of the rate of increase
of the inner energy Ė , the mechanical power M and the heat power Q , in terms
of bounded linear functionals over the space Temp(Ω) of virtual temperature
fields.

For any θ ∈ Temp(Ω) let us consider the characteristic functions of the
elements of the partion Patθ(Ω) :

1P(m) =

{
1 m ∈ P
0 m ∈ Ω\P
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with P ∈ Patθ(Ω) . We then define

F Ė(1P) := Ė(P) ,

FM(1P) :=M(P) ,

FQ(1P) := Q(P) .

An extension by linearity allows us to introduce the linear functionals F Ė ,
FM and FQ on the linear subspace Ker ∇ ⊆ Temp(Ω) of piecewise constant
virtual temperatures fields.

Hahn’s extension theorem ensures that these bounded linear functionals
may be extended (non-univocally) to bounded linear functionals on Temp(Ω)
without increasing their norm (see e.g. [240]). Anyway in section 6.2.4 it will
be shown that in boundary value problems the linear functionals F Ė , FM and
FQ can be univocally defined on the whole space Temp(Ω) .

The energy conservation law is then expressed by the variational condition:

〈F Ė , θ 〉 = 〈FM, θ 〉+ 〈FQ, θ 〉 , ∀ θ ∈ Ker ∇ .

6.2.3 Virtual Thermal-Work Theorem
To stress the analogy between the energy conservation law and the equilibrium
condition of a continuous body, we define the energy-gap rate as the difference
between the time-rate of change of the internal energy, and the sum of the
mechanical working plus the heat working :

G := Ė − (M+Q) .

Then we consider the space Temp(Ω)∗ , topological dual of Temp(Ω) , and
introduce the thermal force as the linear functional FP ∈ Temp(Ω)∗ given by:

FG := F Ė −FM −FQ .
The energy conservation law G = 0 takes then the variational form

〈FG , θ 〉 = 0 , ∀ θ ∈ Ker ∇ ,
or in geometrical terms

FG ∈ (Ker ∇)⊥ .

This condition, which is perfectly analogous to the equilibrium condition in
mechanics, states that the virtual power of the thermal force must vanish for
any piecewise constant virtual temperature field.
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Proceeding in analogy with the theory of equilibrium of continuous bodies as
proposed in [201], we observe that the regular part of the distributional gradient
trivially fulfills Korn’s inequality:

‖∇θ‖0 + ‖θ‖0 ≥ α ‖θ‖1 , ∀ θ ∈ H1(P ;<) , P ∈ Pat(Ω) ,

with α = 1 , where ‖ · ‖k denotes the mean square norm in P of the field and
of all its derivatives up to the k order. Indeed we have that

‖θ‖21 := ‖∇θ‖20 + ‖θ‖20 ≤ (‖∇θ‖0 + ‖θ‖0)2 .

For any closed linear subspace of conforming virtual temperatures

Conf(Ω) ⊂ Temp(Ω) ,

the linear subspace ∇(Conf(Ω)) ⊂ Sqiv(Ω) is closed in Sqiv(Ω) and the
kernel Ker ∇∩Conf(Ω) is finite dimensional [195].

Introducing the bounded linear operator ∇∗ ∈ BL (Sqiv(Ω) ; Conf(Ω)∗) ,
dual of the operator ∇ ∈ BL (Conf(Ω) ; Sqiv(Ω)) , defined by the property

〈∇∗q, θ 〉 = 〈q,∇θ 〉 , ∀q ∈ Sqiv(Ω) , ∀ θ ∈ Conf(Ω) ,

we may invoke Banach’s closed range theorem [240] to infer that the linear
operator ∇∗ ∈ BL (Sqiv(Ω) ; Conf(Ω)∗) has also a closed range, and that

∇∗(Sqiv(Ω)) = (Ker ∇∩Conf(Ω))⊥ .

Since FP ∈ (Ker ∇)⊥ ⊂ (Ker ∇L)⊥ we may conclude that FP ∈ Im∇∗L so
that there exists at least a vector field q ∈ H(Ω ;V ) , the cold-flow vector field,
such that FP = ∇∗Lq which is equivalent to the variational condition:

〈FP , θ 〉 = 〈∇∗Lq , θ 〉 =

∫
Ω

g(q ,∇θ)µ , ∀ θ ∈ L(Pat(Ω)) .

This result is the statement of the theorem of virtual thermal work :

• The thermodynamical axiom (first principle of thermodynamics), stating
that there is no energy creation in any part of a body, is equivalent to
the assumption that in the body there exists a square integrable vector
field q ∈ H(Ω ;V ) , the cold-flow vector field, which performs, for the
regular part of the distributional gradient of a conforming virtual temper-
ature field, a thermal virtual work equal to the one that the thermal force
performes for the conforming virtual temperature field.
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The theorem of virtual thermal work provides a thermodynamical principle,
analogous to the principle of virtual powers in mechanics, which we baptize the
principle of virtual temperatures.

The cold-flow vector field plays in thermodynamics the same role as the one
played by the stress tensor field in mechanics.

6.2.4 Boundary value problems
A boundary value problem (BVP) of thermodynamical equilibrium is charac-
terized by the fulfillment of the following properties:

• the subspace of conforming virtual temperatures L(Pat(Ω)) ⊂ Θ(Pat(Ω))
includes the subspace C∞o (Pat(Ω) ;<) of indefinitely differentiable tem-
perature fields with compact support in every open element of the regu-
larity patchwork Pat(Ω) . This means that, in defining the conforming
subspace, linear conditions are imposed only to boundary values of virtual
temperatures on the boundary of the elements of Pat(Ω) ,

• the functionals FĖ , FM and FQ are defined in terms of densities.

Indeed, let the rate of heat supply Q be defined in terms of a bulk density
q per unit mass and of a superficial density ∂q per unit area. Then, per-
forming the time derivative of the global internal energy, making recourse to
the transport theorem and to the principle of conservation of mass in the form
Lt,v(ρt µ) = 0 and recalling that Ω := ϕt(M) , we have:

Ėt := ∂τ=t E(ετ ,aτ , ητ ) =

∫
Ω

Lt,v (Ut ρt µ) =

∫
Ω

(Lt,v Ut) ρt µ ,

M :=

∫
Ω

〈T, sym ∂v〉g µ ,

Q :=

∫
Ω

q ρµ +

∫
∂Patq(Ω)

∂q ∂µ ,

with Patq(Ω) finer than Pat(Ω) . Observing that Uτ = ϕτ↑U0τ , we have that

Lt,vUt = ∂τ=t (ϕt,τ↑Uτ ) = ∂τ=t (ϕt,τ↑ϕτ↑Uτ ) = ϕt↑∂τ=t U0τ = U̇0t ◦ϕ−1
t .
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The functionals FĖ , FM and FQ on Temp(Ω) are then defined by the inte-
grals:

〈F Ė , θ 〉 :=

∫
Ω

(Lt,v Ut) θ ρµ =

∫
Ω

(U̇0t ◦ϕ−1
t ) θ ρµ ,

〈FM, θ 〉 :=
∫

Ω

〈T, sym ∂v〉g θµ ,

〈FQ, θ 〉 :=

∫
Ω

q θ ρµ +

∫
∂Patq(Ω)

∂qΓ(θ) ∂µ .

Defining the bulk energy-gap field as

p := 〈T, sym ∂v〉g + ρ q − ρLt,v Ut ,

the virtual work of the thermal force functional FG for a field θ ∈ Temp(Ω)
of Green-regular virtual temperatures, may be written as

〈FG , θ 〉 =

∫
Ω

p θµ +

∫
∂Patq(Ω)

∂qΓ(θ) ∂µ .

The principle of virtual temperatures then states:

• The energy conservation law, written as 〈FG , θ 〉 = 0 , ∀ θ ∈ Ker ∇ , is
equivalent to assume the existence a vector field q ∈ H(Ω ;V ) such that∫

Ω

p θµ +

∫
∂Patq(Ω)

∂qΓ(θ) ∂µ =

∫
Ω

g(q,∇θ)µ , ∀ θ ∈ L(Pat(Ω)) .

6.2.5 Local balance equations
Let us now apply an argument, analogous to that of Cauchy’s theorem in
continuum mechanics, to show that any cold-flow vector field q ∈ H(Ω ;V ) ,
fulfilling the principle of virtual temperatures, is Green-regular and admits
Patq(Ω) as regularity support.

This means that the restriction of its distributional divergence to each open
element of the patchwork Patq(Ω) is square integrabile.

To this end we recall that the distributional operator Div = −div is the
linear operator which to any q ∈ L2(Ω ;V ) associates the distribution:

〈Divq, θ 〉 :=

∫
Ω

g(q,∇θ)µ , ∀ θ ∈ C∞o (Ω ;<) .
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If conforming virtual temperature fields belong to C∞o (Patq(Ω) ;<) , the bound-
ary integral in the principle of virtual temperatures vanishes and we have that:

〈Divq, θ 〉 =

∫
Ω

g(q,∇θ)µ =

∫
Ω

p θµ , ∀ θ ∈ C∞o (Patq(Ω) ;<) ,

and the result is proven.
The regular part of Div = −div is the formal adjoint ∇′o of the regular

part of the distributional gradient ∇ and is defined, for all θ ∈ Temp(Ω) , by
Green’s formula:∫

Ω

g(q,∇θ)µ =

∫
Ω

∇′oq θµ +

∫
∂Patqθ(Ω)

g(q,n) Γ(θ) ∂µ ,

where n is the outward unit normal and Patqθ(Ω) is any patchwork finer than
Patq(Ω) and Patθ(Ω) .

The previous result may be expressed by stating that ∇′oq = p .
The reactive heat supply is then defined as the difference

〈Fr, θ 〉 :=

∫
Ω

g(q,∇θ)µ −
∫

Ω

p θµ −
∫
∂Patqθ(Ω)

∂qΓ(θ) ∂µ .

Being ∇′oq = p , we have that

〈Fr, θ 〉 =

∫
∂Patqθ(Ω)

(g(q,n)− ∂q) Γ(θ) ∂µ , ∀ θ ∈ Temp(Ω) .

Defining the reactive boundary heat supply as ∂r(q, ∂q) := g(q,n) − ∂q , the
theorem of virtual thermal work ensures that∫

∂Patqθ(Ω)

∂r(q, ∂q) Γ(θ) ∂µ = 0 , ∀ θ ∈ L(Pat(Ω)) .

Hence, in particular, ∂r(q, ∂q) = 0 on any piece of boundary where the virtual
temperatures are not prescribed to vanish.

With this definition, the principle of virtual temperatures may be written as∫
Ω

p θµ+

∫
∂Patqθ(Ω)

(∂q+∂r(q, ∂q)) Γ(θ) ∂µ =

∫
Ω

g(q,∇θ)µ , ∀ θ ∈ Temp(Ω) ,

and the corresponding local balance equations, analogous to Cauchy’s equations
of equilibrium, are

∇′oq = p , volumetric heat supply ,

g(q,n) = ∂q + ∂r(q, ∂q) boundary heat supply .
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the former holding in Ω and the latter on any ∂Patqθ(Ω) .

• The bulk equation ∇′oq = p is known in literature as the reduced equation
of conservation of the energy.

Recalling that
p := 〈T, sym ∂v〉g + ρ q − ρLt,v Ut ,

it may be more explicitly written in the form:

ρLt,v Ut = ρ q + 〈T, sym ∂v〉g −∇′oq
= ρ q + 〈T, sym ∂v〉g + div q .

in which Lt,v Ut is the total time-derivative of the internal energy per unit mass,
q is the rate of heat supply per unit mass, div q is the volumetric source of
cold, 〈T, sym ∂v〉g it is the mechanical power per unit volume.

• The boundary relation ∂q = g(q,n) , in absence of reactive boundary heat
supply, is known as the heat flux principle of Fourier-Stokes.

The existence of a cold-flow vector field is thus a consequence of the principle
of conservation of energy, not the object of a further assumption.

Both the previous relations are mathematical results steming from the the-
orem of virtual thermal work, for thermal boundary value problems.

In thermodynamics it is customary to consider the vector field −q ∈ H(Ω ;V )
called the heat flow vector field. Accordingly, the heat flux principle asserts that
the rate of heat supply per unit area of a boundary surface is equal to the flux
of the incoming heat flow vector field (outcoming cold flow vector field).

6.2.6 Fourier’s Law
Fourier’s law, the thermal analog of the linear elastic law in mechanics, is the
pointwise constitutive relation of thermal conduction:

qm = ∇fm(θm) , ∀m ∈ Ω ,

expressed in terms of a scalar potential f ∈ C1(V ;<) where θ ∈ L2(Ω ;V ) is
a square integrable field of thermal gradients. A linear behavior is characterized
by a strictly convex quadratic potential with a constant hessian, so that

qm = Km θm , ∀m ∈ Ω ,
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Figure 6.3: Jean Baptiste Joseph Fourier (1768 - 1830)

with Km = ∇2fm(θm) ∈ BL (V ;V ) symmetric and positive definite thermal
conductivity of the material.

For linear and thermally isotropic materials we have that Km = km I and
the Fourier’s law takes the form

qm = km θm ,

where k > 0 it is the scalar field of isotropic thermal conductivity.
Thermal compatibility imposes that the field of thermal gradients must be

the gradient of an admissible temperature field, i.e. θ = ∇θ = grad θ , where
θ ∈ θ̄ + L(Pat(Ω)) with θ̄ ∈ Temp(Ω) is a prescribed Green-regular tem-
perature field. This condition is analogous to the kinematic compatibility for
linearized strain fields in classical continuum mechanics.

6.3 Thermal conduction BVP’s
Fourier’s linear constitutive law of heat conduction, when inserted in the prin-
ciple of virtual temperatures, leads to the variational formulation of BVP’s of
thermal conduction:∫

Ω

p δθµ+

∫
∂Patq(Ω)

∂qΓδ(θ) ∂µ =

∫
Ω

g(K(∇θ),∇δθ)µ , ∀ δθ ∈ L(Pat(Ω)) ,

in which the test fields are conforming temperature fields δθ ∈ L(Pat(Ω)) and
the basic unknown is an admissible temperature field θ ∈ θ̄ + L(Pat(Ω)) with
θ̄ ∈ Temp(Ω) a prescribed Green-regular temperature field.
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The corresponding local balance equations are given by

∇′o(K(∇θ)) = 〈T, sym ∂v〉g + ρ q − ρLt,v Ut , volumetric heat supply ,

g(K(∇θ),n) = ∂q + ∂r(K(∇θ), ∂q) , boundary heat supply .

By the constitutive relations, the material time-derivative of the internal energy
density per unit mass in the current placement may be expressed, in terms of
stresses and temperature fields in the reference placement, as

(Lt,v Ut)(εt,at, ηt) ◦ϕt = ∂τ=t U0t(ε0τ ,a0τ , η0τ )

= 〈d1U0t(ε0,a0, η0), ε̇0t 〉

+ 〈d2U0t(ε0,a0, η0), ȧ0t 〉

+ 〈d3U0t(ε0,a0, η0), η̇0t 〉

= ρ−1
0 〈σ0t, ε̇0t 〉+ ρ−1

0 〈σ̄0t, ȧ0t 〉+ θ0t η̇0t ,

and, in terms of stresses and temperature fields in the current placement, as

(Lt,v Ut)(εt,at, ηt) = 〈d1Ut(εt,at, ηt), 1
2Lvg〉

+ 〈d2Ut(εt,at, ηt),ϕt∗ȧ0t 〉

+ 〈d3Ut(εt,at, ηt),ϕt∗η̇0t 〉

= ρ−1
t 〈σt, 1

2Lvg〉 − ρ−1
t Dt + θtϕt∗η̇0t ,

where we have made recourse to the fact that

ϕt∗ε̇0t = ϕt∗(ϕ
∗
tg)̇ = Lvtg ,

and the anelastic dissipation Dt per unit volume of the current placement is
defined by

Dt := ρt〈σ̄t,ϕ∗ȧ0t 〉 = ρtρ
−1
0 〈σ̄0t, ȧ0t 〉 ◦ϕ−1

t .

Being
〈σt, 1

2Lvg〉 = 〈T, sym ∂v〉g ,
the differential balance equation may be rewritten as

∇′o(K(∇θ)) = D + ρ q − θtϕt∗η̇0t .
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The Helmholtz free energy Ht(ε,a, θ) is the opposite of the partial Legendre
transform of the internal energy Ut(ε,a, η) with respect to the entropy:

Ut(ε,a, η)−Ht(ε,a, θ) = θ η , η = −d3Ht(ε,a, θ) , θ = d3Ut(ε,a, η) .

Hence we have that

−η̇= ∂τ=t d3H(εt,at, θt)

= d13H(ε,a, θ) · ε̇+ d23H(ε,a, θ) · ȧ + d33H(ε,a, θ) · θ̇ ,

Then, defining the specific heat at constant strain:

cv := −θ d33H(ε,a, θ) = θ d3η(ε,a, θ) .

the differential balance equation takes the form

∇′o(K(∇θ)) = θ (d13H(ε,a, θ) · ε̇+ d23H(ε,a, θ) · ȧ)− cv · θ̇ +D + ρ q .

By assuming that the thermomechanical interactions, the anelastic dissipation
and the bulk heat supply are negligible, the equation takes the simpler form

∇′o(K(∇θ)) = −cv · θ̇ .

Further, if the thermal conductivity is linear, isotropic and uniform, we get the
classical differential law

k∆ θ = cv · θ̇ ,
where ∆ = div grad is the laplacian and k is the thermal conductivity.

6.3.1 Integrability condition
The theorem of virtual thermal work provides a powerful integrability condition
to be imposed on a square integrable field of thermal gradients θ ∈ L2(Ω ;V )
to ensure that there exists an admissible temperature field θ ∈ θ̄ + L(Pat(Ω))
with θ̄ ∈ Temp(Ω) a prescribed Green-regular temperature field, such that

θ = ∇θ , θ ∈ θ̄ + L(Pat(Ω)) .

This integrability condition may be conveniently rephrased by requiring that
there exists a conforming temperature field θ ∈ L(Pat(Ω)) such that

θ −∇θ̄ = ∇Lθ , θ ∈ L(Pat(Ω)) .
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By Korn’s inequality, we know that the range Im∇L is closed in H(Ω ;V )
and the kernel Ker ∇L is finite dimensional

The closedness of the linear subspace Im∇L ⊂ H(Ω ;V ) is equivalent to
the orthogonality property:

Im∇L = (Ker∇∗L)⊥ .

It follows that the integrability condition is equivalent to the property

θ −∇θ̄ ∈ (Ker∇∗L)⊥ ,

which can be written in variational terms as∫
Ω

g(δq,θ)µ =

∫
Ω

g(δq,∇θ̄)µ , ∀ δq ∈ Ker ∇∗L .

In boundary value problems, δq ∈ Ker ∇∗L implies that ∇′oδq = 0 . Hence by
Green’s formula we get the equality∫

Ω

g(δq,∇θ̄)µ =

∫
∂Patqθ(Ω)

g(δq,n) Γθ̄ ∂µ ,

and the integrability condition may be written∫
Ω

g(δq,θ)µ =

∫
∂Patqθ(Ω)

g(δq,n) Γθ̄ ∂µ , ∀ δq ∈ Ker ∇∗L .

A cold-flow q ∈ L2(Ω ;V ) belongs to Ker ∇∗L iff it fulfills the balance equations
or the equivalent principle of virtual temperatures in absence of bulk energy-gap
field ( p = 0 ) and boundary heat supply ( ∂q = 0 ):∫

∂Patqθ(Ω)

∂r(q, ∂q) Γθ ∂µ =

∫
Ω

g(q,∇θ)µ , ∀ θ ∈ Temp(Ω) .

6.3.2 Complementary formulation
The variational integrability condition leads to the following complementary
formulation of thermal conduction BVP’s.

Let us denote by Qadm the linear manifold of the admissible cold-flows
q ∈ L2(Ω ;V ) , i.e. the ones fulfilling the principle of virtual temperatures:∫

Ω

p θµ +

∫
∂Patq(Ω)

∂qΓ(θ) ∂µ =

∫
Ω

g(q,∇θ)µ , ∀ θ ∈ L(Pat(Ω)) ,
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The solution of a thermal conduction BVP in terms of admissible cold-flows can
be sought by requiring that the corresponding thermal gradient θ = K−1q ,
provided by the Fourier’s law of thermal conduction, fulfils the integrability
condition and hence that the admissible cold-flow q ∈ Qadm ⊂ L2(Ω ;V ) be
solution of the variational problem:∫

Ω

g(K−1q, δq)µ =

∫
∂Pat∂qθ(Ω)

g(δq,n) Γθ̄ ∂µ , ∀ δq ∈ Ker ∇∗L .

6.4 Classical balance laws
The analysis illustrated with reference to the energy conservation principle can
be applied to discuss classical balance laws of the form

∂τ=t

∫
ξτ,t(Ct)

aτ µ =

∫
Ct

bt µ +

∫
∂Patct (Ct)

ct ∂µ ,

where the control-volume Ct is any open submanifold which, during a time
interval I , flows in an ambient manifold S , dragged by a flow ξτ,,t ∈ C1(S ;S) .
The time dependent scalar field at ∈ L2(S ;<) is a spatial density.
The scalar field bt ∈ L2(Ct ;<) is the volumetric source.
The scalar field ct ∈ L2(∂Pat(Ct) ;<) is the superficial source.

By the transport theorem, the balance law may be written as

∂τ=t

∫
ξτ,t(Ct)

aτ µ =

∫
Ct

Lt,u (at µ) =

∫
Ct

(Lt,u at + at (div u))µ

=

∫
Ct

∂τ=t aτ + div (au))µ

=

∫
Ct

bt µ +

∫
∂Patct (Ct)

ct ∂µ .

Let ΛCt be the space of Green-regular scalar test fields, defined by

ΛCt
:= {λ ∈ L2(Ct ;<) | ∃Patλ(Ct) : λ ∈ H1(P ;<) , ∀P ∈ Patλ(Ct) } .

The space ΛCt is a pre-Hilbert’s space with inner product and norm:

(λ1, λ2)ΛCt
:=

∫
Ct

λ1 λ2 µ +

∫
Ct

g(∇λ1,∇λ2)µ ,

‖λ‖2ΛCt
:=

∫
Ct

λ2 µ +

∫
Ct

‖∇λ‖2 µ .
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The balance law may then be written in the form∫
Ct

λLt,u (at µ)−
∫

Ct

btλ µ−
∫
∂Patctλ(Ct)

ctλ ∂µ = 0 , ∀λ ∈ Ker ∇ ,

where Ker ∇ ⊆ ΛCt is the linear subspace of piecewise constant test fields.
Let Λ(Pat(Ct)) = H1(Pat(Ct) ;<) be the subspace of test fields, sharing

the patchwork Pat(Ct) as common regularity support.
The analysis carried out in section 6.2 and the theorem of virtual thermal

work may be rephrased in the present context with no changes.
The theorem ensures that there exists a square integrable vector field q ∈

H(Ct ;V ) which fulfills, for all λ ∈ Λ(Pat(Ct)) , the variational balance law :∫
Ct

λLt,u (at µ) −
∫

Ct

bt λµ −
∫
∂Patctλ(Ct)

ct λ∂µ =

∫
Ct

g(qt ,∇λ)µ .

The corresponding local balance equations are

−div q = Lt,u (aµ)− b= Lt,u a+ adiv u− b
= ∂τ=t aτ + div (au)− b , bulk source ,

g(q,n) = c , boundary flux .

In books on thermodynamics and mechanics (see e.g. [?]) a balance law is
usually written in the form:

∂τ=t

∫
ξτ (Ct)

aτ µ =

∫
Ct

bt µ +

∫
∂Pat(Ct)

g(qt ,n) ∂µ ,

in which the existence of the vector field q ∈ H(Ct ;V ) is assumed a priori.
The previous treatment shows instead that its existence is a result of the theory.

More general balance laws, in which boundary conditions are imposed on
the scalar test fields can be dealt with in analogy to the treatment developed in
section 6.2.

6.5 Mass-flow vector field
As discussed in section 3.3, the mass conservation principle for a travelling
control volume Ct is equivalent to the mass-balance variational condition∫

Ct

λLt,u (ρt µ)−
∫
∂Ct

λg(ρt (u− v),n) ∂µ = 0 , ∀λ ∈ Ker ∇ ,
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where v is the velocity of the motion of the body, u is the velocity of the
travelling control-volume and Ker ∇ ⊆ ΛCt

is the linear space of piecewise
constant scalar test fields, a proper subspace of the Green-regular scalar test
fields in Ct . By proceeding in analogy with the theorem of virtual thermal
work, we may remove the piecewise constancy constraint on the test fields and
state the mass-balance variational condition as a principle of virtual pressures:∫

Ct

λLt,u (ρt µ) +

∫
∂Pat(Ct)

λg(ρt (v − u),n) ∂µ =

∫
Ct

g(mt ,∇λ)µ ,

for all λ ∈ L(Ct) , where mt ∈ H(Ct ;V ) is a a square integrable mass-flow
vector field over Ct . The motivation for calling pressures the test fields will be
given by the example of application in the next subsection.

The corresponding local mass-balance equations are

−div mt = Lt,u (ρt µ) = Lt,u ρt + ρt div u ,

= ∂τ=t ρτ + div (ρt u) , bulk mass source ,

g(mt,n) = g(ρt (v − u),n) , boundary mass flux .

The flux of the mass-flow vector field thru any surface in the trajectory of the
body yields the mass crossing the surface per unit time. If the surface is the
boundary of a domain, the flux of the mass-flow vector field yields the mass
coming into the domain per unit time.

If the control volume is dragged along the trajectory by the motion of the
body, we have that ϕ = ξ and u = v . Hence the local mass-balance equations
become

−div mt = Lt,v (ρt µ) , bulk mass source ,

g(mt,n) = 0 , boundary mass flux .
Since the flux across any closed surface vanishes, the divergence theorem implies
that Lt,v (ρt µ) = 0 and the rate form of the mass conservation principle is
recovered.

6.5.1 Flow thru a porous medium
As an application of the analysis developed in the previous section, let us con-
sider a two-phase medium composed by a fluid phase and by a porous solid
skeleton in which a fixed control volume is drawn. Let us assume that the
fluid has a stationary flow thru the porous skeleton under prescribed boundary
conditions on the pressure field.
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We will denote by Adm(Ct) the manifold of admissible pressure fields ful-
filling the nonhomogeneous boundary conditions and by Conf(Ct) the linear
subspace of pressure fields conforming the related homogeneous boundary con-
ditions. The mass conservation principle, stated as principle of virtual pressures,
yields the variational balance law :∫

∂Pat(Ct)

δλg(ρw,n) ∂µ =

∫
Ct

g(m ,∇δλ)µ ,

for all virtual pressure fields δλ ∈ L(Ct) . Here now m ∈ H(Ct ;V ) is a square
integrable fluid mass-flow vector field over Ct , ρ is the spatial density of the
fluid phase and w is the velocity of the motion of the fluid phase.

We remark that the rate term Lt,u (ρt µ) vanishes due to the assumptions
that the control volume is fixed in the porous skeleton (so that u = 0 ) and that
the flow of the fluid stationary, i.e. the partial time derivatives vanish.

Let us denote by λ0 a pressure field in the fluid in static equilibrium. By
assuming a Darcy-type permeability law

m = ∇f(∇(λ− λ0)) ,

governed by a convex potential f ∈ C1(V ;<) describing the nonlinear per-
meability properties of the medium, we get the variational principle for the
evaluation of the pressure in the permeating fluid:∫

∂Pat(Ct)

δλg(ρw,n) ∂µ =

∫
Ct

g(∇f(∇(λ− λ0)) ,∇δλ)µ , ∀ δλ ∈ L(Ct) .

By introducing the functional F defined by

F (λ) :=

∫
Ct

f(∇(λ− λ0))µ−
∫
∂Pat(Ct)

λg(ρw,n) ∂µ ,

the principle can be written as a stationarity condition at λ ∈ Ladm(Ct) :

〈dF (λ), δλ〉 = 0 , ∀ δλ ∈ L(Ct) ,

which is analogous to the stationarity condition for the potential energy of an
elastic structure as a functional of the displacement field.
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Chapter 7

Elements of Functional
Analysis

To provide a direct reference to known results of Functional Analysis, we collect
here the most important theorems which are referred to in the paper.

The proof of some result are explicitly reported in the simplest context of
Hilbert space theory since they are usually formulated and proved in the more
general setting of Banach spaces with deeper arguments.

7.1 Banach’s open mapping and closed range the-
orems

First we recall the statement of Banach’s open mapping and closed range
theorems (see [240] for a general proof in Fréchet spaces). A proof of the closed
range theorem in Hilbert spaces is provided in [196]. We also report some
important consequences of the open mapping theorem and their specialization
to Hilbert spaces where the projection theorem and the Riesz representation
theorem provide fundamental analytical tools.

• A linear operator A : X 7→ Y between two Hilbert spaces is continuous
if the counter-images under A of open sets in Y are open sets in X .
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Continuity of linear operators is equivalent to boundedness which means that
there exists a contant C > 0 such that

C ‖x‖X ≥ ‖Ax‖Y , ∀x ∈ X .

On the basis of Baire-Hausdorff lemma (see [22], theorem II.1) the polish
mathematician Stefan Banach proved a number of celebrated results which
provide the foundation of modern Functional Analysis.

Indeed most deep results in functional analysis rely upon the following the-
orem (see [22] theorem II.5).

Theorem 7.1.1 (The open mapping theorem) Let X and Y be Banach
spaces and A ∈ BL (X ,Y) a continuous linear operator which is surjective.
Then there exists a constant c > 0 such that

‖y‖Y < c =⇒ ∃ x ∈ X : ‖x‖X < 1, Ax = y.

The operator A will then map open sets of X onto open sets of Y .

As a corollary it can be proved (see [22] corollary II.6) that the inverse of a
continuous one-to-one linear map between two Banach spaces also enjoyes the
continuity property.

Theorem 7.1.2 (The continuous inverse theorem) If a continuous linear
operator A ∈ BL (X ,Y) establishes a one-to-one map between X and Y then
the inverse operator is linear and continuous.

In the sequel the symbol 〈•, •〉 will denote the duality pairing between dual
Hilbert spaces. We recall that, given a closed subspace A of a Banach space
X , the factor space X/A is a Banach space when endowed with the norm

‖xA‖X/A := inf{ ‖x− x‖X | x ∈ A}

where xA denotes the equivalence class x +A. Let X be a Hilbert space and
ΠA be the orthogonal projector on the closed subspace A ⊆ X . The factor
space X/A is a Hilbert space for the inner product

(xA,yA)X/A := (x−ΠAx,y −ΠAy)X ∀xA,yA ∈ X/A ; x ∈ xA, y ∈ yA

and the associated norm can be written as

‖xA‖X/A = min{ ‖x− x‖X | x ∈ A} = ‖x−ΠAx‖X .
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For every element x ∈ xA we shall set ‖x‖X/A := ‖xA‖X/A.
Given a pair of Hilbert spaces {X ,Y} a bilinear form a(x,y) on X ×Y is

bounded if for a positive constant C the following inequality holds

C ‖x‖X ‖y‖Y ≥ |a(x,y)| ∀x ∈ X ,y ∈ Y.

Denoting by {X ∗ ,Y∗} the spaces in duality with {X ,Y}, a pair of bounded
linear operators A ∈ BL (X ,Y∗) and A∗ ∈ BL (Y,X ∗) can be associated with
a by the identity:

a(x,y) = 〈Ax,y〉 = 〈A∗y,x〉 ∀x ∈ X ,y ∈ Y.

The discussion of the well-posedness of variational formulations is founded
upon the following fundamental result due to Banach. A proof in Banach
spaces can found in [240], [22] and a proof in Hilbert spaces in [196].

Theorem 7.1.3 (The closed range theorem) Let us consider a pair {X ,Y}
of Hilbert spaces, a bounded bilinear form a(x,y) on X × Y and the bounded
linear operators A ∈ BL (X ,Y∗) and A∗ ∈ BL (Y,X ∗) associated with a . Then
the following properties are equivalent:

i) Im A is closed in Y∗ ⇐⇒ Im A = (Ker A∗)⊥ ,

ii) Im A∗ is closed in X ∗ ⇐⇒ Im A∗= (Ker A)⊥ ,

iii) ‖Ax‖Y∗ ≥ c ‖x‖X/KerA ∀x ∈ X ,

iv) ‖A∗y‖X∗ ≥ c ‖y‖Y/KerA∗ ∀y ∈ Y ,

where c > 0 is a positive constant.

Remark 7.1.1 We recall that, by definition

‖Ax‖Y∗ := sup
y∈Y

a(x,y)

‖y‖Y
, ‖A∗y‖X∗ := sup

x∈X

a(x,y)

‖x‖X
.

These expressions can be modified by observing that being

a(x,y) = 〈A∗y,x〉 = 0 ∀x ∈ X , ∀y ∈ Ker A∗ ,

a(x,y) = 〈Ax,y 〉 = 0 ∀y ∈ Y, ∀x ∈ Ker A
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we have

‖Ax‖Y∗ = sup
y∈Y

a(x,y)

‖y‖Y
= sup

y∈Y
sup

yo∈KerA∗

a(x,y)

‖y + yo‖Y
= sup

y∈Y

a(x,y)

‖y‖Y/KerA∗
,

and

‖A∗y‖X∗ = sup
x∈X

a(x,y)

‖x‖X
= sup

x∈X
sup

xo∈KerA

a(x,y)

‖x + xo‖X
= sup

x∈X

a(x,y)

‖x‖X/KerA
.

Since the same constant c > 0 appears in iii) and iv) of theorem 7.1.3, these
inequalities are easily shown [196] to be equivalent to

inf
x∈X

sup
y∈Y

a(x,y)

‖x‖X/KerA‖y‖Y/KerA∗
= inf

y∈Y
sup
x∈X

a(x,y)

‖x‖X/KerA‖y‖Y/KerA∗
> 0 .

which will be referred to as the inf-sup conditions.

When the properties in theorem 7.1.3 hold true, we shall say that the bilinear
form a is closed on X × Y.

Theorem 7.1.1 implies the following result concerning the sum of two closed
subspaces of a Banach space (see [22] theorem II.8)

Lemma 7.1.1 (A representation lemma) Let X be a Banach space and
A ⊆ X and B ⊆ X closed subspaces such that their sum A+B is closed. Then
there exists a constant c > 0 such that every x ∈ A+B admits a decomposition
of the kind x = a+b with a ∈ A, b ∈ B, ‖a‖X ≤ c ‖x‖X and ‖b‖X ≤ c ‖x‖X .

Proof. By endowing the product space X ×X with the norm ‖{x ,y}‖X×X :=
‖x‖X+‖y‖X the linear operator A ∈ BL (X×X ,X ) defined by A{x ,y} := x+y
is continuous and surjective. Then by theorem 7.1.1 there exists a constant
c > 0 such that every x ∈ A+ B with ‖x‖X < c can be written as x = a + b
with a ∈ A, b ∈ B and ‖a‖X + ‖b‖X < 1. Hence by homogeneity we get
that x ∈ A + B admits the decomposition x = a + b with a ∈ A, b ∈ B and
‖a‖X + ‖b‖X ≤ c−1 ‖x‖X . �

From lemma 7.1.1 we get a useful characterization of the closedness of the
sum of two closed subspaces (see [22] corollary II.9 for a proof in Banach
spaces).
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Theorem 7.1.4 (The finite angle property) Let X be a Hilbert space and
A ⊆ X and B ⊆ X closed subspaces such that their sum A+B is closed. Then
there exists a constant c > 0 such that

‖x‖X/A∩B ≤ c
(
‖x‖X/A + ‖x‖X/B

)
∀x ∈ X .

Proof. Let a ∈ A and b ∈ B. Then by lemma 7.1.1 there exist a ∈ A, b ∈ B
and a constant k > 0 such that

a + b = a + b and ‖a‖X ≤ k ‖a + b‖X ‖b‖X ≤ k ‖a + b‖X .

By observing that a− a = b− b ∈ A ∩ B we have that ∀a ∈ A and ∀b ∈ B

‖x‖X/A∩B ≤ ‖x− (a− a)‖X ≤ ‖x− a‖X + ‖a‖X ≤ ‖x− a‖X + k ‖a + b‖X .

We get the result by a further application of the triangle inequality

‖a + b‖X ≤ ‖x− a‖X + ‖x− b‖X ,

taking the infimum with respect to a ∈ A and b ∈ B and setting c = k+ 1. �

Fig. 7.1 provides a geometrical interpretation of proposition 7.1.4.

A B

A ∩ B

X

Π
A X

Π
B X

Π
A∩B

X

X

Figure 7.1: A geometrical interpretation of the finite angle property.

‖x−ΠAx‖X + ‖x−ΠBx‖X ≥ c−1 ‖x−ΠA∩Bx‖X ∀x ∈ X .

The following lemma provides two basic orthogonality relations.
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Lemma 7.1.2 (Orthogonality relations) Let A and B be two subspaces of
an Hilbert space X , and A⊥ and B⊥ their orthogonal complements in the dual
Hilbert space X ∗. Then

i) (A+ B)
⊥

= A⊥ ∩ B⊥.

If A and B are closed subspaces we have also that

ii) (A⊥ + B⊥)⊥ = A ∩ B.

Proof. The equality i) is evident. To prove ii) we observe that A ∩ B ⊆
(A⊥ + B⊥)⊥ since x ∈ A ∩ B and f ∈ (A⊥ + B⊥) implies 〈f ,x〉 = 0. The
converse inclusion follows from A⊥ ⊆ A⊥ + B⊥ so that

(A⊥ + B⊥)⊥ ⊆ A⊥⊥ = A .

Analogously (A⊥ + B⊥)⊥ ⊆ B and hence (A⊥ + B⊥)⊥ ⊆ A ∩ B . �

Remark 7.1.2 We recall that in a Hilbert space we have A⊥⊥ = A where A
denotes the closure of A. Given any pair of subspaces A,B ⊆ X we have the
inclusion (A∩B)⊥ ⊇ A⊥+B⊥. If A and B are closed, we get an equality if and
only if A⊥ + B⊥ is a closed subspace of X ∗. In fact from property ii) of lemma
7.1.2 we infer that (A ∩ B)⊥ = (A⊥ + B⊥)⊥⊥.

Further, by property i) of lemma 7.1.2, any pair of subspaces A,B ⊆ X
will meet the relation (A + B)⊥⊥ = (A⊥ ∩ B⊥)⊥. Hence the equality A + B =
(A⊥ ∩ B⊥)⊥ holds if and only if A+ B is closed in X .

A useful criterion for the closedness of the sum of two closed subspaces is
provided by the next result [196].

Lemma 7.1.3 (Closedness of the sum of closed subspaces) Let A and B
be closed subspaces of a Hilbert space X with one of them finite dimensional.
Then the subspace A+ B is closed.

We can now prove a deep result (see [22] theorem II.15 for a proof valid in
Banach’s spaces).

Theorem 7.1.5 (Closedness of the sum of orthogonal complements) Let
us consider two closed subspaces A and B of an Hilbert space X , and their
orthogonal complements A⊥ and B⊥ in the dual Hilbert space X ∗. Then A+B
is closed in X if and only if A⊥ + B⊥ is closed in X ∗.
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Proof. By virtue of lemma 7.1.2 the following equivalences hold true:

i) A+ B closed ⇐⇒ ii) A+ B = (A+ B)
⊥⊥

= (A⊥ ∩ B⊥)
⊥
,

iii) A⊥ + B⊥ closed⇐⇒ iv) A⊥ + B⊥ = (A⊥ + B⊥)
⊥⊥

= (A ∩ B)
⊥
.

Let us now show that i) =⇒ iv).
Being (A ∩ B)

⊥
= (A⊥ + B⊥)

⊥⊥ ⊇ A⊥+B⊥ it suffices to prove the converse
inclusion (A ∩ B)

⊥ ⊆ A⊥ + B⊥.
Since A+B is closed, lemma 7.1.1 ensures that there exists a constant c > 0

such that any x ∈ A+ B admits a decomposition of the kind:

x = a + b with a ∈ A , b ∈ B ,

and
‖a‖X ≤ c ‖x‖X , ‖b‖X ≤ c ‖x‖X .

Now let f ∈ (A ∩ B)
⊥. Then we may define the linear functional φ on A+ B:

〈φ,x〉 := 〈f ,a〉 ∀x ∈ A+ B ,

since the definition is independent of the decomposition of x . Further φ is
continuous since

|〈φ,x〉| = |〈f ,a〉| ≤ ‖f‖X ′‖a‖X ≤ c ‖f‖X ′‖x‖X ∀x ∈ A+ B .

Let Π be the orthogonal projector on A + B in X . The continuous linear
functional ϕ ∈ X ∗ defined by

〈ϕ,x〉 := 〈φ,Πx〉 , ∀x ∈ X ,

is such that
ϕ ∈ B⊥ , f −ϕ ∈ A⊥ .

The implication iii) =⇒ ii) is proved in an analogous way. �

I present here some new results which have been discovered by me in the
development of the investigation on mixed problems.

First I quote a variant of theorem 7.1.4 providing an inequality which plays
a basic role in the analysis carried out in section 8.6. The result is due to the
author [194].
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Theorem 7.1.6 (A projection property) Let X be a Hilbert space and
A ⊆ X and B ⊆ X closed subspaces such that their sum A + B is closed. Let
us further denote by ΠA and ΠB the orthogonal projectors on A and B in
X . Then there exist a constant k > 0 such that

‖x‖X/A∩B ≤ ‖x‖X/A + k ‖ΠAx‖X/B ∀x ∈ X ,
‖x‖X/A∩B ≤ ‖x‖X/B + k ‖ΠBx‖X/A ∀x ∈ X .

Proof. The proof of Theorem 7.1.4 shows that

‖x‖X/A∩B ≤ ‖x− a‖X + c ‖a + b‖X ∀a ∈ A,b ∈ B.
Setting a = ΠAx and taking the infimum with respect to b ∈ B we get the first
inequality. Setting b = ΠBx and taking the infimum with respect to a ∈ A we
get the second one. �

A simple geometrical sketch of the previous result is given in Fig.7.2.

A B

A ∩ B

X

Π
A X

Π
A∩B

X

X

A B

A ∩ B

X

Π
A XΠ

B

Π
A∩B

X

X

Π
B XΠ

A

XΠ
B

Figure 7.2:

Remark 7.1.3 For any pair {x ,y} ∈ X × X we have

(‖x‖2 + ‖y‖2)1/2 ≤ ‖x‖+ ‖y‖ ≤
√

2 (‖x‖2 + ‖y‖2)1/2

and hence the inequalities in propositions 7.1.4 and 7.1 can be rewritten as

‖x‖2X/A∩B ≤ c
(
‖x‖2X/A + ‖x‖2X/B

)
∀x ∈ X ,

‖x‖2X/A∩B ≤ k
(
‖x‖2X/A + ‖ΠAx‖2X/B

)
∀x ∈ X ,

‖x‖2X/A∩B ≤ k
(
‖x‖2X/B + ‖ΠBx‖2X/A

)
∀x ∈ X ,

573



Banach’s open mapping and closed range theorems Giovanni Romano

with obvious definitions of the constants. These inequalities are the ones directly
invoked in our analysis.

From theorem 7.1.5 we derive a useful criterion for the closedness of the
image of a product operator.

To this end we premise the following lemma.

Lemma 7.1.4 (An equivalence between closedness properties) Let X be
a Hilbert space and A,B subspaces of X with B closed. Then A+ B is closed
in X if and only if the subspace (A+ B)/B is closed in the factor space X/B.
Proof. Let A + B be closed in X . Then A + B is a Hilbert space for the
topology of X and hence the subspace (A + B)/B is closed for the topology of
X/B.

Now let (A+ B)/B be closed in X/B. A Cauchy sequence {an + bn} with
an ∈ A and bn ∈ B will converge to an element x ∈ X and we have to show
that x ∈ A+ B. First we observe that

‖an + bn − x‖X ≥ inf
b∈B
‖an − x + b‖X = ‖an − x‖X/B.

Hence by the closedness of (A+ B)/B the sequence {an + B} ⊂ (A+ B)/B will
converge to the element x + B ∈ (A + B)/B. It follows that x ∈ A + B which
was to be proved. �

We can now state the closedness criterion for the range of the composition of
two operators.

Lemma 7.1.5 (Product operators) Let X ,Y,Z be Hilbert spaces and F ∈
BL (X ,Y) and G ∈ BL (Y,Z) be continuous linear operators and F∗ ∈ BL (Y∗,X ∗)
and G∗ ∈ BL (Z∗,Y∗) their duals. Let Im F be closed in Y. Then the following
equivalence holds

Im GF closed in Z ⇐⇒ Im G∗ + Ker F∗ closed in Y∗.
that is, the image Im GF of the product operator GF ∈ BL (X ,Z) is closed in
Z if and only if the subspace Im G∗ + Ker F∗ is closed in Y∗.
Proof. Let us consider the operator Go ∈ BL (Im F,Z) and its dual G∗o ∈
BL (Z∗,Y∗/Ker F∗) which are defined by

Goy := Gy ∀y ∈ Im F G∗oz
∗ := G∗z∗ + Ker F∗ ∀ z∗ ∈ Z.

Theorem 7.1.3 shows that Im Go = Im GF is closed if and only if Im G∗o =
(Im G∗ + Ker F∗)/Ker F∗ is closed in Y∗/Ker F∗. By proposition 7.1.4 this
property is equivalent to the closedness of Im G∗ + Ker F∗ in Y∗. �
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7.2 Korn’s second inequality
The celebrated Korn’s second inequality is the milestone along the way that
leads to the basic existence results in continuum mechanics and linear elasto-
statics.

An abstract result by L. Tartar shows that Korn’s inequality implies
that the range of the kinematic operator is closed and that its kernel is finite
dimensional. A full extension of Tartar’s lemma is provided in this paper
and leads to the conclusion that conversely the closedness of the range of the
kinematic operator and the finite dimensionality of its kernel are sufficient to
ensure the validity of Korn’s inequality.

On reading the brilliant proof of Korn’s second inequality in the book by G.
Duvaut and J.L. Lions [51] the author realized that the peculiar form of the
sym grad operator plays a basic role in the proof. More specifically he realized
that the finite dimensionality of the kernel of sym grad should be a necessary
property, although this condition was not appealed to explicitly in the proof.

Some time later the author became aware of a nice result by L. Tartar
concerning an abstract inequality of the Korn’s type expressed in term of a
bounded linear operator and a compact operator whose kernels have a trivial
intersection. Tartar proved that the inequality implies the finite dimensionality
of the kernel and the closedness of the image of the bounded linear operator.
The conjecture about the role of the kernel of sym grad in Korn’s second
inequality was thus confirmed.

At this point it was naturally raised the question whether conversely the
finite dimensionality of the kernel of sym grad and the closedness of its image
were also sufficient to assess the validity of Korn’s second inequality. This
converse property requires to complete Tartar’s result with the opposite im-
plication. A full extension of Tartar’s lemma has been provided in the paper
[195] and leads to the conclusion that conversely the closedness of the range of
the kinematic operator and the finite dimensionality of its kernel are sufficient
to ensure the validity of Korn’s inequality. The main result contributed here
shows that both properties are equivalent to require that a similar inequality be
valid for any linear continuous operator.

7.3 Tartar’s Lemma
A nice abstract result due to L. Tartar was reported by F. Brezzi and D.
Marini in [26], lemma 4.1 and quoted by P. G. Ciarlet in [38], exer. 3.1.1.

575



Tartar’s Lemma Giovanni Romano

Since Tartar’s lemma plays a basic role in our discussion about Korn’s in-
equality we provide hereafter an explicit proof of this result. Preliminarily we
quote that Banach’s open mapping theorem implies the following lemma (see
Brezis [22] th. II.8 and [196], th. 9.1, 9.2).

Theorem 7.3.1 (Bounded decomposition) Let X be a Banach space and
A ⊆ X , B ⊆ X closed linear subspaces of X such that their sum A + B
is closed. Then any x ∈ A + B admits a decomposition x = a + b , with
a ∈ A , b ∈ B , such that

‖x‖X ≥ c ‖a‖X , ‖x‖X ≥ c ‖b‖X ,
where c > 0 .

If X = A+B and A∩B = {o} , the closed subspaces A and B are topological
supplements in X and the projectors PA x = a and PB x = b are well defined
linear bounded operators from X to X .

A decomposition X = A u B of X into the direct sum of two topological
supplementary subspaces A and B certainly exists if either X is a Hilbert
space or at least one of them, say A , is finite dimensional.

In the former case B is simply the orthogonal complement of A in X . In
the latter case we can take as B the annihilator in X of a subspace of X ∗
generated by fixing a basis in A , taking the dual basis in A∗ and extending its
functionals to X ∗ (by the Hahn-Banach theorem).

From Theorem 7.3.1, being PA a = a ∀a ∈ A , we infer that

‖x−a‖X ≥ c ‖(x−a)−PA (x−a)‖X = c ‖x−PA x‖X , ∀a ∈ A , ∀x ∈ X ,
which is equivalent to ‖x‖X/A ≥ c ‖x−PA x‖X ∀x ∈ X . Hence we have that

‖x−PA x‖X ≥ ‖x‖X/A ≥ c ‖x−PA x‖X , ∀x ∈ X .
Theorem 7.3.2 (Tartar’s Lemma) Let H be a reflexive Banach space, E ,
F be normed linear spaces and A ∈ BL (H,E) a bounded linear operator. If
there exists a bounded linear operator Lo ∈ BL (H,F ) such that{

i) Lo ∈ BL (H,F ) is compact ,

ii) ‖Au‖E + ‖Lou‖F ≥ α ‖u‖H ∀u ∈ H ,

then we have that{
a) dim(Ker A) < +∞ ,

b) ‖Au‖E ≥ cA ‖u‖H/KerA ∀u ∈ H .
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Proof. Let’s prove that the closed linear subspace Ker A ⊂ H is finite dimen-
sional. We first note that ii) implies that

‖Lou‖F ≥ α ‖u‖H ∀u ∈ Ker A .

On the other hand, denoting by w→ the weak convergence in H , the compactness
property i) implies that

{un} ⊂ Ker A ,

un
w→ u∞ in H ,

}
=⇒ ‖Lo(un − u∞)‖F → 0 =⇒ ‖un − u∞‖H → 0 .

We may then conclude that every weakly convergent sequence in Ker A is
strongly convergent. Hence, by the reflexivity of H ([22] III.2, remark 4) we
must have dim(Ker A) <∞ and a) is proved.

Then Ker A admits a topological supplement S and we can consider the
bounded linear operator PA ∈ BL (H,H) which is the projector on Ker A
subordinated to the decomposition H = Ker Au S .

Let us now suppose that b) is false.
There would exists a sequence {un} ⊂ H such that ‖Aun‖E → 0 and

‖un‖H/Ker A = 1 . By the inequality ‖un‖H/Ker A ≥ c ‖un − PA un‖H the
sequence un−PAun is bounded in H . Hence the compactness of the operator
Lo ∈ BL (H,F ) ensures that we can extract from the sequence Lo(un−PAun)
a Cauchy subsequence Lo(uk −PAuk) in F .

The sequence Auk is convergent in E by assumption and hence we infer
from ii) that uk − PAuk is a Cauchy sequence which by the completeness
of H converges to an element u∞ ∈ H . Since Auk converges to zero in E
the boundedness of A ∈ BL (H,E) ensures that u∞ ∈ Ker A so that also
PAuk + u∞ ∈ Ker A . Finally from ii) we get that

α ‖uk‖H/Ker A ≤ ‖Auk‖E + ‖Lo(uk −PAuk − u∞)‖F → 0 ,

and this is absurd since ‖uk‖H/Ker A = 1 . �

Remark 7.3.1 Tartar’s lemma is quoted in [38] referring to [26] for the proof
of the statement. Although in [26] and [38] the space H was assumed to be a
(non reflexive) Banach space, property a) cannot be inferred in this general
context. A well-known counterexample is provided by the space l1 of absolutely
convergent real sequences. In fact Shur’s theorem states that in this infinite
dimensional Banach space every weakly convergent sequence is also strongly
convergent (see [240] V.1 theorem 5 and [22] III.2, remark 4).
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We also note that the proof of property b) , as developed in [26], requires
the existence of a weakly convergent subsequence of a bounded sequence and
hence, by the Eberlein-Shmulyan theorem (see [240]), the Banach space H
should be reflexive. The proof of property b) proposed here is instead based on
a completeness argument which does not require the reflexivity of the Banach
space H (private communication by prof. Renato Fiorenza).

7.4 Inverse Lemma
Let us now face the question whether Tartar’s lemma can be completed by
assessing the converse implication. A positive answer needs an existence result.
We have in fact to prove that properties a) and b) in Tartar’s lemma imply
the existence of a compact operator Lo ∈ BL (H,F ) fulfilling property ii) .

Firstly we observe that ii) implies that Ker A∩Ker Lo = {o} . Our strategy
consists in relaxing the requests on Lo by considering at its place any operator
L ∈ BL (H,F ) . We then try to establish the inequality

‖Au‖E + ‖Lu‖F ≥ αL ‖u‖H/(Ker A∩Ker L) ∀u ∈ H
for any L ∈ BL (H,F ) . Once this goal has been achieved we can choose L to
be compact and such that Ker A ∩ Ker L = {o} . We need some preliminary
results. From Theorem 7.3.1 we infer the next proposition.

Theorem 7.4.1 (Distance inequalities) Let X be a Banach space and A ⊆
X , B ⊆ X closed linear subspaces of X such that their sum A+ B is closed.
Then, setting k = c−1 > 0 we have

i) ‖x‖X/A∩B ≤ ‖x− a‖X + k ‖a + b‖X , x ∈ X , ∀ {a ,b} ∈ A × B .
If A admits a topological supplement S so that X = Au S then we infer that

ii) ‖x‖X/A∩B ≤ ‖x−PA x‖X + k ‖PA x‖X/B , x ∈ X .
where PA is the projector on A subordinated to the direct sum decomposition
of X .

Proof. Theorem 7.3.1 ensures that for every x ∈ X , a ∈ A , b ∈ B there
exists a ρ ∈ A ∩ B such that ‖a + ρ‖X ≤ k ‖a + b‖X . Hence we infer i) :

‖x‖X/A∩B ≤ ‖x + ρ‖X ≤ ‖x− a‖X + ‖a + ρ‖X ≤ ‖x− a‖X + k ‖a + b‖X .
Setting a = PA x and taking the infimum with respect to b ∈ B we get the
inequality ii) . �
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The following two lemmas yield the tools for the main result.

Theorem 7.4.2 (Projection inequality) Let H be a Banach space and E ,
F be linear normed spaces. Let moreover A ∈ BL (H,E) e L ∈ BL (H,F ) be
linear bounded operators such that{

i) ‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H ,

ii) ‖Lu‖F ≥ cL ‖u‖H/KerL , ∀u ∈ Ker A .

Let moreover Ker A admit a topological supplement S so that H = Ker AuS .
Then we have

a) ‖Au‖E + ‖L u‖F ≥ α ‖PAu‖H/KerL , ∀u ∈ H .

where PA ∈ BL (H,H) is the projector on Ker A subordinated to the decom-
position H = Ker Au S .
Proof. If a) would be false we could find a sequence {un} ⊂ H such that

‖PAun‖H/Ker L = 1 , ‖Aun‖E → 0 , ‖Lun‖F → 0 .

Since ‖u‖H/Ker A ≥ c ‖u−PA u‖H ∀u ∈ H we infer from i) that

‖Aun‖E → 0 =⇒ ‖un −PAun‖H → 0 .

Moreover we have{‖L‖ ‖un −PAun‖H ≥ ‖L(un −PAun)‖F ,

‖LPAun‖F ≤ ‖L(un −PAun)‖F + ‖Lun‖F .
Hence ‖LPAun‖F → 0 and from ii) we get

‖LPAun‖F ≥ cL ‖PAun‖H/Ker L =⇒ ‖PAun‖H/Ker L → 0 ,

which is absurd since ‖PAun‖H/Ker L = 1 . �

Theorem 7.4.3 (Abstract inequality) Let H be a Banach space and E ,
F be linear normed spaces. Let moreover A ∈ BL (H,E) e L ∈ BL (H,F ) be
linear bounded operators such that

i) ‖Au‖E≥ cA ‖u‖H/KerA , ∀u ∈ H ,

ii) ‖Lu‖F ≥ cL ‖u‖H/KerL , ∀u ∈ Ker A ,

iii) Ker A + Ker L closed in H .
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Let moreover Ker A admit a topological supplement S so that H = Ker AuS .
Then we have

c) ‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) .

Proof. Summing up the inequalities a) and i) in Theorem 7.4.2 we get

‖Au‖E + ‖L u‖F ≥ αo ( ‖u‖H/Ker A + ‖PAu‖H/Ker L ) , ∀u ∈ H .

Moreover, by assumption iii) , Theorem 7.4.1 implies that

‖u−PAu‖H + k ‖PAu‖H/Ker L ≥ c ‖u‖H/Ker A∩Ker L , ∀u ∈ H .

Recalling that ‖u‖H/Ker A ≥ c ‖u−PA u‖H ∀u ∈ H we get the result. �

The next lemma yields the crucial result for our analysis.

Theorem 7.4.4 (Inverse lemma) Let H be a Banach space and E , F be
linear normed spaces. Let moreover A ∈ BL (H,E) be a linear bounded operator
such that {

a) dimKer A < +∞ ,

b) ‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H .

Then for any L ∈ BL (H,F ) we have

i) ‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) , ∀u ∈ H .

Proof. It suffices to observe that any finite dimensional subspace admits a
topological supplement in H and that condition a) implies the validity of ii)
and iii) of the abstract inequality for any L ∈ BL (H,F ) . �

Now we recall that any continuous projection operator on a finite dimensional
subspace is compact.

It follow that if dimKer A < +∞ there exists at least a compact operator
Lo ∈ BL (H,F ) such that Ker A ∩ Ker Lo = {o} . Indeed we can set Lo =
PA ∈ BL (H,H) , the projection operator on the finite dimensional subspace
Ker A ⊂ H defined by a direct sum decomposition H = (Ker A)u S with S
topological supplement of Ker A .

We can now provide a full extension of Tartar’s lemma by including the
converse implication and the equivalence to a new property.
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Theorem 7.4.5 (Equivalent inequalities) Let H be a reflexive Banach
space, E , F be normed linear spaces and A ∈ BL (H,E) a bounded linear
operator. Then the following propositions are equivalent:

P1)

{
dimKer A < +∞ ,

‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H ,

P2)


There exists Lo ∈ BL (H,F ) compact
such that Ker A ∩Ker Lo = {o} and
‖Au‖E + ‖Lou‖F ≥ α ‖u‖H , ∀u ∈ H ,

P3)

{
dimKer A < +∞ ,

‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) , ∀u ∈ H ,∀L ∈ BL (H,F ) ,

Proof. P3 =⇒ P1 setting L = O . P3 =⇒ P2 setting L = Lo = PA .
P1 =⇒ P3 by Lemma 7.4.4. Finally P2 =⇒ P1 by Tartar’s lemma which is
the one requiring the reflexivity of the Banach space H . �

7.5 Korn’s Inequality
In continuum mechanics the fundamental theorems concerning the variational
formulation of equilibrium and compatibility are founded on the property that
the kinematic operator has a closed range and a finite dimensional kernel. The
abstract framework is the following. A structural model is defined on a regu-
lar bounded domain Ω of an euclidean space and is governed by a kinematic
operator B which is the regular part of a distributional differential operator
B : V(Ω) 7→ D′(Ω) of order m acting on kinematic fields u ∈ V(Ω) which are
square integrable on Ω and such that the corresponding distributional linearized
strain field Bu ∈ D′(Ω) is square integrable on a finite subdivision T u(Ω) of
Ω . The kinematic space V(Ω) is a pre-Hilbert space when endowed with the
topology induced by the norm

‖u‖2V(Ω) = ‖u‖2H(Ω) + ‖Bu‖2H(Ω) ,

where H(Ω) and H(Ω) are the spaces of kinematic and linearized strain
fields which are square integrable on Ω [197]. The conforming kinematisms
u ∈ L(Ω) belong to a closed linear subspace L(Ω) ⊂ Hm(T (Ω)) ⊂ V(Ω)
of the Sobolev space Hm(T (Ω)) , where T (Ω) is a given finite subdivi-
sion of Ω . Thus L(Ω) ⊂ Hm(T (Ω)) is an Hilbert space and the operator
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BL ∈ BL (L(Ω),H(Ω)) defining the linearized regular strain Bu ∈ H(Ω) asso-
ciated with the conforming kinematic field u ∈ L(Ω) is linear and continuous.
The kinematic operator B ∈ BL (V(Ω),H(Ω)) is assumed to be regular in the
sense that for any L(Ω) ⊂ V(Ω) the following conditions are met [197]{

dimKer BL < +∞ ,

‖Bu‖H(Ω) ≥ cB ‖u‖L(Ω)/Ker BL , ∀u ∈ L(Ω) ⇐⇒ Im BL closed in H(Ω) .

The requirement that the property must hold for any L(Ω) ⊂ V(Ω) is motivated
by the observation that in applications it is fundamental to assess that the basic
existence results hold for any choice of the kinematic contraints. The regularity
of B ∈ BL (V(Ω),H(Ω)) is the basic tool for the proof of the theorem of
virtual powers which ensures the existence of a stress field in equilibrium with
an equilibrated system of active forces.

Theorem 7.5.1 (Theorem of Virtual Powers) Let f ∈ L∗(Ω) be a system
of active forces. Then

f ∈ (Ker BL)⊥ =⇒ ∃ σ ∈ H(Ω) : 〈f ,v 〉 = (( σ , Bv )) , ∀v ∈ L(Ω) .

Proof. Let B′L ∈ BL (H(Ω),L∗(Ω)) be the equilibrium operator dual to BL .
By Banach’s closed range theorem we have that f ∈ (Ker BL)⊥ = Im B′L and
the duality relation yields the result. �

A linearized strain field ε ∈ H(Ω) is kinematically compatible if there
exists a conforming kinematic field u ∈ L(Ω) such that ε = Bu . Self-
equilibrated stress fields are the elements of H(Ω) which belong to the ker-
nel of the equilibrium operator B′L ∈ BL (H(Ω),L∗(Ω)) . The regularity of
B ∈ BL (L(Ω),H(Ω)) provides the following variational condition.

Theorem 7.5.2 (Kinematical compatibility)

(( σ , ε )) = 0 ∀σ ∈ Ker B′L =⇒ ∃ u ∈ L(Ω) : ε = Bu .

Proof. By Banach’s closed range theorem Im BL = (Ker B′L)⊥ . �

The regularity of the kinematic operator B ∈ BL (V(Ω),H(Ω)) is then a
fundamental property to be assessed in a structural model. Our analysis shows
that a necessary and sufficient condition is the validity of an inequality of the
Korn’s type

‖Bu‖H(Ω) + ‖u‖H(Ω) ≥ α ‖u‖Hm(Ω) , ∀u ∈ Hm(Ω) ,
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Note that, by Rellich selection principle [69], the canonical immersion from
Hm(Ω) into H(Ω) = L2(Ω) is compact. If Korn’s inequality holds for any
u ∈ Hm(Ω) it will hold also for any u ∈ Hm(T (Ω)) and then a fortiori for any
u ∈ L(Ω) .

With reference to the three-dimensional continuous model we remark that
Korn’s first inequality can be easily derived from Korn’s second inequality by
appealing to Lemma 7.4.4.

In fact denoting by H1/2(∂Ω)3 , the space of traces of fields in H1(Ω)3

on the boundary ∂Ω of Ω and taking L to be the boundary trace operator
Γ ∈ BL (H1(Ω)3, H1/2(∂Ω)3) we get

‖Bu‖H(Ω) + ‖Γu‖H1/2(∂Ω)3 ≥ α ‖u‖H1(Ω)3 ∀u ∈ H1(Ω)3 ,

and hence

‖Bu‖H(Ω) ≥ α ‖u‖H1(Ω)3 ∀u ∈ H1(Ω)3 ∩Ker Γ = H1
0 (Ω)3 ,

which is Korn’s first inequality. The original form of the second inequality as
stated by Korn was in fact

‖sym grad u‖L2(Ω) ≥ α ‖u‖H1(Ω) ∀u ∈ H1(Ω) :

∫
Ω

emi grad u dµ = O .

By the inverse lemma also this original form can be recovered simply by
setting

L ∈ BL (H1(Ω)3,<6) , Lu :=

∫
Ω

emi grad u dµ .

We thus get the inequality

‖sym grad u‖L2(Ω) +

∥∥∥∥ ∫
Ω

emi grad u dµ

∥∥∥∥ ≥ α ‖u‖H1(Ω) ∀u ∈ H1(Ω) .

which immediately implies Korn’s original inequality.
The proof of the converse implication is more involved and can be found in

G. Fichera’s article [69], remark on page 384. A more detailed version of the
proof is provided in [196], Lemma 7.11.

From Lemma 7.4.4 we can also infer Poincaré inequality.
Let Ω be an open bounded connected set in <d with a regular boundary.

Denoting by p a d-multi-index and by |p| the sum of its components we set:
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• A ∈ BL (Hm(Ω),L2(Ω)k) continuous linear operator Au = {Dpu} ,
with k = card{p ∈ N d : |p| = m} and |p| = m ,

• Lo ∈ BL (Hm(Ω), Hm−1(Ω)) compact identity map Lou = u ,

• L ∈ BL (Hm(Ω),L2(Ω)r) continuous linear operator defined by

Lu =

{
1√

measΩ

∫
Ω

Dpu(x) dµ

}
; 0 ≤ |p| ≤ m− 1 ,

with r = card{p ∈ N d : |p| < m} .

We set H = Hm(Ω) , E = L2(Ω)k , Eo = Hm−1(Ω) , F = L2(Ω)r , so that

A ∈ BL (H,E) , Lo ∈ BL (H,Eo) , L ∈ BL (H,F ) .

Then property P2 of Theorem 7.4.5 is fulfilled since{
‖Au‖2E + ‖Lou‖2Eo = ‖u‖2H ,
Lo ∈ BL (H,Eo) is compact .

We remark that Ker A = Pm−1(Ω) is the finite dimensional linear subspace
of polynomials of total degree not greater than m− 1 so that dimPm−1(Ω) =
(m− 1 + d)!/(d! (m− 1)!) . Moreover we have that

Ker A ∩Ker L = {o} ,

and hence property P3 of Theorem 7.4.5 yields

‖Au‖E + ‖Lu‖F ≥ α ‖u‖H ∀u ∈ H ,

or explicitly, for all u ∈ Hm(Ω) :

∑
|p|=m

∫
Ω

|Dpu(x)|2 dµ +
∑
|p|<m

∣∣∣∣ ∫
Ω

Dpu(x) dµ

∣∣∣∣2 ≥ α ‖u‖2Hm(Ω) ,

which is Poincaré inequality.

Remark 7.5.1 While proof-reading the paper [195] the author became aware
of a result, quoted by Roger Temam in [225], section I.1, which is a spe-
cial case of the inverse lemma. This result was not explicitly proved in [225]
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and was resorted to in deriving a proof of Korn’s inequality from the property
that the distributional operator grad ∈ BL (L2(Ω)n, H−1(Ω)n×n) has a closed
range and a one-dimensional kernel consisting of the constant fields on Ω (see
[196] for an explicit proof). This property is in turn a direct consequence of a
fundamental inequality due to J. Necas [150].
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Chapter 8

Linear elastostatics

This chapter is devoted to the theoretical analysis of the elastic equilibrium prob-
lem under the assumption of a linear elastic behavior. Existence and uniqueness
of the solution are discussed in the context of Hilbert space theory. New re-
sults, concerning the closedness of the product of two linear operators and a
projection property equivalent to the closedness of the sum of two closed sub-
spaces, are contributed. A set of necessary and sufficient conditions for the
well-posedness of an elastic problem with a singular elastic compliance provides
the most general result of this kind in linear elasticity. Sufficient criteria for the
well-posedness of elastic problems in structural mechanics including the presence
of supporting elastic beds are contributed and applications are exemplified.

8.1 Introduction
Mixed formulations in elasticity, in which both the stress and the kinematic
fields are taken as basic unknowns of the problem, are motivated either by
singularities of the constitutive operators or by computational requirements.

The pioneering contributions by I. Babuška [13] and F. Brezzi [23] have
provided mixed formulations leading to saddle-point problems with a sound
mathematical foundation. A comprehensive presentation of the state of art can
be found in chapter II of [24] where existence and uniqueness results and a priori
error estimates are contributed.

The present paper is devoted to the abstract analysis of linear elasticity
problems in which the elastic compliance is allowed tohave a non trivial kernel,
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so that the elastic strains are subject to a linear constraint. Problems involving
such constraints have been recently analysed in [5], [126] and critically reviewed
in [192]. Our aim is to provide criteria for the assessment of the well-posedness
property for this class of problems. Well-posedness corresponds to the engineer-
ing expectation that a (possibly non-unique) solution of a problem must exist
under suitable variational conditions of admissibility on the data.

An elastic model capable to encompass all the usual engineering applica-
tions must include a possibly singular elastic compliance and external elastic
constraints characterized by a non-coercive stiffness operator.

The treatment of such general kind of models is out of the range of applica-
bility of the results that can be found in treatises on the foundation of elasticity
(see e.g. [69], [51]). New necessary and sufficient conditions for the existence of
a solution and applicable criteria for their fulfilment are thus needed.

Banach’s fundamental theorems in Functional Analysis and basic elements
of the theory of Hilbert spaces are the essential background for the investiga-
tion [240], [22]. A review of the essential notions and propositions can be found
in e.g. in [25] and [196].

To provide a self-consistent presentation, I have devoted chapter 7 to a brief
exposition of classical results of functional analysis referred to in other chapters.

The proof of some new results concerning closedness properties is contributed
in a preliminary section. They are the inequality which characterizes the closed-
ness of the sum of two closed subspaces and with a criterion for the closedness
of the image of the product of two operators.

An abstract treatment of linear problems governed by symmetric bilinear
forms yields a reference framework for the subsequent analysis. The character-
istic properties of structural models are then illustrated and the problems of
equilibrium and of kinematic compatibility are discussed.

The mixed formulation of an elastic structural problem with a singular be-
haviour of the constitutive operator and of the external elastic constraints is
then discussed. The analysis is based on the split of the stress field into its
elastically effective and ineffective parts. By expressing the effective part in
terms of the strain field an equivalent problem in terms of the kinematic field
and of the ineffective stress field is obtained. The discussion of this problem is
illuminating and reveals which condition must be fulfilled for its equivalence to
a reduced problem whose sole unknown is the kinematic field.

This is a classical symmetric one-field problem in which trial and test fields
belong to the same space. The necessary and sufficient conditions for well-
posedness of the reduced problem are discussed in detail and applicable criteria
for their fulfilment are contributed.
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The well-posedness of the more challenging situation in which the external
elastic energy is not semielliptic is then discussed. This extension is motivated
by the analysis of elastic structures resting on elastic beds. The treatment starts
with the observation that in the applications the external elastic energy can be
assumed to be semielliptic with respect to rigid kinematisms and is based on an
original result named the elastic bed inequality.

It is shown that the condition ensuring the equivalence of the mixed prob-
lem to a reduced one and the well-posedness criteria of the reduced problem
are always met for simple structural models, defined to be those in which the
subspaces of rigid displacements and of self-stresses are finite dimensional.

This result provides a theoretical basis to engineers’ confidence to get a
solution of structural assemblies composed by one dimensional elements such as
bars and beams with possibly singular elastic compliances and resting on elastic
beds.

The discussion of two or three-dimensional structural models with singular
elastic compliance is by far more difficult and the answer to well-posedness is
generally negative due to the infinite dimensionality of the subspace of self-
stresses. The condition which fails to be met is the one ensuring the equivalence
between the mixed problem and the corresponding reduced one. Actually, a sin-
gularity of the elastic compliance imposes a constraint on the strain fields. The
compatibility requirement induces a corresponding constraint on the kinematic
fields and hence reactive forces are originated.

The equivalence above requires the existence of elastically ineffective stresses
in equilibrium with the reactive forces. The trouble arises from the fact that
only very special singularities of the elastic compliance ensure the existence of
such stress fields. This difficulty explains why the discussion of mixed problems
is by far more challenging than the discussion of one-field problems.

8.2 Symmetric linear problems
In view of its application to the theory of linear elastic problems we discuss here
an abstract symmetric linear problem in a Hilbert space.

Let a ∈ BL (X 2 ;<) be a continuous symmetric bilinear form on the product
space X 2 = X × X and A ∈ BL (X ,X ∗) the associated symmetric continuous
operator, so that

a(x,y) = a(y,x) = 〈Ax,y〉 ∀x,y ∈ X .

Given a closed subspace L of X and a functional ` ∈ X ∗, we consider the linear
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problem
P) a(x,y) = `(y) x ∈ L ∀y ∈ L.

The duality between X and X ∗ induces a duality between L ⊆ X and the
quotient space X ∗/L⊥ by setting for any x ∈ X ∗/L⊥

〈x,y〉 := 〈x,y〉 ∀y ∈ L ∀x ∈ x .

It is then convenient to provide an alternative formulation of the problem in
terms of a reduced operator Ao ∈ BL (L,X ∗/L⊥) and of a reduced functional
`o ∈ X ∗/L⊥ defined by

Aox := Ax + L⊥ ∀x ∈ L ; `o := `+ L⊥.

We have
a(x,y) = 〈Ax,y〉 = 〈Aox,y〉 ∀x,y ∈ L.

and problem P can now be rewritten as

P) Aox = `o x ∈ L.

Definition 8.2.1 (Well-posedness) The symmetric problem P is said to be
well-posed if it admits a unique solution for any data `o ∈ (Ker Ao)

⊥.

Banach’s closed range theorem, recalled in chapter 7 as theorem 7.1.3,
shows that the well-posedness of problem P is equivalent to the closedness of
Im Ao in X ∗/L⊥. The basic properties of well-posed symmetric linear problems
are reported hereafter.

Theorem 8.2.1 (Existence and uniqueness properties) The solution set
of a well-posed symmetric problem P meets the following alternative:
i) If Ker Ao 6= {o} the solution set is a non-empty linear manifold parallel to
Ker Ao for any admissible data `o ∈ (Ker Ao)

⊥,
ii) If Ker Ao = {o} the solution is unique for any data `o ∈ X ∗/L⊥.

We notice that the range and the kernel of the reduced operator are given by

Im Ao = (AL+ L⊥)/L⊥

Ker Ao = (A−1L⊥) ∩ L = (AL)
⊥ ∩ L
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The closedness of Im Ao can be expressed by stating that the bilinear form a is
closed on L × L and is equivalently expressed by the conditions

i) ‖Aox‖X∗/L⊥ ≥ ca ‖x‖X/Ker Ao
∀x ∈ L

ii) sup
y∈L

a(x,y)

‖y‖X/Ker Ao

≥ ca ‖x‖X/Ker Ao
∀x ∈ L

iii) inf
x∈L

sup
y∈L

a(x,y)

‖x‖X/Ker Ao
‖y‖X/Ker Ao

≥ ca > 0

iv) AL+ L⊥ is closed in X ∗.

Property iv) is a direct consequence of lemma 7.1.4.

It is important to provide an expression of the kernel of the reduced operator
in terms of the kernel of the symmetric bilinear form a ∈ BL (X 2 ;<) defined
by

Ker a = Ker A := {x ∈ X | a(x,y) = 0 ∀y ∈ X } .
Although in general we have only that

Ker Ao = (AL)
⊥ ∩ L ⊇ Ker a ∩ L ,

the next result provides a sufficient condition to get an equality in the expression
above.

Theorem 8.2.2 (A formula for the kernel) If the symmetric bilinear form
a is positive on the whole space X

a(x,x) ≥ 0 ∀x ∈ X

then we have that

Ker Ao = (AL)
⊥ ∩ L = Ker a ∩ L .

Proof. We first observe that

x ∈ (AL)
⊥ ∩ L ⇐⇒a(x,y) = 〈Ax,y〉 = 〈Ay,x〉 = 0 , x ∈ L ∀y ∈ L

=⇒a(x,x) = 0 , x ∈ L .
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By the positivity of a ∈ BL (X 2 ;<) , the zero value is an absolute minimum of
a in X so that any directional derivative will vanish at a minimum point. Hence
we have

a(x,x) = 0 x ∈ L =⇒ a(x,y) = 0 , x ∈ L ∀y ∈ X

⇐⇒ x ∈ Ker a ∩ L ,
and the proposition is proved. �

The next result provides a criterion for the closedness of a on L × L.

Theorem 8.2.3 (A sufficient closedness condition) The inequality:

a(x,x) ≥ ca ‖x‖2X/KerAo
ca > 0 ∀x ∈ L

implies the closedness of a on L × L.

Proof. It suffices to observe that the inequality

inf
x∈L

sup
y∈L

a(x,y)

‖x‖X/Ker Ao
‖y‖X/Ker Ao

≥ inf
x∈L

a(x,x)

‖x‖2X/Ker Ao

≥ ca > 0 ,

provides the result. �

By theorems 8.2.2 and 8.2.3 we get the result which will be directly referred
to in the discussion of elastic problems.

Theorem 8.2.4 (Semi-ellipticity) Let the bilinear form a ∈ BL (X 2 ;<) be
symmetric and positive on the whole space X . Then the property of semi-
ellipticity of a on L:

a(x,x) ≥ ca ‖x‖2X/(Ker a∩L) ∀x ∈ L

implies the closedness of a on L × L.

8.3 Linear structural problems
The formal framework for the analysis of linear structural models is provided
by two pairs of dual Hilbert spaces:

• the kinematic space V and the force space F ,
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• the strain space D and the stress space S,

and a pair of dual operators:

• the kinematic operator B ∈ BL (V,D),

• the equilibrium operator B′ ∈ BL (S,F).

Remark 8.3.1 In applications stresses and strains are defined to be square in-
tegrable fields. Accordingly we shall identify the stress space S and the strain
space D with a pivot Hilbert space. The inner product in D = S will be denoted
by (( · , · )) and the duality pairing between V and F by 〈 ·, · 〉.

The kinematic and the equilibrium operators are the dual counterparts of a
fundamental bilinear form b which describes the geometry of the model:

b(v,σ) := (( σ , Bv )) = 〈B′σ,v〉 ∀σ ∈ S,v ∈ V.

As we shall see, the well-posedness of the structural model requires the
closedness of the fundamental form b on S × V which is expressed by the inf-
sup condition [201]

inf
σ∈S

sup
v∈V

b(v,σ)

‖σ‖S/Ker B′‖v‖V/Ker B
= inf

v∈V
sup
σ∈S

b(v,σ)

‖σ‖S/Ker B′‖v‖V/Ker B
> 0.

This means that the kinematic and the equilibrium operator have closed ranges
and can be expressed by stating any one of the equivalent inequalities

‖Bv‖D ≥ cb ‖v‖V/Ker B ∀v ∈ V ⇐⇒ ‖B′σ‖F ≥ cb ‖σ‖S/Ker B′ ∀σ ∈ S

where cb is a positive constant.

8.3.1 Linear constraints
Rigid bilateral constraints acting on the structure are modeled by considering
a closed subspace L ⊆ V of conforming kinematisms.

The duality between V and F induces a duality pairing between the closed
subspace L and the quotient space F/L⊥ by setting

〈f ,v〉 := 〈f ,v〉 ∀v ∈ L ∀ f ∈ f ∈ F/L⊥.

It is convenient to introduce the following pair of reduced dual operators:
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• the reduced kinematic operator BL ∈ BL (L,D), defined as the restriction
of B to L,

• the reduced equilibrium operator B′L ∈ BL (S,F/L⊥), defined by the
position B′Lσ := B′σ + L⊥.

The kernels and the images of the reduced operators are given by

Ker BL = Ker B ∩ L ; Ker B′L = (B′)−1L⊥ = (BL)
⊥

Im BL = BL ; Im B′L = (Im B′ + L⊥)/L⊥

and we denote by

• LR := Ker B ∩ L the subspace of conforming rigid kinematisms and by

• Sself := (BL)
⊥ the subspace of self-equilibrated stresses (self-stresses).

A variational theory of structural models with linear external constraints
requires that the fundamental form b is closed on S ×L. As shown below, this
property is in fact necessary and sufficient to express in variational form the
problems of equilibrium and of kinematic compatibility.

We recall that by Banach’s closed range theorem 7.1.3, the closedness of b
on S × L can be stated in the equivalent forms:

• orthogonality conditions:

Im BL = (Ker B′L)
⊥
, Im B′L = (Ker BL)

⊥
,

• inequality conditions:

‖Bu‖D ≥ cb ‖u‖V/(Ker B∩L) ∀u ∈ L, cb > 0,

‖B′Lσ‖F/L⊥ ≥ cb ‖σ‖S/(BL)⊥ ∀σ ∈ S, cb > 0,

• inf-sup conditions:

inf
σ∈S

sup
v∈L

b(v,σ)

‖σ‖S/Ker B′L
‖v‖V/Ker B

= inf
v∈L

sup
σ∈S

b(v,σ)

‖σ‖S/Ker B′L
‖v‖V/Ker B

> 0.

The closedness of b on S×L can be also expressed by requiring the closedness
of the sum of two subspaces, as shown hereafter.
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Theorem 8.3.1 (Equivalent closedness properties) Let L be a closed sub-
space of V. Then we have

BL closed in D ⇐⇒ Im B′ + L⊥ closed in F .
If in addition Im B is closed in D the closedness properties above are equivalent
to the closedness of Ker B + L in V.
Proof. The first result follows directly from the expressions of Im BL and
Im B′L by recalling theorem 7.1.3 and lemma 7.1.4. The last statement is a
simple consequence of theorem 7.1.5. �

We may then state the main results.

Theorem 8.3.2 (Equilibrium) Let ` ∈ F be an external force and `o = ` +
L⊥ ∈ F/L⊥ the corresponding load on a constrained structural model. The
property that BL is closed in D is necessary and sufficient to ensure that the
equilibrium problem

B′Lσ = `o σ ∈ S ⇐⇒ B′σ = `+ r σ ∈ S, r ∈ L⊥

admits a solution for every load satisfying the consistency condition

`o ∈ (Ker BL)
⊥ ⇐⇒ ` ∈ (Ker B ∩ L)

⊥

or in variational form 〈`,v 〉 = 0 ∀v ∈ LR = Ker B ∩ L.
The degeneracy condition Sself = {o} is necessary and sufficient for the

solution to be unique.

Theorem 8.3.3 (Compatibility) A kinematic pair {ε ,w} with ε ∈ D and
w ∈ V is said to be compatible with the constraints if there exists a conforming
kinematic field v ∈ L such that

Bv = ε−Bw.

The property that BL is closed in D is necessary and sufficient to ensure that
the compatibility problem admits solution for every kinematic pair satisfying the
consistency condition

ε−Bw ∈ (Ker B′L)
⊥

= (Sself)
⊥

or in variational form

(( σ , ε )) = (( σ , Bw )) ∀σ ∈ Sself.
The degeneracy of the subspace LR of rigid conforming kinematisms is necessary
and sufficient in order that the solution be unique.
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8.3.2 Elastic structures
A linearly elastic structure is characterized by a symmetric elastic operator
E ∈ BL (D,S) which is D-elliptic:

(( Eε , ε )) ≥ ce ‖ε‖2D ce > 0 ∀ ε ∈ D.

The elastic strain energy in terms of kinematisms is provided by one-half the
quadratic form associated with the positive symmetric bilinear form:

a(u,v) := (( EBu , Bv )) ∀u,v ∈ V.

which is called the bilinear form of elastic strain energy.
The elastostatic problem for a constrained structural model consists in eval-

uating a conforming kinematism u ∈ L such that the corresponding stress field
σ = EBu is in equilibrium with the prescribed load `o = `+ L⊥ ∈ F/L⊥.

In terms of elastic strain energy the problem is written as

a(u,v) = `(v) u ∈ L ∀v ∈ L

and is well-posed if and only if a is closed on L × L.
The elastic stiffness of the structure A = B′EB ∈ BL (V,F) is the symmetric

bounded linear operator associated with a according to the formula

〈Au,v〉 = a(u,v) ∀v ∈ V.

A direct verification of the closure property of a on L×L is often not possible
in applications and hence it is natural to look for simpler sufficient conditions.

A key result is provided by the following

Proposition 8.3.1 (Closedness of the elastic operator) The closedness of
BL and the D-ellipticity of the elastic operator E imply the closedness of the
bilinear form a on L × L.

Proof. From the inequalities

〈Eε, ε〉 ≥ ce ‖ε‖2D ∀ ε ∈ D

‖Bu‖D ≥ cb ‖u‖V/(Ker B∩L) ∀u ∈ L .

it follows that
a(u,u) ≥ ca ‖u‖2V/(Ker B∩L) ∀u ∈ L

where ca = ce c
2
b.
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The strict positivity of E ensures that Ker a = Ker B so that the inequality
above can be written as

a(u,u) ≥ ca ‖u‖2V/(Ker a∩L) ∀u ∈ L ,

which by proposition 8.2 implies the closedness of a on L × L. �

In applications the D-ellipticity of the elastic operator E is easily checked so
that the real task is to verify the closedness of BL.

Proposition 8.3.2 (A closedness criterion) Let Im B be closed in D. Then
the subspace BL is closed in D if the subspace Ker B can be written as the
sum of a finite dimensional subspace and of a subspace included in L

Ker B = N + Lo , dimN < +∞ , Lo ⊆ L .

Proof. By theorem 8.3.1 we have to verify the closedness of the subspace
Ker B + L in V. The assumption ensures that Ker B + L = N + L with
dimN < +∞ and hence setting A = L and B = N in Lemma 7.1.3 we get the
result. �

Remark 8.3.2 In most engineering applications the kernel of the kinematic
operator B is finite dimensional so that the condition in Proposition 8.3.2 is
trivially fulfilled. A relevant exception is provided by the models of cable or
membrane structures in which the subspace Ker B of rigid kinematic fields is
not finite dimensional. The condition in Proposition 8.3.2 is however still met.

8.4 Mixed formulations
A more challenging problem concerns the elastic equilibrium of a structural
model with a partially rigid constitutive behaviour and subject to external elas-
tic constraints.

Rigid bilateral constraints, which have already been analysed, will not be
explicitly considered to simplify the presentation. Anyway, they can be taken
into account by substituting the kinematic operator B ∈ BL (V,D) with the
reduced operator BL ∈ BL (L,D).

The analytical properties of the general model of elastic structure under
investigation are described hereafter.
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• The internal elastic compliance of the structure is a continuous, symmetric
positive and closed bilinear form c ∈ BL (S × S ;<):

i) ‖c‖S‖σ‖S‖τ‖S ≥ |c(σ, τ )| ∀σ, τ ∈ S

ii) c(σ, τ ) = c(τ ,σ) ∀σ, τ ∈ S

iii) c(σ,σ) ≥ 0 ∀σ ∈ S

iv) inf
τ∈S

sup
σ∈S

c(σ, τ )

‖σ‖S/Ker C‖τ‖S/Ker C
> 0

The elastic compliance operator C ∈ BL (S,D) is defined by

(( Cσ , τ )) := c(σ, τ ) ∀σ, τ ∈ S,

and Im C is closed in D by virtue of iv). The elements of the kernel of C
are the elastically ineffective stress fields.

• The external elastic stiffness of the structure is expressed by a continuous
symmetric and positive bilinear form k ∈ BL (V × V ;<):

i) ‖k‖V‖u‖V‖v‖V ≥ |k(u,v)| ∀u,v ∈ V ,

ii) k(u,v) = k(v,u) ∀u,v ∈ V ,

iii) k(u,u) ≥ 0 ∀u ∈ V .

The external elastic stiffness operator K ∈ BL (V,F) is defined by

〈Ku,v〉 := k(u,v) ∀u,v ∈ V.

The elements of the kernel of K are kinematic fields which do not involve reac-
tions of the external elastic constraints.

We emphasize that the bilinear form k is not assumed to be closed on V×V.
As we shall see this is important in applications and makes the static and the
kinematic equations of the mixed formulation play different roles.

The mixed elastostatic problem is formulated in operator form as

M)

{
Ku + B′σ= f

Bu−Cσ = δ
or S

∣∣∣∣∣uσ
∣∣∣∣∣ =

∣∣∣∣∣K B′

B−C

∣∣∣∣∣
∣∣∣∣∣uσ
∣∣∣∣∣ =

∣∣∣∣∣fδ
∣∣∣∣∣

where S ∈ BL (V × S,F ×D) is called the structural operator.
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Equation M1 expresses the equilibrium condition in which

• f ∈ F is the assigned load,

• −Ku ∈ F is the reaction of the external elastic constraints,

• B′σ ∈ F is the total external force.

Equation M2 expresses the kinematic compatibility condition in which

• δ ∈ D is an imposed distorsion,

• Cσ ∈ D is the elastic strain,

• Bu ∈ D is the total strain field.

Imposed distorsions are often considered in engineering applications e.g. to
simulate the effect of temperature fields in the structures.

The variational form of the mixed elastostatic problem is given by

M)

{
k(u,v) + b(v,σ)= 〈f ,v〉 u ∈ V, ∀v ∈ V,
b(u, τ )− c(σ, τ )= 〈δ, τ 〉 σ ∈ S, ∀ τ ∈ S.

Problems of this kind have been longly analysed in the literature (see e.g. the
references in [12], [161], [177]) following the pioneering works by I. Babuška
[13] and F. Brezzi [23]. A comprehensive presentation of the state of the art
can be found in the book [24] by F. Brezzi and M. Fortin on Mixed and
Hybrid FEM formulations.

The approach proposed here is directly related with the original existence
and uniqueness theorem by Brezzi [23].

His analysis was concerned with a mixed problem M in which the form c
was taken to be zero and neither the simmetry nor the positivity of the form k
were assumed.

A more general case in which a positive and symmetric form c is included
has been recently addressed in [24], theorem II.1.2, by adopting a perturbation
technique. A sufficient condition for the existence of a solution of the mixed
problem is provided in [24] under a special assumption concerning the bilinear
form c of elastic compliance.

However many engineering models of elastic structures fall outside the range
of the existing results.

The analysis which we develop here is intended to provide a well-posedness
result capable to encompass the usual engineering models in elasticity.

We preliminarily quote a result concerning the kernel of the structural op-
erator S ∈ BL (V × S,F ×D) .
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Proposition 8.4.1 (Representation of the kernel) Let the bilinear forms
c ∈ BL (S ×S ;<) and k ∈ BL (V ×V ;<) be symmetric and positive. Then the
kernel of the structural operator S ∈ BL (V × S,F ×D) is given by

Ker S =

∣∣∣∣∣Ker B ∩Ker K

Ker B′ ∩Ker C

∣∣∣∣∣ .
Proof. A pair {u ,σ} belongs to Ker S if and only if{

k(u,v) + b(v,σ)= 0 ∀v ∈ V,
b(u, τ )− c(σ, τ )= 0 ∀ τ ∈ S,

⇐⇒
{

Ku + B′σ = 0

Bu−C σ = 0,

which imply that {
k(u,u) + b(u,σ)= 0 ,

b(u,σ)− c(σ,σ)= 0 .

Subtracting we get k(u,u)+c(σ,σ) = 0 and the positivity of k and c implies
that k(u,u) = 0 and c(σ,σ) = 0 . Hence, being u ∈ V and σ ∈ S absolute
minimum points of k and c , their derivatives must vanish there. By the
symmetry of k and c these conditions are expressed by Ku = o and Cσ = o .
Substituting in the expression of the kernel we infer that Bu = o and B′σ = o .

�

If a solution {u ,σ} ∈ V × S to problem M exists, the data {f , δ} ∈ F × D
must necessarily meet the following variational conditions of admissibility

f ∈ (Ker B ∩Ker K)⊥, δ ∈ (Ker B′ ∩Ker C)⊥

which express the orthogonality of {f , δ} to the kernel of the structural operator.
The engineers’ confidence in finding solutions to elasticity problems is based

upon the implicit assumption of well-posedness of the problem, a condition
explicitly stated hereafter by recalling Definition 8.2.1.

Definition 8.4.1 (Well-posedness of the mixed problem) The mixed prob-
lem M is well-posed if the structural operator S ∈ BL (V×S,F×D) has a closed
range. The variational conditions of admissibility on the data {f , δ} ∈ (Ker S)⊥

are then also sufficient to ensure the existence of a solution, unique to within
fields of the kernel Ker S of the structural operator.
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Remark 8.4.1 The well-posedness of the mixed problem M requires the validity
of the orthogonality relations

Im B′ + Im K = (Ker B ∩Ker K)⊥ , Im B + Im C = (Ker B′ ∩Ker C)⊥ .

By remark 7.1.2 the equalities above hold if and only if the sum of the two
subspaces on the left hand sides is closed.

8.4.1 Solution strategy
Our aim is to provide a necessary and sufficient condition for the well-posedness
of the mixed problem M.

Planning the attack, we first try to transform the mixed problem M into a
problem involving only kinematic fields.

To this end we must modify condition M2 of kinematic compatibility by
inverting the elastic law to get an expression of the stress field σ ∈ S in terms
of the strain associated with the kinematic field u ∈ V. Since the internal
elastic compliance operator C ∈ BL (S,D) is singular, we have to pick up its
non-singular part.

Due to the symmetry of C and the closedness of Im C, the subspace Ker C
of elastically ineffective stresses and the subspace Im C of elastic strains fulfil
the orthogonality conditions

Ker C = (Im C)⊥ and Im C = (Ker C)⊥ .

Recalling remark 8.3.1 the spaces D and S can be identified without loss in
generality. We can then perform the direct sum decomposition of the stress-
strain space into complementary orthogonal subspaces

D = S = Im C⊕Ker C.

The reduced compliance operator Co ∈ BL (Im C, Im C), defined by

Coσ = Cσ ∀σ ∈ Im C ⊆ S,

is positive definite and the operator C can be partitioned as follows:∣∣∣∣∣Co O

O O

∣∣∣∣∣
∣∣∣∣∣σ∗σo
∣∣∣∣∣ with

{
σ∗ ∈ Im C

σo ∈ Ker C .
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We also define in S = D the symmetric orthogonal projector P = P
′
onto

the subspace Ker C of elastically ineffective stresses so that

Im P = Ker C, Ker P = Im C.

The kernel of the product operator PB ∈ BL (V,Ker C) is defined by

Ker PB = {u ∈ V | Bu ∈ Im C }
and its elements are the kinematic fields which generate elastic strain fields.

Remark 8.4.2 According to Remark 8.4.1, the closedness of Im B + Im C =
Im B +Ker P is a necessary condition for the well-posedness of the mixed prob-
lem. Further, by Lemma 7.1.5, this assumption is also equivalent to the closed-
ness of Im B

′
P
′
in F and hence, by the closed range theorem 7.1.3, to the

closedness of Im PB .

Let us then assume that Im PB is closed in D so that for any δ ∈ (Ker B′ ∩
Ker C)⊥ we can perform the decomposition

δ = δo + δ∗ with δo ∈ Im B and δ∗ ∈ Im C.

Choosing uo ∈ V such that Buo = δo the compatibility equation M2 can be
rewritten as

Bu∗ = Coσ
∗ + δ∗.

Denoting by E the inverse of Co we can also write

σ∗ = E(Bu∗ − δ∗).
Substituting into the equilibrium equation M1 we get the following problem in
the unknown fields u∗ ∈ Ker PB and σo ∈ Ker C

P) (K + B′EB)u∗ + B′σo = f −Kuo + B′Eδ∗.

Let us now define the bilinear form of the elastic energy

a(u∗,v) := k(u∗,v) + (( EBu∗ , Bv )) ∀u∗ ∈ Ker PB ∀v ∈ V
and the effective load

〈`,v〉 := 〈f ,v〉 − k(uo,v) + (( Eδ∗ , Bv )) ∀v ∈ V.
The stiffness operator A = K + B′EB is defined by the identity

〈Au∗,v〉 = a(u∗,v) ∀u∗ ∈ Ker PB ∀v ∈ V.
The discussion above is summarized in the next statement.
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Proposition 8.4.2 (First equivalence property) The closedness of Im PB
ensures that for any given δ ∈ (Ker B′ ∩Ker C)⊥ the mixed problem

M)

{
k(u,v) + b(v,σ)= 〈f ,v 〉 u ∈ V, ∀v ∈ V,
b(u, τ )− c(σ, τ )= 〈δ, τ 〉 σ ∈ S, ∀ τ ∈ S

in the unknown fields u ∈ V and σ ∈ S is equivalent to the variational problem

P) a(u∗,v) + (( σo , Bv )) = 〈`,v 〉 ∀v ∈ V

in the unknown fields u∗ ∈ Ker PB and σo ∈ Ker C provided that the pair
{uo , δ}∗ ∈ V × Im C is such that δ = Buo + δ∗.

The discussion of problem P is based on its equivalence to a classical one-
field problem which is formulated by restricting the test fields v ∈ V to range
in the subspace Ker PB ⊆ V.

Proposition 8.4.3 (Second equivalence property) The closedness of Im PB
ensures that the variational problem

P) a(u∗,v) + (( σo , Bv )) = 〈`,v 〉 ∀v ∈ V

in the unknown fields u∗ ∈ Ker PB and σo ∈ Ker C is equivalent to the reduced
problem

P∗) a(u∗,v∗) = 〈`,v 〉∗ ∀v∗ ∈ Ker PB

in the unknown field u∗ ∈ Ker PB.

Proof. Clearly if {u∗,σo} ∈ Ker PB× Ker C is a solution of problem P then
u∗ will be solution of problem P∗. In fact we have that (( σo , Bv∗ )) = 0 for all
v∗ ∈ Ker PB since σo ∈ Ker C and Bv∗ ∈ Ker P = Im C = (Ker C)⊥.

Conversely if u∗ ∈ Ker PB is solution of problem P∗ the reactive force r ∈ F
defined by

〈r,v〉 := a(u∗,v)− 〈`,v〉 ∀v ∈ V
will belong to (Ker PB)⊥. The assumption Im PB closed ensures that Im B

′
P
′

=
(Ker PB)⊥ and hence for any r ∈ (Ker PB)⊥ we can find a σo ∈ Im P

′
= Ker C

such that B′σo = r. Then 〈r,v〉 = (( σo , Bv )) for all v ∈ V and the pair
{u∗,σo} is solution of problem P. The field σo is unique to within elements of
the subspace Ker B′ ∩Ker C of elastically ineffective self-stresses. �
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Remark 8.4.3 It is worth noting that the expression of the effective load `
depends upon δ∗ and the field uo which in turn is determined by δo only to
within an additional rigid field.

Further the additive decomposition of admissible distorsions δ into the sum
δo + δ∗ is unique only to within elements of Im B ∩ Im C.

Anyway it can be easily shown that the solution u = uo+u∗ and σ = σo+σ∗

of the mixed problem M remains unaffected by this indeterminacy of `.

Let us now discuss the well-posedness of the reduced problem P∗.

8.4.2 The reduced structural model
Problem P∗ is the variational formulation of the elastostatic problem for a struc-
tural model subject to the rigid bilateral constraints defined by the subspace
Ker PB ⊆ V of conforming kinematic fields. It is formally equivalent to the
symmetric linear problems discussed in section 8.2.

Preliminarily we remark that by proposition 7.1.2 the continuity of the elastic
stiffness E = Co

−1 is ensured by the continuity of C and the closedness of
Im C. The continuity of E ∈ BL (Ker P,Ker P) implies the continuity of A =
K + B′EB so that A ∈ BL (Ker PB,F).

The bilinear form a is then continuous on Ker PB× V and hence a fortiori
on Ker PB×Ker PB.

We then consider the canonical surjection Π ∈ BL (F ,F/(Ker PB)⊥) and
define

• the reduced elastic stiffness Ao := ΠA ∈ BL (Ker PB,F/(Ker PB)⊥)

• the reduced effective load `o := Π` ∈ F/(Ker PB)⊥

or explicitly

Aou
∗ := Au∗ + (Ker PB)⊥ ∀u∗ ∈ Ker PB and `o := `+ (Ker PB)⊥.

The following result is a direct consequence of the discussion carried out in
section 8.2.

Proposition 8.4.4 (Well-posedness of the reduced problem) The symmet-
ric linear problem

P∗) Aou
∗ = `o u∗ ∈ Ker PB .
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is well-posed if and only if Im Ao is closed in F/(Ker PB)⊥. This closure
property is equivalent to the closedness of the symmetric form a on Ker PB ×
Ker PB and is expressed by the inf-sup condition

inf
u∗∈KerPB

sup
v∗∈KerPB

a(u∗,v∗)

‖u∗‖V/KerAo
‖v∗‖V/KerAo

> 0 .

The existence of a solution is thus garanteed if and only if `o ∈ (Ker Ao)
⊥ and

the solution is unique to within elements of Ker Ao.

The positivity of the elastic compliance C in S implies that the elastic stiff-
ness E = C−1

o is positive definite on Im C. On this basis the next result provides
an important formula for Ker Ao.

Proposition 8.4.5 (Kernel of the reduced stiffness) Let the forms c and
k be symmetric and positive. The kernel of the reduced stiffness operator Ao is
then given by

Ker Ao = Ker B ∩Ker K

Proof. By definition the elements of Ker Ao are the kinematic fields u∗ ∈
Ker PB which meet the variational condition

k(u∗,v∗) + (( EBu∗ , Bv∗ )) = 0 ∀v∗ ∈ Ker PB.

Setting v∗ = u∗ ∈ Ker PB we get

k(u∗,u∗) + (( EBu∗ , Bu∗ )) = 0.

Both terms, being non negative, must vanish. Hence by the positive definiteness
of E on Im C we have that u∗ ∈ Ker B.

By the positivity of k in V and the condition k(u∗,u∗) = 0 we infer that
the field u∗ ∈ Ker PB is an absolute minimum point of k in V. Taking the
directional derivative along an arbitrary direction v ∈ V by the symmetry of k
we get

k(u∗,v) = 0 ∀v ∈ V ⇐⇒ Ku∗ = o ⇐⇒ u∗ ∈ Ker K

and the result is proved. �
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By the representation formula of Ker Ao provided in the previous proposi-
tion the admissibility condition on the data of problem P∗ can be written

`o ∈ (Ker B ∩Ker K)⊥.

Now for any pair {uo , δ∗} ∈ V × Im C we have

(( Eδ∗ , Bv ))− k(uo,v) = 0 ∀v ∈ Ker B ∩Ker K.

The admissibility condition on `o amounts then to the orthogonality requirement

f ∈ (Ker B ∩Ker K)
⊥
.

On the other hand, when the pair {uo , δ∗} ranges in V×Im C, the corresponding
distorsion δ = Buo + δ∗ will range over the whole subspace Im B + Im C and
this subspace, by the assumed closedness of Im PB, coincides with (Ker B′ ∩
Ker C)⊥.

In conclusion the admissibility condition

f ∈ (Ker B ∩Ker K)
⊥
, {uo , δ∗} ∈ V × Im C,

for the data of problem P∗ coincides with the admissibility condition

f ∈ (Ker B ∩Ker K)
⊥
, δ ∈ (Ker B′ ∩Ker C)

⊥
,

for the corresponding data of the mixed problem M.
The previous results are summarized in the following theorem.

Proposition 8.4.6 (Well-posedness conditions for the mixed problem)
Let the continuous bilinear form k be positive and symmetric on V × V and the
continuous bilinear form c be positive, symmetric and closed on S × S. The
mixed elastostatic problem M is well-posed if and only if the following two con-
ditions are fulfilled:

a1) The image of PB is closed in D, that is, Im B + Im C is closed in D, i.e.

inf
u∈V

sup
σ∈S

(( σ , PBu ))

‖σ‖S/(KerB′P′ )‖u‖V/(KerPB)
=

inf
σ∈S

sup
u∈V

(( σ , PBu ))

‖σ‖S/(KerB′P′ )‖u‖V/(KerPB)
> 0,
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a2) the bilinear form of the elastic energy is closed on Ker PB×Ker PB, i.e.

inf
u∗∈KerPB

sup
v∗∈KerPB

k(u∗,v∗) + (( EBu∗ , Bv∗ ))

‖u∗‖V/(KerB∩KerK)‖v∗‖V/(KerB∩KerK)
> 0.

In other terms conditions a1) and a2) are equivalent to state that the structural
operator S ∈ BL (V × S,F × D) has a closed range so that the orthogonality
condition Im S = (Ker S)⊥ holds.

Applicable sufficient criteria for the fulfilment of the conditions a1) and a2)
will be discussed in the next section.

8.5 Sufficient criteria
Proposition 8.4.6 provides a set of two necessary and sufficient conditions for
the well-posedness of a general elastic problem. More precisely condition a1)
states the equivalence of the mixed problem

M)

{
k(u,v) + b(v,σ)= 〈f ,v〉 u ∈ V, ∀v ∈ V,
b(u, τ )− c(σ, τ )= 〈δ, τ 〉 σ ∈ S, ∀ τ ∈ S.

to the reduced problem P∗ and condition a2) provides the well-posedness of
problem P∗.

Let us now discuss these two conditions in detail.

8.5.1 Discussion of condition a1
By remark 8.4.2 the condition a1) can be stated in the equivalent forms

• the subspace Im PB is closed in D,

• the subspace Im B′P′ is closed in F ,

• the sum Ker P + Im B = Im C + Im B is closed in D.

Condition a1) is trivially fulfilled by the structural models belonging to one
of the two extreme cathegories:

i) the elastic compliance is not singular, so that Ker C = o{} and P = O,
ii) the elastic compliance is null, so that Ker C = S and P = I. Case i) cor-
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responds to classical elasticity problems in which every stress field is elastically
effective.

Case ii) corresponds to the opposite situation in which every stress field is
elastically ineffective. The statics of a rigid structure resting on elastic supports
is described by an elastic problem of the this kind whose mixed formulation is

F)

{
k(u,v) + b(v,σ) = 〈f ,v〉 u ∈ V, ∀v ∈ V,
b(u, τ ) = 〈δ, τ 〉 σ ∈ S, ∀ τ ∈ S.

This is exactly the saddle point problem first analysed by Brezzi in [23].
The existence and uniqueness proof contributed in [23] addressed the more

general case in which the bilinear form k in problem F was neither positive nor
symmetric.

A discussion of the general mixed problem

G)

{
k(u,v) + h(v,σ) = 〈f ,v〉 u ∈ U , ∀v ∈ V,
b(u, τ )− c(σ, τ ) = 〈δ, τ 〉 σ ∈ Σ, ∀ τ ∈ S.

in which the bilinear forms k and c are neither positive nor symmetric, is carried
out by Romano et al. in [193]. The results contributed in [193] include as special
cases the existence and uniqueness theorem by Brezzi and its extensions due
to Nicolaides [153] and Bernardi et al. [16] in which the bilinear form c was
absent.

Remark 8.5.1 The analysis performed in the previous section addressed the
general case of an elastic mixed problem M with a possibly non-degenerate ker-
nel of the structural operators S. Structural problems in which the kernel of S in
non-degenerate are usually dealt with in the engineering applications. An exam-
ple is provided by elastic problems in which rigid kinematic fields not involving
reactions of the elastic supports are admitted by the constraints.

To deal with the presence of a non-degenerate kernel, the symmetry of the
governing operator S and the positivity of the elastic operators K and C seem
however to be unavoidable assumptions. They play in fact an essential role in
deriving the representation formulas for the kernels provided in section 8.4.1
and Proposition 8.4.4.

Remark 8.5.2 It is worth noting that, for two- or three-dimensional non rigid
structural models with a singular elastic compliance, condition a1) is difficult to
be checked and is far from being verified as a rule.
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A relevant exception is provided by the incompressibility constraint of Stokes
problem ([107], [225]). We emphasize that a singularity of the elastic compli-
ance C is equivalent to the imposition of constraints on the strain fields. Strain
constraints in continua have been recently discussed by Antman and Marlow
in [5], [126] and critically reviewed by Romano et al. in [192].

8.5.2 Discussion of condition a2
Under the assumption that the bilinear form k is Ker PB-semielliptic, and hence
closed on Ker PB×Ker PB, the next result yields a sufficient criterion for the
fulfilment of condition a2).

Proposition 8.5.1 Condition a2) is satisfied if the following properties hold

i) k(u,u) ≥ ck ‖u‖2V/KerK ck > 0 ∀u ∈ Ker PB

ii) (( EBu , Bu )) ≥ c ‖u‖2V/KerB c > 0 ∀u ∈ Ker PB

iii) Ker B + Ker K closed.

Proof. By Theorem 7.1.4 and Remark 7.1.3 property (iii) is equivalent to

‖u‖2V/Ker K + ‖u‖2V/Ker B ≥ α ‖u‖2V/(Ker K∩Ker B) ∀u ∈ V

so that, summing up (i) and (ii), we get

k(u,u) + (( EBu , Bu )) ≥ ca ‖u‖2V/(Ker K∩Ker B) ∀u ∈ Ker PB ,

with a suitably positive constant ca. This implies the closedness condition a2).
�

• Condition i) is fulfilled in structural problems with discrete external elas-
tic constraints. In fact when only a finite number of external elastic con-
straints are imposed, the subspace Im K is finite dimensional and the
constant ck is provided by the smallest positive eigenvalue of the symmet-
ric positive matrix associated with the restriction of the bilinear form k to
V/Ker K× V/Ker K. An example is provided by an elastic plate resting
on a finite number of elastic supports, as shown in Fig.8.1

• Condition ii) follows from a standard ellipticity property of internal elas-
ticity:

(( Cσ , σ )) ≥ cσ ‖σ‖2S/Ker C ∀σ ∈ S,
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Figure 8.1: Elastic plate on a finite number of elastic supports dim Im K < +∞.

equivalent to

(( Eε , ε )) ≥ ce ‖ε‖2D ∀ ε ∈ Ker P = Im C,

and from the closedness of the fundamental form b(u,σ)

‖Bu‖D ≥ cb ‖u‖V/Ker B ∀u ∈ V.

The positive constant in (ii) is given by c = ce c
2
b .

• Condition iii) is a consequence of the finite dimensionality of Ker B in
most structural models. More generally it follows from the closedness
condition in proposition 8.3.2.

8.6 Elastic beds
Let us finally consider the general problem of the elastic equilibrium of a struc-
tural model in which

• the constitutive behaviour is partially rigid,

• the external elastic constraints include the presence of elastic beds so that
Im K is not finite dimensional in F .

An example is provided by an elastic plate resting on an elastic bed, as in fig.
8.2. Such a model is commonly adopted in engineering applications to simulate
a foundation interacting with a supporting soil.
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Figure 8.2: Elastic plate resting on an elastic bed.

The difficulty connected with this kind of problems lies in the fact that the
bilinear form of the external elastic energy is not semi-elliptic on V × V as
required by condition i) of Proposition 8.5.1.

To enlight the problem let us consider the model of an elastic beam resting
on an elastic bed of springs (Winkler soil model). The flexural elastic energy of
the beam is provided by one-half the integral of the squared second derivative
of the transverse displacement. On the other hand, the elastic energy stored
into the elastic springs is equal to one-half the integral of the squared transverse
displacement. The kinematic space V is defined to be the Sobolev space H2 to
ensure a finite value of the elastic energy. Considering a rapidly varying elastic
curve of the beam, as depicted in fig. 8.3, we get an extremely high value of the
elastic energy in the beam and a negligible energy in the elastic bed.

Figure 8.3: Large elastic energy with small displacements.

The discussion above leads to the conclusion that the semi-ellipticity condi-
tion on the bilinear form k of elastic constraints energy must be relaxed.
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A by far less stringent requirement is the property that k is positive semi-
definite on Ker PB×Ker PB and semi-elliptic only on Ker B×Ker B, that is
with respect to rigid kinematic fields, according to the inequalities:

i) k(u,u) ≥ 0 , ∀u ∈ Ker PB ,

ii) k(u,u) ≥ ck ‖u‖2V/Ker K , ck > 0 , ∀u ∈ Ker B .

We remark that rigid kinematic fields cannot undergo very sauvage oscilla-
tions. In the case of the simple beam of 8.3 they are in fact affine functions. In
general, when Ker B is finite dimensional, property ii) above is a consequence
of property i) since ck > 0 is the smallest positive eigenvalue of a non-null
symmetric and positive matrix. We have now to prove that these less stringent
assumptions on k are sufficient to ensure the fulfilment of condition a2.

To this end we provide a preliminary result.

Proposition 8.6.1 (The elastic bed inequality) The assumptions

i) k(u,u) ≥ 0 , ∀u ∈ Ker PB ,

ii) k(u,u) ≥ ck ‖u‖2V/KerK , ∀u ∈ Ker B ,

iii) (( EBu , Bu )) ≥ ce c
2
b ‖u‖2V/KerB , ∀u ∈ Ker PB ,

ensure the validity of the inequality

k(u,u) + (( EBu , Bu )) ≥ cπ ‖Πu‖2V/KerK cπ > 0 , ∀u ∈ Ker PB ,

where Π denotes the orthogonal projector on Ker B in V .
Proof. We proceed per absurdum by assuming that the inequality is false.
Then, prescribing that ‖Πu‖V/Ker K = 1 , the infimum of the first member
would be zero. By taking a minimizing sequence {un} we have

lim
n→∞

k(un,un) + (( EBun , Bun )) = 0 .

By (i) both terms of the sum are non-negative and then vanish at the limit.
Hence from (iii) we get

lim
n→∞

(( EBun , Bun )) = 0 =⇒ lim
n→∞

‖un −Πun‖V = 0 ,

and by the continuity of k and assumption (ii)

limn→∞ k(un,un) = 0 =⇒ limn→∞ k(Πun,Πun) = 0

=⇒ limn→∞ ‖Πun‖V/Ker K = 0 ,

contrary to the assumption that ‖Πu‖V/Ker K = 1 . �
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An applicable criterion for the validity of condition a2) is now at hand.

Proposition 8.6.2 Condition a2) is satisfied if the following properties hold

i) k(u,u) ≥ 0 , ∀u ∈ Ker PB,

ii) k(u,u) ≥ ck ‖u‖2V/KerK , ∀u ∈ Ker B ,

iii) (( EBu , Bu )) ≥ ce c
2
b ‖u‖2V/KerB , ∀u ∈ Ker PB ,

iv) Ker B + Ker K is closed .

Proof. Theorem 7.1 and Remark 7.1.3 ensure that property iv) imply the
existence of a constant α > 0 such that

‖Πu‖2V/Ker K + ‖u‖2V/Ker B ≥ α ‖u‖2V/(Ker K∩Ker B) , ∀u ∈ V ,

Condition a2) then follows by adding inequality (iii) and the one proved in
proposition 8.6.1. �

8.6.1 A well-posedness criterion
Conditions i), ii), iii) of proposition 8.6.2 are always fulfilled by elastic struc-
tural models.

Further, by remark 7.1.2, the closedness of Im B ensures that condition a1)
can be equivalently stated by requiring the closedness of Ker C + Ker B′ .

Then, to get a well posed mixed problem, what we really have to check is the
fulfilment of the two properties concerning the kernels of the elastic operators,
as stated in the next proposition.

Proposition 8.6.3 (Well-posedness criterion) Let Im B be closed in D
and conditions i), ii), iii) of proposition 8.6.2 be fulfilled. Then the closedness
properties:

• Ker B′ + Ker C is closed in S ,

• Ker B + Ker K is closed in V ,

ensure that the mixed elastostatic problem M is well posed.

By virtue of proposition 7.1.3 a relevant situation in which condition a1) and
b) are fulfilled is provided by the following family of structural models.
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Definition 8.6.1 (Simple structures) A structural model is said to be simple
if the subspaces Ker B of rigid kinematisms and Ker B′ of self-equilibrated stress
fields are finite dimensional.

All one-dimensional engineering structural models composed by beam and bar
elements belong to this class and hence the related elastic problems are always
well-posed. A simple frame composed of two beams which are axially unde-
formable and flexurally elastic is depicted hereafter. The stress fields are pairs
of diagrams of bending moments and axial forces.

M

N

b

N

a

Figure 8.4: Flexurally elastic and axially rigid beams

Fig. 8.4 a) shows the diagram of axial forces in the vertical beam which
corresponds to a self-equilibrated and elastically ineffective stress field. It cannot
be evaluated by solving the elastic problem.

Since this stress field generates the whole subspace Ker B′ ∩Ker C the im-
posed distorsions δ must satisfy the related orthogonality condition which re-
quires that the mean elongation of the vertical beam must vanish. Fig. 8.4 b)
shows a diagram of axial forces and bending moments which is self-equilibrated
but elastically effective.

A beam on elastic supports is sketched in fig. 8.5 and 8.6 to show examples
of kinematic fields which respectively belong to Ker K and to Ker B ∩Ker K.
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Figure 8.5: u ∈ Ker K

Figure 8.6: u ∈ Ker B ∩Ker K

8.7 Conclusions
The analytical properties of mixed formulations in elasticity have been investi-
gated with an approach which provides a clear mechanical interpretation of the
properties of the model and of the conditions for its well-posedness.

Necessary and sufficient conditions for the existence of a solution have been
proved and effective criteria for their application have been contributed. In
particular we have shown that all familiar one-dimensional engineering models
of structural assemblies composed of bars and beams fulfill the well-posedness
property in the presence of any singularity of the elastic compliance.

The case of two- or three-dimensional structural models drastically changes
the scenary due to the infinite dimensionality of the subspace of self-stresses so
that well-posedness of the mixed problem will be almost never fulfilled when the
elastic compliance is singular. As relevant exceptions we quote structural models
with either fully elastic or perfectly rigid behaviour. The problem is strictly
connected with the discussion of constrained structural models in which a linear
constraint is imposed on the strain fields. By means of simple counterexamples
[126], [192] it can be shown that there is little hope to get well-posedness of a
mixed problem when the elastic compliance is singular. In this respect Stokes
problem concerning the incompressible viscous flow of fluids, for which well-
posedness is fulfilled, must be considered as an exception.
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Although the analysis has beeen carried out with explicit reference to elas-
tostatic problems, we observe that the results can as well be applied to the
discussion of a number of interesting problems in mathematical physics mod-
eled by analogous mixed formulations. A variant of the proposed approach can
also be applied to the discussion of problems in which linear constraints are
imposed on the stress field.
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Chapter 9

Approximate models

The actual demand of designing structures with more and more complex geo-
metrical shapes and constitutive behaviors, have led to a deep study of computa-
tional methods based on discretizations of a continuous model. The main issues
under investigation are the interpolation properties related to discretization cri-
teria and error estimates concerned with the evaluation of the gap between the
discrete solution and the continuous one. In this chapter essential aspects of
discretization and error estimate methods are illustrated.

9.1 Discrete mixed models
From a mathematical point of view, the formulation of a discrete structural
model associated with a given linear continuous model, consists in imposing that
the dispacement, stress and deformation fields belong to finite dimensional lin-
ear subspaces of the linear state-spaces. Discretization may then be interpreted
as a linear constraint imposed on the state-variables by providing explicit rep-
resentations of the linear subspaces of conforming state variables. To describe
the procedure in detail, let us consider a structural model M(Ω,L,B) and the
interpolating subspaces

Lh ⊂ L , discrete displacements ,

Sh ⊂ H , discrete stresses ,

defining an associated discrete model M(Ω,L, ,B,Lh,Sh) .
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Definition 9.1.1 (Discrete active force systems) A discrete active force sys-
tem is a functional of the Banach space Fh , dual of the Banach space Lh ⊂ L
of discrete displacements, according to the topology induced by the Banach space
L .

Definition 9.1.2 (Discrete reactive force systems) A discrete reactive force
system is a functional of the Banach space Rh = L◦h ⊂ Fh where L◦h is the
annihilator defined by

L◦h := {f ∈ Fh | 〈f ,v 〉 = 0 ∀v ∈ Lh} .

As is well-known, there is an isometric isomorphism between the space Fh , dual
to Lh , and the quotient space F/L◦h , see e.g. Proposition I.9.18 (p.75) in [196].
It is often convenient to identify the spaces Fh and F/L◦h . This identification
allows to provide a straightforward and simple interpretation of force systems
acting on the discrete model and it will be adopted without further future
advice. The advantages related to the identification between force systems on
the discrete model and the affine manifolds of force systems on the continuous
model, are apparent if the analysis carried out in the sequel is compared with
the one illustrated in [24].

9.1.1 Equilibrium
Discrete operators, kinematic and static, in duality

Bh ∈ BL (Lh ;H/S⊥h ) , B′h ∈ BL (Sh ;F/L◦h)

are defined by
Bhuh= B uh +S⊥h , ∀uh ∈ Lh ,
B′hσh= B′σh+L◦h , ∀σh ∈ Sh .

• The subspace of rigid discrete velocity fields on the constrained discrete
structure M(Ω,L,B,Lh,Sh) is

ker(Bh) = {uh ∈ Lh : Buh ∈ S⊥h } = Lh ∩ (B−1S⊥h ) .

• The subspace of self-equilibrated discrete stresses on the constrained dis-
crete structure M(Ω,L,B,Lh,Sh)

ker(B′h) = Sh ∩
[
B′h
−1
[L◦ + L◦h
L◦h

]]
= Sh ∩

[
B′
−1L◦h

]
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is constituted by the discrete stresses σh ∈ Sh in equilibrium with a
system of discrete reactive forces

B′ σh ∈ L
◦

h ⊆ F .

• The variational condition

〈f ,vh 〉 = 0 , ∀vh ∈ ker(Bh) = Lh ∩ (B−1S⊥h )

assures that the equilibrium problem

(( σh , Bhvh )) = 〈f ,vh 〉 , σh ∈ Sh , ∀vh ∈ Lh

admits a solution. The solution is unique if and only if the linear subspace
ker(B′h) of self-equilibrated discrete stresses vanishes.

• Finally let f ∈ FL be an active force system in equilibrium on the con-
tinuous structure M(Ω,L,B) , i.e. such that

〈f ,v〉 = 0 , ∀v ∈ ker(BL) = ker(B) ∩ L .

Then the equilibrium condition on discrete structure

〈f ,vh 〉 = 0 , ∀vh ∈ ker(Bh) = Lh ∩ (B−1S⊥h ) ,

is fulfilled if and only if the condition

ker(Bh) ⊆ ker(BL) ∩ Lh ,

holds. Let us note that, being ker(B) = B−1{o} ⊆ B−1S⊥h , we have
that

ker(Bh) ⊇ Lh ∩ ker(B) = ker(BL) ∩ Lh .

Proposition 9.1.1 The equality ker(Bh) = ker(BL)∩Lh is equivalent to the
property

i) ∀σ ∈ H ∃ σh ∈ Sh : (( σ − σh , Bvh )) = 0 , ∀vh ∈ Lh .
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Proof. Observing that

ker(Bh) = ker(BL) ∩ Lh ⇐⇒
[
ker(Bh)

]⊥
=
[
ker(BL) ∩ Lh

]⊥
,

and being [
ker(BL) ∩ Lh

]⊥
= L◦h + B′H ,[

ker(Bh)
]⊥

= L◦h + B′Sh ,
we get

f ∈
[
ker(BL) ∩ Lh

]⊥ ⇐⇒ ∃ σ ∈ H : 〈f ,vh 〉 = (( σ , Bvh )) , ∀vh ∈ Lh ,

f ∈
[
ker(Bh)

]⊥ ⇐⇒ ∃ σh ∈ Sh : 〈f ,vh 〉 = (( σh , Bvh )) , ∀vh ∈ Lh .

Hence the i) holds. The converse implication is easily verifiable.

Remark 9.1.1 A formulation and an alternative proof of proposition 9.1.1 are
the following. The property i) is equivalent to the condition (BLh)⊥+Sh = H
that in turn is equivalent to the condition BLh ∩ S⊥h = o , according to the
proposition I.11.8 (p.88) in [196], given that the subspaceBLh is finite dimen-
sional and thus the sum subspace BLh + S⊥h is closed in H . Then we have
that {

uh ∈ ker(Bh)

BLh ∩ S⊥h = o
⇐⇒


Buh ∈ S⊥h
uh ∈ Lh
BLh ∩ S⊥h = o

⇐⇒
{

Buh = o

uh ∈ Lh .

Hence the condition BLh ∩ S⊥h = o is necessary and sufficient so that the
equality ker(Bh) = ker(BL) ∩ Lh holds.

9.1.2 Compatibility
Let us observe preliminarily that the self-equilibreted discrete stress subspace on
the constrained discrete structure may be written as

ker(B′h) = Sh ∩
[
B′
−1L◦h

]
= Sh ∩

[
BLh

]⊥
.

Indeed

B′ σh ∈ L
◦

h ⇐⇒ 〈B′σh,vh 〉 = (( σh , Bvh )) = 0 ∀vh ∈ Lh .
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• The compatibility variational condition of a tangent deformation field ε ∈
H on the continuous structure M(Ω,L,B) is given by

〈σ, ε〉 = 0 , ∀σ ∈ ker(B′L) = (BL)⊥

and it is equivalent to ε ∈ BL .
• The compatibility variational condition on the discrete structure is

〈σh, ε〉 = 0 , ∀σh ∈ ker(B′h) = Sh ∩
[
BLh

]⊥
,

that is equivalent to

ε ∈
[
Sh ∩ (BLh)⊥

]⊥
= S⊥h + BLh .

The last equality holds since BLh is closed in H and the sum subspace
S⊥h +BLh is closed in H given that S⊥h is finite codimensional and BLh
is finite dimensional (see section I.11 (p.81) in [196]).

Tangent deformation fields ε ∈ S⊥h ⊆ H are dubbed free tangent deformations.
The compatibility property on the discrete structure follows by the compatibility
property on the continuous structure if we have that

ker(B′h) = ker(B′L) ∩ Sh .
The following property is perfectly analogous to the one in proposition 9.1.1.

Proposition 9.1.2 The equality ker(B′h) = ker(B′L)∩Sh is equivalent to the
property

ii) ∀u ∈ H ∃ Phu ∈ Lh : (( σh , B (u− Phu) )) = 0 , ∀σh ∈ Sh .
Proof. Observing that

ker(B′h) = ker(B′L) ∩ Sh ⇐⇒
[
ker(B′h)

]⊥
=
[
ker(B′L) ∩ Sh

]⊥
,

and being [
ker(B′L) ∩ Sh

]⊥
= S⊥h + BL ,[

ker(B′h)
]⊥

= S⊥h + BLh ,
we get

ε ∈
[
ker(B′L) ∩ Sh

]⊥⇐⇒∃ u ∈ L : (( σh , ε )) = (( σh , Bu )) ∀σh ∈ Sh ,

ε ∈
[
ker(B′h)

]⊥⇐⇒∃ uh ∈ Lh : (( σh , ε )) = (( σh , Buh )) ∀σh ∈ Sh .
Hence the ii) holds. The converse implication is easily verifiable.
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9.2 Discrete primary mixed elastic problem
Let us consider a discrete primary mixed elastic problem

k(uh,vh) + b(σh,vh) = 〈`eq,vh 〉 ,
{

uh∈ Lh ,
∀vh∈ Lh ,

b(τh,uh)− co(σh, τh) = (( δeq , τh )) ,

{
σh∈ Sh ,
∀ τh∈ Sh .

The problem Mh is always well-posedness since the playing spaces are of finite
dimension. Let us consider the discrete operators:

• Kh ∈ BL (Lh ;F/L◦h) defined by

Kh uh := K uh + L◦h ,

• Coh ∈ BL (Sh ;H/S⊥h ) defined by

Coh σh := Co σh + S⊥h .

The problem Mh admits an unique solution if{
ker(Kh) ∩ ker(Bh) = {o} ,
ker(B′h) ∩ ker(Coh) = {o} .

• The explicit expression of the uniqueness condition of the state of discrete
stress σh ∈ Sh

ker(B′h) ∩ ker(Coh) = ker(B′h) ∩ Sh ∩Co
−1 S⊥h = {o} ,

shows that the condition is verified if ker(Co) = {o} .
Indeed by the positivity of Co ∈ BL (H ;H) we deduce that

σh ∈ Sh ∩Co
−1S⊥h =⇒ Coσh = o =⇒ σh = o ,

i.e. ker(Coh) = Sh ∩Co
−1S⊥h = {o} .

• The explicit expression of the uniqueness condition for the displacement
field uh ∈ Lh is

ker(Kh) ∩ ker(Bh) = Lh ∩K−1L◦h ∩B−1S⊥h = {o} .
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By the positivity of Kh ∈ BL (Lh ;F/L◦h) we deduce that{
uh ∈ Lh ,
K uh ∈ L

◦

h ,
=⇒ 〈K uh,uh 〉 = 0 =⇒ K uh = {o} ,

i.e.
ker(Kh) = Lh ∩ ker(K) .

The uniqueness of the displacement field uh ∈ Lh holds if and only if{
Buh ∈ S⊥h ,
uh ∈ Lh ∩ ker(K) ,

=⇒ uh = o ,

namely if
Lh ∩ (ker(K)) ∩B−1S⊥h = {o} .

In mechanical terms we say that

• there are not elastically ineffective conforming discrete displacements that
are not zero and generating free tangent deformations.

Remark 9.2.1 The condition ker(Bh) = o imposes that BLh ∩ S⊥h = o and
thus, by observation 9.1.1, we get ker(Bh) = ker(BL) ∩ Lh . In structural
applications the condition ker(Bh) = o is the needful (and sufficient) to assure
the uniqueness of the displacement field in absence of elastic constraints. It
follows that the interpolating subspaces Lh and Sh have to be assumed so that
the condition BLh ∩ S⊥h = o is respected. In the finite element method the
condition have to be substituted by a stronger one so that by imposing it to
shape functions defined in the reference element.

9.2.1 Error estimate
Error estimates in mixed elastostatics is a topic of great interest in computa-
tional mechanics. An assessment of the approximation energy error is provided
in terms of a parameter h which is the elements’ diameter in the finite element
method. A sufficient condition for the convergence in energy of the approxi-
mate solution is expressed in terms of suitable properties of the interpolating
subspaces. The result contributes an alternative form of the well known LBB
condition. Let us assume that the uniqueness and well-posedness conditions
of the continuous problem and the uniqueness condition of the displacement
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field of the discrete problem are fulfilled. We will provide an estimate of the
approximation error in energy, defined by

‖u− uh‖L + ‖σ − σh‖H .

Following the treatment developed in [24], we employ the triangle inequality to
conclude that

‖u− uh‖L + ‖σ − σh‖H ≤‖u− uh‖L + ‖σ − σh‖H+

+ ‖uh − uh‖L + ‖σh − σh‖H .

∀uh ∈ Lh ,∀σh ∈ Sh. The first step consists in increasing the term ‖uh −
uh‖L+‖σh−σh‖H by means of the distance ‖u−uh‖L+‖σ−σh‖H . To this

end we observe that by the problems M and Mh follows that

P)

{
k(uh − uh,vh) + b(σh − σh,vh) = k(u− uh,vh) + b(σ − σh,vh) ,

b(τh,uh − uh)− co(σh − σh, τh)= b(τh,u− uh)− co(σ − σh, τh) .

The known terms are continuous linear functionals on Lh and on Sh .

• Applying to the problem P) the treatment of subsection ?? of chapter ??
we deduce that the estimate holds

‖uh − uh‖L + ‖σh − σh‖H ≤ mh

[
‖u− uh‖L + ‖σ − σh‖H

]
.

mh is a positive and bounded nonlinear function of

‖co‖ , ‖k‖ , cBh , ckh , αh ,

on bounded subsets.

By the triangle inequality we deduce that

‖u− uh‖L + ‖σ − σh‖H ≤ (1 +mh)
[
‖u− uh‖L + ‖σ − σh‖H

]
,

∀uh ∈ Lh ,∀σh ∈ Sh. Setting ch = 1 +mh we conclude that

‖u− uh‖L + ‖σ − σh‖H ≤ ch
[

inf
uh∈Lh

‖u− uh‖L + inf
σh∈Sh

‖σ − σh‖H
]
.
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9.2.2 LBB condition and convergence
If the constant c is independent of h , the convergence in energy of the ap-
proximate solution to the exact one is ensured if there are sufficient properties
of interpolation of the discrete subspaces. In the literature a condition which
guarantees such properties is referred to as Ladyzhenskaya-Babuška-Brezzi
condition (LBB condition, see [107], [12], [13], [23], [161], [24]). An alternative
form of LBB condition is provided in the next theorem.

Theorem 9.2.1 Let the mixed elastic problem be well-posed with an unique
solution and the elasticity of the structure be not singular so that ker(Co) = {o}
with the kinematic operator a Korn’s operator. Further, let us assume that the
families of the interpolating linear subspaces Lh ⊂ L and Sh ⊂ H meet the
conditions

a) BLh ∩ S
◦

h = {o} ,
b) BLh + S◦h uniformly closed in H .

Then an asymptotic estimate of the approximation error can be inferred from
an asymptotic estimate of the interpolation error.

Proof. Let us preliminarily observe that the condition a) is equivalent to
ker(Bh) = ker(B) ∩ Lh . The uniqueness of the displacement solution of the
continuous problem, given that ker(K) ∩ ker(B) = {o} , implies ker(Kh) ∩
ker(Bh) = ker(K) ∩ ker(B) ∩ Lh = {o} . Hence the uniqueness of solution of
the discrete problem MVh) in terms of interpolating displacement fields is met.
The ellipticity condition on ker(B) of the bilinear form k

k(u,u) ≥ ck ‖u‖2L/(Ker K∩Ker B) , ∀u ∈ ker(B) ,

can be rewritten as k(u,u) ≥ ck ‖u‖2L for any u ∈ ker(B) , so that:

k(uh,uh) ≥ ck ‖uh‖2L ∀uh ∈ ker(Bh) = ker(B) ∩ Lh ,
i.e. the uniform ellipticity on ker(Bh) of the bilinear form k . The condition
b) is equivalent to the uniform closure of the family of subspaces Im Bh =
BLh + S◦h which is expressed by the inequality

sup
τh∈Sh

(( τh , Buh ))

‖τh‖H
≥ cb ‖uh‖H/Ker Bh ∀uh ∈ Lh ,

with cb independent of h . Then the inequality above together with the problem
P) allows us to state that

‖uh − uh‖L + ‖σh − σh‖H ≤ m (‖u− uh‖L + ‖σ − σh‖H) ,
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where m is a nonlinear function of ‖co‖ , ‖k‖ , γ , ck , α , and is positive and
bounded on bounded subsets [196]. By the triangle inequality we deduce that

‖u− uh‖L + ‖σ − σh‖H ≤ (1 +m)
[
‖u− uh‖L + ‖σ − σh‖H

]
,

for any uh ∈ Lh and σh ∈ Sh. Setting c = 1 +m we conclude that

‖u− uh‖L + ‖σ − σh‖H ≤ c
[

inf
uh∈Lh

‖u− uh‖L + inf
σh∈Sh

‖σ − σh‖H
]
. �

Remark 9.2.2 Observing that BLh∩S
◦

h = {o} , the uniform closure condition
in H of the family BLh +S◦h can be expressed by ‖ΠBuh‖H ≥ c ‖Buh‖H for
any uh ∈ Lh , in which Π ∈ BL (H ;H) is the orthogonal projector on Sh ⊂ H
[196]. Hence this condition is an alternative expression of the LBB condition.

�

Theorem 9.2.1 shows that the approximation error is bounded above by the
interpolation error. The asymptotic estimate, i.e. as h → 0 , of the decrease
rate of the interpolation error

Err(h) = inf
uh∈Lh

‖u− uh‖L + inf
σh∈Sh

‖σ − σh‖H

is provided by the polynomial interpolation theory that leads to the exponential
formula:

Err(h) ≤ β hk (‖u‖L + ‖σ‖H) .

In a two-logaritmic scale the exponential law with exponent k transforms to
the linear law with slope equal to k that is

ln (Err(h)) ≤ ln(β (‖u‖L + ‖σ‖H)) + k ln(h) .
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Chapter 10

Subdifferential Calculus

10.1 Introduction
Subdifferential calculus is nowadays a well developed chapter of non-smooth
analysis which is recognized for its many applications to optimization theory.
The very definition of subdifferential and the basic results concerning the addi-
tion and the chain rule of subdifferential calculus were first established in the
early sixties by Rockafellar [178] with reference to convex functions on <n.
A comprehensive treatment of the subject has been provided by himself in the
later book on convex analysis [?]. The theory was developed further by Moreau
[147] in the context of linear topological vector spaces and applied to problems
of unilateral mechanics [?]. A summary of basic mathematical results can also
be found in the book by Laurent [?] and in an introductory chapter of the book
by Ekeland and Temam [53]. In the early seventies different attempts were
initiated to extend the range of validity of subdifferential calculus to non-convex
functions, mainly by Rockafellar and his school. In this context saddle func-
tions were considered by McLinden [136]. Significant advances were made by
Clarke [36, 37] who set up a definition of subdifferential for arbitrary lower
semicontinuous functions on <n and extended the validity of the rules of sub-
differential calculus to this non-convex context. His results were later further
developed and extended by Rockafellar [180, 181], who has also provided a
nice exposition of the state of art, up to the beginning of eighties, in [182]. A
review of the main results and applications in different areas of mathematical
physics can be found in a recent book by Panagiotopoulos [?]. A different
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treatment of the subject is presented in the book by Ioffe and Tihomirov [?],
who introduce the notion of regular local convexity to deal with the non-convex
case. A careful review of all these contributions to subdifferential calculus leads
however to the following considerations. The results provided up to now to es-
tablish the validity of the addition and of the chain rule for subdifferentials do
appear to rely upon sufficient but largely not necessary assumptions. In fact a
number of important situations, in which the results do hold true, are beyond
of the target of existing theorems. On the other hand the author has realized
the lack of a chain rule concerning the very important case of convex function-
als which are expressed as the composition of a monotone convex function and
another convex functional. The first observation in this respect was made with
reference to positively homogeneous convex functionals of order greater than
one or, more generally, to convex functionals which are composed by a Young
function and a sublinear functional (gauge-like functionals in Rockafellar’s
terminology). The theorems presented in this paper are intended to contribute
to the filling of these gaps; progress is provided in two directions. The first con-
cerns the chain rule pertaining to the composition of a convex functional and a
differentiable operator. We have addressed the question of finding out a neces-
sary and sufficient condition for its validity. The theorem provided here shows
that this task can be accomplished to within a closure operation; the proof is
straightforward and relies on a well-known lemma of convex analysis concern-
ing sublinear functionals. The result obtained must be considered as optimal;
a simple counterexample reveals indeed that there is no hope of dropping the
closure operation. On the contrary, to establish a perfect equality (one not re-
quiring closures) in the chain rule formula, classical treatments were compelled
to set undue restrictions on the range of validity of the result. In this respect
it has to be remarked that classical conditions were global in character, in the
sense that validity of chain and addition rules where ensured at all points. The
new results provided here are instead based upon local conditions which imply
validity of the rules only at the very point where subdifferentials have to be
evaluated. It follows that classical conditions can be verified a priori while the
new conditions must be checked a posteriori at the point of interest. The second
contribution consists in establishing a new chain rule formula concerning func-
tionals which are formed by the composition of a monotone convex function and
a convex functional. A natural application of these results can be exploited in
convex optimization problems. It is shown in fact that the Kuhn and Tucker
multipliers theory can be immediately derived from the above theorems and
the existence proof can be performed under assumptions less stringent then the
classical Slater conditions [220]. Computation of the subdifferentials involved
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in the proof requires considering the following two special cases of the new chain
rules of subdifferential calculus contributed here. In the first case we have to
deal with the composition of the indicator of the zero and of an affine functional.
In the second one we must consider a functional formed by the composition of
the indicator of non-positive reals and of a convex functional. Both cases were
not covered by previous results.

10.2 Local convexity and subdifferentials
Let (X,X ′) be a pair of locally convex topological vector spaces (l.c.t.v.s.)
placed in separating duality by a bilinear form 〈·, ·〉 and f : X 7→ < ∪ {+∞}
an extended real valued functional with a nonempty effective domain:

dom f = {x ∈ X | f(x) < +∞} .

The one-sided directional derivative of f at the point x ∈ dom f , along the
vector h ∈ X , is defined by the limit

df(x;h) = lim
ε→0+

1

ε

[
f(x+ εh)− f(x)

]
.

The derivative of f at x is then the extended real valued functional p : X 7→
{−∞} ∪ < ∪ {+∞} defined by

p(h) := df(x;h) ,

which is easily seen to be positively homogeneous in h . The functional f is
said to be locally convex at x when p is sublinear in h , that is:{

p(αh) = αp(h) , ∀α ≥ 0 (positive homogeneity) ,

p(h1) + p(h2) ≥ p(h1 + h2) , ∀ h1, h2 ∈ X (subadditivity) .

The epigraph of p is then a convex cone in X×< . A locally convex functional
f is said to be locally subdifferentiable at x if its one-sided derivative p is a
proper sublinear functional, i.e., if it is nowhere −∞ . In fact, denoting by p
the closure of p defined by the limit formula:

p(h) = lim inf
z→h

p(z) , ∀h ∈ X ,
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a well-known result of convex analysis ensures that the proper lower semicon-
tinuous (l.s.c.) sublinear functional p , turns out to be the support functional
of a nonempty closed convex set K∗ , that is:

p(h) = sup{〈x∗, h〉 : x∗ ∈ K∗} ,
with

K∗ = {x∗ ∈ X ′ : p(h) ≥ 〈x∗, h〉 , ∀h ∈ X} .
The local subdifferential of the functional f is then defined by:

∂f(x) := K∗ .

A relevant special case, which will be referred to in the sequel, occurs when,
the one-sided derivative of f at x , turns out to be l.s.c. so that p = p .
The functional f is then said to be regularly locally subdifferentiable at x .
When the functional f is differentiable at x ∈ X the local subdifferential is
a singleton and coincides with the usual differential. For a convex functional
f : X 7→ < ∪ {+∞} , the difference quotient in the definition of one-sided
directional derivative does not increase as ε decreases to zero [?, ?]. Hence
the limit exists at every point x ∈ dom f along any direction h ∈ X and the
following formula holds:

df(x;h) = inf
ε>o

1

ε

[
f(x+ εh)− f(x)

]
.

A simple computation shows that the directional derivative of f is convex as a
function of h and hence sublinear. Moreover the definition of local subdiffer-
ential turns out to be equivalent to

x∗ ∈ ∂f(x) ⇐⇒ f(y)− f(x) ≥ 〈x∗, y − x〉 ∀ y ∈ X ,

which is the usual definition of subdifferential in convex analysis [?].

10.3 Classical Subdifferential Calculus
Let f1, f2 : X 7→ < ∪ {+∞} and f : Y 7→ < ∪ {+∞} be convex functionals
and L : X 7→ Y a continuous linear operator. From the definition of local
subdifferential it follows easily that:

∂(λf)(x) = λ∂f(x) , λ ≥ 0 ,

∂(f1 + f2)(x) ⊇ ∂f1(x) + ∂f2(x) ,

∂(f ◦ L)(x) ⊇ L′ ∂f(Lx) ,
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where L′ denotes the dual of L .
As remarked in [53] equality in the last two relations is far from being always

realized. The aim of subdifferential calculus has thus primarily consisted in pro-
viding conditions sufficient to ensure that the converse of the last two inclusions
does hold true. In convex analysis this task has been classically accomplished
by the following kind of results [?, ?, 53, ?].

Theorem 10.3.1 (Additivity) If f1, f2 : X 7→ <∪ {+∞} are convex and at
least one of them is continuous at a point of dom f1 ∩ dom f2 , then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) ∀ x ∈ X .

�

Theorem 10.3.2 (Chain-rule) Given a continuous linear operator L : X 7→
Y and a convex functional f : Y 7→ < ∪ {+∞} which is continuous at a point
of dom f ∩ ImL , it results that

∂(f ◦ L)(x) = L′ ∂f(Lx ) , ∀ x ∈ X .

�

The chain-rule equality above can be equivalently written with the more
familiar notation

∂(f ◦ L)(x) = ∂f(Lx ) ◦ L , ∀ x ∈ X .

A generalization of the previous results can be performed to get a chain rule
involving a locally convex functional and a nonlinear differentiable operator.
Given a nonlinear differentiable operator A : X 7→ Y and a functional f : Y 7→
<∪{+∞} which is locally convex at yo = A(xo) , we have to prove the following
equality:

∂(f ◦A)(xo) = ∂f [A(xo)] ◦ dA(xo) = [dA(xo)]
′ ∂f [A(xo)] ,

where dA(xo) is the derivative of the operator A at xo ∈ X .
The task can be accomplished by first providing conditions sufficient to guar-

antee the validity of the chain-rule identity for one-sided directional derivatives:

d(f ◦A)(xo ;x) = df [A(xo) ; dA(xo)x ] , ∀ x ∈ X ,
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which is easily seen to hold trivially when A is an affine operator. Then, setting
L := dA(xo) , we consider the sublinear functionals

p(y) := df(A(xo); y) and q(x) = d(f ◦A)(xo ;x) .

The identity above ensures that q = p◦L ; further, observing that, by definition,

∂p(0) = ∂f(A(x)) and ∂q(0) = ∂(p ◦ L)(0) = ∂(f ◦A)(x) ,

the equality to be proved can then be rewritten as:

∂(p ◦ L)(0) = L′∂p(0) .

This result can be inferred from the chain-rule theorem concerning convex func-
tionals by assuming that the sublinear functional p is continuous at a point
of dom p ∩ ImL . In this respect we remark that it has been shown in [?]
that, assuming the functional f to be regularly locally convex at A(x) ∈ Y ,
that is locally convex and uniformly differentiable in all directions at A(x) , its
derivative p turns out to be continuous in the whole space Y . Therein it is
also proved that a convex functional is regularly locally convex at a point if
and only if it is continuous at that point. An analogous generalization can be
performed for the addition formula of subdifferential calculus. A different and
more general treatment of the nonconvex case has been developed, on the basis
of Clarke’s [36, 37] contributions, by Rockafellar [180, 181]. According to
his approach the validity of the chain rule was proved by assuming that the
operator A is strictly differentiable at x ∈ X , that f is finite, directionally
Lipschitzian and subdifferentially regular at A(x) and that the interior of the
domain of the one-sided derivative of f at x ∈ X has a non-empty intersection
with the range of dA(x) . Reference is made to the quoted papers for a precise
assessment of definitions and proofs.

10.4 New results
As illustrated above, all the contributions provided to subdifferential calculus
until now have directed their efforts in the direction of finding conditions directly
sufficient to ensure the validity of the equality sign in the relevant relations.
This approach has led to the formulation of very stringent conditions which
rule out a number of significant situations. In the next subsection we propose
an alternative approach to the assessment of the chain rule pertaining to the
composition of a convex functional and a differentiable operator. Further we
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derive the addition rule as a special case of this chain rule. In the second
subsection we present the proof of a new product-rule formula of subdifferential
calculus which deals with the composition of a monotone convex function and a
convex functional. These results are applied in the last subsection to assess the
existence of Kuhn and Tucker multipliers in convex optimization problems,
under assumption less stringent than the classical Slater conditions [220] (see
also [?] and [182]).

10.4.1 Classical addition and chain rule formulas
The new approach to classical rules of subdifferential calculus consists in split-
ting the procedure into two steps. It has in fact been realized that getting the
equality at once in the related relations requires too stringent assumptions and
allows less deep insight into the problem.

The classical chain rule requires the equality of the subdifferential of a com-
posite function, which is a closed convex set, to the image of the subdifferential
of a convex function through a linear operator. Since in general the image of a
closed convex set fails to be closed too, it is natural to look first for conditions
apt to provide equality of the former set to the closure of the latter one, leaving
to a subsequent step the answer about the closedness of the latter set.

The first step is performed by means of the following result.

Theorem 10.4.1 (New proof of the classical chain rule) Let A : X 7→
Y be a nonlinear operator which is differentiable at a point xo ∈ X with deriva-
tive dA(xo) : X 7→ Y linear and continuous. Let further f : Y 7→ < ∪ {+∞}
be a functional which is locally subdifferentiable at A(xo) ∈ Y and assume that
f ◦ A : X 7→ < ∪ {+∞} is locally subdifferentiable at xo ∈ X . Then we have
that:

∂(f ◦A)(xo) = ∂f [A(xo)] ◦ [dA(xo)] = [dA(xo)]′∂f [A(xo)]

if and only if
q(x) = p(Lx) , ∀ x ∈ X ,

where q(·) := d(f ◦ A)(xo; ·) , p(·) := df [A(xo); · ] and L := dA(xo) , a super-
imposed bar denoting the closure.

Proof. f being locally subdifferentiable at A(xo) ∈ Y , its directional deriva-
tive p : Y 7→ < ∪ {+∞} is a proper sublinear functional, so that:

p(y) = sup{〈y∗, y 〉 | y∗ ∈ K∗}
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where:
K∗ = ∂p(0) := {y∗ ∈ Y ′ | p(y) ≥ 〈y∗, y 〉 ∀ y ∈ Y }

is a nonempty, closed convex set. Then we have:

p(Lx) = sup{〈y∗, Lx〉 | y∗ ∈ K∗} = sup{〈x∗, x〉 | x∗ ∈ L′K∗} .

Similarly, f ◦A being locally subdifferentiable at xo ∈ X its directional deriva-
tive q : X 7→ < ∪ {+∞} is a proper sublinear functional, so that

q(x) = sup{〈x∗, x〉 | x∗ ∈ C∗} ,

where
C∗ = {x∗ ∈ X ′ | q(x) ≥ 〈x∗, x〉 , ∀ x ∈ X}

is a nonempty, closed convex set in X ′ .
Comparison of the two expressions above leads directly to the following

conclusion:
q(x) = p(Lx) if and only if C∗ = L′K∗ .

The statement of the theorem is then inferred by observing that:

∂f [A(xo)] = {y∗ ∈ Y ′ | df [(A)(xo); y] ≥ 〈y∗, y 〉 , ∀ y ∈ Y }
= {y∗ ∈ Y ′ | p(y) ≥ 〈y∗, y 〉 , ∀ y ∈ Y } = ∂p(0) = K∗

and

∂(f ◦A)(xo) = {x∗ ∈ X ′ | d(f ◦A)(xo;x) ≥ 〈x∗, x〉 , ∀ x ∈ X}
= {x∗ ∈ X ′ | q(x) ≥ 〈x∗, x〉 , ∀ x ∈ X} = ∂q(0) = C∗

and the proof is complete. �

An useful variant is stated in the following:

Corollary 10.4.1 Let A : X 7→ Y be a nonlinear operator which is differen-
tiable at a point xo ∈ X with derivative dA(xo) : X 7→ Y linear and continuous.
Let further f : Y 7→ <∪{+∞} be a functional which is locally subdifferentiable
at A(xo) ∈ Y and assume that the following identity holds:

d(f ◦A)(xo;x) = df [A(xo); dA(xo)x] , ∀ x ∈ X .

Then we have

∂(f ◦A)(xo) = ∂f [A(xo)] ◦ [dA(xo)] = [dA(xo)]′∂f [A(xo)]
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if and only if it results:

(p ◦ L)(x) = p(Lx) , ∀ x ∈ X ,

where p(y) := df [A(xo); y] and L := dA(xo) , a superimposed bar denoting the
closure.

Proof. The result is directly inferred from the theorem above by noting that
the assumed identity amounts to require that q = p ◦ L . �

It has to be remarked that the chain-rule for one-sided directional deriva-
tives assumed in the statement of the corollary holds trivially for every affine
operator A . Moreover the necessary and sufficient condition is fulfilled when
the sublinear functional p is closed. The next result shows that the addition
rule for subdifferentials can be directly derived by applying the result provided
by the chain-rule theorem.

Theorem 10.4.2 (New proof of the classical addition rule) We consider
the functionals f i : X 7→ < ∪ {+∞} with i = 1, · · · , n and assume that they
are locally subdifferentiable at xo ∈ X with pi(x) := df i(xo;x) . The following
addition rule then holds:

∂(
∑n
i=1 f i)(xo) =

∑n
i=1 ∂f i(xo)

if and only if
(
∑n
i=1 pi)(x) =

∑n
i=1 pi(x) , ∀ x ∈ X .

Proof. Let A : X 7→ Xn be the iteration operator defined as

Ax = |xi| , xi = x , i = 1, · · · , n .

The dual operator A′ : X ′ 7→ (Xn)′ meets the identity

〈A′|x∗i |, x〉 = 〈|x∗i |, Ax〉 =
∑n
i=1 〈x∗i , x〉 = 〈∑n

i=1 x
∗
i , x〉 , ∀ x ∈ X ,

and hence is the addition operator

A′|x∗i | =
∑n
i=1 x

∗
i .

Defining the functional f : Xn 7→ < ∪ {+∞} as: f(|xi|) :=
∑n
i=1 f i(xi) ,

we have (f ◦A)(x) =
∑n
i=1 f i(x) and hence

∂(f ◦A)(xo) = ∂(
∑n
i=1 f i)(xo) .
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On the other hand,

df(Axo; |xi|) = lim
α↓0

1

α
[f(Axo + α|xi|)− f(Axo)]

= lim
α↓0

1

α
[
∑n
i=1[f i(xo + αxi)− f i(xo)] =

∑n
i=1 df i(xo;xi) .

By the definition of local subdifferential we then get

|x∗i | ∈ ∂f(Axo) ⇐⇒ x∗i ∈ ∂f i(xo)

so that
A′∂f(Axo) =

∑n
i=1 ∂f i(xo) ,

Finally, noticing that

p(|xi|) := df [Axo; |xi|] =
∑n
i=1 df i[xo;xi] :=

∑n
i=1 pi(xi) ,

(p ◦A)(x) = (
∑n
i=1 pi)(x) ,

p(Ax) =
∑n
i=1 pi(x) ,

the proof follows from the result contributed in the chain-rule theorem above.
�

Corollary 10.4.2 We consider the functionals f i : X 7→ < ∪ {+∞} with i =
1, · · · , n , and assume that they are regularly locally subdifferentiable at xo ∈ X .
The following addition rule then holds:

∂(
∑n
i=1 f i)(xo) =

∑n
i=1 ∂f i(xo) .

Proof. The result follows at once by theorem 10.4.2, observing that:

pi (i = 1, · · · , n) closed =⇒ ∑n
i=1 pi closed .

�
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We now derive a special case of the chain-rule formula which is referred to
later when dealing with the existence of Kuhn and Tucker vectors in convex
optimization.

A special case. Let A : X 7→ Y be a continuous affine operator, that is,

A(x) = L(x) + c

with L : X 7→ Y linear and continuous and c ∈ Y . Let further f : Y 7→
< ∪ {+∞} be the convex indicator of the point {A(xo)} :

f(y) = ind{A(xo)}(y) , ∀ y ∈ Y .

The chain-rule for one-sided directional derivatives holds true since A is affine.
Moreover the functionals:

p(y) := df [A(xo); y] = ind{0}(y) ,

(p ◦ L)(x) := df [A(xo);Lx] = ind{0}(Lx) = ind{KerL}(x) ,

turn out to be sublinear, proper and closed. On the basis of the corollary to the
chain-rule theorem provided above we may then that

∂(f ◦A)(xo) = L′Y ′ = ImL′ .

The particular case when Y = < will be of special interest in the sequel. In
this case we may write:

A(x) = 〈a∗, x〉+ c with a∗ ∈ X ′, c ∈ < .

Note that now L = a∗ : X 7→ < and L′ : < 7→ X ′ with Lx = 〈a∗, x〉 and
L′α = αa∗ . It follows that ImL′ = Lin{a∗} is a closed subspace and hence

∂(f ◦A)(xo) = ImL′ = Lin{a∗} = L′∂f [A(xo)] = ∂f [A(xo)]L = <a∗

which is the formula of future interest. Two significant examples are reported
hereafter to enlighten the meaning of the conditions required for the validity of
the chain-rule formula.

Examples. The first example shows that, when the necessary and sufficient
condition for the validity of the chain-rule formula is not satisfied, the two convex
sets involved in the formula can in fact be quite different from one another.
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Let f be the convex indicator of a circular set in <2 centered at the origin
and let (xo, 0) be a point on its boundary. The one-sided directional derivative
of f at (xo, 0) is the proper sublinear functional p : <2 7→ < given by

p(x, y) =

{
0 for x < 0 and at the origin ,
+∞ elsewhere.

Denoting the orthogonal projector on the axis <y by L = L′ we have

(p ◦ L) = ind{<x} and then ∂(p ◦ L)(0, 0) = <y .

On the other hand,

∂p(0, 0) = <+
x so that L′∂p(0, 0) = L′<+

x = (0, 0) .

The second example provides a situation in which all the assumptions set
forth in the corollary are met but still the two convex sets fail to be equal since
the second one is nonclosed. Let K∗ be the iperbolic convex set in <2 defined
by

K∗ := {(x∗, y∗) ∈ <2 | x∗y∗ ≥ 1}
and let p be its support functional:

p(x, y) := sup{〈x∗, x〉+ 〈y∗, y 〉 | (x∗, y∗) ∈ K∗} .

Denoting the orthogonal projector on the axis <y again by L = L′ we then
have

(p ◦ L)(x, y) =

{
0 on <x ×<−y ,
+∞ elsewhere .

Hence K∗ = ∂(p◦L)(0, 0) = <+
y but L′∂p(0, 0) = L′K∗ = <+

y − (0, 0) which
is open.

10.4.2 A new product rule formula
We present here the proof of a new product-rule formula of subdifferential cal-
culus which deals with the composition of a monotone convex function and a
convex functional. The original interest of the author for this kind of prod-
uct rule arose in connection with subdifferential relations involving gauge-like
functionals [?] which are composed by a monotone convex Young function and
a sublinear Minkowsky functional. The new product-rule formula turns out
to be of the utmost interest in dealing with minimization problems involving
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convex constraints expressed in terms of level sets of convex functionals. A new
approach to Kuhn and Tucker theory of convex optimization can be founded
upon these results is carried out in the next subsection. Two introductory lem-
mas, which the main theorem resorts to, are preliminarily reported hereafter.

Lemma 10.4.1 Let I = [λ1, λ2] be an interval belonging to the nonnegative
real line and let C be a weakly compact convex set in X . Then the set IC is
convex and closed if either a) 0 /∈ C , or b) I is compact (i.e., bounded).

Proof. We first prove that C being convex, the set IC is convex too.
If x̄1, x̄2 ∈ IC and α1, α2 ≥ 0 with α1 + α2 = 1 , we have

α1x̄1 + α2x̄2 = α1m1x1 + α2m2x2 with m1,m2 ∈ I, x1, x2 ∈ C .

Now, by the convexity of C ([?], th. 3.2),

α1m1x1 + α2m2x2 ∈ α1m1C + α2m2C = (α1m1 + α2m2)C ⊆ IC ,

the last inclusion holding true since α1m1 + α2m2 ∈ I , by the convexity of I .
To prove the weak closedness of IC , we consider a weak limit point z of

IC and a sequence {akxk} , with ak ∈ I and xk ∈ C , converging weakly to
z :

〈x∗, akxk 〉 7→ 〈x∗, z 〉 , ∀x∗ ∈ X ′ .
C being weakly compact in X , we may assume that the sequence {xk} is
weakly convergent to a point x ∈ C . Under assumption a) we then infer that
x 6= 0 so that there will exist an x ∗ such that:

〈x ∗, xk 〉 7→ 〈x ∗, x〉 > 0 .

For a sufficiently large k , 〈x ∗, xk 〉 ≥ ξ > 0 , and hence the sequence {ak}
cannot be unbounded. In fact otherwise 〈x∗, akxk 〉 ≥ akξ 7→ +∞ , contrary to
the assumption that akxk

w7→ z . Under assumption b) the boundedness of the
sequence {ak} is a trivial consequence of the boundedness of I . In both cases
we may then assume that ak 7→ a ∈ I and xk

w7→ x ∈ C . As a consequence
we get that {akxk}

w7→ ax and hence z = ax ∈ IC . �

Lemma 10.4.2 Let f : X 7→ < be a continuous nonconstant convex functional.
Denoting its zero level set by N , if there is a vector x− ∈ N such that f(x−) <
0 then it results:

intN = N− := {x ∈ X | f(x) < 0} ,
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bndN = No := {x ∈ X | f(x) = 0} ,
and both sets turn out to be nonempty.

Proof. Since f(x−) < 0 , by the continuity of f a neighbourhood N (x−) exists
such that f(x) < 0 , ∀x ∈ N (x−) . Hence N (x−) ⊂ N so that x− ∈ intN .
Further, f being nonconstant and negative at x− , by convexity there will be an
xo ∈ X such that f(xo) = 0 . Let S(xo;x−) ⊂ N be the segment joining xo
and x− and let L(xo;x−) be the line generated by S(xo;x−) (see fig. 10.1(a)).
Setting fL(t) = f [x̂(t)] with x̂(t) = (1− t)xo + tx−, t ∈ <} we have

fL(0) = 0 and fL(1) < 0 .

Hence, by convexity (see fig. 10.1(a)):

fL(t) < 0 for 0 < t ≤ 1 and fL(t) > 0 for t < 0 .

We may then conclude that

Figure 10.1: (a) The zero level set of f(x) - (b) The graph of fL(t) .

N− ⊆ intN and No ⊆ bndN

and the relations:
intN = N\bndN ⊆ N\No = N− ,

bndN = N\intN ⊆ N\N− = No

yield the converse inclusions. �

639



New results Giovanni Romano

The main theorem providing the new product rule can now be stated.

Theorem 10.4.3 (The new product rule) Let m : <∪{+∞} 7→ <∪{+∞}
be a monotone convex function with m(+∞) = +∞ and let k : X 7→ <∪{+∞}
a proper convex functional continuous at x ∈ X . Then, if x is not a minimum
point of k and m is subdifferentiable at k(x) , setting f = m ◦ k , results in

∂f(x) = ∂m[k(x)]∂k(x) .

Proof. The proof is carried out in two steps. First we provide a representa-
tion formula for the closure of the one-sided directional derivative of f ; then
recourse to the two preliminary lemmas will yield the result. To provide the
representation formula, given a director h ∈ X − {0} , we define the convex
real function χ : <+ 7→ < as the restriction of k to the half-line starting at
x and directed along h : χ(α) := k(x + αh) so that χ′(0) := dk(x;h) . In
investigating the behavior of df(x; ·) it is basic to consider the zero level set of
dk(x; ·) . First we observe that the continuity of k at x implies [?] the conti-
nuity of the sublinear function dk(x;h) as a function of h . Its zero level set
N = {h ∈ X | dk(x;h) ≤ 0} is then a closed convex cone. Since by assumption
x is not a minimum point for k , the preliminary lemma, lemma 10.4.2, states
that the interior and the boundary of N are not empty, being dk(x; ·) < 0
in intN and dk(x; ·) = 0 on bndN . The derivative df(x;h) of the prod-
uct functional f = m ◦ k can be immediately computed along the directions
h ∈ intN and h /∈ N . In fact if dk(x;h) = χ′(0) does not vanish, α ↓ 0
implies that definitively either χ(α) ↓ χ(0) if χ′(0) > 0 or χ(α) ↑ χ(0) if
χ′(0) < 0 (see fig. 10.2). Hence, denoting the right and left derivates of m at
the point k(x) = χ(0) by m′+ and m′− , it will be seen that

df(x;h)= lim
α↓0

1

α

[
f(x+ αh)− f(x)

]
= lim

α↓0

1

α

[
m[k(x+ αh)]−m[k(x)]

]
= lim

α↓0

1

α

[
m[χ(α)]−m[χ(0)]

]
= lim

α↓0

m[χ(α)]−m[χ(0)]

χ(α)− χ(0)

χ(α)− χ(0)

α

= lim
χ(α)↓χ(0)

m[χ(α)]−m[χ(0)]

χ(α)− χ(0)
lim
α↓0

χ(α)− χ(0)

α

= m′+ χ
′(0) ,

if χ′(0) > 0 . Apparently df(x;h) = m′− χ
′(0) if χ′(0) < 0 .
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Figure 10.2: (a) χ′(0) > 0 and (b) χ′(0) < 0 .

A more detailed discussion has to be made when h ∈ bndN , so that χ′(0) =
0 . In this case, as shown in fig. 10.3, the convexity of k implies that either
χ(α) goes to χ(0) with a strict monotonic descent or it attains the value χ(0)
for some α > 0 and then remains definitively constant.

In both cases df(x;h) = 0 if the right derivative m′+ is finite. In fact,
in the case of figure 10.3(a), the formula df(x;h) = m′+ dk(x;h) holds with
dk(x;h) = 0 ; in the case of figure 10.3(b) the conclusion is trivial.

Figure 10.3: Graphs of χ(α) for χ′(0) = 0 ). (a) Monotonic descent and (b)
definitive constancy.

We may then conclude that:

df(x; ·) =


0 on bndN,
m′− dk(x; ·) ≤ 0 in intN,
m′+ dk(x; ·) ≥ 0 outside N ,

so that the following formula holds:

df(x;h) = sup
λ∈I

λdk(x;h) with I = [m′−,m
′
+] .
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An indecisive situation occurs instead when m′+ = +∞ since, in the case
of figure 10.3a, df(x;h) = +∞ .

Noticing that ∂m[k(x)] = I = [m′−,m
′
+] , the assumed subdifferentiability

of m at k(x) ensures that m′− < +∞ . Hence we get:

df(x; ·) =


0 or +∞ on bndN,
m′− dk(x; ·) ≤ 0 in intN ,

m′+ dk(x; ·) = +∞ outside N .

To resolve the indecisive situation on bndN we observe that, dk(x; ·) being
continuous in X and vanishing on bndN , the restriction of df(x; ·) to intN
can be extended by continuity to zero on bndN .

As a consequence the closure of df(x; ·) will vanish on bndN , being equal
to df(x; ·) elsewhere:

df(x; ·) =


0 on bndN ,

m′− dk(x; ·) ≤ 0 in intN ,

m′+ dk(x; ·) = +∞ outside N .

From the analysis above we infer then the general validity of the formula

df(x;h) = sup
λ∈I

λdk(x;h) with I = [m′−,m
′
+] ,

holding whether m′+ is finite or not.
To get the product rule we finally remark that, by the continuity of dk(x; ·) ,

dk(x;h) = sup{〈x∗, h〉 | x∗ ∈ ∂k(x)}

so that the formula above may be rewritten as

df(x;h) = sup
λ∈I
{λ sup{〈x∗, h〉 | x∗ ∈ ∂k(x)}} = sup{〈x∗, h〉 | x∗ ∈ I∂k(x)} .

The set I∂k(x) = ∂m[k(x)]∂k(x) being convex by lemma 10.4.1, we then get

∂f(x) = ∂m[k(x)]∂k(x) .

Finally we observe that, by the continuity of k at x , the convex set ∂k(x)
is nonempty, closed and weakly compact in X ′ ([147], prop. 10.c.); further it
does not contain the origin since x is not a minimum point for k . By lemma
10.4.1 we may then infer the closure of the set ∂m[k(x)]∂k(x) and the proof is
complete. �
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Figure 10.4: Graphs of m when m′+ = +∞ .

Typical shapes of the monotone convex function m in the case when m′+ =
+∞ are shown in figure 10.4 depending on whether m′− > 0 or m′− = 0 . The
latter case reveals that a significant special choice for m is the convex indicator
of the nonpositive real axis. This is in fact the choice to be made in discussing
convex optimization problems.

10.4.3 Applications to convex optimization
Given a proper convex functional f : X 7→ < ∪ {+∞} let us consider the
following convex optimization problem:

inf{f(x) | x ∈ C}

where C is the feasible set, defined by

C = Cg ∩ Ch

with
Cg = {∩Ci | i = 1, · · · , n1} ,
Ch = {∩Cj | j = 1, · · · , n2} ,
Ci = {x ∈ X | gi(x) ≤ 0} ,
Cj = {x ∈ X | hj(x) = 0} .

In order that the optimization problem above be meaningful, we have to assume
that the intersection between the feasible set and the domain of the objective
functional is not empty, i.e., dom f ∩ C 6= ∅ . Here gi : X 7→ < are n1 contin-
uous convex functionals and hj : X 7→ < are n2 continuous affine functionals,
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that is, hj(x) = 〈a∗j , x〉+ c with a∗j ∈ X ′ and c ∈ < . Without loss of gener-
ality the functionals gi and hj can be assumed to be nonconstant; further it
is natural to assume that each of the convex functionals gi do assume negative
values.

The following preliminary result is easily proved.

Lemma 10.4.3 Let g : X 7→ < be a nonconstant continuous convex functional.
Denoting its zero level set by N , if a vector x− ∈ N exists such that g(x−) < 0
we have that

∂(ind{<−} ◦ g)(x) = ∂ind{<−}[g(x)]∂gi(x) , ∀x ∈ N .

Proof. By lemma 10.4.2 it follows that

intN = N− := {x ∈ X | g(x) < 0} ,

bndN = No := {x ∈ X | g(x) = 0} ,
and both sets turn out to be nonempty.

Now, if x ∈ No the properties ensuring the validity of the new product-
rule formula proved in the subsection 10.4.2 are fulfilled. On the other hand,
if x ∈ N− , by the continuity of g there is a neighborhood of x in which
g is negative. The formula above then follows by observing that in this case
∂ind{<−}[g(x)] = 0 . �

We are now ready to discuss the convex optimization problem considered
above which can be conveniently reformulated as

inf ψ(x) with ψ(x) = f(x) +
∑n
i=1 ind{<−}[gi(x)] +

∑m
j=1 ind{0}[hj(x)] .

Convex analysis tells us that

xo = arg minψ(x) ⇐⇒ 0 ∈ ∂ψ(xo) or explicitly:

0 ∈ ∂
[
f(xo) +

∑n
i=1 ind{<−}[gi(xo)] +

∑m
j=1 ind{0}[hj(xo)]

]
.

Under the validity of the addition rule of subdifferential calculus the extremum
condition becomes

0 ∈ ∂f(xo) +
∑n
i=1 ∂(ind{<−} ◦ gi)(xo) +

∑m
j=1 ∂(ind{0} ◦ hj)(xo) .
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Here we apply the result contributed above in Lemma 10.4.3 to compute the
subdifferentials related to inequality constraints:

∂(ind{<−} ◦ gi)(xo) = ∂ind{<−}[gi(xo)]∂gi(xo) .

The new proof of the chain-rule provided in subsection 10.4.1 allows us to carry
out computation of the subdifferentials related to equality constraints:

∂(ind{0} ◦ hj)(xo) = ∂ind{0}[hj(xo)]∂hj(xo) .

Finally we observe that

∂ ind{<−}[gi(xo)] = N{<−}[gi(xo)] ,

∂ ind{0}[hj(xo)] = < , and ∂hj(xo) = a∗j ,

where N{<−}[gi(xo)] is the normal cone to <− at the point gi(xo) . It turns
out to be equal to {0} when gi(xo) < 0 and to <+ when gi(xo) = 0 . The
extremum condition above can thus be restated explicitly in terms of Kuhn and
Tucker complementarity relations:{

λi ∈ <+ , gi(xo) ∈ <− , λigi(xo) = 0 i = 1, · · · , n
µj ∈ < , j = 1, · · · ,m

and of the related stationarity condition

0 ∈ ∂f(xo) +
∑n
i=1 λi∂gi(xo) +

∑m
j=1 µja

∗
j .

The corresponding Lagrangian is given by

L(x, λi, µj) = f(x)+

n∑
i=1

λigi(x)+

m∑
j=1

µjhj(x)−
n∑
i=1

ind{<+}(λi)−
m∑
j=1

ind{<}(µj) ,

where the last inessential term has been added for formal symmetry.
The Kuhn and Tucker conditions above are easily seen to be equivalent

to the existence of a saddle point for the Lagrangian.
Classically the existence of Kuhn and Tucker multipliers is ensured by the

fulfillment of Slater’s conditions [220, ?]

∃x ∈ X such that f(x) < +∞ and

{
gi(x)< 0 , i = 1, · · · , n ,
hj(x)= 0 , j = 1, · · · ,m ,
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i.e., by assuming that the intersection between the domain of the objective
functional and the interior of the set Cg is nonempty.

According to the treatment developed in this paper the existence of Kuhn
and Tucker multipliers can in fact be assessed under by far less stringent con-
ditions; these amount in the obvious minimal requirement that the optimization
problem is well posed (i.e., the intersection between the domain of the objective
functional and the feasible set is nonempty) and in the further assumption that,
at the optimal point, the property ensuring the validity of the addition rule is
satisfied.

The graphical sketches in figure 10.5 exemplify the different assumptions
about the feasible set C = C1 ∩ C2 in the special case n1 = 2 and n2 =
0 . Slater condition is easily seen to be a straightforward consequence of

Figure 10.5: Assumption about the feasible set. (a) Slater’s condition - (b) new
requirement.

the classical theorems on addition rule for subdifferentials [?, 182]. The new
condition is based on the results provided in the present paper. Validity of
the addition rule cannot however be imposed a priori but has to be verified a
posteriori at the extremal point.

In this respect it has to be pointed out that when the optimal point xo
lies on the boundary of the set Cg the simple sufficient condition provided by
corollary 10.4.2 results in a special requirement on the local shape of Cg around
xo .

In fact, when xo belongs to the boundary of one of the sets Ci , the one-
sided directional derivative d(ind{<−} ◦gi)(xo; ·) will be l.s.c. if and only if the
monotone convex function ind{<−} is definitively constant towards zero along

646



Conclusions Giovanni Romano

any direction h such that dg(xo;h) = 0 , i.e., h ∈ bndCi (see lemma 10.4.2,
theorem 10.4.3 and figure 10.3). This means that there must be an αo > 0 such
that g(xo + αh) = 0 for αo ≥ α ≥ 0 . The boundary of Cg must thus have a
conical shape around xo as sketched in figure 10.6.

Figure 10.6: Local conical shape around the optimal point.

We finally provide an example in which Slater’s condition fails, but the
existence of Kuhn-Tucker multipliers can still be assessed on the basis of
the new results contributed above. To this end we consider a two-dimensional
optimization problem for the convex function f(x, y) = 1

2 (x2 + y2) under the
following inequality constraints: h1 = x − 1 ≤ 0 ;h2 = −x + 1 ≤ 0 ;h3 =
y − 2 ≤ 0 ;h4 = −y + 2 ≤ 0 . It is apparent that the feasible set does have an
empty interior so that Slater’s condition is not fulfilled. On the contrary the
differentiability of the contraint functions ensures the validity of the addition
rule so that the new requirement is satisfied. The feasible set C is depicted
in figure 10.7 and a set of Kuhn-Tucker multipliers at the optimal point
x = 1; y = 1 is given by: λ1 = 0 , λ2 = 1 , λ3 = 0 , λ4 = 1 .

10.5 Conclusions
The new approach to classical chain and addition rules of subdifferential calcu-
lus and the new product-rule formula presented in this paper have been shown
to provide a useful and simple tool in the analysis of convex optimization prob-
lems. Kuhn-Tucker optimality conditions have been proved under minimal
assumptions on the data. Further applications of the results contributed here
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Figure 10.7: Feasible set and contour plot of the objective function.

can be envisaged in different areas of mathematical physics. The original mo-
tivation for the study stemmed from problems in the theory of plasticity. In
fact, starting from the classical normality rule of the plastic flow to the convex
domain of admissible static states, the new product rule provides a simple and
effective tool to derive the equivalent expression of the flow in terms of plastic
multipliers and gradients of the yield modes. A comprehensive treatment of the
subject can be found in three papers by the author and coworkers [183, 184, 185].
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Chapter 11

On the Necessity of Korn’s
Inequality

11.1 Summary
The celebrated Korn’s second inequality is the milestone along the way that
leads to the basic existence results in continuum mechanics and linear elasto-
statics. An abstract result by L. Tartar shows that Korn’s inequality implies
that the range of the kinematic operator is closed and that its kernel is finite
dimensional. A full extension of Tartar’s lemma is provided in this paper
and leads to the conclusion that conversely the closedness of the range of the
kinematic operator and the finite dimensionality of its kernel are sufficient to
ensure the validity of Korn’s inequality.

11.2 Introduction
On reading the brilliant proof of Korn’s second inequality in the book by G.
Duvaut and J. L. Lions [51] the author realized that the peculiar form of
the sym grad operator plays a basic role in the proof. More specifically he
realized that the finite dimensionality of the kernel of sym grad should be a
necessary property, although this condition was not appealed to explicitly in the
proof. Some time later the autor became aware of a nice result by L. Tartar
concerning an abstract inequality of the Korn’s type expressed in term of a
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bounded linear operator and a compact operator whose kernels have a trivial
intersection. Tartar proved that the inequality implies the finite dimensionality
of the kernel and the closedness of the image of the bounded linear operator.
The conjecture about the role of the kernel of sym grad in Korn’s second
inequality was thus confirmed. At this point it raised naturally the question
whether conversely the finite dimensionality of the kernel of sym grad and the
closedness of its image were also sufficient to assess the validity of Korn’s second
inequality. This converse property requires to complete Tartar’s result with
the opposite implication. A full extension of Tartar’s lemma is provided in this
paper and leads to the conclusion that conversely the closedness of the range of
the kinematic operator and the finite dimensionality of its kernel are sufficient
to ensure the validity of Korn’s inequality. The main result contributed here
shows that both properties are equivalent to require that a similar inequality be
valid for any linear continuous operator.

11.3 Tartar’s Lemma
A nice abstract result due to L. Tartar was reported by F. Brezzi and D.
Marini in [26], lemma 4.1 and quoted by P. G. Ciarlet in [38], exer. 3.1.1.
Since Tartar’s lemma plays a basic role in our discussion about Korn’s in-
equality we provide hereafter an explicit proof of this result. Preliminarily we
quote that Banach’s open mapping theorem implies the following lemma (see
Brezis [22] th. II.8 and [196], th. 9.1, 9.2).

Theorem 11.3.1 (Bounded decomposition) Let X be a Banach space and
A ⊆ X , B ⊆ X closed linear subspaces of X such that their sum A + B
is closed. Then any x ∈ A + B admits a decomposition x = a + b , with
a ∈ A , b ∈ B , such that

‖x‖X ≥ c ‖a‖X , ‖x‖X ≥ c ‖b‖X ,

where c > 0 .

If X = A+B and A∩B = {o} , the closed subspaces A and B are topological
supplements in X and the projectors PA x = a and PB x = b are well defined
linear bounded operators from X to X .

A decomposition X = A u B of X into the direct sum of two topological
supplementary subspaces A and B certainly exists if either X is a Hilbert
space or at least one of them, say A , is finite dimensional.
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In the former case B is simply the orthogonal complement of A in X . In
the latter case we can take as B the annihilator in X of a subspace of X ∗
generated by fixing a basis in A , taking the dual basis in A∗ and extending its
functionals to X ∗ (by the Hahn-Banach theorem).

From the bounded decomposition, being PA a = a ∀a ∈ A , we infer
that

‖x−a‖X ≥ c ‖(x−a)−PA (x−a)‖X = c ‖x−PA x‖X , ∀a ∈ A , ∀x ∈ X ,

which is equivalent to ‖x‖X/A ≥ c ‖x−PA x‖X ∀x ∈ X . Hence we have that

‖x−PA x‖X ≥ ‖x‖X/A ≥ c ‖x−PA x‖X , ∀x ∈ X .

Theorem 11.3.2 (Tartar’s Lemma) Let H be a reflexive Banach space,
E , F be normed linear spaces and A ∈ BL (H,E) a bounded linear operator.
If there exists a bounded linear operator Lo ∈ BL (H,F ) such that{

i) Lo ∈ BL (H,F ) is compact ,

ii) ‖Au‖E + ‖Lou‖F ≥ α ‖u‖H ∀u ∈ H ,

then we have that{
a) dim(Ker A) < +∞ ,

b) ‖Au‖E ≥ cA ‖u‖H/KerA ∀u ∈ H .

Proof. Let’s prove that the closed linear subspace Ker A ⊂ H is finite dimen-
sional. We first note that ii) implies that

‖Lou‖F ≥ α ‖u‖H ∀u ∈ Ker A .

On the other hand, denoting by w→ the weak convergence in H , the compactness
property i) implies that

{un} ⊂ Ker A ,

un
w→ u∞ in H ,

}
=⇒ ‖Lo(un − u∞)‖F → 0 =⇒ ‖un − u∞‖H → 0 ,

We may then conclude that every weakly convergent sequence in Ker A is
strongly convergent. Hence, by the reflexivity of H ([22] III.2, remark 4)
we must have dim(Ker A) < ∞ and a) is proved. Then Ker A admits
a topological supplement S and we can consider the bounded linear operator
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PA ∈ BL (H,H) which is the projector on Ker A subordinated to the decom-
position H = Ker A u S . Let us now suppose that b) is false. There would
exists a sequence {un} ⊂ H such that ‖Aun‖E → 0 and ‖un‖H/KerA = 1 .
By the inequality ‖un‖H/KerA ≥ c ‖un−PA un‖H the sequence un−PAun is
bounded in H . Hence the compactness of the operator Lo ∈ BL (H,F ) ensures
that we can extract from the sequence Lo(un −PAun) a Cauchy subsequence
Lo(uk −PAuk) in F . The sequence Auk is convergent in E by assumption
and hence we infer from ii) that uk −PAuk is a Cauchy sequence which by
the completeness of H converges to an element u∞ ∈ H . Since Auk converges
to zero in E the boundedness of A ∈ BL (H,E) ensures that u∞ ∈ Ker A so
that also PAuk + u∞ ∈ Ker A . Finally from ii) we get that

α ‖uk‖H/KerA ≤ ‖Auk‖E + ‖Lo(uk −PAuk − u∞)‖F → 0 ,

and this is absurd since ‖uk‖H/KerA = 1 .

Remark 11.3.1 Tartar’s lemma is quoted in [38] referring to [26] for the
proof of the statement. Although in [26] and [38] the space H was assumed to
be a (non reflexive) Banach space, property a) cannot be inferred in this general
context. A well-known counterexample is provided by the space l1 of absolutely
convergent real sequences. In fact Shur’s theorem states that in this infinite
dimensional Banach space every weakly convergent sequence is also strongly
convergent (see [240] V.1 theorem 5 and [22] III.2, remark 4). We also note that
the proof of property b) , as developed in [26], requires the existence of a weakly
convergent subsequence of a bounded sequence and hence, by the Eberlein-
Shmulyan theorem, the Banach space H should be reflexive. The proof of
property b) proposed here is instead based on a completeness argument which
does not require the reflexivity of the Banach space H (private communication
by Renato Fiorenza).

11.4 Inverse Lemma
Let us now face the question whether Tartar’s lemma can be completed by
assessing the converse implication. A positive answer needs an existence result.
We have in fact to prove that properties a) and b) in Tartar’s lemma imply
the existence of a compact operator Lo ∈ BL (H,F ) fulfilling property ii) .
Firstly we observe that ii) implies that Ker A ∩ Ker Lo = {o} . Our strategy
consists in relaxing the requests on Lo by considering at its place any operator
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L ∈ BL (H,F ) . We then try to establish the inequality

‖Au‖E + ‖Lu‖F ≥ αL ‖u‖H/(Ker A∩Ker L) ∀u ∈ H
for any L ∈ BL (H,F ) . Once this goal has been achieved we can choose L to
be compact and such that Ker A ∩ Ker L = {o} . We need some preliminary
results. From the bounded decomposition we infer the next proposition.

Theorem 11.4.1 (Distance inequalities) Let X be a Banach space and
A ⊆ X , B ⊆ X closed linear subspaces of X such that their sum A + B is
closed. Then, setting k = c−1 > 0 we have

i) ‖x‖X/A∩B ≤ ‖x− a‖X + k ‖a + b‖X , x ∈ X , ∀ {a ,b} ∈ A × B .
If A admits a topological supplement S so that X = Au S then we infer that

ii) ‖x‖X/A∩B ≤ ‖x−PA x‖X + k ‖PA x‖X/B , x ∈ X .
where PA is the projector on A subordinated to the direct sum decomposition
of X .

Proof. Theorem 7.3.1 ensures that for every x ∈ X , a ∈ A , b ∈ B there
exists a ρ ∈ A ∩ B such that ‖a + ρ‖X ≤ k ‖a + b‖X . Hence we infer i) :

‖x‖X/A∩B ≤ ‖x + ρ‖X ≤ ‖x− a‖X + ‖a + ρ‖X ≤ ‖x− a‖X + k ‖a + b‖X .
Setting a = PA x and taking the infimum with respect to b ∈ B we get the
inequality ii) . �

The following two lemmas yield the tools for the main result. The first one
is a variant of a result quoted in [194] with reference to symmetric quadratic
forms.

Theorem 11.4.2 (Projection inequality) Let H be a Banach space and
E , F be linear normed spaces. Let moreover A ∈ BL (H,E) e L ∈ BL (H,F )
be linear bounded operators such that{

i) ‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H ,

ii) ‖Lu‖F ≥ cL ‖u‖H/KerL , ∀u ∈ Ker A .

Let moreover Ker A admit a topological supplement S so that H = Ker AuS .
Then we have

a) ‖Au‖E + ‖L u‖F ≥ α ‖PAu‖H/KerL , ∀u ∈ H .

where PA ∈ BL (H,H) is the projector on Ker A subordinated to the decom-
position H = Ker Au S .
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Proof. If a) would be false we could find a sequence {un} ⊂ H such that

‖PAun‖H/Ker L = 1 , ‖Aun‖E → 0 , ‖Lun‖F → 0 .

Since ‖u‖H/Ker A ≥ c ‖u−PA u‖H ∀u ∈ H we infer from i) that

‖Aun‖E → 0 =⇒ ‖un −PAun‖H → 0 .

Moreover we have{
‖L‖ ‖un −PAun‖H ≥ ‖L(un −PAun)‖F ,
‖LPAun‖F ≤ ‖L(un −PAun)‖F + ‖Lun‖F .

Hence ‖LPAun‖F → 0 and from ii) we get

‖LPAun‖F ≥ cL ‖PAun‖H/Ker L =⇒ ‖PAun‖H/Ker L → 0 ,

which is absurd since ‖PAun‖H/Ker L = 1 . �

Theorem 11.4.3 (Abstract inequality) Let H be a Banach space and E ,
F be linear normed spaces. Let moreover A ∈ BL (H,E) e L ∈ BL (H,F ) be
linear bounded operators such that

i) ‖Au‖E≥ cA ‖u‖H/KerA , ∀u ∈ H ,

ii) ‖Lu‖F ≥ cL ‖u‖H/KerL , ∀u ∈ Ker A ,

iii) Ker A + Ker L closed in H .

Let moreover Ker A admit a topological supplement S so that H = Ker AuS .
Then we have

c) ‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) .

Proof. Summing up the inequalities a) and i) in Theorem 7.4.2 we get

‖Au‖E + ‖L u‖F ≥ αo

(
‖u‖H/Ker A + ‖PAu‖H/Ker L

)
, ∀u ∈ H .

Moreover, by assumption iii) , Theorem 11.4.1 implies that

‖u−PAu‖H + k ‖PAu‖H/Ker L ≥ c ‖u‖H/Ker A∩Ker L , ∀u ∈ H .

Recalling that ‖u‖H/Ker A ≥ c ‖u−PA u‖H ∀u ∈ H we get the result. �
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The next lemma yields the crucial result for our analysis.

Theorem 11.4.4 (Inverse lemma) Let H be a Banach space and E , F
be linear normed spaces. Let moreover A ∈ BL (H,E) be a linear bounded
operator such that{

a) dimKer A < +∞ ,

b) ‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H .

Then for any L ∈ BL (H,F ) we have

i) ‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) , ∀u ∈ H .

Proof. It suffices to observe that any finite dimensional subspace admits a
topological supplement in H and that condition a) implies the validity of ii)
and iii) of Theorem 11.4.3 for any L ∈ BL (H,F ) . �

Now we recall that any continuous projection operator on a finite dimensional
subspace is compact.

It follow that if dimKer A < +∞ there exists at least a compact operator
Lo ∈ BL (H,F ) such that Ker A ∩ Ker Lo = {o} . Indeed we can set Lo =
PA ∈ BL (H,H) , the projection operator on the finite dimensional subspace
Ker A ⊂ H defined by a direct sum decomposition H = (Ker A)u S with S
topological supplement of Ker A .

We can now provide a full extension of Tartar’s lemma by including the
converse implication and the equivalence to a new property.

Theorem 11.4.5 (Equivalent inequalities) Let H be a reflexive Banach
space, E , F be normed linear spaces and A ∈ BL (H,E) a bounded linear
operator. Then the following propositions are equivalent:

P1)

{
dimKer A < +∞ ,

‖Au‖E ≥ cA ‖u‖H/KerA , ∀u ∈ H ,

P2)


There exists Lo ∈ BL (H,F ) compact

such that Ker A ∩Ker Lo = {o} and

‖Au‖E + ‖Lou‖F ≥ α ‖u‖H , ∀u ∈ H ,

P3)

{
dimKer A < +∞ ,

‖Au‖E + ‖Lu‖F ≥ α ‖u‖H/(KerA∩KerL) , ∀u ∈ H , ∀L ∈ BL (H,F ) .
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Proof. P3 =⇒ P1 setting L = O . P3 =⇒ P2 setting L = Lo = PA .
P1 =⇒ P3 by the inverse lemma. Finally P2 =⇒ P1 by Tartar’s lemma
which is the one requiring the reflexivity of the Banach space H .

11.5 Korn’s Inequality
In continuum mechanics the fundamental theorems concerning the variational
formulation of equilibrium and compatibility are founded on the property that
the kinematic operator has a closed range and a finite dimensional kernel. The
abstract framework is the following. A structural model is defined on a regu-
lar bounded domain Ω of an euclidean space and is governed by a kinematic
operator B which is the regular part of a distributional differential operator
B : V(Ω) 7→ D′(Ω) of order m acting on kinematic fields u ∈ V(Ω) which are
square integrable on Ω and such that the corresponding distributional linearized
strain field Bu ∈ D′(Ω) is square integrable on a finite subdivision T u(Ω) of
Ω . The kinematic space V(Ω) is a pre-Hilbert space when endowed with the
topology induced by the norm

‖u‖2V(Ω) = ‖u‖2H(Ω) + ‖Bu‖2H(Ω) ,

where H(Ω) and H(Ω) are the spaces of kinematic and linearized strain
fields which are square integrable on Ω [197]. The conforming kinematisms
u ∈ L(Ω) belong to a closed linear subspace L(Ω) ⊂ Hm(T (Ω)) ⊂ V(Ω)
of the Sobolev space Hm(T (Ω)) , where T (Ω) is a given finite subdivi-
sion of Ω . Thus L(Ω) ⊂ Hm(T (Ω)) is an Hilbert space and the operator
BL ∈ BL (L(Ω),H(Ω)) defining the linearized regular strain Bu ∈ H(Ω) asso-
ciated with the conforming kinematic field u ∈ L(Ω) is linear and continuous.
The kinematic operator B ∈ BL (V(Ω),H(Ω)) is assumed to be regular in the
sense that for any L(Ω) ⊂ V(Ω) the following conditions are met [197]{

dimKer BL < +∞ ,

‖Bu‖H(Ω) ≥ cB ‖u‖L(Ω)/Ker BL , ∀u ∈ L(Ω) ⇐⇒ Im BL closed inH(Ω) .

The requirement that the property must hold for any L(Ω) ⊂ V(Ω) is motivated
by the observation that in applications it is fundamental to assess that the basic
existence results hold for any choice of the kinematic contraints. The regularity
of B ∈ BL (V(Ω),H(Ω)) is the basic tool for the proof of the theorem of
virtual powers which ensures the existence of a stress field in equilibrium with
an equilibrated system of active forces.
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Theorem 11.5.1 (Theorem of Virtual Powers) Let f ∈ L∗(Ω) be a sys-
tem of active forces. Then

f ∈ (Ker BL)⊥ =⇒ ∃ σ ∈ H(Ω) : 〈f ,v 〉 = (( σ , Bv )) , ∀v ∈ L(Ω) .

Proof. Let B′L ∈ BL (H(Ω),L∗(Ω)) be the equilibrium operator dual to BL .
By Banach’s closed range theorem we have that f ∈ (Ker BL)⊥ = Im B′L and
the duality relation yields the result.

A linearized strain field ε ∈ H(Ω) is kinematically compatible if there exists
a conforming kinematic field u ∈ L(Ω) such that ε = Bu . Self-equilibrated
stress fields are the elements of H(Ω) which belong to the kernel of the equilib-
rium operator B′L ∈ BL (H(Ω),L∗(Ω)) . The regularity of B ∈ BL (L(Ω),H(Ω))
provides the following variational condition.

Theorem 11.5.2 (Kinematical compatibility)

(( σ , ε )) = 0 ∀σ ∈ Ker B′L =⇒ ∃ u ∈ L(Ω) : ε = Bu .

Proof. By Banach’s closed range theorem we have that Im BL = (Ker B′L)⊥ .

The regularity of the kinematic operator B ∈ BL (V(Ω),H(Ω)) is then a fun-
damental property to be assessed in a structural model. Our analysis shows
that a necessary and sufficient condition is the validity of an inequality of the
Korn’s type

‖Bu‖H(Ω) + ‖u‖H(Ω) ≥ α ‖u‖Hm(Ω) , ∀u ∈ Hm(Ω) ,

Note that by Rellich selection principle [69] the canonical immersion from
Hm(Ω) into H(Ω) = L2(Ω) is compact. If Korn’s inequality holds for any
u ∈ Hm(Ω) it will hold also for any u ∈ Hm(T (Ω)) and then a fortiori for any
u ∈ L(Ω) .

With reference to the three-dimensional continuous model we remark that
Korn’s first inequality can be easily derived from Korn’s second inequality by
appealing to the inverse lemma.

In fact denoting by H1/2(∂Ω)3 , the space of traces of fields in H1(Ω)3

on the boundary ∂Ω of Ω and taking L to be the boundary trace operator
Γ ∈ BL (H1(Ω)3, H1/2(∂Ω)3) we get

‖Bu‖H(Ω) + ‖Γu‖H1/2(∂Ω)3 ≥ α ‖u‖H1(Ω)3 ∀u ∈ H1(Ω)3 ,

and hence

‖Bu‖H(Ω) ≥ α ‖u‖H1(Ω)3 ∀u ∈ H1(Ω)3 ∩Ker Γ = H1
0 (Ω)3 ,
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which is Korn’s first inequality. The original form of the second inequality as
stated by Korn was in fact

‖sym grad u‖L2(Ω) ≥ α ‖grad u‖L2(Ω) ∀u ∈ H1(Ω) :

∫
Ω

emi grad u dµ = O .

By the inverse lemma the original form can be recovered setting

L ∈ BL (H1(Ω)3,<3) , Lu :=

∫
Ω

emi grad u dµ ,

to get the inequality

‖sym grad u‖L2(Ω) +

∥∥∥∥ ∫Ω emi grad u dµ

∥∥∥∥
≥ α ‖u‖H1(Ω)/Ker grad ≥ α ‖grad u‖L2(Ω) , ∀u ∈ H1(Ω) ,

which immediately implies Korn’s original inequality.
The proof of the converse implication is more involved and can be found in

G. Fichera’s article [69], remark on page 384. A more detailed version of the
proof is provided in [196], lemma 7.11.

From the inverse lemma we can also infer Poincaré inequality. Let Ω
be an open bounded connected set in <d with a regular boundary. We set

• A ∈ BL (Hm(Ω),L2(Ω)k) continuous linear operator Au = {Dpu} ,
with k = card{p ∈ N d : |p| = m} and |p| = m ,

• Lo ∈ BL (Hm(Ω), Hm−1(Ω)) compact identity map Lou = u ,

• L ∈ BL (Hm(Ω),L2(Ω)r) continuous linear operator defined by

Lu =

{
1√

measΩ

∫
Ω

Dpu(x) dµ

}
, 0 ≤ |p| ≤ m− 1 ,

with r = card{p ∈ N d : |p| < m} ,

where p is a d-multi-index and |p| is the sum of the components of p .
We set H = Hm(Ω) , E = L2(Ω)k , Eo = Hm−1(Ω) , F = L2(Ω)r , so that

A ∈ BL (H,E) , Lo ∈ BL (H,Eo) , L ∈ BL (H,F ) .
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Then property P2 of proposition equivalent inequalities is fulfilled since{
‖Au‖2E + ‖Lou‖2Eo = ‖u‖2H ,
Lo ∈ BL (H,Eo) is compact .

We remark that Ker A = Pm−1(Ω) is the finite dimensional linear subspace
of polynomials of total degree not greater than m− 1 so that dimPm−1(Ω) =
(m− 1 + d)!/(d! (m− 1)!) . Moreover we have that

Ker A ∩Ker L = {o} ,

and hence property P3 of proposition equivalent inequalities yields

‖Au‖E + ‖Lu‖F ≥ α ‖u‖H ∀u ∈ H ,

or explicitly∑
|p|=m

∫
Ω
|Dpu(x)|2 dµ +

∑
|p|<m

∣∣ ∫
Ω
Dpu(x) dµ

∣∣2
≥ α ‖u‖2Hm(Ω) , ∀u ∈ Hm(Ω) ,

which is Poincaré inequality.
While proof-reading this paper the author became aware of a result, quoted

by Roger Temam in [226], section I.1, which is a special case of the inverse
lemma. This result was not explicitly proved in [226] and was resorted to
in deriving a proof of Korn’s inequality from the property that the distri-
butional operator grad ∈ BL (L2(Ω)n, H−1(Ω)n×n) has a closed range and a
one-dimensional kernel consisting of the constant fields on Ω (see [196] for an
explicit proof). This property is in turn a direct consequence of a fundamental
inequality due to J. Necas [150].
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