XX Congresso AIMETA

Bologna 12-15 Settembre 2011

Giovanni Romano

DIST – Dipartimento di Ingegneria STrutturale Università di Napoli Federico II, Italia

Conferenza Generale

del 13 Settembre 2011

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

On the Geometric Approach to Non-Linear Continuum Mechanics

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

On the Geometric Approach to Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

On the Geometric Approach to Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead for Differential Geometry (DG) and Calculus on Manifolds (CoM) as natural tools to develop theoretical and computational models.

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Aetric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Hermann Weyl (1885-1955)

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.

H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Hermann Weyl (1885-1955)

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.

H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Hermann Weyl (1885-1955)

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.

H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.

This lecture is in support of the angel.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Hermann Weyl (1885-1955)

In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain.

H. Weyl, "Invariants", Duke Mathematical Journal 5 (3): (1939) 489-502

Adapted to NLCM

In these days the angel of differential geometry and the devil of algebra and calculus on linear spaces fight for the soul of each individual continuum mechanics domain.

This lecture is in support of the angel. Differential Geometry provides the tools to fly higher and see what before was shadowed or completely hidden.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

A basic question in NLCM

How to compare material tensors at corresponding points in displaced configurations of a body?

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

A basic question in NLCM

- How to compare material tensors at corresponding points in displaced configurations of a body?
- Devil's temptation:

In 3D bodies it might seem as natural to compare by translation the involved material vectors. This is tacitly done in literature, when evaluating the material time-derivative of the stress tensor T:

 $\dot{\mathsf{T}}(\mathsf{p},t) := \partial_{\tau=t} \operatorname{\mathsf{T}}(\mathsf{p},\tau)$

or the material time-derivative of the director **n** of a nematic liquid crystal:

 $\dot{\mathbf{n}}(\mathbf{p},t) := \partial_{\tau=t} \, \mathbf{n}(\mathbf{p},\tau)$

These definitions are connection dependent and geometrically untenable when considering 1D and 2D models (wires and membranes).

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

A basic question in NLCM

- How to compare material tensors at corresponding points in displaced configurations of a body?
- Devil's temptation:

In 3D bodies it might seem as natural to compare by translation the involved material vectors. This is tacitly done in literature, when evaluating the material time-derivative of the stress tensor T:

 $\dot{\mathsf{T}}(\mathsf{p},t) := \partial_{\tau=t} \operatorname{\mathsf{T}}(\mathsf{p},\tau)$

or the material time-derivative of the director **n** of a nematic liquid crystal:

 $\dot{\mathbf{n}}(\mathbf{p},t) := \partial_{\tau=t} \, \mathbf{n}(\mathbf{p},\tau)$

These definitions are connection dependent and geometrically untenable when considering 1D and 2D models (wires and membranes).

Hint:

Tangent vectors to a body placement are transformed into tangent vectors to another body placement by the tangent displacement map. This is the essence of the COVARIANCE PARADIGM.

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

letric theory

Events manifold fibrations

Frajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation¹:

¹G. Romano, R. Barretta, Covariant hypo-elasticity. Eur. J. Mech. A-Solids 30 (2011) 1012–1023 DOI:10.1016/j.euromechsol.2011.05.005

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation¹:

¹G. Romano, R. Barretta, Covariant hypo-elasticity. Eur. J. Mech. A-Solids 30 (2011) 1012–1023 DOI:10.1016/j.euromechsol.2011.05.005

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

DIMENSIONALITY INDEPENDENCE:

A geometrically consistent theoretical framework should be equally applicable to body models of any dimension.

COVARIANCE PARADIGM motivation¹:

¹G. Romano, R. Barretta, Covariant hypo-elasticity. Eur. J. Mech. A-Solids 30 (2011) 1012–1023 DOI:10.1016/j.euromechsol.2011.05.005

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Traiectory

Tangent vector to a manifold:

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent vector to a manifold:

velocity of a curve $\mathbf{c} \in \mathrm{C}^1([a,b];\mathbb{M})$, $\lambda \in [a,b]$, $\mathbf{x} = \mathbf{c}(\lambda)$ base point

 $\mathbf{v} := \partial_{\mu=\lambda} \operatorname{c}(\mu) \in \mathbb{T}_{\mathbf{x}}\mathbb{M}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent vector to a manifold:

velocity of a curve $\mathbf{c} \in \mathrm{C}^1([a,b];\mathbb{M}), \quad \lambda \in [a,b], \quad \mathbf{x} = \mathbf{c}(\lambda)$ base point

 $\mathbf{v} := \partial_{\mu=\lambda} \operatorname{\mathbf{c}}(\mu) \in \mathbb{T}_{\mathbf{x}}\mathbb{M}$

Cotangent vector:

 $\mathbf{v}^* \in L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathcal{R}\right) \in \mathbb{T}_{\mathbf{x}}^*\mathbb{M}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent vector to a manifold:

velocity of a curve $\mathbf{c} \in \mathrm{C}^1([a,b];\mathbb{M}), \quad \lambda \in [a,b], \quad \mathbf{x} = \mathbf{c}(\lambda)$ base point

 $\mathbf{v} := \partial_{\mu=\lambda} \operatorname{\mathbf{c}}(\mu) \in \mathbb{T}_{\mathbf{x}}\mathbb{M}$

Cotangent vector:

 $\mathbf{v}^* \in L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}\,;\mathcal{R}
ight) \in \mathbb{T}^*_{\mathbf{x}}\mathbb{M}$

Tangent map:

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent vector to a manifold:

velocity of a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$, $\lambda \in [a, b]$, $\mathbf{x} = \mathbf{c}(\lambda)$ base point

 $\mathbf{v} := \partial_{\mu=\lambda} \operatorname{\mathbf{c}}(\mu) \in \mathbb{T}_{\mathbf{x}}\mathbb{M}$

Cotangent vector:

 $\mathbf{v}^* \in L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}\,;\mathcal{R}
ight) \in \mathbb{T}^*_{\mathbf{x}}\mathbb{M}$

Tangent map:

► A map $\boldsymbol{\zeta} \in \mathrm{C}^1(\mathbb{M}; \mathbb{N})$ sends a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$ into a curve $\boldsymbol{\zeta} \circ \mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{N})$.

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent vector to a manifold:

velocity of a curve $\mathbf{c} \in \mathrm{C}^1([a,b];\mathbb{M})$, $\lambda \in [a,b]$, $\mathbf{x} = \mathbf{c}(\lambda)$ base point

 $\mathbf{v} := \partial_{\mu=\lambda} \operatorname{\mathbf{c}}(\mu) \in \mathbb{T}_{\mathbf{x}}\mathbb{M}$

Cotangent vector:

$$\mathbf{v}^* \in L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathcal{R}\right) \in \mathbb{T}_{\mathbf{x}}^*\mathbb{M}$$

Tangent map:

- ► A map $\boldsymbol{\zeta} \in \mathrm{C}^{1}(\mathbb{M} ; \mathbb{N})$ sends a curve $\mathbf{c} \in \mathrm{C}^{1}([a, b]; \mathbb{M})$ into a curve $\boldsymbol{\zeta} \circ \mathbf{c} \in \mathrm{C}^{1}([a, b]; \mathbb{N})$.
- ► The tangent map $T_{\mathbf{x}} \boldsymbol{\zeta} \in C^0(\mathbb{T}_{\mathbf{x}}\mathbb{M} ; \mathbb{T}_{\boldsymbol{\zeta}(\mathbf{x})}\mathbb{N})$ sends a tangent vector at $\mathbf{x} \in \mathbb{M}$ $\mathbf{v} \in \mathbb{T}_{\mathbf{x}}(\mathbb{M}) := \partial_{\mu=\lambda} \mathbf{c}(\mu)$ into a tangent vector at $\boldsymbol{\zeta}(\mathbf{x}) \in \mathbb{N}$ $T_{\mathbf{x}} \boldsymbol{\zeta} \cdot \mathbf{v} \in \mathbb{T}_{\boldsymbol{\zeta}(\mathbf{x})}(\mathbb{N}) := \partial_{\mu=\lambda} (\boldsymbol{\zeta} \circ \mathbf{c})(\mu)$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent bundle

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent bundle

disjoint union of tangent spaces:

 $\mathbb{TM}:=\cup_{\textbf{x}\in\mathbb{M}}\mathbb{T}_{\textbf{x}}\mathbb{M}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent bundle

disjoint union of tangent spaces:

$$\mathbb{TM}:=\cup_{\textbf{x}\in\mathbb{M}}\mathbb{T}_{\textbf{x}}\mathbb{M}$$

$$\blacktriangleright$$
 Projection: ${m au}_{\mathbb M}\in {
m C}^1({\mathbb T}{\mathbb M}\,;{\mathbb M})$

$$\mathbf{v} \in \mathbb{T}_{\mathbf{x}}\mathbb{M}, \quad \boldsymbol{ au}_{\mathbb{M}}(\mathbf{v}) := \mathbf{x} \quad ext{base point}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent bundle

disjoint union of tangent spaces:

 $\mathbb{TM}:=\cup_{\textbf{x}\in\mathbb{M}}\mathbb{T}_{\textbf{x}}\mathbb{M}$

► Projection:
$$\tau_{\mathbb{M}} \in C^{1}(\mathbb{TM}; \mathbb{M})$$

 $\mathbf{v} \in \mathbb{T}_{\mathbf{x}}\mathbb{M}, \quad \tau_{\mathbb{M}}(\mathbf{v}) := \mathbf{x} \text{ base point}$

Surjective submersion:

 ${\mathcal T}_{v}{\boldsymbol\tau}_{\mathbb M}\in {\rm C}^1({\mathbb T}_v{\mathbb T}{\mathbb M}\,;{\mathbb T}_x{\mathbb M})$ is surjective

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tangent bundle

disjoint union of tangent spaces:

$$\mathbb{TM}:=\cup_{\textbf{x}\in\mathbb{M}}\mathbb{T}_{\textbf{x}}\mathbb{M}$$

• Projection:
$$au_{\mathbb{M}} \in \mathrm{C}^1(\mathbb{TM}\,;\mathbb{M})$$

 $\mathbf{v} \in \mathbb{T}_{\mathbf{x}}\mathbb{M}\,, \quad au_{\mathbb{M}}(\mathbf{v}) := \mathbf{x} \quad \text{base point}$

Surjective submersion:

 ${\mathcal T}_{{\bf v}} {\boldsymbol \tau}_{\mathbb M} \in {\rm C}^1({\mathbb T}_{{\bf v}} {\mathbb T} {\mathbb M}\, ; {\mathbb T}_{{\bf x}} {\mathbb M})\,$ is surjective

Tangent functor

 $oldsymbol{\zeta} \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{N}) \quad \mapsto \quad Toldsymbol{\zeta} \in \mathrm{C}^0(\mathbb{TM}\,;\mathbb{TN})$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Fiber bundles

fiber bundle

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

base manifold

fiber bundle

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

Fiber bundles

▶ E, M manifolds

base manifold

fiber bundle

NLCM

XX Congresso AIMETA

A basis question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

- ► E, M manifolds
- Fiber bundle projection: $\pi_{\mathbb{M},\mathrm{E}} \in \mathrm{C}^1(\mathrm{E}\,;\mathbb{M})$ surjective submersion

base manifold

fiber bundle

Prolegomena

XX Congresso AIMETA

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

- ► E, M manifolds
- Fiber bundle projection: $\pi_{\mathbb{M},\mathrm{E}} \in \mathrm{C}^1(\mathrm{E}\,;\mathbb{M})$ surjective submersion
- ► Total space: E
- ► Base space: M
- \blacktriangleright Fiber manifold: $(\pi_{\mathbb{M},\mathrm{E}}(\mathsf{x}))^{-1}$ based at $\mathsf{x}\in\mathbb{M}$

base manifold

fiber bundle

Prolegomena

XX Congresso AIMETA

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

- ► E, M manifolds
- Fiber bundle projection: π_{M,E} ∈ C¹(E; M) surjective submersion
- ► Total space: E
- ► Base space: M
- \blacktriangleright Fiber manifold: $(\pi_{\mathbb{M},\mathrm{E}}(\mathsf{x}))^{-1}$ based at $\mathsf{x}\in\mathbb{M}$
- ▶ Tangent bundle $T \pi_{\mathbb{M}, \mathbb{E}} \in \mathrm{C}^0(\mathbb{T}\mathrm{E}; \mathbb{T}\mathbb{M})$

base manifold

fiber bundle

Prolegomena

XX Congresso AIMETA

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

- ► E, M manifolds
- Fiber bundle projection: $\pi_{\mathbb{M},\mathrm{E}} \in \mathrm{C}^1(\mathrm{E}\,;\mathbb{M})$ surjective submersion
- ► Total space: E
- ► Base space: M
- \blacktriangleright Fiber manifold: $(\pi_{\mathbb{M},\mathrm{E}}(\mathsf{x}))^{-1}$ based at $\mathsf{x}\in\mathbb{M}$
- ▶ Tangent bundle $T \pi_{\mathbb{M}, \mathbb{E}} \in \mathrm{C}^0(\mathbb{T}\mathrm{E}\,; \mathbb{T}\mathbb{M})$
- ▶ Vertical tangent subbundle $T\pi_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^0(\mathbb{V}\mathrm{E}\,;\mathbb{T}\mathbb{M})$

base manifold

fiber bundle

Prolegomer

A basic question

XX Congresso AIMETA

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

letric theory

Events manifold fibrations

Trajectory

Evolution

Fiber bundles

- ► E, M manifolds
- Fiber bundle projection: π_{M,E} ∈ C¹(E; M) surjective submersion
- ► Total space: E
- ► Base space: M
- \blacktriangleright Fiber manifold: $(\pi_{\mathbb{M},\mathrm{E}}(\mathsf{x}))^{-1}$ based at $\mathsf{x}\in\mathbb{M}$
- ▶ Tangent bundle $T \pi_{\mathbb{M}, \mathbb{E}} \in \mathrm{C}^0(\mathbb{T}\mathrm{E}\,; \mathbb{T}\mathbb{M})$
- ► Vertical tangent subbundle $T\pi_{\mathbb{M},\mathbb{E}} \in C^{0}(\mathbb{V}\mathbb{E};\mathbb{T}\mathbb{M})$ with: $\delta \mathbf{e} \in \mathbb{V}\mathbb{E} \subset \mathbb{T}\mathbb{E} \implies T_{\mathbf{e}}\pi_{\mathbb{M},\mathbb{E}} \cdot \delta \mathbf{e} = 0$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trivial and non-trivial fiber bundles

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trivial and non-trivial fiber bundles

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trivial and non-trivial fiber bundles

Torus

Listing-Möbius strip

Klein Bottle

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

letric theory

Events manifold fibrations

Frajectory

Sections of fiber bundles

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

Sections of fiber bundles

▶ Fiber bundle $\pi_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^1(\mathbb{E};\mathbb{M})$

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

bere namifold

$$\pi_{\mathbb{M},\mathrm{E}} \circ \mathsf{s}_{\mathrm{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$$

NLCM

Prolegomena

A basic question

XX Congresso AIMETA

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

Sections of fiber bundles

▶ Fiber bundle $\pi_{\mathbb{M}, \mathbb{E}} \in \mathrm{C}^1(\mathbb{E}; \mathbb{M})$

Sections

 $\boldsymbol{s}_{\mathrm{E},\mathbb{M}}\in\mathrm{C}^{1}(\mathbb{M}\,;\mathrm{E})\,,$

Sections of fiber bundles

- $\boldsymbol{\pi}_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^1(\mathbb{E};\mathbb{M})$ Fiber bundle
- $\mathbf{s}_{\mathrm{E},\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M}; \mathrm{E}),$ Sections
- $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E}\,;\mathbb{T}\mathrm{E})\,, \qquad oldsymbol{ au}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = \mathrm{ID}_{\mathrm{E}}$ Tangent v.f.

$$\pi_{\mathbb{M},\mathrm{E}} \circ \mathbf{s}_{\mathrm{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$$

XX Congresso AIMETA

Sections

bare nemigified

 $\pi_{\mathbb{M},\mathrm{E}} \circ \mathsf{s}_{\mathrm{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$

▶ Sections $\mathbf{s}_{E,\mathbb{M}} \in C^1(\mathbb{M}; E)$,

Sections of fiber bundles

Fiber bundle

▶ Tangent v.f. $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E}\,; \mathbb{T}\mathrm{E})\,, \qquad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = \mathrm{ID}_{\mathrm{E}}$

 $\pi_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^1(\mathbb{E};\mathbb{M})$

• Vertical tangent sections $T \boldsymbol{\pi}_{\mathbb{M},\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = 0$

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

XX Congresso AIMETA

Sections of fiber bundles

▶ Fiber bundle $\pi_{\mathbb{M}, \mathbb{E}} \in \mathrm{C}^1(\mathbb{E}; \mathbb{M})$

 $\pi_{\mathbb{M},\mathbb{E}} \circ \mathsf{s}_{\mathbb{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$

- Sections $\mathbf{s}_{\mathrm{E},\mathbb{M}} \in \mathrm{C}^1(\mathbb{M}\,;\mathrm{E})\,,$
- ▶ Tangent v.f. $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E}\,; \mathbb{T}\mathrm{E})\,, \qquad \boldsymbol{\tau}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = \mathrm{ID}_{\mathrm{E}}$
- Vertical tangent sections $T \boldsymbol{\pi}_{M,E} \circ \mathbf{v}_{E} = 0$

Sections of tangent and bi-tangent bundles

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Sections

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Sections of fiber bundles

 $\boldsymbol{\pi}_{\mathbb{M} \to \mathbb{E}} \in \mathrm{C}^1(\mathrm{E}; \mathbb{M})$ Fiber bundle

- base manifold fiber bundle
- Sections $\mathbf{s}_{\mathrm{E},\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M};\mathrm{E}),$
- $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E}\,;\mathbb{T}\mathrm{E})\,, \qquad oldsymbol{ au}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = \mathrm{ID}_{\mathrm{E}}$ Tangent v.f.
- Vertical tangent sections $T \pi_{M,E} \circ \mathbf{v}_{E} = 0$

Sections of tangent and bi-tangent bundles

Tangent vector fields:

 $\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M};\mathbb{TM})$: $\boldsymbol{\tau}_{\mathbb{M}} \circ \mathbf{v} = \mathrm{ID}_{\mathbb{M}}$

XX Congresso AIMETA

Sections

 $\pi_{\mathbb{M},\mathrm{E}} \circ \mathsf{s}_{\mathrm{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$

Sections of fiber bundles

Fiber bundle $\pi_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^1(\mathbb{E};\mathbb{M})$

- base manifold fiber bundle
- $\mathbf{s}_{\mathrm{E},\mathrm{M}} \in \mathrm{C}^{1}(\mathbb{M}\,;\mathrm{E})\,, \quad \boldsymbol{\pi}_{\mathrm{M},\mathrm{E}} \circ \mathbf{s}_{\mathrm{E},\mathrm{M}} = \mathrm{ID}_{\mathrm{M}}$ Sections
- $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E}\,;\mathbb{T}\mathrm{E})\,, \qquad oldsymbol{ au}_{\mathrm{E}} \circ \mathbf{v}_{\mathrm{E}} = \mathrm{ID}_{\mathrm{E}}$ Tangent v.f.

• Vertical tangent sections $T \pi_{M,E} \circ \mathbf{v}_{E} = 0$

Sections of tangent and bi-tangent bundles

Tangent vector fields:

 $\mathbf{v} \in \mathrm{C}^{1}(\mathbb{M};\mathbb{TM})$: $\boldsymbol{\tau}_{\mathbb{M}} \circ \mathbf{v} = \mathrm{ID}_{\mathbb{M}}$

Bi-tangent vector fields:

$$\mathsf{X} \in \mathrm{C}^1(\mathbb{TM}\,;\mathbb{TTM})\,:\, oldsymbol{ au}_{\mathbb{TM}}\circ\mathsf{X}=\mathrm{Id}_{\mathbb{TM}}$$

XX Congresso AIMETA

Sections

Sections of fiber bundles

 $\pi_{\mathbb{M},\mathbb{E}} \in \mathrm{C}^1(\mathbb{E};\mathbb{M})$ Fiber bundle

- hase manifold fiber bundle
- Sections $\mathbf{s}_{\mathrm{E}\,\mathbb{M}} \in \mathrm{C}^{1}(\mathbb{M}; \mathrm{E}),$
- $\mathbf{v}_{\mathrm{E}} \in \mathrm{C}^{1}(\mathrm{E}; \mathbb{T}\mathrm{E}),$ Tangent v.f. $oldsymbol{ au}_{\mathrm{E}}\circoldsymbol{\mathsf{v}}_{\mathrm{E}}=\mathrm{ID}_{\mathrm{E}}$

• Vertical tangent sections $T \pi_{M,E} \circ \mathbf{v}_{E} = 0$

Sections of tangent and bi-tangent bundles

Tangent vector fields:

 $\mathbf{v} \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{TM})\,:\, oldsymbol{ au}_\mathbb{M}\circ\mathbf{v} = \mathrm{ID}_\mathbb{M}$

Bi-tangent vector fields:

$$\mathsf{X} \in \mathrm{C}^1(\mathbb{TM}\,;\mathbb{TTM})\,:\, oldsymbol{ au}_{\mathbb{TM}}\circ\mathsf{X}=\mathrm{Id}_{\mathbb{TM}}$$

Vertical bi-tangent vectors $\mathbf{X} \in \operatorname{Ker} T_{\mathbf{v}} \boldsymbol{\tau}_{\mathbb{M}}$

XX Congresso AIMETA

Sections

 $\pi_{\mathbb{M},\mathrm{E}} \circ \mathsf{s}_{\mathrm{E},\mathbb{M}} = \mathrm{ID}_{\mathbb{M}}$

Tensor spaces

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

• Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

• Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$

• Contravariant
$$\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^*\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^*\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

• Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$

• Contravariant
$$\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^*\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^*\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$$

$$\blacktriangleright \quad \mathsf{Mixed} \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}\,,\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}\,;\mathcal{R}\right) = L\left(\mathbb{T}_{\mathbf{x}}\mathbb{M}\,;\mathbb{T}_{\mathbf{x}}\mathbb{M}\right)$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

- Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$
- ► Contravariant $\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}^{2}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- Mixed $\mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- with the alteration rules:

$$\mathbf{s}_{\mathbf{x}}^{\mathrm{Cov}} = \mathbf{g}_{\mathbf{x}} \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \,, \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Con}} = \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathbf{x}}^{-1}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

- Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$
- ► Contravariant $\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}^{2}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- Mixed $\mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- with the alteration rules:

$$\mathbf{s}_{\mathbf{x}}^{\mathrm{Cov}} = \mathbf{g}_{\mathbf{x}} \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \,, \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Con}} = \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathbf{x}}^{-1}$$

Tensor bundles and sections

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

- Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$
- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}^{2}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- Mixed $\mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- with the alteration rules:

$$\mathbf{s}_{\mathbf{x}}^{\mathrm{Cov}} = \mathbf{g}_{\mathbf{x}} \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \,, \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Con}} = \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathbf{x}}^{-1}$$

Tensor bundles and sections

▶ Tensor bundle $au_{\mathbb{M}}^{ ext{TENS}} \in \mathrm{C}^1(ext{TENS}(\mathbb{TM}); \mathbb{M})$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

- Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$
- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}^{2}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- Mixed $\mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- with the alteration rules:

$$\mathbf{s}_{\mathbf{x}}^{\mathrm{Cov}} = \mathbf{g}_{\mathbf{x}} \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \,, \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Con}} = \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathbf{x}}^{-1}$$

Tensor bundles and sections

- ▶ Tensor bundle $au_{\mathbb{M}}^{\mathrm{TENS}} \in \mathrm{C}^{1}(\mathrm{TENS}(\mathbb{TM}); \mathbb{M})$
- ▶ Tensor field $s_{\mathbb{M}}^{\text{TENS}} \in C^1(\mathbb{M}; \text{TENS}(\mathbb{TM}))$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Tensor spaces

- Covariant $\mathbf{s}_{\mathbf{x}}^{\text{Cov}} \in \text{Cov}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}^2; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}^*\mathbb{M})$
- Contravariant $\mathbf{s}_{\mathbf{x}}^{\text{CON}} \in \text{CON}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}^{2}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- Mixed $\mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \in \mathrm{Mix}_{\mathbf{x}}(\mathbb{TM}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}, \mathbb{T}_{\mathbf{x}}^{*}\mathbb{M}; \mathcal{R}) = L(\mathbb{T}_{\mathbf{x}}\mathbb{M}; \mathbb{T}_{\mathbf{x}}\mathbb{M})$
- with the alteration rules:

$$\mathbf{s}_{\mathbf{x}}^{\mathrm{Cov}} = \mathbf{g}_{\mathbf{x}} \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \,, \quad \mathbf{s}_{\mathbf{x}}^{\mathrm{Con}} = \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathbf{g}_{\mathbf{x}}^{-1}$$

Tensor bundles and sections

- ▶ Tensor bundle $au_{\mathbb{M}}^{\mathrm{TENS}} \in \mathrm{C}^{1}(\mathrm{TENS}(\mathbb{TM}); \mathbb{M})$
- ▶ Tensor field $s_{\mathbb{M}}^{\mathrm{TENS}} \in \mathrm{C}^{1}(\mathbb{M}; \mathrm{TENS}(\mathbb{TM}))$

• with:
$$\boldsymbol{\tau}_{\mathbb{M}}^{\mathrm{TENS}} \circ \mathbf{s}_{\mathbb{M}}^{\mathrm{TENS}} = \mathrm{ID}_{\mathbb{M}}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull Given a map $\boldsymbol{\zeta} \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{N})$

Pull-back of a scalar field

$$f: \mathbb{N} \mapsto \mathrm{Fun}(\mathbb{N}) \quad \mapsto \quad \boldsymbol{\zeta} \downarrow f: \mathbb{M} \mapsto \mathrm{Fun}(\mathbb{M})$$

defined by:

$$(\zeta {\downarrow} f)_{\mathsf{x}} := \zeta {\downarrow} f_{\zeta(\mathsf{x})} := f_{\zeta(\mathsf{x})} \in \mathrm{Fun}_{\mathsf{x}}(\mathbb{M})$$
.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull Given a map $\boldsymbol{\zeta} \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{N})$

Pull-back of a scalar field

$$f: \mathbb{N} \mapsto \mathrm{Fun}(\mathbb{N}) \quad \mapsto \quad \zeta \downarrow f: \mathbb{M} \mapsto \mathrm{Fun}(\mathbb{M})$$

defined by:

$$(\zeta \downarrow f)_{\mathsf{x}} := \zeta \downarrow f_{\zeta(\mathsf{x})} := f_{\zeta(\mathsf{x})} \in \mathrm{Fun}_{\mathsf{x}}(\mathbb{M}).$$

Push-forward of a tangent vector field

 $\mathbf{v}\in\mathrm{C}^1(\mathbb{M}\,;\mathbb{TM})\quad\mapsto\quad \pmb{\zeta}\!\uparrow\!\mathbf{v}:\mathbb{N}\mapsto\mathbb{TN}$

defined by:

$$(\zeta \uparrow \mathbf{v})_{\zeta(\mathbf{x})} := \zeta \uparrow \mathbf{v}_{\mathbf{x}} = T_{\mathbf{x}} \zeta \cdot \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\zeta(\mathbf{x})} \mathbb{N}$$
.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull of tensor fields

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull of tensor fields

Covectors

$$\langle \zeta {\downarrow} \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle = \langle \mathbf{v}^*_{\zeta(\mathbf{x})}, \zeta {\uparrow} \mathbf{v}_{\mathbf{x}} \rangle = \langle T^*_{\zeta(\mathbf{x})} \zeta \circ \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull of tensor fields

Covectors

$$\langle \zeta {\downarrow} \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle = \langle \mathbf{v}^*_{\zeta(\mathbf{x})}, \zeta {\uparrow} \mathbf{v}_{\mathbf{x}} \rangle = \langle \, T^*_{\zeta(\mathbf{x})} \zeta \circ \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle$$

Covariant tensors

$$\boldsymbol{\zeta} \! \downarrow \! \boldsymbol{\mathsf{s}}_{\boldsymbol{\zeta}(\boldsymbol{\mathsf{x}})}^{\mathrm{Cov}} = \mathit{T}_{\boldsymbol{\zeta}(\boldsymbol{\mathsf{x}})}^{*} \boldsymbol{\zeta} \circ \boldsymbol{\mathsf{s}}_{\boldsymbol{\zeta}(\boldsymbol{\mathsf{x}})}^{\mathrm{Cov}} \circ \mathit{T}_{\boldsymbol{\mathsf{x}}} \boldsymbol{\zeta} \in \mathrm{Cov}(\mathbb{TM})_{\boldsymbol{\mathsf{x}}}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull of tensor fields

Covectors

$$\langle \zeta \! \downarrow \! \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle = \langle \mathbf{v}^*_{\zeta(\mathbf{x})}, \zeta \! \uparrow \! \mathbf{v}_{\mathbf{x}} \rangle = \langle \, \mathcal{T}^*_{\zeta(\mathbf{x})} \zeta \circ \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle$$

Covariant tensors

$$\zeta \! \downarrow \! \mathsf{s}^{\mathrm{Cov}}_{\zeta(\mathsf{x})} = \mathit{T}^*_{\zeta(\mathsf{x})} \zeta \circ \mathsf{s}^{\mathrm{Cov}}_{\zeta(\mathsf{x})} \circ \mathit{T}_{\mathsf{x}} \zeta \in \mathrm{Cov}(\mathbb{TM})_{\mathsf{x}}$$

Contravariant tensors

$$\boldsymbol{\zeta} \uparrow \boldsymbol{s}_{\boldsymbol{x}}^{\mathrm{CON}} = \boldsymbol{\mathit{T}}_{\boldsymbol{x}} \boldsymbol{\zeta} \circ \boldsymbol{s}_{\boldsymbol{x}}^{\mathrm{CON}} \circ \boldsymbol{\mathit{T}}_{\boldsymbol{\zeta}(\boldsymbol{x})}^{*} \boldsymbol{\zeta} \in \mathrm{CON}(\mathbb{TN})_{\boldsymbol{\zeta}(\boldsymbol{x})}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Push and pull of tensor fields

Covectors

$$\langle \zeta \! \downarrow \! \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle = \langle \mathbf{v}^*_{\zeta(\mathbf{x})}, \zeta \! \uparrow \! \mathbf{v}_{\mathbf{x}} \rangle = \langle \, \mathcal{T}^*_{\zeta(\mathbf{x})} \zeta \circ \mathbf{v}^*_{\zeta(\mathbf{x})}, \mathbf{v}_{\mathbf{x}} \rangle$$

Covariant tensors

$$\zeta \! \downarrow \! \mathsf{s}^{\mathrm{Cov}}_{\zeta(\mathsf{x})} = \mathcal{T}^*_{\zeta(\mathsf{x})} \zeta \circ \mathsf{s}^{\mathrm{Cov}}_{\zeta(\mathsf{x})} \circ \mathcal{T}_{\mathsf{x}} \zeta \in \mathrm{Cov}(\mathbb{TM})_{\mathsf{x}}$$

Contravariant tensors

$$\zeta \uparrow \boldsymbol{s}^{\mathrm{Con}}_{\boldsymbol{x}} = \mathit{T}_{\boldsymbol{x}} \boldsymbol{\zeta} \circ \boldsymbol{s}^{\mathrm{Con}}_{\boldsymbol{x}} \circ \mathit{T}^*_{\boldsymbol{\zeta}(\boldsymbol{x})} \boldsymbol{\zeta} \in \mathrm{Con}(\mathbb{TN})_{\boldsymbol{\zeta}(\boldsymbol{x})}$$

Mixed tensors

$$\zeta \uparrow \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} = \mathcal{T}_{\mathbf{x}} \zeta \circ \mathbf{s}_{\mathbf{x}}^{\mathrm{Mix}} \circ \mathcal{T}_{\zeta(\mathbf{x})} \zeta^{-1} \in \mathrm{Mix}(\mathbb{TN})_{\zeta(\mathbf{x})}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$

Vector fields

$$\begin{split} \mathbf{x} &= \mathbf{c}(\mu) \,, \quad \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\ & \mathbf{c}_{\mu,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} \\ & \mathbf{c}_{\lambda,\mu} \Uparrow \circ \mathbf{c}_{\mu,\nu} \Uparrow = \mathbf{c}_{\lambda,\nu} \Uparrow \end{split}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$

Vector fields

$$\begin{split} \mathbf{x} &= \mathbf{c}(\mu) \,, \quad \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\ & \mathbf{c}_{\mu,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} \\ & \mathbf{c}_{\lambda,\mu} \Uparrow \circ \mathbf{c}_{\mu,\nu} \Uparrow = \mathbf{c}_{\lambda,\nu} \Uparrow \end{split}$$

• Covector fields $\mathbf{v}^*_{\mathbf{x}} \in \mathbb{T}^*_{\mathbf{x}}\mathbb{M}$ (by naturality)

$$\langle \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \rangle = \mathbf{c}_{\lambda,\mu} \Uparrow \langle \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}} \rangle$$

Tensor fields (by naturality)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$

Vector fields

$$\begin{split} \mathbf{x} &= \mathbf{c}(\mu) \,, \quad \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\ & \mathbf{c}_{\mu,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} \\ & \mathbf{c}_{\lambda,\mu} \Uparrow \circ \mathbf{c}_{\mu,\nu} \Uparrow = \mathbf{c}_{\lambda,\nu} \Uparrow \end{split}$$

• Covector fields $\mathbf{v}^*_{\mathbf{x}} \in \mathbb{T}^*_{\mathbf{x}}\mathbb{M}$ (by naturality)

$$\langle \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \rangle = \mathbf{c}_{\lambda,\mu} \Uparrow \langle \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}} \rangle$$

Tensor fields (by naturality)

Gregorio Ricci-Curbastro (1853 - 1925)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Parallel transport along a curve $\mathbf{c} \in \mathrm{C}^1([a, b]; \mathbb{M})$

Vector fields

$$\begin{split} \mathbf{x} &= \mathbf{c}(\mu) \,, \quad \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \mathbb{M} \quad \mapsto \quad \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{c}(\lambda)} \mathbb{M} \\ & \mathbf{c}_{\mu,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} \\ & \mathbf{c}_{\lambda,\mu} \Uparrow \circ \mathbf{c}_{\mu,\nu} \Uparrow = \mathbf{c}_{\lambda,\nu} \Uparrow \end{split}$$

• Covector fields $\mathbf{v}^*_{\mathbf{x}} \in \mathbb{T}^*_{\mathbf{x}}\mathbb{M}$ (by naturality)

$$\langle \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{c}_{\lambda,\mu} \Uparrow \mathbf{v}_{\mathbf{x}} \rangle = \mathbf{c}_{\lambda,\mu} \Uparrow \langle \mathbf{v}_{\mathbf{x}}^{*}, \mathbf{v}_{\mathbf{x}} \rangle$$

Tensor fields (by naturality)

Tullio Levi-Civita (1873 - 1941)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

 $\begin{array}{l} \mbox{Derivatives of a tensor field}\\ s\in {\rm C}^1(\mathbb{M}\,;\,\mbox{Tens}(\mathbb{TM}))\\ \mbox{along the flow of a tangent vector field} \end{array}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

 $\begin{array}{l} \text{Derivatives of a tensor field} \\ s\in \mathrm{C}^1(\mathbb{M}\,;\, \overline{\text{Tens}}(\mathbb{TM})) \\ \text{along the flow of a tangent vector field} \end{array}$

Tangent vector fields and Flows

$$\begin{split} \mathbf{v} &\in \mathrm{C}^{1}(\mathbb{M}\,;\mathbb{TM}) \qquad \mathsf{Fl}_{\lambda}^{\mathsf{v}} \in \mathrm{C}^{1}(\mathbb{M}\,;\mathbb{M}) \\ \mathbf{v} &:= \partial_{\lambda=0}\,\mathsf{Fl}_{\lambda}^{\mathsf{v}} \end{split}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

 $\begin{array}{l} \text{Derivatives of a tensor field} \\ s \in \mathrm{C}^1(\mathbb{M}\,;\, \textbf{Tens}(\mathbb{TM})) \\ \text{along the flow of a tangent vector field} \end{array}$

Tangent vector fields and Flows

$$\begin{split} \mathbf{v} &\in \mathrm{C}^1(\mathbb{M}\,;\mathbb{T}\mathbb{M}) \qquad \mathsf{Fl}^{\mathsf{v}}_\lambda \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{M}) \\ \mathbf{v} &:= \partial_{\lambda=0}\,\mathsf{Fl}^{\mathsf{v}}_\lambda \end{split}$$

Lie derivative - LD

$$\mathcal{L}_{oldsymbol{v}}\, {f s} := \partial_{\lambda=0}\, {f Fl}^{oldsymbol{v}}_\lambda \! \downarrow \! \left({f s} \circ {f Fl}^{oldsymbol{v}}_\lambda
ight)$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

 $\begin{array}{l} \text{Derivatives of a tensor field} \\ s\in \mathrm{C}^1(\mathbb{M}\,;\, \textbf{Tens}(\mathbb{TM})) \\ \text{along the flow of a tangent vector field} \end{array}$

Tangent vector fields and Flows

$$\begin{split} \mathbf{v} &\in \mathrm{C}^1(\mathbb{M}\,;\mathbb{T}\mathbb{M}) \qquad \mathsf{Fl}^{\mathsf{v}}_\lambda \in \mathrm{C}^1(\mathbb{M}\,;\mathbb{M}) \\ \mathbf{v} &:= \partial_{\lambda=0}\,\mathsf{Fl}^{\mathsf{v}}_\lambda \end{split}$$

Lie derivative - LD

$$\mathcal{L}_{oldsymbol{
u}}\, {f s} := \partial_{\lambda=0}\, {f Fl}^{oldsymbol{
u}}_\lambda \! \downarrow \! ({f s} \circ {f Fl}^{oldsymbol{
u}}_\lambda)$$

Parallel derivative - PD

$$abla_{\mathsf{v}}\,\mathsf{s}:=\partial_{\lambda=0}\,\mathsf{Fl}^{\mathsf{v}}_{\lambda}\Downarrow\,(\mathsf{s}\circ\mathsf{Fl}^{\mathsf{v}}_{\lambda})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivative

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

C. Truesdell & W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivative

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

C. Truesdell & W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

C. Truesdell & W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM, Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes *Mathematical Foundations of Elasticity* Prentice-Hall, Redwood City, Cal. (1983)

J.C. Simó A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Continuum formulation

Comp. Meth. Appl. Mech. Eng. 66 (1988) 199-219.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

C. Truesdell & W. Noll The non-linear field theories of mechanics Handbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum Mechanics Second Ed., Academic Press, New-York (1991). First Ed. (1977).

2) M.E. Gurtin An Introduction to Continuum Mechanics Academic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM, Philadelphia, PA (1981), on line version July 22 (2009)

J.E. Marsden & T.J.R. Hughes *Mathematical Foundations of Elasticity* Prentice-Hall, Redwood City, Cal. (1983)

J.C. Simó A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Continuum formulation

Comp. Meth. Appl. Mech. Eng. 66 (1988) 199-219.

G. Romano & R. Barretta Covariant hypo-elasticity Eur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Basic Geometric Issues in Non-Linear Continuum Mechanics, preprint (2011).

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

How to play the game according to a full geometric approach

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivative

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

How to play the game according to a full geometric approach

Kinematics

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

How to play the game according to a full geometric approach

Kinematics

► Events manifold: E – four dimensional RIEMANN manifold

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

How to play the game according to a full geometric approach

Kinematics

- ► Events manifold: E four dimensional RIEMANN manifold
- Observer split into space-time: $\gamma : E \mapsto S \times I$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

How to play the game according to a full geometric approach

Kinematics

- ► Events manifold: E four dimensional RIEMANN manifold
- Observer split into space-time: $\gamma : E \mapsto S \times I$
- time is absolute (Classical Mechanics)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Example at the second second

How to play the game according to a full geometric approach

Kinematics

- ► Events manifold: E four dimensional RIEMANN manifold
- Observer split into space-time: $\gamma : E \mapsto S \times I$
- time is absolute (Classical Mechanics)
- \blacktriangleright distance between simultaneous events \mapsto space-metric
- \blacktriangleright distance between localized events \mapsto time-metric

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Traiectory

lenght of symplex's edges

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Traiectory

Norm axioms

$\begin{aligned} \|\mathbf{a}\| \ge 0, \quad \|\mathbf{a}\| = 0 \implies \mathbf{a} = 0\\ \|\mathbf{a}\| + \|\mathbf{b}\| \ge \|\mathbf{c}\| \quad \text{triangle inequality,}\\ \|\alpha \, \mathbf{a}\| = |\alpha| \|\mathbf{a}\| \end{aligned}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Norm axioms

 $\begin{aligned} \|\mathbf{a}\| \ge 0, \quad \|\mathbf{a}\| = 0 \implies \mathbf{a} = 0\\ \|\mathbf{a}\| + \|\mathbf{b}\| \ge \|\mathbf{c}\| \quad \text{triangle inequality,}\\ \|\alpha \, \mathbf{a}\| = |\alpha| \|\mathbf{a}\| \end{aligned}$

Parallelogram rule

$$|\mathbf{a} + \mathbf{b}||^2 + ||\mathbf{a} - \mathbf{b}||^2 = 2[||\mathbf{a}||^2 + ||\mathbf{b}||^2]$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Aetric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Traiectory

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

$$\mathbf{g}(\mathbf{a},\mathbf{b}) := \frac{1}{4} \big[\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2 \big]$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

$$\mathbf{g}(\mathbf{a},\mathbf{b}) := rac{1}{4} \left[\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2
ight]$$

Maurice René Fréchet (1878 - 1973)

$$det \begin{bmatrix} g(e_1, e_1) \cdots g(e_{1,2}, e_3) \\ \cdots \\ g(e_3, e_1) \cdots g(e_3, e_3) \end{bmatrix}$$

Push and pull of tensor fields Parallel transport Derivatives Key contributions Kinematics Metric measurements Metric theory Events manifold fibration Traisctory

Evolution

XX Congresso AIMETA

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

$$\mathbf{g}(\mathbf{a},\mathbf{b}) := rac{1}{4} \left[\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2
ight]$$

John von Neumann (1903 - 1957)

$$= det \begin{bmatrix} \mathbf{g}(\mathbf{e}_1, \mathbf{e}_1) \cdots \mathbf{g}(\mathbf{e}_1, \mathbf{e}_3) \\ \cdots \\ \mathbf{g}(\mathbf{e}_3, \mathbf{e}_1) \cdots \mathbf{g}(\mathbf{e}_3, \mathbf{e}_3) \end{bmatrix}$$

Push and pull of tensor fields Parallel transport Derivatives Key contributions Kinematics Metric measurements Metric theory Events manifold fibration Topicateon

XX Congresso AIMETA

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

$$\mathbf{g}(\mathbf{a},\mathbf{b}) := rac{1}{4} \left[\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2
ight]$$

Pascual Jordan (1902 - 1980)

Excellentian.

The metric tensor

Theorem (Fréchet – von Neumann – Jordan)

$$\mathbf{g}(\mathbf{a},\mathbf{b}) := rac{1}{4} \left[\|\mathbf{a} + \mathbf{b}\|^2 - \|\mathbf{a} - \mathbf{b}\|^2
ight]$$

Kosaku Yosida (1909 - 1990)

XX Congresso AIMETA

${}^{2} = \det \begin{bmatrix} \mathbf{g}(\mathbf{e}_{1}, \mathbf{e}_{1}) \cdots \mathbf{g}(\mathbf{e}_{1}, \mathbf{e}_{3}) \\ \cdots \\ \mathbf{g}(\mathbf{e}_{3}, \mathbf{e}_{1}) \cdots \mathbf{g}(\mathbf{e}_{3}, \mathbf{e}_{3}) \end{bmatrix} \text{ and }$ Metric theory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

rajectory

• Time and space fibrations: $\gamma : E \mapsto S \times I$ (observer)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

rajectory

• Time and space fibrations: $\gamma : E \mapsto S \times I$ (observer)

$$egin{aligned} \pi_{I,\mathrm{E}} &= \pi_{I,(\mathcal{S} imes I)} \circ \gamma \ \pi_{\mathcal{S},\mathrm{E}} &= \pi_{\mathcal{S},(\mathcal{S} imes I)} \circ \gamma \end{aligned}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

rajectory

• Time and space fibrations: $\gamma : E \mapsto S \times I$ (observer)

Space-time metric: $\mathbf{g}_{\mathrm{E}} := \pi_{\mathcal{S},\mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}} + \pi_{I,\mathrm{E}} \downarrow \mathbf{g}_{I}$

$$egin{aligned} \pi_{I,\mathrm{E}} &= \pi_{I,(\mathcal{S} imes I)} \circ \gamma \ \pi_{\mathcal{S},\mathrm{E}} &= \pi_{\mathcal{S},(\mathcal{S} imes I)} \circ \gamma \end{aligned}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

rajectory

• Time and space fibrations: $\gamma : E \mapsto S \times I$ (observer)

$$egin{aligned} \pi_{I,\mathrm{E}} &= \pi_{I,(\mathcal{S} imes I)} \circ \gamma \ \pi_{\mathcal{S},\mathrm{E}} &= \pi_{\mathcal{S},(\mathcal{S} imes I)} \circ \gamma \end{aligned}$$

• Space-time metric: $\mathbf{g}_{\mathrm{E}} := \pi_{\mathcal{S},\mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}} + \pi_{I,\mathrm{E}} \downarrow \mathbf{g}_{I}$

Time-vertical subbundle: spatial vectors

$$\mathbf{v} \in \mathbb{V}_{\mathbf{e}} \mathrm{E} \quad \Longleftrightarrow \quad T_{\mathbf{e}} \boldsymbol{\pi}_{I,\mathrm{E}} \cdot \mathbf{v} = \mathbf{0}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Frajectory

• Time and space fibrations: $\gamma : E \mapsto S \times I$ (observer)

$$egin{aligned} \pi_{I,\mathrm{E}} &= \pi_{I,(\mathcal{S} imes I)} \circ \gamma \ \pi_{\mathcal{S},\mathrm{E}} &= \pi_{\mathcal{S},(\mathcal{S} imes I)} \circ \gamma \end{aligned}$$

- ► Space-time metric: $\mathbf{g}_{\mathrm{E}} := \pi_{\mathcal{S},\mathrm{E}} \downarrow \mathbf{g}_{\mathcal{S}} + \pi_{I,\mathrm{E}} \downarrow \mathbf{g}_{I}$
- Time-vertical subbundle: spatial vectors

$$\mathbf{v} \in \mathbb{V}_{\mathbf{e}} \mathrm{E} \quad \Longleftrightarrow \quad T_{\mathbf{e}} \boldsymbol{\pi}_{I,\mathrm{E}} \cdot \mathbf{v} = \mathbf{0}$$

$$\blacktriangleright \ \mathbf{v}_{\mathbf{e}} \in \mathbb{V}_{\mathbf{e}} \mathbf{E} \quad \Longleftrightarrow \quad \gamma \uparrow \mathbf{v}_{\mathbf{e}} = (\mathbf{v}_{\mathbf{x},t}, \mathbf{0}_t) \in \mathbb{T}_{\mathbf{x}} \mathcal{S} \times \mathbb{T}_t I$$

A 13 4E

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Frajectory

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trajectory

Trajectory → a manifold *T_φ* with injective immersion in the events time-bundle: i_{E,*T_φ* ∈ C¹(*T_φ*; E)}

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trajectory

- Trajectory → a manifold *T_φ* with injective immersion in the events time-bundle: i_{E,*T_φ* ∈ C¹(*T_φ*; E)}
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathcal{T}_{\boldsymbol{\varphi}}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trajectory

- Trajectory → a manifold *T_φ* with injective immersion in the events time-bundle: i_{E,*T_φ* ∈ C¹(*T_φ*; E)}
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathcal{T}_{\boldsymbol{\varphi}}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- ► Trajectory time-fibration $\pi_{I,\mathcal{T}_{\varphi}} := \pi_{I,\mathrm{E}} \circ \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}}$
- time bundle \mapsto fibers: body placements $\mathbf{\Omega}_t$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trajectory

- ► Trajectory → a manifold *T_φ* with injective immersion in the events time-bundle: i_{E,*T_φ* ∈ C¹(*T_φ*; E)}
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathcal{T}_{\boldsymbol{\varphi}}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- ► Trajectory time-fibration $\pi_{I,\mathcal{T}_{\varphi}} := \pi_{I,\mathrm{E}} \circ \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}}$
- time bundle \mapsto fibers: body placements $\mathbf{\Omega}_t$
- Trajectory space-fibration $\pi_{\mathcal{S},\mathcal{T}_{\varphi}} := \pi_{\mathcal{S},\mathrm{E}} \circ \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}}$
- ► not a space bundle → fibers: irregular subsets of the observation time interval *I*

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Trajectory

- ► Trajectory → a manifold *T_φ* with injective immersion in the events time-bundle: i_{E,*T_φ* ∈ C¹(*T_φ*; E)}
- Trajectory metric: $\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathcal{T}_{\boldsymbol{\varphi}}, \mathrm{E}} \downarrow \mathbf{g}_{\mathrm{E}}$
- ► Trajectory time-fibration $\pi_{I,\mathcal{T}_{\varphi}} := \pi_{I,\mathrm{E}} \circ \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}}$
- \blacktriangleright time bundle \mapsto fibers: body placements $\mathbf{\Omega}_t$
- ► Trajectory space-fibration $\pi_{S,T_{\varphi}} := \pi_{S,E} \circ \mathbf{i}_{E,T_{\varphi}}$
- ► not a space bundle → fibers: irregular subsets of the observation time interval I
- Time-vertical subbundle: material vectors

$$\mathbf{v} \in \mathbb{V}_{\mathbf{e}}\mathcal{T}_{\boldsymbol{\varphi}} \quad \Longleftrightarrow \quad \mathcal{T}_{\mathbf{e}}\boldsymbol{\pi}_{I,\mathcal{T}_{\boldsymbol{\varphi}}} \cdot \mathbf{v} = 0$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Evolution operator $\varphi^{T_{\varphi}}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution operator $\varphi^{T_{\varphi}}$

Displacements: diffeomorphisms between placements

$$arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{ au,t}\in\mathrm{C}^{1}ig(oldsymbol{\Omega}_{t}\,;oldsymbol{\Omega}_{ au}ig)\,,\quad au,t\in I$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Evolution operator $\varphi^{T_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{ au,t} \in \mathrm{C}^1(oldsymbol{\Omega}_t\,;oldsymbol{\Omega}_ au)\,,\quad au,t\in I$$

► Law of determinism (CHAPMAN-KOLMOGOROV):

$$\boldsymbol{\varphi}_{ au,s}^{\mathcal{T}_{\boldsymbol{\varphi}}} = \boldsymbol{\varphi}_{ au,t}^{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \boldsymbol{\varphi}_{t,s}^{\mathcal{T}_{\boldsymbol{\varphi}}}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Evolution operator $\varphi^{T_{\varphi}}$
- Displacements: diffeomorphisms between placements

$$oldsymbol{arphi}_{ au,t}^{\mathcal{T}_{oldsymbol{arphi}}} \in \mathrm{C}^1(oldsymbol{\Omega}_t\,;oldsymbol{\Omega}_ au)\,,\quad au,t\in I$$

• Law of determinism (CHAPMAN-KOLMOGOROV):

$$arphi_{ au,s}^{\mathcal{T}_{oldsymbol{arphi}}} = arphi_{ au,t}^{\mathcal{T}_{oldsymbol{arphi}}} \circ arphi_{t,s}^{\mathcal{T}_{oldsymbol{arphi}}}$$

Simultaneity of events is preserved:

$$\pi_{I,\mathcal{T}_{\boldsymbol{arphi}}}(\boldsymbol{arphi}_{ au,t}^{\mathcal{T}_{\boldsymbol{arphi}}}(\mathbf{e}_t))= au$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution operator $\varphi^{T_{\varphi}}$

Displacements: diffeomorphisms between placements

$$arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{ au,t}\in\mathrm{C}^1(oldsymbol{\Omega}_t\,;oldsymbol{\Omega}_ au)\,,\quad au,t\in I$$

► Law of determinism (CHAPMAN-KOLMOGOROV):

$$arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{ au,s} = arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{ au,t} \circ arphi^{\mathcal{T}_{oldsymbol{arphi}}}_{t,s}$$

Simultaneity of events is preserved:

$${oldsymbol{\pi}}_{I,\mathcal{T}_{oldsymbol{arphi}}}(oldsymbol{arphi}_{ au,t}^{\mathcal{T}_{oldsymbol{arphi}}}(\mathbf{e}_t))= au$$

Trajectory speed:

$$\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}(\mathbf{e}_t) := \partial_{\tau=t} \, \varphi_{\tau,t}^{\mathcal{T}_{\boldsymbol{\varphi}}}(\mathbf{e}_t) \quad \Longrightarrow \quad \mathcal{T}_{\mathbf{e}} \boldsymbol{\pi}_{I,\mathcal{T}_{\boldsymbol{\varphi}}} \cdot \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}(\mathbf{e}_t) = \mathbf{1}_t$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Equivalence relation on the trajectory:

$$(\mathbf{e}_1\,,\mathbf{e}_2)\in\mathcal{T}_{oldsymbol{arphi}} imes\mathcal{T}_{oldsymbol{arphi}}\,:\,\mathbf{e}_2=oldsymbol{arphi}_{t_2,t_1}(\mathbf{e}_1)\,.$$

with $t_i = \boldsymbol{\pi}_{I,\mathrm{E}}(\mathbf{e}_i)$, i = 1, 2.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Equivalence relation on the trajectory:

$$(\mathbf{e}_1\,,\mathbf{e}_2)\in\mathcal{T}_{oldsymbol{arphi}} imes\mathcal{T}_{oldsymbol{arphi}}\,:\,\mathbf{e}_2=oldsymbol{arphi}_{t_2,t_1}^{\mathcal{T}_{oldsymbol{arphi}}}(\mathbf{e}_1)\,.$$

with $t_i = \boldsymbol{\pi}_{I,\mathrm{E}}(\mathbf{e}_i)$, i = 1, 2.

Body = quotient manifold (foliation)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Equivalence relation on the trajectory:

$$(\mathbf{e}_1\,,\mathbf{e}_2)\in\mathcal{T}_{oldsymbol{arphi}} imes\mathcal{T}_{oldsymbol{arphi}}\,:\,\mathbf{e}_2=oldsymbol{arphi}_{t_2,t_1}^{\mathcal{T}_{oldsymbol{arphi}}}(\mathbf{e}_1)\,.$$

with $t_i = \pi_{I, E}(\mathbf{e}_i)$, i = 1, 2.

Body = quotient manifold (foliation) Particles = equivalence classes (folia)

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Equivalence relation on the trajectory:

$$(\mathbf{e}_1\,,\mathbf{e}_2)\in\mathcal{T}_{oldsymbol{arphi}} imes\mathcal{T}_{oldsymbol{arphi}}\,:\,\mathbf{e}_2=oldsymbol{arphi}_{t_2,t_1}^{\mathcal{T}_{oldsymbol{arphi}}}(\mathbf{e}_1)\,.$$

with $t_i = \pi_{I,E}(\mathbf{e}_i)$, i = 1, 2.

Body = quotient manifold (foliation) Particles = equivalence classes (folia)

mass conservation

$$\int_{\Omega_{t_1}} \mathbf{m}_{\mathcal{T}_{\varphi}, t_1} = \int_{\Omega_{t_2}} \mathbf{m}_{\mathcal{T}_{\varphi}, t_2} \quad \Longleftrightarrow \quad \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{m}_{\mathcal{T}_{\varphi}} = \mathbf{0}$$

 $\mathbf{m}_{\mathcal{T}_{oldsymbol{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{oldsymbol{arphi}})$; $\mathrm{Vol}(\mathbb{T}\mathcal{T}_{oldsymbol{arphi}}))$ mass form

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

choor neido m			
Space-time fields	${f s}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{T}\mathrm{E}))$	Space-time metric tensor	NLCM Prolegomena
Spatial fields	${f s}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{V}\mathrm{E}))$	Spatial metric tensor	Basic Tangent spaces Tangent functor
			Push and pull of tensor fields
			Parallel transport
			Derivatives
			Key contributions
			Kinematics
			Metric measurements
			Metric theory
			Events manifold fibrations
			Trajectory
			The second se

Space-time fields	$oldsymbol{s}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{T}\mathrm{E}))$	Space-time metric tensor	NLCM Prolegomena
Spatial fields	$oldsymbol{s}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{V}\mathrm{E}))$	Spatial metric tensor	Basic Tangent spaces Tangent functor
Trajectory fields	$\mathbf{s}_{\mathcal{T}_{oldsymbol{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{oldsymbol{arphi}};\mathrm{Tens}(\mathbb{T}\mathcal{T}_{oldsymbol{arphi}}))$	Trajectory m trajectory spe	Fiber bund es etric, nd non-trivial fiber bund es ed Sections
Material fields	$\mathbf{s}_{\mathcal{T}_{oldsymbol{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{oldsymbol{arphi}};\mathrm{Tens}(\mathbb{V}\mathcal{T}_{oldsymbol{arphi}}))$	Stress, stressi material metr stretching.	C, and pull Push and pull of tenso fields
			Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

letric theory

Events manifold fibrations

raiectory

Englishing

Space-time fields	${f s}_{\mathrm{E}}\in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{T}\mathrm{E}))$	Space-time metric tensor	NLCM Prolegomena
Spatial fields	${f s}_{\mathrm{E}} \in \mathrm{C}^1(\mathrm{E};\mathrm{Tens}(\mathbb{V}\mathrm{E}))$	Spatial metric tensor	Basic Tangent spaces Tangent functor
Trajectory fields	${f s}_{\mathcal{T}_{oldsymbol{arphi}}}\in \mathrm{C}^1(\mathcal{T}_{oldsymbol{arphi}};\mathrm{Tens}(\mathbb{T}\mathcal{T}_{oldsymbol{arphi}}))$	Trajectory m trajectory spe	Fiber bundles etric, nd non-trivial fiber bundles ed Sections
Material fields	${f s}_{\mathcal{T}_{m arphi}} \in \mathrm{C}^1(\mathcal{T}_{m arphi};\mathrm{Tens}(\mathbb{V}\mathcal{T}_{m arphi}))$	Stress, stressi material metr stretching.	•
Trajectory-based space-time fields	$\mathbf{s}_{\mathrm{E},\mathcal{T}_{oldsymbol{arphi}}}\in\mathrm{C}^{1}(\mathcal{T}_{oldsymbol{arphi}} ext{; Tens}(\mathbb{T}\mathrm{E}))$	Trajectory spe (immersed)	Parallel transport edivatives Key contributions Kinematics
Trajectory-based spatial fields	$\mathbf{s}_{\mathrm{E},\mathcal{T}_{oldsymbol{arphi}}}\in\mathrm{C}^{1}(\mathcal{T}_{oldsymbol{arphi}};\mathrm{Tens}(\mathbb{V}\mathrm{E}))$	Virtual velocit acceleration, momentum, f	Events manifold fibration

E.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Material fields at different times along the trajectory must be compared by push along the material displacement. Material fields on push-related trajectories must be compared by push along the relative motion.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Material fields at different times along the trajectory must be compared by push along the material displacement. Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Material fields at different times along the trajectory must be compared by push along the material displacement. Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Material fields at different times along the trajectory must be compared by push along the material displacement. Material fields on push-related trajectories must be compared by push along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time derivatives = derivatives along the flow of the trajectory speed

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time derivatives = derivatives along the flow of the trajectory speed

Lie time derivative - LTD

Trajectory and material tensor field

$$\dot{\mathsf{s}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathcal{L}_{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \partial_{\lambda=0} \, \mathsf{Fl}_{\lambda}^{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \! \downarrow \left(\mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \mathsf{Fl}_{\lambda}^{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \right),$$

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time derivatives = derivatives along the flow of the trajectory speed

Lie time derivative - LTD

Trajectory and material tensor field

$$\dot{\mathsf{s}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathcal{L}_{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \partial_{\lambda=0} \, \mathsf{Fl}_{\lambda}^{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \! \downarrow \! \left(\mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \mathsf{Fl}_{\lambda}^{\mathsf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \right),$$

Material time-derivative - MTD

Trajectory-based space-time and spatial fields

$$\dot{\mathbf{s}}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} \coloneqq \nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} = \partial_{\lambda=0} \, \mathbf{Fl}_{\lambda}^{\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}}} \Downarrow^{\mathrm{E}}\left(\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} \circ \mathbf{Fl}_{\lambda}^{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\right)$$

with $\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} \! \uparrow \! \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}$.

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Rivers and Cogwheels

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Rivers and Cogwheels

 $(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\omega}}}}\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$

Tangent spaces Tangent functor Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Rivers and Cogwheels

$$(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi}})_{t} := \partial_{\tau=t} \varphi_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\varphi},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\varphi},\tau} + \mathcal{L}_{\pi_{\mathcal{S},\mathcal{T}_{\varphi}} \downarrow \mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{s}_{\mathcal{T}_{\varphi},\tau}$$

$$(\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S}},\mathcal{T}_{\boldsymbol{\varphi}}} \bigwedge^{\mathrm{A} \text{ back quest}}_{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t}$$

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Evolution

XX Congresso AIMETA

XX Congresso AIMETA **Rivers and Cogwheels** $(\mathcal{L}_{\mathbf{v}_{\mathcal{T},\mathbf{c}}}\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \varphi_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$ $(\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\mathbf{c}}}}\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,t}^{\mathrm{E}} \, \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}}} \, \bigvee_{\boldsymbol{\tau}_{\boldsymbol{\varphi}}} \, \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t}^{\mathrm{E}}$

XX Congresso AIMETA **Rivers and Cogwheels** $(\mathcal{L}_{\mathbf{v}_{\mathcal{T},\mathbf{c}}}\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \, \varphi_{\tau,t} \! \downarrow \! (\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S}},\boldsymbol{\tau}_{\boldsymbol{\varphi}}} \! \downarrow_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$ $(\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\sigma}}}\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_{t} := \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S}},\boldsymbol{\tau}_{\boldsymbol{\varphi}}} \wedge^{\mathrm{A} \text{ basic quest}} \mathbf{s}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t}$ Gottfried Wilhelm von LEIBNIZ (1646 - 1716) rule cannot be applied unless the following special properties of the trajectory hold true:

XX Congresso AIMETA **Rivers and Cogwheels** $(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\alpha}}}\mathbf{s}_{\mathcal{T}_{\omega}})_{t} := \partial_{\tau=t} \varphi_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\omega},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\omega},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\omega}} \downarrow \mathbf{v}_{\mathcal{T}_{\omega}}} \mathbf{s}_{\mathcal{T}_{\omega},t}$ $(\nabla_{\mathbf{v}_{\tau}}^{\mathrm{E}} \ \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}}})_{t} := \partial_{\tau=t} \, \varphi_{\tau,t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S}},\boldsymbol{\mathcal{I}}_{\boldsymbol{\omega}}} \Lambda^{\mathrm{Abs}}_{\boldsymbol{\nu}_{\boldsymbol{\mathcal{I}}_{\boldsymbol{\omega}}}} \mathbf{s}_{\mathrm{E},\boldsymbol{\mathcal{I}}_{\boldsymbol{\omega}},t}$ Gottfried Wilhelm von LEIBNIZ (1646 - 1716) rule cannot be applied unless the following special properties of the trajectory hold true: $(\mathbf{x}, t) \in \mathcal{T}_{\boldsymbol{\varphi}} \implies (\mathbf{x}, \tau) \in \mathcal{T}_{\boldsymbol{\varphi}} \quad \forall \tau \in I_t$ $(\mathbf{x}, t) \in \mathcal{T}_{\boldsymbol{\varphi}} \implies (\boldsymbol{\varphi}_{\tau t}(\mathbf{x}), t) \in \mathcal{T}_{\boldsymbol{\varphi}}$

XX Congresso AIMETA **Rivers and Cogwheels** $(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\alpha}}}\mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}}})_{t} := \partial_{\tau=t} \varphi_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\alpha}} \downarrow \mathbf{v}_{\mathcal{T}_{\alpha}}} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},t}$ $(\nabla_{\mathbf{v}_{\tau}}^{\mathrm{E}} \ \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}}})_{t} := \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S}},\boldsymbol{\mathcal{I}}_{\boldsymbol{\omega}}} \bigwedge^{\mathrm{A} \text{ basic aucc}}_{\boldsymbol{v}_{\boldsymbol{\mathcal{I}},\boldsymbol{\omega}}} \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},t}$ Gottfried Wilhelm von LEIBNIZ (1646 - 1716) rule cannot be applied unless the following special properties of the trajectory hold true: $(\mathbf{x}, t) \in \mathcal{T}_{\boldsymbol{\varphi}} \implies (\mathbf{x}, \tau) \in \mathcal{T}_{\boldsymbol{\varphi}} \quad \forall \tau \in I_t$ $(\mathbf{x}, t) \in \mathcal{T}_{\boldsymbol{\varphi}} \implies (\boldsymbol{\varphi}_{\tau t}(\mathbf{x}), t) \in \mathcal{T}_{\boldsymbol{\varphi}}$ Both conditions are not fulfilled in solid mechanics, in general.

Rivers and Cogwheels

 $(\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\alpha}}}\mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}}})_{t} := \partial_{\tau=t} \varphi_{\tau,t} \downarrow (\mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},\tau} + \mathcal{L}_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\alpha}} \downarrow \mathbf{v}_{\mathcal{T}_{\alpha}}} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\omega}},t}$

 $(\nabla_{\mathbf{v}_{\tau}}^{\mathrm{E}} \ \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}}})_{t} := \partial_{\tau=t} \, \varphi_{\tau,t}^{\mathrm{E}} \Downarrow^{\mathrm{E}}(\mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} \circ \varphi_{\tau,t}) = \partial_{\tau=t} \, \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S}},\boldsymbol{\tau}_{\boldsymbol{\omega}}} \Lambda^{\mathrm{Absc quest}}_{\boldsymbol{v}_{\boldsymbol{\tau}_{\boldsymbol{\omega}}}} \mathbf{s}_{\mathrm{E},\mathcal{I}_{\boldsymbol{\omega}},t}$

Gottfried Wilhelm von LEIBNIZ (1646 - 1716)

the following special properties of the trajectory hold true:

 $(\mathbf{x},t)\in\mathcal{T}_{oldsymbol{arphi}} \implies (\mathbf{x}, au)\in\mathcal{T}_{oldsymbol{arphi}} orall au\in I_t$

 $({f x}\,,t)\in\mathcal{T}_{oldsymbol{arphi}} \ \ \, \Longrightarrow \ \ \, (oldsymbol{arphi}_{ au,t}({f x})\,,t)\in\mathcal{T}_{oldsymbol{arphi}}$

Both conditions are not fulfilled in solid mechanics, in general.

XX Congresso AIMETA

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Acceleration

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Acceleration

MTD of the velocity field

$$\begin{aligned} (\mathbf{a}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t &:= (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t \, := \partial_{\tau=t} \, \boldsymbol{\varphi}^{\mathrm{E}}_{\tau,t} \, \Downarrow \, (\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) \\ &= \partial_{\tau=t} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t} \end{aligned}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Acceleration

MTD of the velocity field

$$\begin{aligned} (\mathbf{a}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t &:= (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t \, := \partial_{\tau=t} \, \boldsymbol{\varphi}^{\mathrm{E}}_{\tau,t} \, \Downarrow \, (\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) \\ &= \partial_{\tau=t} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t} \end{aligned}$$

This is the celebrated EULER split formula, applicable only in special problems of hydrodynamics, where it was originally conceived. This eventually led to the NAVIER-STOKES-ST.VENANT differential equation of motion in fluid-dynamics.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Acceleration

MTD of the velocity field

$$\begin{aligned} (\mathbf{a}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t &:= (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t \, := \partial_{\tau=t} \, \boldsymbol{\varphi}^{\mathrm{E}}_{\tau,t} \, \Downarrow \, (\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) \\ &= \partial_{\tau=t} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t} \end{aligned}$$

This is the celebrated EULER split formula, applicable only in special problems of hydrodynamics, where it was originally conceived. This eventually led to the NAVIER-STOKES-ST.VENANT differential equation of motion in fluid-dynamics.

Notwithstanding its limitations, $\underline{\text{EULER}}$ split formula has been improperly adopted to provide the very definition of acceleration in mechanics 2

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Acceleration

MTD of the velocity field

$$\begin{aligned} (\mathbf{a}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t &:= (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})_t \, := \partial_{\tau=t} \, \boldsymbol{\varphi}^{\mathrm{E}}_{\tau,t} \, \Downarrow \, (\mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} \circ \boldsymbol{\varphi}_{\tau,t}) \\ &= \partial_{\tau=t} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},\tau} + \nabla_{\boldsymbol{\pi}_{\mathcal{S},\mathcal{T}_{\boldsymbol{\varphi}}} \downarrow \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{v}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}},t} \end{aligned}$$

This is the celebrated EULER split formula, applicable only in special problems of hydrodynamics, where it was originally conceived. This eventually led to the NAVIER-STOKES-ST.VENANT differential equation of motion in fluid-dynamics.

Notwithstanding its limitations, $\underline{\text{FULER}}$ split formula has been improperly adopted to provide the very definition of acceleration in mechanics ²

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Netric theory

Events manifold fibrations

Frajectory

² See e.g.

C. Truesdell, A first Course in Rational Continuum Mechanics Second Ed. Academic Press, New-York (1991). First Ed. 1977
 M.E. Gurtin, An Introduction to Continuum Mechanics Academic Press, San Diego (1981)
 J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of Elasticity Prentice-Hall, Redwood City, Cal. (1983)

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Stretching:

$$\dot{oldsymbol{arepsilon}}_{\mathcal{T}_{oldsymbol{arphi}},t} \coloneqq rac{1}{2} (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{oldsymbol{arphi}}}} \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}}})_t = rac{1}{2} \partial_{ au = t} \left(oldsymbol{arphi}_{ au,t} ildsymbol{arphi}_{oldsymbol{\mathcal{T}}_{oldsymbol{arphi}}, au}
ight)$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Stretching:

$$\dot{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := \frac{1}{2} (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \frac{1}{2} \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} {\downarrow} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

Leonhard Euler (1707 - 1783)

- Euler's formula (generalized)

$$\frac{1}{2}\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \nabla_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}^{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} + \operatorname{sym} \left(\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \left(\operatorname{Tors}^{\mathcal{T}_{\boldsymbol{\varphi}}} + \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \right) \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \right)$$

XX Congresso AIMETA

LCM rolegomena basic questi asic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Stretching:

$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := \frac{1}{2} (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \frac{1}{2} \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

Leonhard Euler (1707 - 1783)

Euler's formula (generalized)

$${}^{\frac{1}{2}}\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} = {}^{\frac{1}{2}} \nabla_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}^{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} + \operatorname{sym} \left(\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ (\operatorname{Tors}^{\mathcal{T}_{\boldsymbol{\varphi}}} + \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}) \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \right)$$

Trajectory connection defined by:

$$\boldsymbol{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \boldsymbol{u}_{\mathcal{T}_{\boldsymbol{\varphi}}} \coloneqq \boldsymbol{i}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} {\downarrow} (\boldsymbol{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \boldsymbol{u}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Stretching:

$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := \frac{1}{2} (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \frac{1}{2} \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

Leonhard Euler (1707 - 1783)

Euler's formula (generalized)

$${}^{\frac{1}{2}}\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} = {}^{\frac{1}{2}} \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} + \operatorname{sym} \left(\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ (\operatorname{Tors}^{\mathcal{T}_{\boldsymbol{\varphi}}} + \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}) \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \right)$$

Trajectory connection defined by:

$$\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{u}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} \! \downarrow \! (\mathbf{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \mathbf{u}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})$$

with

 $\nabla^{\mathcal{I}_{\varphi}}_{\mathbf{v}_{\mathcal{I}_{\varphi}}} \mathbf{g}_{\mathcal{I}_{\varphi}} = \mathbf{i}_{\mathrm{E},\mathcal{I}_{\varphi}} \downarrow (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathrm{E},\mathcal{I}_{\varphi}}} \mathbf{g}_{\mathrm{E}})$ $\mathbf{g}_{\mathcal{I}_{\varphi}} \circ \mathrm{TORS}^{\mathcal{I}_{\varphi}} (\mathbf{a}_{\mathcal{I}_{\varphi}}) = \mathbf{i}_{\mathrm{E},\mathcal{I}_{\varphi}} \downarrow (\mathbf{g}_{\mathrm{E}} \circ \mathrm{TORS}^{\mathrm{E}} (\mathbf{i}_{\mathrm{E},\mathcal{I}_{\varphi}} \uparrow \mathbf{a}_{\mathcal{I}_{\varphi}}))$

XX Congresso AIMETA

ILCM Prolegomena A basic question Basic Fangent spaces Fangent functor Tiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Stretching:

$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := \frac{1}{2} (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \frac{1}{2} \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \downarrow \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

Leonhard Euler (1707 - 1783)

Euler's formula (generalized)

$${}^{\frac{1}{2}}\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} = {}^{\frac{1}{2}} \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} + \operatorname{sym} \left(\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \left(\operatorname{Tors}^{\mathcal{T}_{\boldsymbol{\varphi}}} + \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \right) \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \right)$$

Trajectory connection defined by:

$$\mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{u}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{i}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}} \! \downarrow \! (\mathbf{g}_{\mathrm{E}} \circ \nabla^{\mathrm{E}} \mathbf{u}_{\mathrm{E},\mathcal{T}_{\boldsymbol{\varphi}}})$$

with

 $\begin{aligned} \nabla^{\mathcal{T}_{\varphi}}_{\mathbf{v}_{\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathcal{T}_{\varphi}} &= \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}} \downarrow (\nabla^{\mathrm{E}}_{\mathbf{v}_{\mathrm{E},\mathcal{T}_{\varphi}}} \mathbf{g}_{\mathrm{E}}) \\ \mathbf{g}_{\mathcal{T}_{\varphi}} \circ \mathrm{Tors}^{\mathcal{T}_{\varphi}} (\mathbf{a}_{\mathcal{T}_{\varphi}}) &= \mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}} \downarrow (\mathbf{g}_{\mathrm{E}} \circ \mathrm{Tors}^{\mathrm{E}} (\mathbf{i}_{\mathrm{E},\mathcal{T}_{\varphi}} \uparrow \mathbf{a}_{\mathcal{T}_{\varphi}})) \end{aligned}$

Mixed form of the stretching tensor (standard):

$$\mathbf{D}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{-1} \circ \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \operatorname{sym} \left(\nabla^{\mathcal{T}_{\boldsymbol{\varphi}}} \mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \right)$$

NLCM Prolegomena A basic question Basic Fangent spaces Fangent functor Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

▶ Stress: $\sigma_{\mathcal{T}_{\varphi}} \in \mathrm{C}^1(\mathcal{T}_{\varphi}; \mathrm{Con}(\mathbb{V}\mathcal{T}_{\varphi}))$ in duality with the

► Stretching:
$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}(\mathcal{T}_{\boldsymbol{\varphi}}; \mathrm{Cov}(\mathbb{V}\mathcal{T}_{\boldsymbol{\varphi}}))$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- ▶ Stress: $\sigma_{\mathcal{T}_{\varphi}} \in \mathrm{C}^{1}(\mathcal{T}_{\varphi}; \mathrm{CON}(\mathbb{V}\mathcal{T}_{\varphi}))$ in duality with the
- $\blacktriangleright \text{ Stretching: } \dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}(\mathcal{T}_{\boldsymbol{\varphi}} \, ; \mathrm{Cov}(\mathbb{V}\mathcal{T}_{\boldsymbol{\varphi}}))$
- Stressing: Lie time derivative

$$\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := (\mathcal{L}_{\boldsymbol{\mathsf{v}}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} {\downarrow} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

▶ Stress: $\sigma_{\mathcal{T}_{m{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{m{arphi}} \,; \mathrm{Con}(\mathbb{V}\mathcal{T}_{m{arphi}}))$ in duality with the

- ► Stretching: $\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \mathcal{L}_{\boldsymbol{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}(\mathcal{T}_{\boldsymbol{\varphi}}; \mathrm{Cov}(\mathbb{V}\mathcal{T}_{\boldsymbol{\varphi}}))$
- Stressing: Lie time derivative

$$\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := (\mathcal{L}_{\boldsymbol{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

The expression in terms of parallel derivative:

$$\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} - \operatorname{sym}\left(\nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}} \circ \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

▶ Stress:
$$\sigma_{\mathcal{T}_{m{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{m{arphi}}\,;\mathrm{Con}(\mathbb{V}\mathcal{T}_{m{arphi}}))$$
 in duality with the

► Stretching:
$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}(\mathcal{T}_{\boldsymbol{\varphi}}; \mathrm{Cov}(\mathbb{V}\mathcal{T}_{\boldsymbol{\varphi}}))$$

Stressing: Lie time derivative

$$\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \downarrow \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

The expression in terms of parallel derivative:

$$\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \nabla_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}^{\mathcal{T}_{\boldsymbol{\varphi}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} - \operatorname{sym}\left(\nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}\circ\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)$$

is not performable on the time-vertical subbundle of material tensor fields because the parallel derivative $\nabla^{T_{\varphi}}_{\mathbf{v}_{T_{\varphi}}}$ on the trajectory does not preserve time-verticality.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Example Advances

▶ Stress:
$$\sigma_{\mathcal{T}_{m{arphi}}} \in \mathrm{C}^1(\mathcal{T}_{m{arphi}}\,;\mathrm{Con}(\mathbb{V}\mathcal{T}_{m{arphi}}))$$
 in duality with the

• Stretching:
$$\dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} := \frac{1}{2} \dot{\mathbf{g}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \frac{1}{2} \mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \mathrm{C}^{1}(\mathcal{T}_{\boldsymbol{\varphi}}; \mathrm{Cov}(\mathbb{V}\mathcal{T}_{\boldsymbol{\varphi}}))$$

Stressing: Lie time derivative

$$\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}},t} := (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \left(\boldsymbol{\varphi}_{\tau,t} \! \downarrow \! \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \right)$$

The expression in terms of parallel derivative:

$$\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}}\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}} - \operatorname{sym}\left(\nabla^{\mathcal{T}_{\boldsymbol{\varphi}}}\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}\circ\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}\right)$$

is not performable on the time-vertical subbundle of material tensor fields because the parallel derivative $\nabla^{\mathcal{T}\varphi}_{\mathbf{v}_{\mathcal{T}\varphi}}$ on the trajectory does not preserve time-verticality.

Treatments which do not adopt a full geometric approach do not even perceive the difficulties revealed by the previous investigation.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Aetric theory

Events manifold fibrations

raiectory

Excellentian.

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, ZAREMBA (1903), JAUMANN (1906,1911), PRAGER (1960):

$$\mathring{\mathbf{T}} = \dot{\mathbf{T}} - \mathbf{WT} + \mathbf{TW}$$

with $\dot{\mathbf{T}}$ material time derivative.

Convective stress tensor rate, ZAREMBA (1903), OLDROYD (1950), TRUESDELL (1955), SEDOV (1960), TRUESDELL & NOLL (1965):

 $\dot{\mathbf{T}} = \dot{\mathbf{T}} + \mathbf{L}^T \mathbf{T} + \mathbf{T} \mathbf{L}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, ZAREMBA (1903), JAUMANN (1906,1911), PRAGER (1960):

$$\overset{\circ}{\mathbf{T}} = \dot{\mathbf{T}} - \mathbf{W}\mathbf{T} + \mathbf{T}\mathbf{W}$$

with $\dot{\mathbf{T}}$ material time derivative.

Convective stress tensor rate, ZAREMBA (1903), OLDROYD (1950), TRUESDELL (1955), SEDOV (1960), TRUESDELL & NOLL (1965):

 $\dot{\mathbf{T}} = \dot{\mathbf{T}} + \mathbf{L}^T \mathbf{T} + \mathbf{T} \mathbf{L}$

These formulas, and similar ones in literature, rely on the application of LEIBNIZ rule and on taking the parallel derivative of the material stress tensor field according to the trajectory connection.

The lack of regularity that may prevent to take partial time derivatives and the lack of conservation of time-verticality by parallel transport, are not taken into account.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Netric theory

Events manifold fibrations

Frajectory

Deformation gradient

The equivalence class of all material displacements whose tangent map have the common value:

 $T_{\mathbf{x}} \boldsymbol{\varphi}_{\tau,t} \in L\left(\mathbb{T}_{\mathbf{x}} \boldsymbol{\Omega}_t; \mathbb{T}_{\boldsymbol{\varphi}_{\tau,t}(\mathbf{x})} \boldsymbol{\Omega}_{\tau}\right)$

- ▶ is called the *first jet* of $\varphi_{\tau,t}$ at $\mathbf{x} \in \mathbf{\Omega}_t$ in differential geometry
- and the *relative deformation gradient* in continuum mechanics. The chain rule between tangent maps:

$$T_{\varphi_{\tau,s}(\mathbf{x})}\varphi_{\tau,s}=T_{\varphi_{t,s}(\mathbf{x})}\varphi_{\tau,t}\circ T_{\mathbf{x}}\varphi_{t,s},$$

implies the corresponding one between material deformation gradients:

 $\mathbf{F}_{\tau,s} = \mathbf{F}_{\tau,t} \circ \mathbf{F}_{t,s} \,.$

Time rate of deformation gradient, TRUESDELL & NOLL (1965)

 $\dot{\mathbf{F}}_{t,s} = \mathbf{L}_t \, \mathbf{F}_{t,s}$

with $\dot{\mathbf{F}}_{t,s} := \partial_{\tau=t} \mathbf{F}_{\tau,s}$ and $\mathbf{L}_t := \partial_{\tau=t} \mathbf{F}_{\tau,t}$ time derivatives.

$$\mathsf{L}_t(\mathsf{x}) \cdot \mathsf{h}_\mathsf{x} := \partial_{\tau=t} \, \mathsf{F}_{\tau,t}(\mathsf{x}) \cdot \mathsf{h}_\mathsf{x} \in \mathbb{T}_\mathsf{x} \Omega_t \,, \qquad \forall \, \mathsf{h}_\mathsf{x} \in \mathbb{T}_\mathsf{x} \Omega_t$$

with $\mathbf{F}_{\tau,t}(\mathbf{x}) \cdot \mathbf{h}_{\mathbf{x}} \in \mathbb{T}_{\mathbf{x}} \Omega_{\tau}$. The LIE time derivative gives:

 $\partial_{\tau=t} \left(T_{\mathbf{x}} \boldsymbol{\varphi}_{\tau,t} \right)^{-1} \cdot \left(T_{\mathbf{x}} \boldsymbol{\varphi}_{\tau,t} \cdot \mathbf{h}_{\mathbf{x}} \right) = \partial_{\tau=t} \, \mathbf{h}_{\mathbf{x}} = \mathbf{0}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Change of observer $\zeta_E \in C^1(E; E)$, time-bundle automorphism

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- ► Change of observer $\zeta_{E} \in C^{1}(E; E)$, time-bundle automorphism
- ► Relative motion $\zeta \in C^1(\mathcal{T}_{\varphi}; \mathcal{T}_{\zeta \uparrow \varphi}),$ time-bundle diffeomorphism

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- ► Change of observer $\zeta_{E} \in C^{1}(E; E)$, time-bundle automorphism
- ► Relative motion $\zeta \in C^1(\mathcal{T}_{\varphi}; \mathcal{T}_{\zeta \uparrow \varphi}),$ time-bundle diffeomorphism

Pushed motion

$$\begin{array}{c} \zeta_t(\boldsymbol{\Omega}_t) \xrightarrow{(\zeta \uparrow \varphi)_{\tau,t}} \zeta_\tau(\boldsymbol{\Omega}_\tau) \\ \zeta_t & \downarrow & \zeta_\tau \\ \boldsymbol{\Omega}_t \xrightarrow{\varphi_{\tau,t}} & \boldsymbol{\Omega}_\tau \end{array} \iff (\zeta \uparrow \varphi)_{\tau,t} = \zeta_\tau \circ \varphi_{\tau,t} \circ \zeta_t^{-1}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

letric theory

Events manifold fibrations

Trajectory

Time Invariance and Frame Invariance of material fields

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time Invariance and Frame Invariance of material fields

• Time Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} = \boldsymbol{\varphi}_{\tau,t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time Invariance and Frame Invariance of material fields

- Time Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} = \boldsymbol{\varphi}_{\tau,t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$
- Frame Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\zeta}\uparrow\boldsymbol{\varphi}}} = \boldsymbol{\zeta}\uparrow\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}}$

with: $\pmb{\zeta}\in\mathrm{C}^1(\mathcal{T}_{\pmb{arphi}}\,;\,\mathcal{T}_{\pmb{\zeta}\uparrow\pmb{arphi}})$ relative motion

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time Invariance and Frame Invariance of material fields

- Time Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} = \boldsymbol{\varphi}_{\tau,t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$
- ► Frame Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\zeta}\uparrow\boldsymbol{\varphi}}} = \boldsymbol{\zeta}\uparrow\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}}$

with: $\pmb{\zeta}\in\mathrm{C}^1(\mathcal{T}_{\pmb{arphi}}\,;\,\mathcal{T}_{\pmb{\zeta}\uparrow\pmb{arphi}})$ relative motion

Properties of Lie derivative

Push of Lie time derivative to a fixed configuration

$$\varphi_{t,\mathrm{FIX}} \downarrow (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \varphi_{\tau,\mathrm{FIX}} \downarrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Time Invariance and Frame Invariance of material fields

- Time Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} = \boldsymbol{\varphi}_{\tau,t} \uparrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$
- ► Frame Invariance $\mathbf{s}_{\mathcal{T}_{\boldsymbol{\zeta}\uparrow\boldsymbol{\varphi}}} = \boldsymbol{\zeta}\uparrow\mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}}$

with: $\pmb{\zeta}\in\mathrm{C}^1(\mathcal{T}_{\pmb{arphi}}\,;\,\mathcal{T}_{\pmb{\zeta}\uparrow\pmb{arphi}})$ relative motion

Properties of Lie derivative

Push of Lie time derivative to a fixed configuration

$$\varphi_{t,\mathrm{FIX}} \downarrow (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\boldsymbol{\varphi}}}} \, \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}}})_t = \partial_{\tau=t} \, \varphi_{\tau,\mathrm{FIX}} \downarrow \mathbf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau}$$

Lie time derivative along pushed motions

$$\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{\zeta \uparrow arphi}}}\left(\zeta \uparrow \mathbf{s}_{arphi}
ight) = \zeta \uparrow (\mathcal{L}_{\mathbf{v}_{\mathcal{T}_{arphi}}} \mathbf{s}_{\mathcal{T}_{arphi}})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Traiectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Constitutive operator $\mathbf{H}_{\mathcal{T}_{\boldsymbol{\omega}}}$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Constitutive operator $\mathbf{H}_{\mathcal{T}_{\boldsymbol{\omega}}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

Constitutive time invariance

$$\mathsf{H}_{\mathcal{T}_{\boldsymbol{arphi}}, au} = \boldsymbol{arphi}_{ au, t} \!\!\uparrow \! \mathsf{H}_{\mathcal{T}_{\boldsymbol{arphi}}, t}$$

$$(\varphi_{\tau,t} \uparrow \mathsf{H}_{\mathcal{T}_{\boldsymbol{\varphi}},t})(\varphi_{\tau,t} \uparrow \mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}) = \varphi_{\tau,t} \uparrow (\mathsf{H}_{\mathcal{T}_{\boldsymbol{\varphi}},t}(\mathsf{s}_{\mathcal{T}_{\boldsymbol{\varphi}},t}))$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• Constitutive operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$

A material bundle morphism whose domain and codomain are Whitney products of material tensor bundles

Constitutive time invariance

$$\mathsf{H}_{\mathcal{T}_{\boldsymbol{arphi}}, au} = \boldsymbol{arphi}_{ au, t} \!\!\uparrow \! \mathsf{H}_{\mathcal{T}_{\boldsymbol{arphi}}, t}$$

$$(\varphi_{\tau,t} \uparrow \mathsf{H}_{\mathcal{T}_{\varphi},t})(\varphi_{\tau,t} \uparrow \mathsf{s}_{\mathcal{T}_{\varphi},t}) = \varphi_{\tau,t} \uparrow (\mathsf{H}_{\mathcal{T}_{\varphi},t}(\mathsf{s}_{\mathcal{T}_{\varphi},t}))$$

Constitutive invariance under relative motions

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Constitutive hypo-elastic law el_{T_φ} elastic stretching

$$\left\{ egin{array}{ll} \dot{arepsilon}_{\mathcal{T_{oldsymbol{arphi}}}} &= \mathsf{el}_{\mathcal{T_{oldsymbol{arphi}}}} \ \mathsf{el}_{\mathcal{T_{oldsymbol{arphi}}}} &= \mathsf{H}_{\mathcal{T_{oldsymbol{arphi}}}}^{ ext{HYPO}}(\pmb{\sigma}_{\mathcal{T_{oldsymbol{arphi}}}}) \cdot \dot{\pmb{\sigma}}_{\mathcal{T_{oldsymbol{arphi}}}} \end{array}
ight.$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Constitutive hypo-elastic law el_{T_φ} elastic stretching

$$\left(egin{array}{ll} \dot{m{arepsilon}}_{\mathcal{T_{m{arphi}}}} &= {f e} {f l}_{\mathcal{T_{m{arphi}}}} \ {f e} {f l}_{\mathcal{T_{m{arphi}}}} (m{\sigma}_{\mathcal{T_{m{arphi}}}}) \cdot \dot{m{\sigma}}_{\mathcal{T_{m{arphi}}}} \end{array}
ight)$$

► CAUCHY integrability

$$\langle d_{\mathsf{F}} \mathsf{H}_{\mathcal{T}_{\varphi}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}) \cdot \delta \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \cdot \delta_{1} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}, \delta_{2} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \rangle = \text{symmetric}$$

$$\implies \mathsf{H}_{\mathcal{T}_{\varphi}}^{\mathrm{HYPO}}(\sigma_{\mathcal{T}_{\varphi}}) = d_{F} \Phi_{\mathcal{T}_{\varphi}}(\sigma_{\mathcal{T}_{\varphi}})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Constitutive hypo-elastic law el_{T_φ} elastic stretching

$$\left\{ egin{array}{ll} \dot{arepsilon}_{\mathcal{T_{oldsymbol{arphi}}}} &= \mathbf{el}_{\mathcal{T_{oldsymbol{arphi}}}} \ \mathbf{el}_{\mathcal{T_{oldsymbol{arphi}}}} &= \mathbf{H}_{\mathcal{T_{oldsymbol{arphi}}}}^{ ext{HYPO}}(oldsymbol{\sigma}_{\mathcal{T_{oldsymbol{arphi}}}}) \cdot \dot{oldsymbol{\sigma}}_{\mathcal{T_{oldsymbol{arphi}}}}
ight)$$

► CAUCHY integrability

$$\langle d_{\mathcal{F}} \mathbf{H}_{\mathcal{T}_{\varphi}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}) \cdot \delta \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \cdot \delta_{1} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}, \delta_{2} \boldsymbol{\sigma}_{\mathcal{T}_{\varphi}} \rangle = \text{symmetric}$$

$$\Rightarrow \quad \mathsf{H}_{\mathcal{T}_{\varphi}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}}) = d_{F} \Phi_{\mathcal{T}_{\varphi}}(\boldsymbol{\sigma}_{\mathcal{T}_{\varphi}})$$

GREEN integrability

$$\langle \mathsf{H}_{\mathcal{T}_{\varphi}}^{\scriptscriptstyle \mathrm{HYPO}}(\sigma_{\mathcal{T}_{\varphi}}) \cdot \delta_{1} \sigma_{\mathcal{T}_{\varphi}}, \delta_{2} \sigma_{\mathcal{T}_{\varphi}} \rangle = \mathrm{symmetric}$$

 $\Longrightarrow \quad \Phi_{\mathcal{T}_{\varphi}}(\sigma_{\mathcal{T}_{\varphi}}) = d_{\mathsf{F}} \mathsf{E}_{\mathcal{T}_{\varphi}}^{*}(\sigma_{\mathcal{T}_{\varphi}})$

=

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Aetric theory

Events manifold fibrations

Trajectory

 Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- ► Constitutive elastic law: el_{Tφ} elastic stretching

$$\begin{cases} \dot{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}}} \\ \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}}} = d_F^2 E_{\mathcal{T}_{\boldsymbol{\varphi}}}^*(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}} \end{cases}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- Constitutive elastic law:
 el_{T\u03c6} elastic stretching

$$\left(egin{array}{ll} \dot{arepsilon}_{\mathcal{T}_{oldsymbol{arphi}}} &= \mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}}} \ \left(\mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}}} &= d_F^2 E_{\mathcal{T}_{oldsymbol{arphi}}}^*(oldsymbol{\sigma}_{\mathcal{T}_{oldsymbol{arphi}}}) \cdot \dot{oldsymbol{\sigma}}_{\mathcal{T}_{oldsymbol{arphi}}}
ight) \end{array}$$

pull-back to reference:

$$egin{aligned} & arphi_{t, ext{FIX}} ig
angle \mathbf{e} I_{\mathcal{T}_{oldsymbol{arphi}},t} &= d_F^2 E_{ ext{FIX}}^* (oldsymbol{arphi}_{t, ext{FIX}} ig
angle oldsymbol{\sigma}_{\mathcal{T}_{oldsymbol{arphi}},t}) \cdot \partial_{ au=t} \ oldsymbol{arphi}_{ au, ext{FIX}} igg
angle oldsymbol{\sigma}_{oldsymbol{arphi}, ext{TIX}}) &= \partial_{ au=t} \ d_F E_{ ext{FIX}}^* (oldsymbol{arphi}_{ au, ext{FIX}} ig
angle oldsymbol{\sigma}_{oldsymbol{arphi}, ext{T}}) \end{aligned}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Elastic constitutive operator: hypo-elastic constitutive operator which is integrable and time invariant
- Constitutive elastic law:
 el_{T\u03c6} elastic stretching

$$\left(egin{array}{ll} \dot{arepsilon}_{\mathcal{T}_{oldsymbol{arphi}}} &= \mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}}} \ \left(\mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}}} &= d_F^2 E_{\mathcal{T}_{oldsymbol{arphi}}}^*(oldsymbol{\sigma}_{\mathcal{T}_{oldsymbol{arphi}}}) \cdot \dot{oldsymbol{\sigma}}_{\mathcal{T}_{oldsymbol{arphi}}}
ight) \end{array}$$

pull-back to reference:

$$egin{aligned} & arphi_{ au, ext{FIX}} igarphi \mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}},t} &= d_F^2 E_{ ext{FIX}}^* (oldsymbol{arphi}_{ au, ext{FIX}} igarphi \sigma_{\mathcal{T}_{oldsymbol{arphi}},t}) \cdot \partial_{ au=t} \ oldsymbol{arphi}_{ au, ext{FIX}} igarphi \sigma_{oldsymbol{arphi}, ext{FIX}}) \cdot \partial_{ au=t} \ oldsymbol{arphi}_{ au, ext{FIX}} igarphi \sigma_{oldsymbol{arphi}, ext{FIX}}) \end{aligned}$$

$$egin{aligned} & arphi_{ au, ext{FIX}} := arphi_{ au,t} \circ arphi_{ au, ext{FIX}} \ & E^*_{ ext{FIX}} := arphi_{ au, ext{FIX}} ig E^*_{ au arphi arphi, ext{t}} & ext{time invariant} \end{aligned}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Aetric theory

Events manifold fibrations

Trajectory

Conservativeness of hyper-elasticity

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Conservativeness of hyper-elasticity

GREEN integrability of the elastic operator $\mathbf{H}_{\mathcal{T}_{\varphi}}$ as a function of the KIRCHHOFF stress tensor field implies conservativeness:

$$\oint_{I} \int_{\Omega_{t}} \left\langle \sigma_{\mathcal{T}_{\varphi},t}, \mathbf{el}_{\mathcal{T}_{\varphi},t} \right\rangle \mathbf{m}_{\mathcal{T}_{\varphi},t} \ dt = 0$$

for any cycle in the stress time-bundle, i.e. for any stress path $\sigma_{\mathcal{T}_{\varphi}} \in C^{1}(I; CON(\mathbb{V}\mathcal{T}_{\varphi}))$ such that:

$$\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{arphi}},t_2} = \boldsymbol{arphi}_{t_2,t_1} \! \uparrow \! \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{arphi}},t_1} \,, \quad I = [t_1,t_2]$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Elasto-visco-plasticity

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Elasto-visco-plasticity

Constitutive law

 $\begin{array}{l} \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}}} \ \text{elastic stretching} \\ \mathbf{pl}_{\mathcal{T}_{\boldsymbol{\varphi}}} \ \text{visco-plastic stretching} \end{array}$

$$\begin{cases} \dot{\boldsymbol{\varepsilon}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}}} + \mathbf{pl}_{\mathcal{T}_{\boldsymbol{\varphi}}} \\ \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}}} = d_{\mathcal{F}}^{2} \mathcal{E}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{*}(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}} \\ \mathbf{pl}_{\mathcal{T}_{\boldsymbol{\varphi}}} \in \partial_{\mathcal{F}} \mathcal{F}_{\mathcal{T}_{\boldsymbol{\varphi}}}(\boldsymbol{\sigma}_{\boldsymbol{\varphi}}) \end{cases}$$

stretching additivity hyper-elastic law visco-plastic flow rule

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• total strain in the time interval I = [s, t]:

$$arepsilon_{\mathcal{T}_{oldsymbol{arphi}},t,s} := arphi_{t,s} {\downarrow} \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},t} - \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},s}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• total strain in the time interval I = [s, t]:

$$arepsilon_{\mathcal{T}_{oldsymbol{arphi}},t,s} := arphi_{t,s} {\downarrow} \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},t} - \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},s}$$

reference total strain:

$$\begin{split} \boldsymbol{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}, \boldsymbol{I}}^{\text{FIX}} &:= \frac{1}{2} \int_{\boldsymbol{I}} \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau, \text{FIX}} \!\!\downarrow \! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau} \, dt \\ &= \frac{1}{2} \boldsymbol{\varphi}_{t, \text{FIX}} \!\!\downarrow \! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} - \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s} \\ &= \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \! (\boldsymbol{\varphi}_{t, s} \!\!\downarrow \! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} - \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s}) = \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \! \boldsymbol{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}, t, s} \end{split}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• total strain in the time interval I = [s, t]:

$$arepsilon_{\mathcal{T}_{oldsymbol{arphi}},t,s} := arphi_{t,s} {\downarrow} \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},t} - \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},s}$$

reference total strain:

$$\begin{split} \boldsymbol{\varepsilon}_{T_{\boldsymbol{\varphi}},l}^{\text{FIX}} &:= \frac{1}{2} \int_{l} \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau,\text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},\tau} \, dt \\ &= \frac{1}{2} \boldsymbol{\varphi}_{t,\text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},t} - \frac{1}{2} \boldsymbol{\varphi}_{s,\text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},s} \\ &= \frac{1}{2} \boldsymbol{\varphi}_{s,\text{FIX}} \!\!\downarrow \!\! (\boldsymbol{\varphi}_{t,s} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},t} - \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}},s}) = \frac{1}{2} \boldsymbol{\varphi}_{s,\text{FIX}} \!\!\downarrow \!\! \boldsymbol{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}},t,s} \end{split}$$

reference elastic and visco-plastic strain:

$$\mathsf{el}_{\mathcal{T}_{\varphi},I}^{\mathrm{FIX}} := \int_{I} \varphi_{t,\mathrm{FIX}} \downarrow \mathsf{el}_{\mathcal{T}_{\varphi},t} \, dt \,, \qquad \mathsf{pl}_{\mathcal{T}_{\varphi},I}^{\mathrm{FIX}} := \int_{I} \varphi_{t,\mathrm{FIX}} \downarrow \mathsf{pl}_{\mathcal{T}_{\varphi},t} \, dt$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

• total strain in the time interval I = [s, t]:

$$arepsilon_{\mathcal{T}_{oldsymbol{arphi}},t,s} := arphi_{t,s} {\downarrow} \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},t} - \mathbf{g}_{\mathcal{T}_{oldsymbol{arphi}},s}$$

reference total strain:

$$\begin{split} \boldsymbol{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}, l}^{\text{FIX}} &:= \frac{1}{2} \int_{l} \partial_{\tau=t} \, \boldsymbol{\varphi}_{\tau, \text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, \tau} \, dt \\ &= \frac{1}{2} \boldsymbol{\varphi}_{t, \text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} - \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s} \\ &= \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \!\! (\boldsymbol{\varphi}_{t,s} \!\!\downarrow \!\! \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, t} - \mathbf{g}_{\mathcal{T}_{\boldsymbol{\varphi}}, s}) = \frac{1}{2} \boldsymbol{\varphi}_{s, \text{FIX}} \!\!\downarrow \!\! \boldsymbol{\varepsilon}_{\mathcal{T}_{\boldsymbol{\varphi}}, t, s} \end{split}$$

reference elastic and visco-plastic strain:

$$\mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}},l}^{\mathrm{FIX}} := \int_{I} \varphi_{t,\mathrm{FIX}} \downarrow \mathbf{el}_{\mathcal{T}_{\boldsymbol{\varphi}},t} \, dt \,, \qquad \mathbf{pl}_{\mathcal{T}_{\boldsymbol{\varphi}},l}^{\mathrm{FIX}} := \int_{I} \varphi_{t,\mathrm{FIX}} \downarrow \mathbf{pl}_{\mathcal{T}_{\boldsymbol{\varphi}},t} \, dt$$

additivity of reference strains:

$$arepsilon_{\mathcal{T}_{oldsymbol{arphi}},I}^{ ext{FIX}} = \mathbf{el}_{\mathcal{T}_{oldsymbol{arphi}},I}^{ ext{FIX}} + \mathbf{pl}_{\mathcal{T}_{oldsymbol{arphi}},I}^{ ext{FIX}}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Netric theory

Events manifold fibrations

Trajectory

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

Material fields are frame invariant

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

Material fields are frame invariant

Principle of MFI

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

Material fields are frame invariant

Principle of MFI

Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tenso fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

Material fields are frame invariant

Principle of MFI

Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

 $\mathsf{H}_{\mathcal{T}_{\zeta^{\mathsf{iso}} \uparrow \varphi}}(\zeta^{\mathsf{iso}} \uparrow \mathsf{s}_{\mathcal{T}_{\varphi}}) = \zeta^{\mathsf{iso}} \uparrow \mathsf{H}_{\mathcal{T}_{\varphi}}(\mathsf{s}_{\mathcal{T}_{\varphi}}) \,,$

for any isometric relative motion $\zeta^{\text{iso}} \in \mathrm{C}^1(\mathcal{I}_{\varphi}; \mathcal{I}_{\zeta^{\text{iso}} \uparrow \varphi})$ induced by a change of Euclid observer $\zeta_{\mathsf{E}}^{\text{iso}} \in \mathrm{C}^1(\mathsf{E};\mathsf{E})$.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Ansatz

Material fields are frame invariant

Principle of MFI

Any constitutive law must conform to the principle of MFI which requires that material fields, fulfilling the law, will still fulfill it when evaluated by another Euclid observer

 $\mathsf{H}_{\mathcal{T}_{\zeta^{\mathsf{iso}}\uparrow\varphi}}(\zeta^{\mathsf{iso}}\!\!\uparrow\!\!\mathsf{s}_{\mathcal{T}_{\varphi}})=\zeta^{\mathsf{iso}}\!\uparrow\!\mathsf{H}_{\mathcal{T}_{\varphi}}(\mathsf{s}_{\mathcal{T}_{\varphi}})\,,$

for any isometric relative motion $\zeta^{\text{iso}} \in \mathrm{C}^1(\mathcal{I}_{\varphi}; \mathcal{I}_{\zeta^{\text{iso}} \uparrow \varphi})$ induced by a change of Euclid observer $\zeta_{\mathsf{F}}^{\text{iso}} \in \mathrm{C}^1(\mathsf{E};\mathsf{E})$.

Equivalent condition

Constitutive operators must be frame invariant

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Frame invariance of the hypo-elastic operator

$$\mathsf{H}_{\mathcal{T}_{\boldsymbol{\zeta}^{\mathrm{ISO}}\uparrow \boldsymbol{\varphi}}}^{\mathrm{HYPO}} = \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathsf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Frame invariance of the hypo-elastic operator

$$\mathsf{H}_{\mathcal{T}_{\boldsymbol{\zeta}^{\mathrm{ISO}}\uparrow \boldsymbol{\varphi}}}^{\mathrm{HYPO}} = \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathsf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}$$

Pushed operator

$$(\boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}}) (\boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\dot{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! (\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \boldsymbol{\dot{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}})$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

► Frame invariance of the hypo-elastic operator

$$\mathsf{H}_{\mathcal{T}_{\boldsymbol{\zeta}^{\mathrm{ISO}}\uparrow\boldsymbol{\varphi}}}^{\mathrm{HYPO}} = \boldsymbol{\zeta}^{\mathrm{ISO}} \uparrow \mathsf{H}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\mathrm{HYPO}}$$

Pushed operator

$$(\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}})(\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})\cdot\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\!\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\!(\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})\cdot\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}})$$

Examples:

the simplest hypo-elastic operator is GREEN integrable and frame invariant:

$$\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}},t}^{\text{HYPO}}(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}},t}) := \frac{1}{2\,\mu}\,\mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t} - \frac{\nu}{E}\,\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}\otimes\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$$

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Frame invariance of the hypo-elastic operator

$$\mathsf{H}^{_{\mathrm{HYPO}}}_{\mathcal{T}_{\boldsymbol{\zeta}^{^{\mathrm{ISO}}}\uparrow\boldsymbol{\varphi}}} = \boldsymbol{\zeta}^{^{\mathrm{ISO}}} \!\uparrow\! \mathsf{H}^{_{\mathrm{HYPO}}}_{\mathcal{T}_{\boldsymbol{\varphi}}}$$

Pushed operator

$$(\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}})(\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})\cdot\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\!\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}}=\boldsymbol{\zeta}^{\text{ISO}}\!\!\uparrow\!\!(\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}}(\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}})\cdot\dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}})$$

Examples:

the simplest hypo-elastic operator is GREEN integrable and frame invariant:

$$\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}},t}^{\text{HYPO}}(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}},t}) := \frac{1}{2\,\mu}\,\mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t} - \frac{\nu}{E}\,\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}\otimes\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$$

the visco-plastic flow rule is frame invariant

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Frame invariance of the hypo-elastic operator

$$\mathsf{H}^{_{\mathrm{HYPO}}}_{\mathcal{T}_{\boldsymbol{\zeta}^{^{\mathrm{ISO}}}\uparrow\boldsymbol{\varphi}}} = \boldsymbol{\zeta}^{^{\mathrm{ISO}}} \uparrow \mathsf{H}^{_{\mathrm{HYPO}}}_{\mathcal{T}_{\boldsymbol{\varphi}}}$$

Pushed operator

$$(\boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}}) (\boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! \boldsymbol{\dot{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}} = \boldsymbol{\zeta}^{\text{ISO}} \! \uparrow \! (\boldsymbol{\mathsf{H}}_{\mathcal{T}_{\boldsymbol{\varphi}}}^{\text{HYPO}} (\boldsymbol{\sigma}_{\mathcal{T}_{\boldsymbol{\varphi}}}) \cdot \dot{\boldsymbol{\sigma}}_{\mathcal{T}_{\boldsymbol{\varphi}}})$$

Examples:

the simplest hypo-elastic operator is GREEN integrable and frame invariant:

$$\mathbf{H}_{\mathcal{T}_{\boldsymbol{\varphi}},t}^{\text{HYPO}}(\mathbf{T}_{\mathcal{T}_{\boldsymbol{\varphi}},t}) := \frac{1}{2\,\mu}\,\mathbb{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t} - \frac{\nu}{E}\,\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}\otimes\mathbf{I}_{\mathcal{T}_{\boldsymbol{\varphi}},t}$$

the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simó & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp. Meth. Appl. Mech. Eng. 46 (1984) 201-215.
J. C. Simó & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221-245.

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Aetric theory

Events manifold fibrations

Trajectory

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

Notion of spatial and material fields

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

^Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent space

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematic

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference
- Notions and treatments of constitutive models in the nonlinear range should be revised and reformulated

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Metric theory

Events manifold fibrations

Trajectory

- Notion of spatial and material fields
- Material time derivative and EULER split formula
- Covariance Paradigm
- Stretching and stressing: Lie time-derivatives
- EULER stretching formula generalized
- Covariant formulation of constitutive laws
- Notion of time and frame invariance
- Rate constitutive relations in the nonlinear range
- Covariant theory of hypo-elasticity
- Integrability of simplest hypo-elasticity
- Covariant theory of elasto-visco-plasticity
- From Lie time-derivatives to partial time derivatives by pull-back to a fixed configuration
- Covariant formulation of Material Frame Indifference
- Notions and treatments of constitutive models in the nonlinear range should be revised and reformulated
- Algorithms for numerical computations must be modified to comply with the covariant theory; multiplicative decomposition of the deformation gradient should be deemed as geometrically inconsistent

XX Congresso AIMETA

NLCM

Prolegomena

A basic question

Basic

Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivial fiber bundles

Section

Tensor bundle and sections

Push and pull

Push and pull of tensor fields

Parallel transport

Derivatives

Key contributions

Kinematics

Metric measurements

Netric theory

Events manifold fibrations

Trajectory