XX Congresso AIMETA

Bologna 12-15 Settembre 2011

Giovanni Romano

DIST - Dipartimento di Ingegneria STrutturale Università di Napoli Federico II, Italia

Conferenza Generale
del 13 Settembre 2011

On the Geometric Approach to Non-Linear Continuum Mechanics

On the Geometric Approach to Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

On the Geometric Approach to Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead for Differential Geometry (DG) and Calculus on Manifolds (CoM) as natural tools to develop theoretical and computational models.

Prolegomena

XX Congresso AIMETA

NLCM
Prolegomena
A basic question
Basic
Tangent spaces
Tangent functor
Fiber buntles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Prolegomena

Prolegomena

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.
H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

A basic question

Prolegomena

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.
H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.

Prolegomena

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.
H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.
This lecture is in support of the angel.

Prolegomena

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.
H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.
This lecture is in support of the angel.
Differential Geometry provides the tools to fly higher and see what before was shadowed or completely hidden.

A basic question in NLCM

- How to compare material tensors at corresponding points in displaced configurations of a body?

NLCM

A basic question
Basic
Tangent spaces
Tanmant functor
Fiber bundles
Tivial and non-trivial
fiber bundles
Sections
Tensor bumtle and
sections
Push and pull
Push and puil of tensor fields

Parallel transport
Derivatives
Key contributions

A basic question in NLCM

- How to compare material tensors at corresponding points in displaced configurations of a body?
- Devil's temptation:

In 3D bodies it might seem as natural to compare by translation the involved material vectors.
This is tacitly done in literature, when evaluating the material time-derivative of the stress tensor \mathbf{T} :

$$
\dot{\mathbf{T}}(\mathrm{p}, t):=\partial_{\tau=t} \mathbf{T}(\mathrm{p}, \tau)
$$

or the material time-derivative of the director \mathbf{n} of a nematic liquid crystal:

$$
\dot{\mathbf{n}}(\mathrm{p}, t):=\partial_{\tau=t} \mathbf{n}(\mathrm{p}, \tau)
$$

These definitions are connection dependent and geometrically untenable when considering 1D and 2D models (wires and membranes).

A basic question in NLCM

- How to compare material tensors at corresponding points in displaced configurations of a body?
- Devil's temptation:

In 3D bodies it might seem as natural to compare by translation the involved material vectors.
This is tacitly done in literature, when evaluating the material time-derivative of the stress tensor \mathbf{T} :

$$
\dot{\mathbf{T}}(\mathrm{p}, t):=\partial_{\tau=t} \mathbf{T}(\mathrm{p}, \tau)
$$

or the material time-derivative of the director \mathbf{n} of a nematic liquid crystal:

$$
\dot{\mathbf{n}}(\mathrm{p}, t):=\partial_{\tau=t} \mathbf{n}(\mathrm{p}, \tau)
$$

These definitions are connection dependent and geometrically untenable when considering 1D and 2D models (wires and membranes).

- Hint: Tangent vectors to a body placement are transformed into tangent vectors to another body placement by the tangent displacement map. This is the essence of the COVARIANCE PARADIGM.

Basic requirements

XX Congresso AIMETA

NLCM
Dralexamena
A basic question
Basic
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations
Trajectory

Basic requirements

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

Basic requirements

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation ${ }^{1}$:
${ }^{1}$ G. Romano, R. Barretta, Covariant hypo-elasticity.

Basic requirements

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation ${ }^{1}$:

Basic

Basic requirements

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation ${ }^{1}$:

${ }^{1}$ G. Romano, R. Barretta, Covariant hypo-elasticity.

Math1

Tangent vector to a manifold:

NLCM
Dualexamerna
A basic question
Rasir
Tangent spaces

Tangent functor

Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions
Kinematies
Metric measurements

Metric theory
Events manifold fibrations

Math1

Tangent vector to a manifold: velocity of a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M}), \quad \lambda \in[a, b], \quad \mathbf{x}=\mathbf{c}(\lambda)$ base point

$$
\mathbf{v}:=\partial_{\mu=\lambda} \mathbf{c}(\mu) \in \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

NLCM

Drelemomena

A basic question

Rosie

Tangent spaces
Tangent functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bumble and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Math1

Tangent vector to a manifold: velocity of a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M}), \quad \lambda \in[a, b], \quad \mathbf{x}=\mathbf{c}(\lambda)$ base point

$$
\mathbf{v}:=\partial_{\mu=\lambda} \mathbf{c}(\mu) \in \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

Cotangent vector:

$$
\mathbf{v}^{*} \in L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathcal{R}\right) \in \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}
$$

Math1

Tangent vector to a manifold: velocity of a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M}), \quad \lambda \in[a, b], \quad \mathbf{x}=\mathbf{c}(\lambda)$ base point

$$
\mathbf{v}:=\partial_{\mu=\lambda} \mathbf{c}(\mu) \in \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

Cotangent vector:

$$
\mathbf{v}^{*} \in L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathcal{R}\right) \in \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}
$$

Tangent map:

NLCM

Dralemomena

A basic question

Tangent spaces
Tangent functor

Math1

Tangent vector to a manifold: velocity of a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M}), \quad \lambda \in[a, b], \quad \mathbf{x}=\mathbf{c}(\lambda)$ base point

$$
\mathbf{v}:=\partial_{\mu=\lambda} \mathbf{c}(\mu) \in \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

Cotangent vector:

$$
\mathbf{v}^{*} \in L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathcal{R}\right) \in \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}
$$

Tangent map:

- A map $\zeta \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N})$ sends a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$ into a curve $\boldsymbol{\zeta} \circ \mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{N})$.

Math1

Tangent vector to a manifold:
velocity of a curve $\mathbf{c} \in \mathbb{C}^{1}([a, b] ; \mathbb{M}), \quad \lambda \in[a, b], \quad \mathbf{x}=\mathbf{c}(\lambda)$ base point

$$
\mathbf{v}:=\partial_{\mu=\lambda} \mathbf{c}(\mu) \in \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

Cotangent vector:

$$
\mathbf{v}^{*} \in L\left(\mathbb{T}_{x} \mathbb{M} ; \mathcal{R}\right) \in \mathbb{T}_{x}^{*} \mathbb{M}
$$

Tangent map:

- A map $\boldsymbol{\zeta} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N})$ sends a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$ into a curve $\boldsymbol{\zeta} \circ \mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{N})$.
- The tangent map $T_{x} \zeta \in \mathrm{C}^{0}\left(\mathbb{T}_{x} \mathbb{M} ; \mathbb{T}_{\zeta(\mathrm{x})} \mathbb{N}\right)$ sends a tangent vector at $x \in \mathbb{M}$
$\mathbf{v} \in \mathbb{T}_{\mathbf{x}}(\mathbb{M}):=\partial_{\mu=\lambda} \mathbf{c}(\mu)$
into a tangent vector at $\zeta(x) \in \mathbb{N}$ $T_{\mathrm{x}} \boldsymbol{\zeta} \cdot \mathbf{v} \in \mathbb{T}_{\boldsymbol{\zeta}(\mathrm{x})}(\mathbb{N}):=\partial_{\mu=\lambda}(\boldsymbol{\zeta} \circ \mathbf{c})(\mu)$

Math2

XX Congresso AIMETA

NLCM
Drolegameia
A basic question
Rosie
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Math2

Tangent bundle

NLCM

Dralemomena
A basic question
Racir
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Math2

Tangent bundle

- disjoint union of tangent spaces:

$$
\mathbb{T M}:=\cup_{\mathbf{x} \in \mathbb{M}} \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

Math2

Tangent bundle

- disjoint union of tangent spaces:

$$
\mathbb{T} \mathbb{M}:=\cup_{\mathbf{x} \in \mathbb{M}} \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

- Projection: $\boldsymbol{\tau}_{\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{T M} ; \mathbb{M})$

$$
\mathbf{v} \in \mathbb{T}_{\mathbf{x}} \mathbb{M}, \quad \boldsymbol{\tau}_{\mathbb{M}}(\mathbf{v}):=\mathbf{x} \quad \text { base point }
$$

Math2

Tangent bundle

- disjoint union of tangent spaces:

$$
\mathbb{T} \mathbb{M}:=\cup_{\mathbf{x} \in \mathbb{M}} \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

- Projection: $\boldsymbol{\tau}_{\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{T M} ; \mathbb{M})$

$$
\mathbf{v} \in \mathbb{T}_{\mathbf{x}} \mathbb{M}, \quad \boldsymbol{\tau}_{\mathbb{M}}(\mathbf{v}):=\mathbf{x} \quad \text { base point }
$$

- Surjective submersion:

$$
T_{\mathbf{v}} \tau_{\mathbb{M}} \in \mathrm{C}^{1}\left(\mathbb{T}_{\mathbf{v}} \mathbb{T M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right) \text { is surjective }
$$

Math2

Tangent bundle

- disjoint union of tangent spaces:

$$
\mathbb{T M}:=\cup_{\mathbf{x} \in \mathbb{M}} \mathbb{T}_{\mathbf{x}} \mathbb{M}
$$

- Projection: $\boldsymbol{\tau}_{\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{T M} ; \mathbb{M})$

$$
\mathbf{v} \in \mathbb{T}_{\mathbf{x}} \mathbb{M}, \quad \boldsymbol{\tau}_{\mathbb{M}}(\mathbf{v}):=\mathbf{x} \quad \text { base point }
$$

- Surjective submersion:

$$
T_{\mathbf{v}} \tau_{\mathbb{M}} \in \mathrm{C}^{1}\left(\mathbb{T}_{\mathbf{v}} \mathbb{T M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right) \text { is surjective }
$$

- Tangent functor

$$
\zeta \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N}) \quad \mapsto \quad T \zeta \in \mathrm{C}^{0}(\mathbb{T M} ; \mathbb{T})
$$

Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles

Sections

Tensor bundle and

Math3

XX Congresso AIMETA

NLCM
Drelenamena
A basic question
Rosie
Tangent spaces
Tanmant functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Math3

Fiber bundles

NLCM
Draleriomena
A basic question
Basic
Tangent spaces

Tangent functor

Fiber bundles
Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Math3

Fiber bundles

- E, M manifolds

Prolegomena
A basic question

Tangent spaces
Tangentrunctor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Math3

Fiber bundles

- E,M manifolds
- Fiber bundle projection:

$\pi_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$ surjective submersion

Math3

- Fiber bundle projection: $\pi_{\mathrm{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$ surjective submersion
- Total space: E
- Base space: \mathbb{M}
- Fiber manifold: $\left(\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}}(\mathbf{x})\right)^{-1}$ based at $\mathbf{x} \in \mathbb{M}$

Fiber bundles

- E, M manifolds

Math3

- Fiber bundle projection: $\pi_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$ surjective submersion
- Total space: E
- Base space: \mathbb{M}
- Fiber manifold: $\left(\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}}(\mathbf{x})\right)^{-1}$ based at $\mathbf{x} \in \mathbb{M}$
- Tangent bundle $T \pi_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{0}(\mathbb{T E} ; \mathbb{T M})$

Fiber bundles

- E, M manifolds

Fiber bundles

Math3

- Fiber bundle projection:

Fiber bundles

Math3

Fiber bundles

- E, M manifolds
- Fiber bundle projection:
 $\pi_{\mathrm{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$ surjective submersion
- Total space: E
- Base space: \mathbb{M}
- Fiber manifold: $\left(\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}}(\mathbf{x})\right)^{-1}$ based at $\mathbf{x} \in \mathbb{M}$
- Tangent bundle $\quad T \pi_{\mathrm{M}, \mathrm{E}} \in \mathrm{C}^{0}(\mathbb{T E} ; \mathbb{T M})$
- Vertical tangent subbundle $T \pi_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{0}(\mathbb{V E} ; \mathbb{T M})$ with: $\delta \mathbf{e} \in \mathbb{V E} \subset \mathbb{T E} \quad \Longrightarrow \quad T_{\mathrm{e}} \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \cdot \delta \mathbf{e}=0$

Fiber bundles

Math4

XX Congresso AIMETA

NLCM

Dralemomena
A basic question
Rasie
Tangent spaces
Tantent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements

Metric theory
Events manifold fibrations

Math4

Trivial and non-trivial fiber bundles

Dralezamena

Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Math4

Trivial and non-trivial fiber bundles

NLCM
Dralemomena
A basic question
Basic
Tangent spaces
Tantont furtetor
Fiber bundles

Trivial and non-trivial fiber bundles

Sections
lensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions
Kinematics

Metric measurements

Metric theory
Events manifold fibrations

Math4

Trivial and
non-trivial fiber bundles

Torus

Listing-Möbius strip

Sections
lensor bundle and
sections
Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions
Kinematics

Metric measurements

Metric theory
Events manifold fibrations

Math5

Sections of fiber bundles

NLCM
Drelencomena
A basic question
Basic
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Math5

Sections of fiber bundles

- Fiber bundle $\quad \pi_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$

NLCM

Math5

Sections of fiber bundles

- Fiber bundle $\quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})$
- Sections

$\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{S}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}$

NLCM
Drolegamena
A basic question

Basic

Tonment spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Puch and pull
Push and pull of tensor fields

Parallel transport

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

$$
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}
$$

- Tangent v.f.
- Sections

$$
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T} \mathrm{E}), \quad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
$$

NLCM

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

$$
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}
$$

- Tangent v.f.

$$
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T} \mathrm{E}), \quad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
$$

- Vertical tangent sections $\quad T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0$
- Sections

$$
\begin{aligned}
& \mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \\
& \mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T} \mathrm{E}),
\end{aligned}
$$

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

- Tangent v.f.

$$
\begin{array}{ll}
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), & \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}} \\
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T}), & \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
\end{array}
$$

- Sections

$$
T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0
$$

- Vertical tangent sections $\quad T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0$

Sections of tangent and bi-tangent bundles

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

- Sections

$$
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}
$$

- Tangent v.f.

$$
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T E}), \quad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
$$

- Vertical tangent sections $\quad T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0$

Sections of tangent and bi-tangent bundles

- Tangent vector fields:

$$
\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T} \mathbb{M}): \boldsymbol{\tau}_{\mathbb{M}} \circ \mathbf{v}=\operatorname{ID}_{\mathbb{M}}
$$

Parallel transport

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

- Sections

$$
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}
$$

- Tangent v.f.

$$
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T E}), \quad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
$$

- Vertical tangent sections $\quad T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0$

Sections of tangent and bi-tangent bundles

- Tangent vector fields:

$$
\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T} \mathbb{M}): \boldsymbol{\tau}_{\mathbb{M}} \circ \mathbf{v}=\operatorname{ID}_{\mathbb{M}}
$$

- Bi-tangent vector fields:

$$
\mathbf{X} \in \mathrm{C}^{1}(\mathbb{T M} ; \mathbb{T} \mathbb{T} \mathbb{M}): \boldsymbol{\tau}_{\mathbb{T} M} \circ \mathbf{X}=\mathrm{ID}_{\mathbb{T} M}
$$

Math5

Sections of fiber bundles

- Fiber bundle

$$
\boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{M})
$$

- Sections

$$
\mathbf{s}_{\mathrm{E}, \mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M} ; \mathrm{E}), \quad \boldsymbol{\pi}_{\mathbb{M}, \mathrm{E}} \circ \mathbf{s}_{\mathrm{E}, \mathbb{M}}=\mathrm{ID}_{\mathbb{M}}
$$

- Tangent v.f.

$$
\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathbb{T} \mathrm{E}), \quad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}
$$

- Vertical tangent sections $\quad T \boldsymbol{\pi}_{\mathrm{M}, \mathrm{E}} \circ \mathbf{v}_{\mathrm{E}}=0$

Sections of tangent and bi-tangent bundles

- Tangent vector fields:

$$
\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T} \mathbb{M}): \boldsymbol{\tau}_{\mathbb{M}} \circ \mathbf{v}=\operatorname{ID}_{\mathbb{M}}
$$

- Bi-tangent vector fields:

$$
\mathbf{X} \in \mathrm{C}^{1}(\mathbb{T M} ; \mathbb{T} \mathbb{T} \mathbb{M}): \boldsymbol{\tau}_{\mathbb{T} M} \circ \mathbf{X}=\mathrm{ID}_{\mathbb{T} M}
$$

- Vertical bi-tangent vectors

$$
\mathbf{X} \in \operatorname{Ker} \boldsymbol{T}_{\mathbf{v}} \boldsymbol{\tau}_{\mathbb{M}}
$$

Math6

Tensor spaces

NLCM
Dralezamera
A basic question
Basic
Tonment spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\text {Cov }} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$

NLCM

Dualezromena
A basic question

Basic

Tantent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Math6

Tensor spaces

- Covariant

$$
\mathbf{s}_{\mathbf{x}}^{\operatorname{Cov}} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T} \mathbb{M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)
$$

- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$

NLCM

Dralengomena
A basic question

Basic

Tantent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Math6

Tensor spaces

- Covariant

$$
\mathbf{s}_{\mathbf{x}}^{\operatorname{Cov}} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T} \mathbb{M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)
$$

- Contravariant $\mathbf{s}_{\mathrm{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\operatorname{Mix}} \in \operatorname{Mix}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\text {Cov }} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$
- Contravariant $\mathbf{s}_{\mathrm{x}}^{\text {Con }} \in \operatorname{Con}_{\mathrm{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathrm{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathrm{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \operatorname{Mix}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathrm{x}} \mathbb{M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right)$
- with the alteration rules:

$$
\mathbf{s}_{\mathrm{x}}^{\mathrm{Cov}}=\mathbf{g}_{\mathrm{x}} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}, \quad \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=\mathbf{s}_{\mathrm{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathrm{x}}^{-1}
$$

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\text {Cov }} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$
- Contravariant $\mathbf{s}_{\mathrm{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \operatorname{Mix}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathrm{x}} \mathbb{M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right)$
- with the alteration rules:

$$
\mathbf{s}_{\mathrm{x}}^{\mathrm{Cov}}=\mathbf{g}_{\mathrm{x}} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}, \quad \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=\mathbf{s}_{\mathrm{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathrm{x}}^{-1}
$$

Tensor bundles and sections

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\text {Cov }} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T} \mathbb{M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$
- Contravariant $\mathbf{s}_{\mathrm{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \operatorname{Mix}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathrm{x}} \mathbb{M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right)$
- with the alteration rules:

$$
\mathbf{s}_{\mathrm{x}}^{\mathrm{Cov}}=\mathbf{g}_{\mathrm{x}} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}, \quad \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=\mathbf{s}_{\mathrm{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathrm{x}}^{-1}
$$

Tensor bundles and sections

- Tensor bundle

$$
\boldsymbol{\tau}_{\mathbb{M}}^{\mathrm{TEns}} \in \mathrm{C}^{1}(\operatorname{Tens}(\mathbb{T M}) ; \mathbb{M})
$$

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\text {Cov }} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$
- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T} \mathbb{M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \operatorname{Mix}_{\mathrm{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathrm{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathrm{x}} \mathbb{M} ; \mathbb{T}_{\mathrm{x}} \mathbb{M}\right)$
- with the alteration rules:

$$
\mathbf{s}_{\mathrm{x}}^{\mathrm{Cov}}=\mathbf{g}_{\mathrm{x}} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}, \quad \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=\mathbf{s}_{\mathrm{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathrm{x}}^{-1}
$$

Tensor bundles and sections

- Tensor bundle

$$
\boldsymbol{\tau}_{\mathbb{M}}^{\mathrm{TEns}} \in \mathrm{C}^{1}(\operatorname{Tens}(\mathbb{T M}) ; \mathbb{M})
$$

- Tensor field

$$
\mathbf{s}_{\mathbb{M}}^{\mathrm{TENS}} \in \mathrm{C}^{1}(\mathbb{M} ; \operatorname{Tens}(\mathbb{T M}))
$$

Math6

Tensor spaces

- Covariant $\quad \mathbf{s}_{\mathbf{x}}^{\operatorname{Cov}} \in \operatorname{Cov}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}\right)$
- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text {Con }} \in \operatorname{Con}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M}^{2} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- Mixed $\quad \mathbf{s}_{\mathbf{x}}^{\operatorname{Mix}} \in \operatorname{Mix}_{\mathbf{x}}(\mathbb{T M})=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*} \mathbb{M} ; \mathcal{R}\right)=L\left(\mathbb{T}_{\mathbf{x}} \mathbb{M} ; \mathbb{T}_{\mathbf{x}} \mathbb{M}\right)$
- with the alteration rules:

$$
\mathbf{s}_{\mathrm{x}}^{\mathrm{Cov}}=\mathbf{g}_{\mathrm{x}} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}, \quad \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=\mathbf{s}_{\mathrm{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathrm{x}}^{-1}
$$

Tensor bundles and sections

- Tensor bundle $\boldsymbol{\tau}_{\mathbb{M}}^{\text {TEns }} \in \mathrm{C}^{1}(\operatorname{Tens}(\mathbb{T M}) ; \mathbb{M})$
- Tensor field $\quad \mathbf{s}_{\mathbb{M}}^{\mathrm{TENS}} \in \mathrm{C}^{1}(\mathbb{M} ; \operatorname{Tens}(\mathbb{T M}))$
- with: $\boldsymbol{\tau}_{\mathbb{M}}^{\mathrm{Tens}} \circ \mathbf{s}_{\mathbb{M}}^{\mathrm{Tens}}=\mathrm{ID}_{\mathbb{M}}$

Math7

Push and pull

NLCM

nichogutiona
A basic question
Rasir
Tangent spaces
Tanmant functor
Fiber buncles
Trivial and non-trivial fiber bundles

Sections
Tensor bumtle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contilibutions
Kinematics

Metric measurements

Metric theory
Events manifold fibrations

Math7

Push and pull
Given a map $\zeta \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N})$

- Pull-back of a scalar field

$$
f: \mathbb{N} \mapsto \operatorname{FuN}(\mathbb{N}) \quad \mapsto \quad \zeta \downarrow f: \mathbb{M} \mapsto \operatorname{FuN}(\mathbb{M})
$$

defined by:

$$
(\zeta \downarrow f)_{\mathrm{x}}:=\zeta \downarrow f_{\zeta(\mathrm{x})}:=f_{\zeta(\mathrm{x})} \in \operatorname{FuN}_{\mathrm{x}}(\mathbb{M}) .
$$

NLCM

Math7

Push and pull
Given a map $\zeta \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N})$

- Pull-back of a scalar field

$$
f: \mathbb{N} \mapsto \operatorname{FuN}(\mathbb{N}) \quad \mapsto \quad \zeta \downarrow f: \mathbb{M} \mapsto \operatorname{FuN}(\mathbb{M})
$$

defined by:

$$
(\zeta \downarrow f)_{\mathrm{x}}:=\zeta \downarrow f_{\zeta(\mathrm{x})}:=f_{\zeta(\mathrm{x})} \in \operatorname{FUN}_{\mathrm{x}}(\mathbb{M})
$$

- Push-forward of a tangent vector field

$$
\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T} \mathbb{M}) \quad \mapsto \quad \boldsymbol{\zeta} \uparrow \mathbf{v}: \mathbb{N} \mapsto \mathbb{T} \mathbb{N}
$$

defined by:

$$
(\zeta \uparrow \mathbf{v})_{\zeta(\mathrm{x})}:=\zeta \uparrow \mathbf{v}_{\mathrm{x}}=T_{\mathrm{x}} \zeta \cdot \mathbf{v}_{\mathrm{x}} \in \mathbb{T}_{\zeta(\mathrm{x})} \mathbb{N} .
$$

Math8

Push and pull of tensor fields

NLCM

niotogitena
A basic question
Rosie
Tangent spaces
Tangrent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions
Kinematics

Metric measurements

Metric theory
Events manifold fibrations

Math8

Push and pull of tensor fields

- Covectors

$$
\left\langle\boldsymbol{\zeta} \downarrow \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle\mathbf{v}_{\boldsymbol{\zeta}(\mathbf{x})}^{*}, \boldsymbol{\zeta} \uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle T_{\zeta(\mathbf{x})}^{*} \boldsymbol{\zeta} \circ \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

NLCM

Math8

Push and pull of tensor fields

- Covectors

$$
\left\langle\boldsymbol{\zeta} \backslash \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle\mathbf{v}_{\boldsymbol{\zeta}(\mathrm{x})}^{*}, \boldsymbol{\zeta} \uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle T_{\zeta(\mathbf{x})}^{*} \boldsymbol{\zeta} \circ \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Covariant tensors

$$
\zeta \downarrow \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}}=T_{\zeta(\mathrm{x})}^{*} \boldsymbol{\zeta} \circ \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}} \circ T_{\mathrm{x}} \boldsymbol{\zeta} \in \operatorname{Cov}(\mathbb{T M})_{\mathrm{x}}
$$

Math8

Push and pull of tensor fields

- Covectors

$$
\left\langle\boldsymbol{\zeta} \backslash \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle\mathbf{v}_{\boldsymbol{\zeta}(\mathrm{x})}^{*}, \boldsymbol{\zeta} \uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle T_{\zeta(\mathbf{x})}^{*} \boldsymbol{\zeta} \circ \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Covariant tensors

$$
\zeta \backslash \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}}=T_{\zeta(\mathrm{x})}^{*} \zeta \circ \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}} \circ T_{\mathrm{x}} \zeta \in \operatorname{Cov}(\mathbb{T M})_{\mathrm{x}}
$$

- Contravariant tensors

$$
\boldsymbol{\zeta} \uparrow \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=T_{\mathrm{x}} \boldsymbol{\zeta} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}} \circ T_{\zeta(\mathrm{x})}^{*} \boldsymbol{\zeta} \in \operatorname{Con}(\mathbb{T} \mathbb{N})_{\zeta(\mathrm{x})}
$$

Math8

Push and pull of tensor fields

- Covectors

$$
\left\langle\zeta \backslash \mathbf{v}_{\zeta(\mathbf{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle\mathbf{v}_{\boldsymbol{\zeta}(\mathrm{x})}^{*}, \boldsymbol{\zeta} \uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\left\langle T_{\zeta(\mathbf{x})}^{*} \boldsymbol{\zeta} \circ \mathbf{v}_{\zeta(\mathrm{x})}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Covariant tensors

$$
\zeta \backslash \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}}=T_{\zeta(\mathrm{x})}^{*} \zeta \circ \mathbf{s}_{\zeta(\mathrm{x})}^{\mathrm{Cov}} \circ T_{\mathrm{x}} \zeta \in \operatorname{Cov}(\mathbb{T M})_{\mathrm{x}}
$$

- Contravariant tensors

$$
\boldsymbol{\zeta} \uparrow \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}}=T_{\mathrm{x}} \boldsymbol{\zeta} \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{CoN}} \circ T_{\zeta(\mathrm{x})}^{*} \boldsymbol{\zeta} \in \operatorname{Con}(\mathbb{T} \mathbb{N})_{\zeta(\mathrm{x})}
$$

- Mixed tensors

$$
\boldsymbol{\zeta} \uparrow \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}}=T_{\mathrm{x}} \zeta \circ \mathbf{s}_{\mathrm{x}}^{\mathrm{MIX}} \circ T_{\zeta(\mathrm{x})} \zeta^{-1} \in \operatorname{Mix}(\mathbb{T})_{\zeta(\mathrm{x})}
$$

Math9

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$

NLCM

Dralemamena
A basic question

Rasir

Tangent spaces
Tangent functor
Fiber buncles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions

Math9

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$

- Vector fields

$$
\begin{aligned}
& \mathbf{x}=\mathbf{c}(\mu), \quad \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \mapsto \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\
& \\
& \mathbf{c}_{\mu, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}=\mathbf{v}_{\mathbf{x}} \\
& \\
& \mathbf{c}_{\lambda, \mu} \Uparrow \circ \mathbf{c}_{\mu, \nu} \Uparrow=\mathbf{c}_{\lambda, \nu} \Uparrow
\end{aligned}
$$

Math9

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$

- Vector fields

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{c}(\mu), & \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\
& \mathbf{c}_{\mu, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}=\mathbf{v}_{\mathbf{x}} \\
& \mathbf{c}_{\lambda, \mu} \Uparrow \circ \mathbf{c}_{\mu, \nu} \Uparrow=\mathbf{c}_{\lambda, \nu} \Uparrow
\end{array}
$$

- Covector fields $\mathbf{v}_{\mathrm{x}}^{*} \in \mathbb{T}_{\mathrm{x}}^{*} \mathbb{M}$ (by naturality)

$$
\left\langle\mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\mathbf{c}_{\lambda, \mu} \Uparrow\left\langle\mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Tensor fields (by naturality)

Math9

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$

- Vector fields

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{c}(\mu), & \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\
& \mathbf{c}_{\mu, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}=\mathbf{v}_{\mathbf{x}} \\
& \mathbf{c}_{\lambda, \mu} \Uparrow \circ \mathbf{c}_{\mu, \nu} \Uparrow=\mathbf{c}_{\lambda, \nu} \Uparrow
\end{array}
$$

- Covector fields $\mathbf{v}_{\mathrm{x}}^{*} \in \mathbb{T}_{\mathrm{x}}^{*} \mathbb{M}$ (by naturality)

$$
\left\langle\mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\mathbf{c}_{\lambda, \mu} \Uparrow\left\langle\mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Tensor fields (by naturality)

Math9

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b] ; \mathbb{M})$

- Vector fields

$$
\begin{array}{ll}
\mathbf{x}=\mathbf{c}(\mu), & \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\
& \mathbf{c}_{\mu, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}=\mathbf{v}_{\mathbf{x}} \\
& \mathbf{c}_{\lambda, \mu} \Uparrow \circ \mathbf{c}_{\mu, \nu} \Uparrow=\mathbf{c}_{\lambda, \nu} \Uparrow
\end{array}
$$

- Covector fields $\mathbf{v}_{\mathrm{x}}^{*} \in \mathbb{T}_{\mathrm{x}}^{*} \mathbb{M}$ (by naturality)

$$
\left\langle\mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda, \mu} \Uparrow \mathbf{v}_{\mathbf{x}}\right\rangle=\mathbf{c}_{\lambda, \mu} \Uparrow\left\langle\mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}}\right\rangle
$$

- Tensor fields (by naturality)

Tullio Levi-Civita (1873-1941)

Math10

Derivatives of a tensor field
$s \in \mathrm{C}^{1}(\mathbb{M} ; \operatorname{Tens}(\mathbb{T M}))$
along the flow of a tangent vector field

Math10

Derivatives of a tensor field
$s \in \mathrm{C}^{1}(\mathbb{M} ; \operatorname{Tens}(\mathbb{T M}))$
along the flow of a tangent vector field

- Tangent vector fields and Flows

$$
\begin{aligned}
& \mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T M}) \\
& \mathbf{v}:=\partial_{\lambda=0} \mathbf{F I}_{\lambda}^{v}
\end{aligned}
$$

Math10

Derivatives of a tensor field
$s \in \mathrm{C}^{1}(\mathbb{M} ; \boldsymbol{T e n s}(\mathbb{T M}))$
along the flow of a tangent vector field

- Tangent vector fields and Flows

$$
\begin{aligned}
& \mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T M}) \quad \mathbf{F I}_{\lambda}^{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{M}) \\
& \mathbf{v}:=\partial_{\lambda=0} \mathrm{FI}_{\lambda}^{v}
\end{aligned}
$$

- Lie derivative - LD

$$
\mathcal{L}_{\mathbf{v}} \mathbf{s}:=\partial_{\lambda=0} \mathbf{F I}_{\lambda}^{\mathbf{v}} \downarrow\left(\mathbf{s} \circ \mathbf{F} \mathbf{I}_{\lambda}^{\mathbf{v}}\right)
$$

Math10

Derivatives of a tensor field
$s \in \mathrm{C}^{1}(\mathbb{M} ; \boldsymbol{T e n s}(\mathbb{T M}))$
along the flow of a tangent vector field

- Tangent vector fields and Flows

$$
\begin{aligned}
& \mathbf{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{T M}) \quad \mathbf{F I}_{\lambda}^{v} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{M}) \\
& \mathbf{v}:=\partial_{\lambda=0} \mathrm{FI}_{\lambda}^{\mathrm{v}}
\end{aligned}
$$

- Lie derivative - LD

$$
\mathcal{L}_{\mathbf{v}} \mathbf{s}:=\partial_{\lambda=0} \mathbf{F l}_{\lambda}^{\mathrm{V}} \downarrow\left(\mathbf{s} \circ \mathbf{F} \mathbf{I}_{\lambda}^{\mathbf{v}}\right)
$$

- Parallel derivative - PD

$$
\nabla_{\mathbf{v}} \mathbf{s}:=\partial_{\lambda=0} \mathbf{F I}_{\lambda}^{\mathbf{v}} \Downarrow\left(\mathbf{s} \circ \mathbf{F l}_{\lambda}^{\mathbf{v}}\right)
$$

NLCM: Nonlinear Continuum Mechanics
Key contributions

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell \& W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)
C. Truesdell A first Course in Rational Continuum Mechanics

Second Ed., Academic Press, New-York (1991). First Ed. (1977).

NLCM: Nonlinear Continuum Mechanics Key contributions

C. Truesdell \& W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)
C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).
2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell \& W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)
C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).
2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)
J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM, Philadelphia, PA (1981), on line version July 22 (2009)
J.E. Marsden \& T.J.R. Hughes Mathematical Foundations of Elasticity Prentice-Hall, Redwood City, Cal. (1983)
J.C. Simó A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Continuum formulation
Comp. Meth. Appl. Mech. Eng. 66 (1988) 199-219.

NLCM: Nonlinear Continuum Mechanics

Key contributions

C. Truesdell \& W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)
C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).
2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)
J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM, Philadelphia, PA (1981), on line version July 22 (2009)
J.E. Marsden \& T.J.R. Hughes Mathematical Foundations of Elasticity Prentice-Hall, Redwood City, Cal. (1983)
J.C. Simó A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Continuum formulation
Comp. Meth. Appl. Mech. Eng. 66 (1988) 199-219.
G. Romano \& R. Barretta Covariant hypo-elasticity

Eur. J. Mech. A-Solids 30 (2011) 1012-1023
G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear Continuum Mechanics, preprint (2011).

NLCM: Nonlinear Continuum Mechanics

NLCM: Nonlinear Continuum Mechanics

How to play the game according to a full geometric approach

NLCM

Dralemomena
A basic question

NLCM: Nonlinear Continuum Mechanics

How to play the game
according to a full geometric approach
Kinematics

NLCM

D-alezomena
A basic question

NLCM: Nonlinear Continuum Mechanics

How to play the game
according to a full geometric approach
Kinematics

- Events manifold: E - four dimensional RiEmANn manifold

NLCM: Nonlinear Continuum Mechanics

How to play the game
according to a full geometric approach
Kinematics

- Events manifold: E - four dimensional Riemann manifold
- Observer split into space-time: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times /$

NLCM: Nonlinear Continuum Mechanics

How to play the game according to a full geometric approach

Kinematics

- Events manifold: E - four dimensional Riemann manifold
- Observer split into space-time: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times I$
- time is absolute (Classical Mechanics)

NLCM: Nonlinear Continuum Mechanics

How to play the game according to a full geometric approach

Kinematics

- Events manifold: E - four dimensional Riemann manifold
- Observer split into space-time: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times I$
- time is absolute (Classical Mechanics)
- distance between simultaneous events \mapsto space-metric
- distance between localized events \mapsto time-metric

Math11

XX Congresso AIMETA

NLCM
Dralenamena
A basic question
Rasie
Tangent spaces
Tantent functor
Fiber bundles
Trivial and non-trivia fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions

Kinematics

Metric measurements
Metric theory
Events manifold fibrations

Math11

lenght of symplex's edges

Dralezamena
A basic question
Rasic
Tangent spaces
Tanmant functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematies
Metric measurements
Metric theory
Events manifold fibrations

Math11

lenght of symplex's edges

- Norm axioms

$$
\|\mathbf{a}\| \geq 0, \quad\|\mathbf{a}\|=0 \quad \Longrightarrow \quad \mathbf{a}=0
$$

$$
\|\mathbf{a}\|+\|\mathbf{b}\| \geq\|\mathbf{c}\| \quad \text { triangle inequality }
$$

$$
\|\alpha \mathbf{a}\|=|\alpha|\|\mathbf{a}\|
$$

Math11

lenght of symplex's edges

- Norm axioms

$$
\begin{aligned}
& \|\mathbf{a}\| \geq 0, \quad\|\mathbf{a}\|=0 \quad \Longrightarrow \quad \mathbf{a}=0 \\
& \|\mathbf{a}\|+\|\mathbf{b}\| \geq\|\mathbf{c}\| \quad \text { triangle inequality, } \\
& \|\alpha \mathbf{a}\|=|\alpha|\|\mathbf{a}\|
\end{aligned}
$$

- Parallelogram rule

$$
\|\mathbf{a}+\mathbf{b}\|^{2}+\|\mathbf{a}-\mathbf{b}\|^{2}=2\left[\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}\right]
$$

Math12

XX Congresso AIMETA

NLCM
D-alezamena
A basic question

Rosie

Tangent spaces
Tanment functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bumtle and sections

Push and pull
Duch and null of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematies
Metric measurements
Metric theory
Events manifold fibrations

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

NLCM

nutugutha
A basic question

Rasie

Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

$$
\mathbf{g}(\mathbf{a}, \mathbf{b}):=\frac{1}{4}\left[\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]
$$

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

$$
\mathbf{g}(\mathbf{a}, \mathbf{b}):=\frac{1}{4}\left[\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]
$$

Maurice René Fréchet (1878-1973)

$$
)^{2}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{g}\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right) \cdots & \mathbf{g}\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right) \\
\ldots & \cdots & \cdots \\
\mathbf{g}\left(\mathbf{e}_{3}, \mathbf{e}_{1}\right) & \cdots & \mathbf{g}\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)
\end{array}\right]
$$

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

$$
\mathbf{g}(\mathbf{a}, \mathbf{b}):=\frac{1}{4}\left[\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]
$$

John von Neumann (1903-1957)

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

$$
\mathbf{g}(\mathbf{a}, \mathbf{b}):=\frac{1}{4}\left[\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]
$$

Pascual Jordan (1902-1980)

Math12

The metric tensor

- Theorem (Fréchet - von Neumann - Jordan)

$$
\mathbf{g}(\mathbf{a}, \mathbf{b}):=\frac{1}{4}\left[\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right]
$$

$$
)^{2}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{g}\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right) \cdots & \cdots\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right) \\
\cdots & \cdots & \ldots \ldots \\
\mathbf{g}\left(\mathbf{e}_{3}, \mathbf{e}_{1}\right) \cdots & \cdots \mathbf{g}\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)
\end{array}\right]
$$

Kosaku Yosida (1909-1990)

Events manifold fibrations

Events manifold fibrations

- Time and space fibrations: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times I$ (observer)

NLCM
Dralemomena
A basic question
Rasir
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Events manifold fibrations

- Time and space fibrations: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times /$ (observer)

Events manifold fibrations

- Time and space fibrations: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times /$ (observer)

$$
\begin{aligned}
\pi_{I, \mathrm{E}} & =\pi_{I,(\mathcal{S} \times I)} \circ \gamma \\
\boldsymbol{\pi}_{\mathcal{S}, \mathrm{E}} & =\boldsymbol{\pi}_{\mathcal{S},(\mathcal{S} \times I)} \circ \gamma
\end{aligned}
$$

- Space-time metric: $\mathbf{g}_{\mathrm{E}}:=\pi_{\mathcal{S}, \mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}}+\pi_{l, \mathrm{E}} \downarrow \mathbf{g}_{/}$

Events manifold fibrations

- Time and space fibrations: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times /$ (observer)

$$
\begin{aligned}
\pi_{I, \mathrm{E}} & =\boldsymbol{\pi}_{I,(\mathcal{S} \times I)} \circ \gamma \\
\boldsymbol{\pi}_{\mathcal{S}, \mathrm{E}} & =\boldsymbol{\pi}_{\mathcal{S},(\mathcal{S} \times I)} \circ \gamma
\end{aligned}
$$

- Space-time metric: $\mathbf{g}_{\mathrm{E}}:=\pi_{\mathcal{S}, \mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}}+\pi_{l, \mathrm{E}} \downarrow \mathbf{g}_{I}$
- Time-vertical subbundle: spatial vectors

$$
\mathbf{v} \in \mathbb{V}_{\mathbf{e}} \mathrm{E} \quad \Longleftrightarrow \quad T_{\mathbf{e}} \pi_{I, \mathrm{E}} \cdot \mathbf{v}=0
$$

Events manifold fibrations

- Time and space fibrations: $\gamma: \mathrm{E} \mapsto \mathcal{S} \times /$ (observer)

$$
\begin{aligned}
\boldsymbol{\pi}_{I, \mathrm{E}} & =\boldsymbol{\pi}_{I,(\mathcal{S} \times I)} \circ \gamma \\
\boldsymbol{\pi}_{\mathcal{S}, \mathrm{E}} & =\boldsymbol{\pi}_{\mathcal{S},(\mathcal{S} \times I)} \circ \gamma
\end{aligned}
$$

- Space-time metric: $\mathbf{g}_{\mathrm{E}}:=\pi_{\mathcal{S}, \mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}}+\pi_{l, \mathrm{E}} \downarrow \mathbf{g}_{I}$
- Time-vertical subbundle: spatial vectors

$$
\mathbf{v} \in \mathbb{V}_{\mathbf{e}} \mathrm{E} \quad \Longleftrightarrow \quad T_{\mathrm{e}} \pi_{l, \mathrm{E}} \cdot \mathbf{v}=0
$$

- $\mathbf{v}_{\mathbf{e}} \in \mathbb{V}_{\mathrm{e}} \mathrm{E} \quad \Longleftrightarrow \quad \gamma \uparrow \mathbf{v}_{\mathbf{e}}=\left(v_{\mathrm{x}, t}, 0_{t}\right) \in \mathbb{T}_{\mathrm{x}} \mathcal{S} \times \mathbb{T}_{t} /$

Trajectory

XX Congresso AIMETA

NLCM
Dralezamena
A basic question
Basic
Tangent spaces
Tanmant functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tentor butrdle and sections

Push and pull
Pustl and pull or'tenso fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Trajectory \mapsto a manifold \mathcal{T}_{φ} with injective immersion in the events time-bundle: $\mathbf{i}_{\mathrm{E}, \mathcal{I}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathrm{E}\right)$

Trajectory

- Trajectory \mapsto a manifold \mathcal{T}_{φ} with injective immersion in the events time-bundle: $\mathbf{i}_{\mathrm{E}, \mathcal{I}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{I}_{\varphi} ; \mathrm{E}\right)$
- Trajectory metric: $\mathbf{g}_{\tau_{\varphi}}:=\mathbf{i}_{\tau_{\varphi}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$

Trajectory

- Trajectory \mapsto a manifold \mathcal{T}_{φ} with injective immersion in the events time-bundle: $\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathrm{E}\right)$
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathcal{T}_{\varphi}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- Trajectory time-fibration $\quad \pi_{I, \mathcal{T}_{\varphi}}:=\pi_{I, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}$
- time bundle \mapsto fibers: body placements Ω_{t}

$$
\pi_{l, \mathcal{T}_{\varphi}}:=\pi_{l, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}
$$

Trajectory

- Trajectory \mapsto a manifold \mathcal{T}_{φ} with injective immersion in the events time-bundle: $\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathrm{E}\right)$
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathcal{T}_{\varphi}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- Trajectory time-fibration $\quad \pi_{I, \mathcal{T}_{\varphi}}:=\pi_{I, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}$
- time bundle \mapsto fibers: body placements Ω_{t}
- Trajectory space-fibration

$$
\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}}:=\boldsymbol{\pi}_{\mathcal{S}, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}
$$

- not a space bundle \mapsto fibers: irregular subsets of the observation time interval /
(on

Trajectory

- Trajectory \mapsto a manifold \mathcal{T}_{φ} with injective immersion in the events time-bundle: $\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathrm{E}\right)$
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathcal{T}_{\varphi}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- Trajectory time-fibration $\quad \pi_{I, \mathcal{T}_{\varphi}}:=\pi_{l, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}$
- time bundle \mapsto fibers: body placements Ω_{t}
- Trajectory space-fibration $\quad \pi_{\mathcal{S}, \mathcal{T}_{\varphi}}:=\pi_{\mathcal{S}, \mathrm{E}} \circ \mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}}$
- not a space bundle \mapsto fibers: irregular subsets of the observation time interval I
- Time-vertical subbundle: material vectors

$$
\mathbf{v} \in \mathbb{V}_{\mathbf{e}} \mathcal{T}_{\boldsymbol{\varphi}} \Longleftrightarrow T_{\mathbf{e}} \pi_{I, \mathcal{T}_{\varphi}} \cdot \mathbf{v}=0
$$

Evolution

XX Congresso AIMETA

NLCM
Drolegamena
A basic question
Rosie
Tangent spaces
Tantent furctor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Evolution

- Evolution operator $\varphi^{\mathcal{T}} \varphi$

Dralemomena
A basic question
Basic
Tonnent spaces
Tangent functor
Fiber bunclee
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements

Metric theory
Events manifold fibrations

Evolution

- Evolution operator $\varphi^{\mathcal{T}_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$
\boldsymbol{\varphi}_{\tau, t}^{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\boldsymbol{\Omega}_{t} ; \boldsymbol{\Omega}_{\tau}\right), \quad \tau, t \in I
$$

D-alezomata

Evolution

- Evolution operator $\varphi^{\mathcal{T}_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$
\boldsymbol{\varphi}_{\tau, t}^{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\boldsymbol{\Omega}_{t} ; \boldsymbol{\Omega}_{\tau}\right), \quad \tau, t \in I
$$

- Law of determinism (Chapman-Kolmogorov):

$$
\varphi_{\tau, s}^{\mathcal{T}_{\varphi}}=\varphi_{\tau, t}^{\mathcal{T}_{\varphi}} \circ \varphi_{t, s}^{\mathcal{T}_{\varphi}}
$$

Evolution

- Evolution operator $\boldsymbol{\varphi}^{\mathcal{T}_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$
\varphi_{\tau, t}^{\tau_{\varphi}} \in \mathrm{C}^{1}\left(\Omega_{t} ; \boldsymbol{\Omega}_{\tau}\right), \quad \tau, t \in I
$$

- Law of determinism (Chapman-Kolmogorov):

$$
\varphi_{\tau, S}^{\mathcal{T}_{\varphi}}=\varphi_{\tau, t}^{\mathcal{T}_{\varphi}} \circ \varphi_{t, S}^{\mathcal{T}_{\varphi}}
$$

- Simultaneity of events is preserved:

$$
\pi_{I, \mathcal{T}_{\varphi}}\left(\varphi_{\tau, t}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{t}\right)\right)=\tau
$$

Evolution

- Evolution operator $\varphi^{\mathcal{T}_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$
\varphi_{\tau, t}^{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\boldsymbol{\Omega}_{t} ; \boldsymbol{\Omega}_{\tau}\right), \quad \tau, t \in I
$$

- Law of determinism (Chapman-Kolmogorov):

$$
\varphi_{\tau, s}^{\mathcal{T}_{\varphi}}=\varphi_{\tau, t}^{\mathcal{T}_{\varphi}} \circ \varphi_{t, s}^{\mathcal{T}_{\varphi}}
$$

- Simultaneity of events is preserved:

$$
\pi_{I, \mathcal{T}_{\varphi}}\left(\varphi_{\tau, t}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{t}\right)\right)=\tau
$$

- Trajectory speed:

$$
\mathbf{v}_{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{t}\right):=\partial_{\tau=t} \varphi_{\tau, t}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{t}\right) \quad \Longrightarrow \quad T_{\mathbf{e}} \pi_{I, \mathcal{T}_{\varphi}} \cdot \mathbf{v}_{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{t}\right)=1_{t}
$$

Body and particles

XX Congresso AIMETA

NLCM
Dralemomena
A basic question
Rasir
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions

Kinematics

Metric measurements
Metric theory
Events manifold fibrations

Body and particles

- Equivalence relation on the trajectory:

$$
\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{T}_{\varphi} \times \mathcal{T}_{\varphi}: \mathbf{e}_{2}=\varphi_{t_{2}, t_{1}}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{1}\right)
$$

with $t_{i}=\pi_{l, \mathrm{E}}\left(\mathbf{e}_{i}\right), \quad i=1,2$.

Body and particles

- Equivalence relation on the trajectory:

$$
\begin{aligned}
& \qquad \quad\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{T}_{\boldsymbol{\varphi}} \times \mathcal{T}_{\boldsymbol{\varphi}}: \mathbf{e}_{2}=\varphi_{t_{2}, t_{1}}^{\mathcal{T}_{\boldsymbol{\varphi}}}\left(\mathbf{e}_{1}\right) \\
& \text { with } t_{i}=\boldsymbol{\pi}_{l, \mathrm{E}}\left(\mathbf{e}_{i}\right), \quad i=1,2 \\
& \text { Body }=\text { quotient manifold (foliation) }
\end{aligned}
$$

Body and particles

- Equivalence relation on the trajectory:

$$
\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{T}_{\varphi} \times \mathcal{T}_{\varphi}: \mathbf{e}_{2}=\varphi_{t_{2}, t_{1}}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{1}\right)
$$

with $t_{i}=\pi_{l, \mathrm{E}}\left(\mathbf{e}_{i}\right), \quad i=1,2$.
Body $=$ quotient manifold (foliation)
Particles $=$ equivalence classes (folia)

Body and particles

- Equivalence relation on the trajectory:

$$
\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{T}_{\varphi} \times \mathcal{T}_{\varphi}: \mathbf{e}_{2}=\varphi_{t_{2}, t_{1}}^{\mathcal{T}_{\varphi}}\left(\mathbf{e}_{1}\right)
$$

with $t_{i}=\pi_{l, \mathrm{E}}\left(\mathbf{e}_{i}\right), \quad i=1,2$.
Body $=$ quotient manifold (foliation)
Particles $=$ equivalence classes (folia)

- mass conservation

$$
\begin{aligned}
& \quad \int_{\Omega_{t_{1}}} \mathbf{m}_{\tau_{\varphi}, t_{1}}=\int_{\Omega_{\mathrm{t}_{2}}} \mathbf{m}_{\tau_{\varphi}, t_{2}} \Longleftrightarrow \mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{m}_{\tau_{\varphi}}=0 \\
& \mathbf{m}_{\tau_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{VoL}\left(\mathbb{T} \mathcal{T}_{\varphi}\right)\right) \text { mass form }
\end{aligned}
$$

Tensor fields in NLCM

Tensor fields in NLCM

Space-time fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENS}(\mathbb{T} \mathrm{E}))$	Space-time metric tensor	NLCM Prolegon
Spatial fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENS}(\mathbb{V} \mathrm{E}))$	Spatial metric tensor	Basic Tangent Tangent

Tensor fields in NLCM

Space-time fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENS}(\mathbb{T} \mathrm{E}))$	Space-time metric tensor
Spatial fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENS}(\mathbb{V} \mathrm{E}))$	Spatial metric tensor
Trajectory fields	$\mathbf{s}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \operatorname{TENS}\left(\mathbb{T} \mathcal{T}_{\varphi}\right)\right)$	Trajectory metric, trajectory speed
Material fields	$\mathbf{s}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{TENS}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$	Stress, stressing, material metric, stretching.

Tensor fields in NLCM

Space-time fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENS}(\mathbb{T} \mathrm{E}))$	Space-time metric tensor
Spatial fields	$\mathbf{s}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \operatorname{TENs}(\mathbb{V} \mathrm{E}))$	Spatial metric tensor
Trajectory fields	$\mathbf{s}_{\mathcal{I}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{TENS}\left(\mathbb{T} \mathcal{I}_{\varphi}\right)\right)$	Trajectory metric, trajectory speed
Material fields	$\mathbf{s}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \operatorname{TENS}\left(\mathbb{V} \mathcal{I}_{\varphi}\right)\right)$	Stress, stressing, material metric, stretching.
Trajectory-based space-time fields	$\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{TENS}(\mathbb{T E})\right)$	Trajectory speed (immersed)
Trajectory-based spatial fields	$\mathbf{s}_{\mathrm{E}, \mathcal{I}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{TENS}(\mathbb{V E})\right)$	Virtual velocity, acceleration, momentum, force

Covariance Paradigm

XX Congresso AIMETA

NLCM
Dralezomena
A basic question
Racie
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations

Covariance Paradigm

Material fields at different times along the trajectory must be compared by push along the material displacement. Material fields on push-related trajectories must be compared by push along the relative motion.

Covariance Paradigm

Material fields at different times along the trajectory must be compared by push along the material displacement.
Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

Covariance Paradigm

Material fields at different times along the trajectory must be compared by push along the material displacement.
Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Covariance Paradigm

Material fields at different times along the trajectory must be compared by push along the material displacement.
Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

Time derivatives $=$
 derivatives along the flow of the trajectory speed

Time derivatives $=$

derivatives along the flow of the trajectory speed

Lie time derivative - LTD

- Trajectory and material tensor field

$$
\dot{\mathbf{s}}_{\mathcal{T}_{\varphi}}:=\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}=\partial_{\lambda=0} \mathbf{F l}_{\lambda}^{\mathbf{v}_{\mathcal{T}_{\varphi}}} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\varphi}} \circ \mathbf{F I}_{\lambda}^{\mathbf{v}_{\mathcal{T}_{\varphi}}}\right),
$$

Time derivatives $=$

Lie time derivative - LTD

- Trajectory and material tensor field

$$
\dot{\mathbf{s}}_{T_{\varphi}}:=\mathcal{L}_{\mathbf{v}_{T_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}=\partial_{\lambda=0} \mathbf{F I}_{\lambda}^{\mathbf{v}_{\varphi}} \downarrow\left(\mathbf{s}_{\tau_{\varphi}} \circ \mathbf{F l}_{\lambda}^{\mathbf{v}_{\boldsymbol{\tau}}}\right),
$$

Material time-derivative - MTD

- Trajectory-based space-time and spatial fields

$$
\dot{\mathbf{s}}_{\mathrm{E}, \mathcal{T}_{\varphi}}:=\nabla_{\mathbf{v}_{\varphi}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}}=\partial_{\lambda=0} \mathbf{F}_{\lambda}^{\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\varphi}}} \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{I}_{\varphi}} \circ \mathbf{F}_{\lambda}^{\mathbf{v}_{\tau_{\varphi}}}\right),
$$

with $\mathbf{v}_{\mathrm{E}, \tau_{\varphi}}:=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \uparrow \mathbf{v}_{\tau_{\varphi}}$.

Rivers and Cogwheels

XX Congresso AIMETA

NLCM
Denlemamena
A basic question
Rasir
Tangent spaces
Tangent functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Rivers and Cogwheels

$$
\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\varphi}, \tau}+\mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}, t}
$$

Rivers and Cogwheels

$$
\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\varphi}, \tau}+\mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}, t}
$$

$$
\left(\nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}}, \mathcal{T}_{\varphi} \downarrow \mathbf{v}_{\boldsymbol{T}}} \mathbf{s}_{\mathrm{E}, \mathcal{I}_{\boldsymbol{\varphi}}, t}
$$

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and

 sectionsPush and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Rivers and Cogwheels
$\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{s}_{\tau_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\tau_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\tau_{\varphi}, \tau}+\mathcal{L}_{\pi_{\mathcal{S}, \tau_{\varphi}} \downarrow \mathcal{v}_{\tau_{\varphi}}} \mathbf{s}_{\tau_{\varphi}, t}$
$\left(\nabla_{\mathbf{v}_{\tau_{\varphi}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{\tau}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, \tau}+\nabla_{\pi_{\mathcal{S}}, \mathcal{T}_{\varphi} \downarrow}{\stackrel{v}{\boldsymbol{\tau}_{\varphi}}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, t}$

Rivers and Cogwheels

$\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}, t}$
$\left(\nabla_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{I}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}}, \mathcal{T}_{\boldsymbol{\varphi}}, \downarrow_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathrm{E}, \mathcal{I}_{\boldsymbol{\varphi}}, t}$

Gottfried Wilhelm von Leibniz (1646-1716)

rule cannot be applied unless
the following special properties of the trajectory hold true:

Tangent spaces
Tangent functor
Fiber bundles

Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and
sections
Push and pul!

Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements

Metric theory

Events manifold fibrations

Rivers and Cogwheels

$\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{s}_{\tau_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\tau_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\tau_{\varphi}, \tau}+\mathcal{L}_{\pi_{\mathcal{S}, \tau_{\varphi}} \downarrow \mathfrak{v}_{\tau_{\varphi}}} \mathbf{s}_{\tau_{\varphi}, t}$
$\left(\nabla_{\mathbf{v}_{\tau_{\varphi}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow{ }^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, \tau}+\nabla_{\pi_{\mathcal{S}}, \mathcal{T}_{\varphi}} \mathrm{v}_{\boldsymbol{\tau}_{\tau_{\varphi}}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\varphi}, t}$

Gottfried Wilhelm von Leibniz (1646-1716)

rule cannot be applied unless
the following special properties of the trajectory hold true:

$$
\begin{aligned}
& (\mathbf{x}, t) \in \mathcal{T}_{\varphi} \quad \Longrightarrow \quad(\mathbf{x}, \tau) \in \mathcal{T}_{\varphi} \quad \forall \tau \in I_{t} \\
& (\mathbf{x}, t) \in \mathcal{T}_{\varphi} \quad \Longrightarrow \quad\left(\varphi_{\tau, t}(\mathbf{x}), t\right) \in \mathcal{T}_{\varphi}
\end{aligned}
$$

Rivers and Cogwheels

$\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\varphi}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}, t}$
$\left(\nabla_{\mathbf{v}_{\boldsymbol{\tau}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}}, \mathrm{T}_{\boldsymbol{\mathcal { C }}}} \mathfrak{A}_{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{S}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, t}$

Gottfried Wilhelm von Leibniz (1646-1716)

rule cannot be applied unless
the following special properties of the trajectory hold true:

$$
\begin{aligned}
(\mathbf{x}, t) \in \mathcal{T}_{\varphi} & \Longrightarrow \quad(\mathbf{x}, \tau) \in \mathcal{T}_{\varphi} \quad \forall \tau \in I_{t} \\
(\mathbf{x}, t) \in \mathcal{T}_{\varphi} & \Longrightarrow \quad\left(\varphi_{\tau, t}(\mathbf{x}), t\right) \in \mathcal{T}_{\varphi}
\end{aligned}
$$

Both conditions are not fulfilled in solid mechanics, in general.

Tangent spaces
Tangent functot
Fiber bundles

Trivial and non-trivia
fiber bundles
Sections
lensor bundle and
sections
Push and pull

Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics

Metric measurements

Metric theory
Events manifold fibrations

Rivers and Cogwheels

$\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t} \downarrow\left(\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}, t}$
$\left(\nabla_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}^{\mathrm{E}} \mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}:=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right)=\partial_{\tau=t} \mathbf{s}_{\mathrm{E}, \mathcal{I}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}}, \mathcal{T}_{\boldsymbol{\varphi}}, \downarrow_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathrm{E}, \mathcal{I}_{\boldsymbol{\varphi}}, t}$

Gottfried Wilhelm von Leibniz (1646-1716)

rule cannot be applied unless

the following special properties of the trajectory hold true:

$$
\begin{aligned}
(\mathbf{x}, t) \in \mathcal{T}_{\varphi} & \Longrightarrow \quad(\mathbf{x}, \tau) \in \mathcal{T}_{\varphi} \quad \forall \tau \in I_{t} \\
(\mathbf{x}, t) \in \mathcal{T}_{\varphi} & \Longrightarrow \quad\left(\varphi_{\tau, t}(\mathbf{x}), t\right) \in \mathcal{T}_{\varphi}
\end{aligned}
$$

Both conditions are not fulfilled in solid mechanics, in general.

Tangent spaces
Tangentifunctor
Fiber bundles

Trivial and non-trivial fiber bundles

Sections
lensor bundle and
sections
Push and pull

Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements

Metric theory
Events manifold fibrations

Acceleration

Acceleration

MTD of the velocity field

$$
\begin{aligned}
\left(\mathbf{a}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}:=\left(\nabla_{\mathbf{v}_{\boldsymbol{T}}}^{\mathrm{E}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t} & :=\partial_{\tau=t} \varphi_{\tau, t}^{\mathrm{E}} \Downarrow\left(\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \varphi_{\tau, t}\right) \\
& =\partial_{\tau=t} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, t}
\end{aligned}
$$

NLCM

Dralezamena
A basic question

Basic

Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Acceleration

MTD of the velocity field

$$
\begin{aligned}
\left(\mathbf{a}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}:=\left(\nabla_{\mathbf{v}_{\boldsymbol{\varphi}}}^{\mathrm{E}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t} & :=\partial_{\tau=t} \varphi_{\tau, t}^{\mathrm{E}} \Downarrow\left(\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right) \\
& =\partial_{\tau=t} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, t}
\end{aligned}
$$

This is the celebrated Euler split formula, applicable only in special problems of hydrodynamics, where it was originally conceived.
This eventually led to the Navier-Stokes-St.Venant differential equation of motion in fluid-dynamics.

Trivial and non-trivial

Acceleration

MTD of the velocity field

$$
\begin{aligned}
\left(\mathbf{a}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)_{t}:=\left(\nabla_{\mathbf{v}_{\boldsymbol{\varphi}}}^{\mathrm{E}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t} & :=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, t}^{\mathrm{E}} \Downarrow\left(\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right) \\
& =\partial_{\tau=t} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, t}
\end{aligned}
$$

This is the celebrated Euler split formula, applicable only in special problems of hydrodynamics, where it was originally conceived.
This eventually led to the Navier-Stokes-St.Venant differential equation of motion in fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted to provide the very definition of acceleration in mechanics ${ }^{2}$

Trivial and non +ivial fiber bundles

Sections

Tensor butrdle and
sections
Push and pull
Puch and pull of tensor fields

Parallel transport

Derivatives

Acceleration

MTD of the velocity field

$$
\begin{aligned}
\left(\mathbf{a}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)_{t}:=\left(\nabla_{\mathbf{v}_{\boldsymbol{\varphi}}}^{\mathrm{E}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t} & :=\partial_{\tau=t} \varphi_{\tau, t}^{\mathrm{E}} \Downarrow\left(\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau} \circ \boldsymbol{\varphi}_{\tau, t}\right) \\
& =\partial_{\tau=t} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}, \tau}+\nabla_{\boldsymbol{\pi}_{\mathcal{S}, \mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{v}_{\mathrm{E}, \mathcal{T}_{\varphi}, t}
\end{aligned}
$$

This is the celebrated Euler split formula, applicable only in special problems of hydrodynamics, where it was originally conceived.
This eventually led to the Navier-Stokes-St.Venant differential equation of motion in fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted to provide the very definition of acceleration in mechanics ${ }^{2}$

[^0]
Stretching $=$ Lie time derivative of the material metric

Stretching $=$ Lie time derivative of the material metric

- Stretching:

$$
\dot{\varepsilon}_{\tau_{\varphi}, t}:=\frac{1}{2}\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{g}_{\tau_{\varphi}}\right)_{t}=\frac{1}{2} \partial_{\tau=t}\left(\varphi_{\tau, t} \backslash \mathbf{g}_{\tau_{\varphi}, \tau}\right)
$$

Stretching $=$ Lie time derivative of the material metric

- Stretching:

$$
\dot{\varepsilon}_{\tau_{\varphi}, t}:=\frac{1}{2}\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{g}_{\tau_{\varphi}}\right)_{t}=\frac{1}{2} \partial_{\tau=t}\left(\varphi_{\tau, t} \downarrow \mathbf{g}_{\tau_{\varphi}, \tau}\right)
$$

Leonhard Euler (1707-1783)

- Euler's formula (generalized)

$$
\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{g}_{\tau_{\varphi}}=\frac{1}{2} \nabla_{v_{\tau_{\varphi}}}^{\tau_{\varphi}} \mathbf{g}_{\tau_{\varphi}}+\operatorname{sym}\left(\mathbf{g}_{\tau_{\varphi}} \circ\left(\operatorname{ToRS}^{\tau_{\varphi}}+\nabla^{\mathcal{T}_{\varphi}}\right) \mathbf{v}_{\tau_{\varphi}}\right)
$$

Stretching $=$ Lie time derivative of the material metric

- Stretching:

$$
\dot{\varepsilon}_{\mathcal{T}_{\varphi}, t}:=\frac{1}{2}\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}\right)_{t}=\frac{1}{2} \partial_{\tau=t}\left(\varphi_{\tau, t} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, \tau}\right)
$$

Leonhard Euler (1707-1783)

- Euler's formula (generalized)

$$
\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \mathbf{g}_{\mathcal{T}_{\varphi}}+\operatorname{sym}\left(\mathbf{g}_{\mathcal{T}_{\varphi}} \circ\left(\operatorname{ToRS}^{\mathcal{T}_{\varphi}}+\nabla^{\mathcal{T}_{\varphi}}\right) \mathbf{v}_{\mathcal{T}_{\varphi}}\right)
$$

- Trajectory connection defined by:

$$
\mathbf{g}_{\mathcal{T}_{\varphi}} \circ \nabla^{\mathcal{T}_{\varphi}} \mathbf{u}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\mathbf{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \mathbf{u}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)
$$

Stretching $=$ Lie time derivative of the material metric

- Stretching:

$$
\dot{\varepsilon}_{\mathcal{T}_{\varphi}, t}:=\frac{1}{2}\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}\right)_{t}=\frac{1}{2} \partial_{\tau=t}\left(\varphi_{\tau, t} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, \tau}\right)
$$

Leonhard Euler (1707-1783)

- Euler's formula (generalized)

$$
\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \mathbf{g}_{\mathcal{T}_{\varphi}}+\operatorname{sym}\left(\mathbf{g}_{\mathcal{T}_{\varphi}} \circ\left(\operatorname{ToRS}^{\mathcal{T}_{\varphi}}+\nabla^{\mathcal{T}_{\varphi}}\right) \mathbf{v}_{\mathcal{T}_{\varphi}}\right)
$$

- Trajectory connection defined by:

$$
\mathbf{g}_{\mathcal{T}_{\varphi}} \circ \nabla^{\mathcal{T}_{\varphi}} \mathbf{u}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\mathbf{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \mathbf{u}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)
$$

- with

$$
\nabla_{\mathbf{v}_{\boldsymbol{T}}}^{\mathcal{T}_{\varphi}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\nabla_{\mathbf{v}_{\mathrm{E}, \mathcal{T}_{\varphi}}^{\mathrm{E}}}^{\mathrm{E}} \mathbf{g}_{\mathrm{E}}\right)
$$

$$
\mathbf{g}_{\mathcal{T}_{\varphi}} \circ \operatorname{ToRS}^{\mathcal{T}_{\varphi}}\left(\mathbf{a}_{\mathcal{T}_{\varphi}}\right)=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\mathbf{g}_{\mathrm{E}} \circ \operatorname{ToRS}^{\mathrm{E}}\left(\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\boldsymbol{\varphi}}} \uparrow_{\mathbf{T}_{\varphi}}\right)\right)
$$

Stretching $=$ Lie time derivative of the material metric

- Stretching:

$$
\dot{\varepsilon}_{\mathcal{T}_{\varphi}, t}:=\frac{1}{2}\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}\right)_{t}=\frac{1}{2} \partial_{\tau=t}\left(\varphi_{\tau, t} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, \tau}\right)
$$

Leonhard Euler (1707-1783)

- Euler's formula (generalized)

$$
\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \mathbf{g}_{\mathcal{T}_{\varphi}}+\operatorname{sym}\left(\mathbf{g}_{\mathcal{T}_{\varphi}} \circ\left(\operatorname{ToRS}^{\mathcal{T}_{\varphi}}+\nabla^{\mathcal{T}_{\varphi}}\right) \mathbf{v}_{\mathcal{T}_{\varphi}}\right)
$$

- Trajectory connection defined by:

$$
\mathbf{g}_{\mathcal{T}_{\varphi}} \circ \nabla^{\mathcal{T}_{\varphi}} \mathbf{u}_{\mathcal{T}_{\varphi}}:=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\mathbf{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \mathbf{u}_{\mathrm{E}, \mathcal{T}_{\varphi}}\right)
$$

- with

$$
\nabla_{\mathbf{V}_{\tau_{\varphi}}}^{\mathcal{T}_{\varphi}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \downarrow\left(\nabla_{\mathbf{v}_{\mathrm{E}, \tau_{\varphi}}^{\mathrm{E}}}^{\mathrm{E}} \mathbf{g}_{\mathrm{E}}\right)
$$

- Mixed form of the stretching tensor (standard):

$$
\mathbf{D}_{\mathcal{T}_{\varphi}}:=\mathbf{g}_{\mathcal{T}_{\varphi}}^{-1} \circ \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}}=\operatorname{sym}\left(\nabla^{\mathcal{T}_{\varphi}} \mathbf{v}_{\mathcal{T}_{\varphi}}\right)
$$

$$
\mathbf{g}_{\tau_{\varphi}} \circ \operatorname{ToRS}^{\mathcal{T}_{\varphi}}\left(\mathbf{a}_{\tau_{\varphi}}\right)=\mathbf{i}_{\mathrm{E}, \mathcal{\tau}_{\varphi}} \downarrow\left(\mathbf{g}_{\mathrm{E}} \circ \operatorname{Tors}^{\mathrm{E}}\left(\mathbf{i}_{\mathrm{E}, \mathcal{T}_{\varphi}} \uparrow \mathbf{a}_{\tau_{\varphi}}\right)\right)
$$

Stress and stressing

XX Congresso AIMETA

NLCM
Drelemamena
A basic question
Racir
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions
Kinematics
Metric measurements
Metric theory
Events manifold fibrations
Trajectory

Stress and stressing

- Stress: $\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \operatorname{CoN}\left(\mathbb{V} \mathcal{T}_{\boldsymbol{\varphi}}\right)\right)$ in duality with the
- Stretching: $\dot{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}}:=\frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \operatorname{Cov}\left(\mathbb{V} \mathcal{T}_{\boldsymbol{\varphi}}\right)\right)$

Rasie

Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial
fiber bundles
Sections
Tensor bundle and sections

Stress and stressing

- Stress: $\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{CoN}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$ in duality with the
- Stretching: $\dot{\varepsilon}_{\mathcal{T}_{\varphi}}:=\frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{Cov}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$
- Stressing: Lie time derivative

$$
\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}:=\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}=\partial_{\tau=t}\left(\boldsymbol{\varphi}_{\tau, t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}\right)
$$

Dralexamena

Stress and stressing

- Stress: $\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{CoN}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$ in duality with the
- Stretching: $\dot{\varepsilon}_{\mathcal{T}_{\varphi}}:=\frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{Cov}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$
- Stressing: Lie time derivative

$$
\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}:=\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}=\partial_{\tau=t}\left(\boldsymbol{\varphi}_{\tau, t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}\right)
$$

The expression in terms of parallel derivative:

$$
\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \sigma_{\mathcal{T}_{\varphi}}=\nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \sigma_{\mathcal{T}_{\varphi}}-\operatorname{sym}\left(\nabla^{\mathcal{T}_{\varphi}} \mathbf{v}_{\mathcal{T}_{\varphi}} \circ \sigma_{\mathcal{T}_{\varphi}}\right)
$$

Stress and stressing

- Stress: $\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \operatorname{CoN}\left(\mathbb{V} \mathcal{T}_{\boldsymbol{\varphi}}\right)\right)$ in duality with the
- Stretching: $\dot{\varepsilon}_{\mathcal{T}_{\varphi}}:=\frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{Cov}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$
- Stressing: Lie time derivative

$$
\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}:=\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}=\partial_{\tau=t}\left(\boldsymbol{\varphi}_{\tau, t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}\right)
$$

The expression in terms of parallel derivative:

$$
\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}=\nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}-\operatorname{sym}\left(\nabla^{\mathcal{T}_{\varphi}} \mathbf{v}_{\mathcal{T}_{\varphi}} \circ \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right)
$$

is not performable on the time-vertical subbundle of material tensor fields because the parallel derivative $\nabla_{\mathbf{V}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}}$ on the trajectory does not preserve time-verticality.

Stress and stressing

- Stress: $\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{Con}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$ in duality with the
- Stretching: $\dot{\varepsilon}_{\mathcal{T}_{\varphi}}:=\frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\varphi}}=\frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \operatorname{Cov}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$
- Stressing: Lie time derivative

$$
\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}:=\left(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)_{t}=\partial_{\tau=t}\left(\boldsymbol{\varphi}_{\tau, t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}\right)
$$

The expression in terms of parallel derivative:

$$
\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}=\nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}-\operatorname{sym}\left(\nabla^{\mathcal{T}_{\varphi}} \mathbf{v}_{\mathcal{T}_{\varphi}} \circ \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right)
$$

is not performable on the time-vertical subbundle of material tensor fields because the parallel derivative $\nabla_{\mathbf{v}_{\mathcal{T}_{\varphi}}}^{\mathcal{T}_{\varphi}}$ on the trajectory does not preserve time-verticality.

- Treatments which do not adopt a full geometric approach do not even perceive the difficulties revealed by the previous investigation.

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, Zaremba (1903), Jaumann $(1906,1911)$, Prager (1960):

$$
\stackrel{\circ}{\mathbf{T}}=\dot{\mathbf{T}}-\mathbf{W} \mathbf{T}+\mathbf{T} \mathbf{W}
$$

with $\dot{\mathbf{T}}$ material time derivative.
Convective stress tensor rate, Zaremba (1903), Oldroyd (1950), Truesdell (1955), Sedov (1960), Truesdell \& Noll (1965):

$$
\stackrel{\Delta}{\mathbf{T}}=\dot{\mathbf{T}}+\mathbf{L}^{T} \mathbf{T}+\mathbf{T L}
$$

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, Zaremba (1903), Jaumann $(1906,1911)$, Prager (1960):

$$
\stackrel{\circ}{\mathbf{T}}=\dot{\mathbf{T}}-\mathbf{W} \mathbf{T}+\mathbf{T} \mathbf{W}
$$

with $\dot{\mathbf{T}}$ material time derivative.
Convective stress tensor rate, Zaremba (1903), Oldroyd (1950), Truesdell (1955), Sedov (1960), Truesdell \& Noll (1965):

$$
\stackrel{\Delta}{\mathbf{T}}=\dot{\mathbf{T}}+\mathbf{L}^{T} \mathbf{T}+\mathbf{T L}
$$

These formulas, and similar ones in literature, rely on the application of Leibniz rule and on taking the parallel derivative of the material stress tensor field according to the trajectory connection.

The lack of regularity that may prevent to take partial time derivatives and the lack of conservation of time-verticality by parallel transport, are not taken into account.

Deformation gradient

The equivalence class of all material displacements whose tangent map have the common value:

$$
T_{\mathbf{x}} \boldsymbol{\varphi}_{\tau, t} \in L\left(\mathbb{T}_{\mathbf{x}} \boldsymbol{\Omega}_{t} ; \mathbb{T}_{\boldsymbol{\varphi}_{\tau, t}(\mathrm{x})} \boldsymbol{\Omega}_{\tau}\right)
$$

- is called the first jet of $\boldsymbol{\varphi}_{\tau, t}$ at $\mathbf{x} \in \boldsymbol{\Omega}_{t}$ in differential geometry
- and the relative deformation gradient in continuum mechanics.

The chain rule between tangent maps:

$$
\boldsymbol{T}_{\boldsymbol{\varphi}_{\tau, s}(\mathrm{x})} \boldsymbol{\varphi}_{\tau, s}=\boldsymbol{T}_{\varphi_{t, s}(\mathrm{x})} \boldsymbol{\varphi}_{\tau, t} \circ T_{\mathrm{x}} \boldsymbol{\varphi}_{t, s}
$$

implies the corresponding one between material deformation gradients:

$$
\mathbf{F}_{\tau, s}=\mathbf{F}_{\tau, t} \circ \mathbf{F}_{t, s}
$$

Time rate of deformation gradient, Truesdell \& Noll (1965)

$$
\dot{\mathbf{F}}_{t, s}=\mathbf{L}_{t} \mathbf{F}_{t, s}
$$

with $\dot{\mathbf{F}}_{t, s}:=\partial_{\tau=t} \mathbf{F}_{\tau, s}$ and $\mathbf{L}_{t}:=\partial_{\tau=t} \mathbf{F}_{\tau, t}$ time derivatives.

$$
\mathbf{L}_{t}(\mathbf{x}) \cdot \mathbf{h}_{\mathbf{x}}:=\partial_{\tau=t} \mathbf{F}_{\tau, t}(\mathbf{x}) \cdot \mathbf{h}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \boldsymbol{\Omega}_{t}, \quad \forall \mathbf{h}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \boldsymbol{\Omega}_{t}
$$

with $\mathbf{F}_{\tau, t}(\mathbf{x}) \cdot \mathbf{h}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \boldsymbol{\Omega}_{\tau}$. The LIE time derivative gives:

$$
\partial_{\tau=t}\left(T_{\mathrm{x}} \boldsymbol{\varphi}_{\tau, t}\right)^{-1} \cdot\left(T_{\mathrm{x}} \boldsymbol{\varphi}_{\tau, t} \cdot \mathbf{h}_{\mathrm{x}}\right)=\partial_{\tau=t} \mathbf{h}_{\mathrm{x}}=0
$$

Change of observer

XX Congresso AIMETA

NLCM
Drelenamena
A basic question
Rasir
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport
Derivatives
Key contributions

Kinematics

Metric measurements
Metric theory
Events manifold fibrations

Change of observer

- Change of observer $\zeta_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathrm{E})$, time-bundle automorphism

Change of observer

- Change of observer $\quad \zeta_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathrm{E})$, time-bundle automorphism
- Relative motion $\boldsymbol{\zeta} \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \mathcal{T}_{\boldsymbol{\zeta} \uparrow \varphi}\right)$, time-bundle diffeomorphism

Change of observer

- Change of observer $\quad \zeta_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E} ; \mathrm{E})$, time-bundle automorphism
- Relative motion $\quad \boldsymbol{\zeta} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathcal{T}_{\boldsymbol{\zeta} \uparrow \varphi}\right)$, time-bundle diffeomorphism

- Pushed motion

$$
\begin{aligned}
& \zeta_{t}\left(\Omega_{t}\right) \xrightarrow{(\zeta \uparrow \varphi)_{\tau, t}} \zeta_{\tau}\left(\Omega_{\tau}\right) \\
& \begin{array}{rc}
\zeta_{t} \uparrow & \zeta_{\tau}^{\uparrow} \\
\Omega_{t} \xrightarrow{\varphi_{\tau, t}} & \Longleftrightarrow \Omega_{\tau}
\end{array}
\end{aligned}
$$

Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance of material fields

NLCM

Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance of material fields

- Time Invariance $\quad \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}$

NLCM

Dralezomena

Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance of material fields

- Time Invariance $\quad \mathbf{s}_{\mathcal{T}_{\varphi}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}$
- Frame Invariance

$$
\mathbf{s}_{\mathcal{T}_{\zeta \uparrow \varphi}}=\zeta \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}}
$$

with: $\boldsymbol{\zeta} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathcal{T}_{\boldsymbol{\zeta} \uparrow \varphi}\right)$ relative motion

Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance of material fields

- Time Invariance $\quad \mathbf{s}_{\mathcal{T}_{\varphi}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}$
- Frame Invariance

$$
\mathbf{s}_{\mathcal{T}_{\zeta \uparrow \varphi}}=\zeta \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}}
$$

with: $\quad \zeta \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \mathcal{T}_{\zeta \uparrow \varphi}\right)$ relative motion

Properties of Lie derivative

- Push of Lie time derivative to a fixed configuration

$$
\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}
$$

Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance of material fields

- Time Invariance $\quad \mathbf{s}_{\mathcal{T}_{\varphi}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}$
- Frame Invariance

$$
\mathbf{s}_{\mathcal{T}_{\zeta \uparrow \varphi}}=\zeta \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}}
$$

with: $\quad \zeta \in \mathrm{C}^{1}\left(\mathcal{T}_{\boldsymbol{\varphi}} ; \mathcal{T}_{\zeta \uparrow \varphi}\right)$ relative motion

Properties of Lie derivative

- Push of Lie time derivative to a fixed configuration

$$
\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)_{t}=\partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}
$$

- Lie time derivative along pushed motions

$$
\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\zeta}} \boldsymbol{\varphi}}}\left(\boldsymbol{\zeta} \uparrow \mathbf{s}_{\varphi}\right)=\boldsymbol{\zeta} \uparrow\left(\mathcal{L}_{\mathbf{v}_{\tau_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}}\right)
$$

Constitutive laws

Constitutive laws

- Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

Dralemamena
A basic question

Constitutive laws

- Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

NLCM

Dralexameria
A basic question

Constitutive laws

- Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

- Constitutive time invariance

$$
\begin{gathered}
\mathbf{H}_{\mathcal{T}_{\varphi}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}, t} \\
\left(\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}, t}\right)\left(\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}, t}\right)=\boldsymbol{\varphi}_{\tau, t} \uparrow\left(\mathbf{H}_{\mathcal{T}_{\varphi}, t}\left(\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right)\right)
\end{gathered}
$$

Constitutive laws

- Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

- Constitutive time invariance

$$
\begin{gathered}
\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau}=\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} \\
\left(\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right)\left(\boldsymbol{\varphi}_{\tau, t} \uparrow \mathbf{s}_{\tau_{\varphi}, t}\right)=\boldsymbol{\varphi}_{\tau, t} \uparrow\left(\mathbf{H}_{\tau_{\varphi}, t}\left(\mathbf{s}_{\tau_{\varphi}, t}\right)\right)
\end{gathered}
$$

- Constitutive invariance under relative motions

$$
\begin{gathered}
\mathbf{H}_{\tau_{\zeta \uparrow \varphi}}=\boldsymbol{\zeta} \uparrow \mathbf{H}_{\tau_{\varphi}} \\
\left(\boldsymbol{\zeta} \uparrow \mathbf{H}_{\tau_{\varphi}}\right)\left(\boldsymbol{\zeta} \uparrow \mathbf{s}_{\tau_{\varphi}}\right)=\boldsymbol{\zeta} \uparrow\left(\mathbf{H}_{\tau_{\varphi}}\left(\mathbf{s}_{\tau_{\varphi}}\right)\right)
\end{gathered}
$$

Hypo-elasticity

XX Congresso AIMETA

NLCM

nologomena
A basic question
Rasie
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Hypo-elasticity

- Constitutive hypo-elastic law $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e l}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =\mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
\end{aligned} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}
$$

Hypo-elasticity

- Constitutive hypo-elastic law $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e l}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =\mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}
\end{aligned}\right.
$$

- Cauchy integrability

$$
\begin{aligned}
&\left\langle d_{F} \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\sigma_{\mathcal{T}_{\varphi}}\right) \cdot\right.\left.\delta \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \cdot \delta_{1} \sigma_{\mathcal{T}_{\varphi}}, \delta_{2} \sigma_{\mathcal{T}_{\varphi}}\right\rangle=\text { symmetric } \\
& \Longrightarrow \quad \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\sigma_{\mathcal{T}_{\varphi}}\right)=d_{F} \boldsymbol{\Phi}_{\mathcal{T}_{\varphi}}\left(\sigma_{\mathcal{T}_{\varphi}}\right)
\end{aligned}
$$

Hypo-elasticity

- Constitutive hypo-elastic law $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e l}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =\mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
\end{aligned}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}\right.
$$

- Cauchy integrability

$$
\left\langle d_{F} \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \delta \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \cdot \delta_{1} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}, \delta_{2} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right\rangle=\text { symmetric }
$$

$$
\Longrightarrow \quad \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\sigma_{\mathcal{T}_{\varphi}}\right)=d_{F} \boldsymbol{\Phi}_{\mathcal{T}_{\varphi}}\left(\sigma_{\mathcal{T}_{\varphi}}\right)
$$

- Green integrability

$$
\begin{aligned}
&\left\langle\mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \delta_{1} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}, \delta_{2} \sigma_{\mathcal{T}_{\varphi}}\right\rangle=\text { symmetric } \\
& \Longrightarrow \quad \Phi_{\mathcal{T}_{\varphi}}\left(\sigma_{\mathcal{T}_{\varphi}}\right)=d_{F} E_{\mathcal{T}_{\varphi}}^{*}\left(\sigma_{\mathcal{T}_{\varphi}}\right)
\end{aligned}
$$

Elasticity

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant

Elasticity

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- Constitutive elastic law: $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e} \mathbf{I}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =d_{F}^{2} E_{\mathcal{T}_{\varphi}}^{*}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}
\end{aligned}\right.
$$

Elasticity

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- Constitutive elastic law: $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e} \mathbf{I}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =d_{F}^{2} E_{\mathcal{T}_{\varphi}}^{*}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}
\end{aligned}\right.
$$

- pull-back to reference:

$$
\begin{aligned}
\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{e l}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} & =d_{F}^{2} E_{\mathrm{FIX}}^{*}\left(\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right) \cdot \partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\boldsymbol{\varphi}, \tau} \\
& =\partial_{\tau=t} d_{F} E_{\mathrm{FIX}}^{*}\left(\boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\boldsymbol{\varphi}, \tau}\right)
\end{aligned}
$$

Elasticity

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- Constitutive elastic law: $\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e} \mathbf{I}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =d_{F}^{2} E_{\mathcal{T}_{\varphi}}^{*}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}
\end{aligned}\right.
$$

- pull-back to reference:

$$
\begin{aligned}
\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{e l}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} & =d_{F}^{2}{E_{\mathrm{FIX}}^{*}}^{*}\left(\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right) \cdot \partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\boldsymbol{\varphi}, \tau} \\
& =\partial_{\tau=t} d_{F} E_{\mathrm{FIX}}^{*}\left(\boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \boldsymbol{\sigma}_{\boldsymbol{\varphi}, \tau}\right) \\
\boldsymbol{\varphi}_{\tau, \mathrm{FIX}} & :=\boldsymbol{\varphi}_{\tau, t} \circ \boldsymbol{\varphi}_{t, \mathrm{FIX}} \\
E_{\mathrm{FIX}}^{*} & :=\boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow E_{\mathcal{T}_{\boldsymbol{\varphi}}, t}^{*} \quad \text { time invariant }
\end{aligned}
$$

Conservativeness of hyper-elasticity

Conservativeness of hyper-elasticity

Green integrability of the elastic operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$ as a function of the Kirchнoff stress tensor field implies conservativeness:

$$
\oint_{I} \int_{\Omega_{t}}\left\langle\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}, t}, \mathbf{e l}_{\mathcal{T}_{\varphi}, t}\right\rangle \mathbf{m}_{\mathcal{T}_{\varphi}, t} d t=0
$$

for any cycle in the stress time-bundle,
i.e. for any stress path $\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}\left(I ; \operatorname{CoN}\left(\mathbb{V} \mathcal{T}_{\varphi}\right)\right)$
such that:

$$
\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}, t_{2}}=\boldsymbol{\varphi}_{t_{2}, t_{1}} \uparrow \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}, t_{1}}, \quad I=\left[t_{1}, t_{2}\right]
$$

Elasto-visco-plasticity

Elasto-visco-plasticity

- Constitutive law
$\mathbf{e l}_{\mathcal{T}_{\varphi}}$ elastic stretching
$\mathbf{p l}_{\mathcal{T}_{\varphi}}$ visco-plastic stretching

$$
\left\{\begin{aligned}
\dot{\varepsilon}_{\mathcal{T}_{\varphi}} & =\mathbf{e l}_{\mathcal{T}_{\varphi}}+\mathbf{p} \mathbf{I}_{\mathcal{T}_{\varphi}} \\
\mathbf{e l}_{\mathcal{T}_{\varphi}} & =d_{F}^{2} E_{\mathcal{T}_{\varphi}}^{*}\left(\sigma_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\sigma}_{\mathcal{T}_{\varphi}} \\
\mathbf{p l}_{\mathcal{T}_{\varphi}} & \in \partial_{F} \mathcal{F}_{\mathcal{T}_{\varphi}}\left(\boldsymbol{\sigma}_{\varphi}\right)
\end{aligned}\right.
$$

stretching additivity
hyper-elastic law
visco-plastic flow rule

Reference strains

Reference strains

- total strain in the time interval $I=[s, t]$:

$$
\varepsilon_{\mathcal{T}_{\varphi}, t, s}:=\varphi_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, t}-\mathbf{g}_{\mathcal{T}_{\varphi}, s}
$$

Reference strains

- total strain in the time interval $I=[s, t]$:

$$
\varepsilon_{\mathcal{T}_{\varphi}, t, s}:=\varphi_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, t}-\mathbf{g}_{\mathcal{T}_{\varphi}, s}
$$

- reference total strain:

$$
\begin{aligned}
\varepsilon_{\mathcal{T}_{\boldsymbol{\varphi}}, l}^{\mathrm{FIX}} & :=\frac{1}{2} \int_{I} \partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau} d t \\
& =\frac{1}{2} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s} \\
& =\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow\left(\boldsymbol{\varphi}_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s}\right)=\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow \varepsilon_{\mathcal{T}_{\boldsymbol{\varphi}}, t, s}
\end{aligned}
$$

Reference strains

- total strain in the time interval $I=[s, t]$:

$$
\varepsilon_{\mathcal{T}_{\varphi}, t, s}:=\varphi_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, t}-\mathbf{g}_{\mathcal{T}_{\varphi}, s}
$$

- reference total strain:

$$
\begin{aligned}
\varepsilon_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}} & :=\frac{1}{2} \int_{I} \partial_{\tau=t} \varphi_{\tau, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, \tau} d t \\
& =\frac{1}{2} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{g}_{\tau_{\varphi}, t}-\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow \mathbf{g}_{\tau_{\varphi}, s} \\
& =\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow\left(\boldsymbol{\varphi}_{t, s} \downarrow \mathbf{g}_{\tau_{\varphi}, t}-\mathbf{g}_{\tau_{\varphi}, s}\right)=\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow \varepsilon_{\mathcal{T}_{\varphi}, t, s}
\end{aligned}
$$

- reference elastic and visco-plastic strain:

$$
\mathbf{e l}_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}}:=\int_{I} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \backslash \mathbf{e}_{\tau_{\varphi}, t} d t, \quad \mathbf{p}_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}}:=\int_{I} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{p}_{\mathcal{T}_{\varphi}, t} d t
$$

Reference strains

- total strain in the time interval $I=[s, t]$:

$$
\varepsilon_{\mathcal{T}_{\varphi}, t, s}:=\varphi_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\varphi}, t}-\mathbf{g}_{\mathcal{T}_{\varphi}, s}
$$

- reference total strain:

$$
\begin{aligned}
\varepsilon_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}} & :=\frac{1}{2} \int_{I} \partial_{\tau=t} \boldsymbol{\varphi}_{\tau, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau} d t \\
& =\frac{1}{2} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\frac{1}{2} \varphi_{s, \mathrm{FIX}} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s} \\
& =\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow\left(\boldsymbol{\varphi}_{t, s} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s}\right)=\frac{1}{2} \boldsymbol{\varphi}_{s, \mathrm{FIX}} \downarrow \varepsilon_{\mathcal{T}_{\boldsymbol{\varphi}}, t, s}
\end{aligned}
$$

- reference elastic and visco-plastic strain:

$$
\mathbf{e l}_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}}:=\int_{I} \varphi_{t, \mathrm{FIX}} \backslash \mathbf{e}_{\mathcal{T}_{\varphi}, t} d t, \quad \mathbf{p}_{\mathcal{T}_{\varphi}, l}^{\mathrm{FIX}}:=\int_{I} \boldsymbol{\varphi}_{t, \mathrm{FIX}} \downarrow \mathbf{p}_{\mathcal{T}_{\varphi}, t} d t
$$

- additivity of reference strains:

$$
\varepsilon_{\mathcal{T}_{\boldsymbol{\varphi}}, I}^{\mathrm{FIX}}=\mathbf{e l}_{\mathcal{T}_{\boldsymbol{\varphi}}, I}^{\mathrm{FIX}}+\mathbf{p} \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, l}^{\mathrm{FIX}}
$$

Material Frame Indifference (MFI)

Material Frame Indifference (MFI)

Ansatz

Draleriomena

A basic question

Basic
Tansent spaces
Tangent functor
ciber bundloe
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Material Frame Indifference (MFI)

Ansatz

- Material fields are frame invariant

NLCM

notegontena

A basic question

Material Frame Indifference (MFI)

Ansatz

- Material fields are frame invariant

Principle of MFI

NLCM
Dualenoumena
A basic question

Material Frame Indifference (MFI)

Ansatz

- Material fields are frame invariant

Principle of MFI

- Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

Material Frame Indifference (MFI)

Ansatz

- Material fields are frame invariant

Principle of MFI

- Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

$$
\mathbf{H}_{\mathcal{T}_{\zeta}{ }^{\mathrm{iso} \uparrow \varphi}}\left(\zeta^{\mathrm{iso}} \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}}\right)=\zeta^{\mathrm{iso}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}\left(\mathbf{s}_{\mathcal{T}_{\varphi}}\right)
$$

for any isometric relative motion $\zeta^{\text {iso }} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathcal{T}_{\zeta^{\text {iso }} \uparrow \varphi}\right)$ induced by a change of Euclid observer $\zeta_{E}^{\text {iso }} \in \mathrm{C}^{1}(\mathbf{E} ; \mathbf{E})$.

Material Frame Indifference (MFI)

Ansatz

- Material fields are frame invariant

Principle of MFI

- Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

$$
\mathbf{H}_{\mathcal{T}_{\zeta^{\mathrm{iso}} \uparrow \varphi}}\left(\zeta^{\mathrm{iso}} \uparrow \mathbf{s}_{\mathcal{T}_{\varphi}}\right)=\zeta^{\mathrm{iso}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}\left(\mathbf{s}_{\mathcal{T}_{\varphi}}\right)
$$

for any isometric relative motion $\zeta^{\text {iso }} \in \mathrm{C}^{1}\left(\mathcal{T}_{\varphi} ; \mathcal{T}_{\zeta^{\text {iso }} \uparrow \varphi}\right)$ induced by a change of Euclid observer $\zeta_{E}^{\text {iso }} \in \mathrm{C}^{1}(\mathbf{E} ; \mathbf{E})$.

Equivalent condition

- Constitutive operators must be frame invariant

MFI in elasto-visco-plasticity

MFI in elasto-visco-plasticity

- Frame invariance of the hypo-elastic operator

$$
\mathbf{H}_{\mathcal{T}_{\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \boldsymbol{\varphi}}^{\mathrm{HYPO}}}=\zeta^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}
$$

Dralemamena
A basic question

MFI in elasto-visco-plasticity

- Frame invariance of the hypo-elastic operator

$$
\mathbf{H}_{\mathcal{T}_{\zeta^{\mathrm{SOO}} \uparrow \varphi}^{\mathrm{HYPO}}}=\zeta^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
$$

Pushed operator

$$
\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\right)\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow\left(\mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\varphi}}\right)
$$

MFI in elasto-visco-plasticity

- Frame invariance of the hypo-elastic operator

$$
\mathbf{H}_{\mathcal{T}_{\zeta^{\mathrm{ISO}} \uparrow \varphi}^{\mathrm{HYPO}}}^{\mathrm{YP}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
$$

Pushed operator

$$
\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\right)\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow\left(\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)
$$

Examples:

- the simplest hypo-elastic operator is Green integrable and frame invariant:

$$
\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}^{\mathrm{HYP}}\left(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right):=\frac{1}{2 \mu} \mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\frac{\nu}{E} \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} \otimes \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}
$$

MFI in elasto-visco-plasticity

- Frame invariance of the hypo-elastic operator

$$
\mathbf{H}_{\mathcal{T}_{\zeta^{\mathrm{ISO}} \uparrow \varphi}^{\mathrm{HYPO}}}^{\mathrm{HP}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
$$

Pushed operator

$$
\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\right)\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow\left(\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)
$$

Examples:

- the simplest hypo-elastic operator is Green integrable and frame invariant:

$$
\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}^{\mathrm{HYP}}\left(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right):=\frac{1}{2 \mu} \mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\frac{\nu}{E} \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} \otimes \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}
$$

- the visco-plastic flow rule is frame invariant

MFI in elasto-visco-plasticity

- Frame invariance of the hypo-elastic operator

$$
\mathbf{H}_{\mathcal{T}_{\zeta^{1 \mathrm{SO}} \uparrow \varphi}^{\mathrm{HYPO}}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}
$$

Pushed operator

$$
\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\right)\left(\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow\left(\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}\left(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)
$$

Examples:

- the simplest hypo-elastic operator is Green integrable and frame invariant:

$$
\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}^{\mathrm{HYPO}}\left(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}\right):=\frac{1}{2 \mu} \mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}-\frac{\nu}{E} \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} \otimes \mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}}, t}
$$

- the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:
J.C. Simó \& K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp. Meth. Appl. Mech. Eng. 46 (1984) 201-215.
J. C. Simó \& M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221-245.

Achievements

XX Congresso AIMETA

NLCM
Dralenamena
A basic question
Racie
Tangent spaces
Tangent functor
Fiben bundles
Trivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements
Metric theory
Events manifold fibrations

Achievements

- Notion of spatial and material fields

NLCM
Drelenamena
A basic question
Rosie
Tangent spaces
Tangent functor
Fiber bundles
Trivial and non-trivia fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and puill of tensor fields

Parallel transport

Derivatives

Key contributions

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula

NLCM

Dralexamena
A basic question
Rosie
Tangent spaces
Tangent functor
Fiber bundles
Tivial and non-trivial fiber bundles

Sections
Tensor bundle and sections

Push and pull
Push and pull of tensor fields

Parallel transport

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm

NLCM

Drelemame
A basic question

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference

Achievements

- Notion of spatial and material fields
- Material time derivative and Euler split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference
- Notions and treatments of constitutive models in the nonlinear range should be revised and reformulated

Achievements

- Notion of spatial and material fields
- Material time derivative and EuLer split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- Euler stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference
- Notions and treatments of constitutive models in the nonlinear range should be revised and reformulated
- Algorithms for numerical computations must be modified to comply with the covariant theory; multiplicative decomposition of the deformation gradient should be deemed as geometrically inconsistent

[^0]: ${ }^{2}$ See e.g.

 1) C. Truesdell, A first Course in Rational Continuum Mechanics Second Ed. Academic Press, New-York (1991). First Ed. 1977
 2) M.E. Gurtin, An Introduction to Continuum Mechanics Academic Press, San Diego (1981)
 3) J.E. Marsden \& T.J.R. Hughes, Mathematical Foundations of Elasticity Prentice-Hall, Redwood City, Cal. (1983)
