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Abstract. Chain and addition rules of subdifferential calculus are revisited in 
the paper and new proofs, providing local necessary and sufficient conditions for 
their validity, are presented. A new product rule pertaining to the composition 
of a convex functional and a Young function is also established and applied to 
obtain a proof of Kuhn-Tucker  conditions in convex optimization under mini- 
mal assumptions on the data. Applications to plasticity theory are briefly 
outlined in the concluding remarks. 
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Introduction 

Subdifferential calculus is nowadays a well-developed chapter of nonsmooth analysis 
which is recognized for its many applications to optimization theory. The very 
definition of subdifferential and the basic results concerning the addition and the 
chain rule of subdifferential calculus were first established in the early sixties by 
Rockafellar [10] with reference to convex functions on ~n .  A comprehensive 
treatment of the subject has been provided by himself in the later book on convex 
analysis [11]. The theory was developed further by Moreau [7] in the context of 
linear topological vector spaces and applied to problems of unilateral mechanics [8]. 

* The financial support of the Italian Ministry for University and Scientific and Technological 
Research is gratefully acknowledged. 
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A summary of basic mathematical results can also be found in the book by Laurent 
[5] and in an introductory chapter of the book by Ekeland and Temam [3]. 

In the early seventies different attempts were initiated to extend the range of 
validity of subdifferential calculus to nonconvex functions, mainly by Rockafellar and 
his school. In this context saddle functions were considered by McLinden [6]. 
Significant advances were made by Clarke [1], [2], who set up a definition of 
subdifferential for arbitrary lower semicontinuous functions on ~ n  and extended 
the validity of the rules of subdifferential calculus to this nonconvex context. His 
results were later developed and extended by Rockafellar [12], [13], who has also 
provided a nice exposition of the state of art, up to the beginning of the eighties, in 
[141. 

A review of the main results and applications in different areas of mathematical 
physics can be found in a recent  book by Panagiotopoulos [9]. A different treatment 
of the subject is presented in the book by Ioffe and Tihomirov [4], who introduce the 
notion of regular local convexity to deal with the nonconvex case. 

A careful review of all these contributions to subdifferential calculus leads 
however to the following considerations. 

The results provided up to now to establish the validity of the addition and of 
the chain rule for subdifferentials appear to rely upon sufficient but largely not 
necessary assumptions. In fact a number of important situations, in which the results 
do hold true, are beyond the target of existing theorems. On the other hand the 
author has realized the lack of a chain rule concerning the very important case of 
convex functionals which are expressed as the composition of a monotone convex 
function and another convex functional. 

The first observation in this respect was made with reference to positively 
homogeneous convex functionals of order greater than one or, more generally, to 
convex functionals which are composed by a Young function and a sublinear 
functional (gauge-like functionals in Rockafellar's terminology). 

The theorems presented in this paper are intended to contribute to the filling of 
these gaps; progress is provided in two directions. 

The first concerns the chain rule pertaining to the composition of a convex 
functional and a differentiable operator. We have addressed the question of finding 
a necessary and sufficient condition for its validity. The theorem provided here 
shows that this task can be accomplished to within a closure operation; the proof is 
straightforward and relies on a well-known lemma of convex analysis concerning 
sublinear functionals. 

The result obtained must be considered as optimal; a simple counterexample 
reveals indeed that there is no hope of dropping the closure operation. On the 
contrary, to establish a perfect equality (one not requiring closures) in the chain-rule 
formula, classical treatments were compelled to set undue restrictions on the range 
of validity of the result. In this respect it has to be remarked that classical conditions 
were global in character, in the sense that validity of chain and addition rules were 
ensured at all points. The new results provided here are instead based upon local 
conditions which imply validity Of the rules only at the very point where subdifferen- 
tials have to be evaluated. It follows that classical conditions can be verified a priori 
while the new conditions must be checked a posteriori at the point of interest. 
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The second contribution consists in establishing a new chain-rule formula 
concerning functionals which are formed by the composition of a monotone convex 
function and a convex functional. A natural application of these results can be 
exploited in convex optimization problems. It is shown in fact that the Kuhn and 
Tucker multipliers theory can be immediately derived from the above theorems and 
the existence proof can be performed under assumptions less stringent than the 
classical Slater conditions [18]. 

Computation of the subdifferentials involved in the proof requires considering 
the following two special cases of the new chain rules of subdifferential calculus 
contributed here. In the first case we have to deal with the composition of the 
indicator of the zero and of an affine functional. In the second one we must consider 
a functional formed by the composition of the indicator of nonpositive reals and of a 
convex functional. Both cases were not covered by previous results. 

1. Local Convexity and Subdifferentials 

Let (X, X ' )  be a pair of locally convex topological vector spaces (1.c.t.v.s.) placed in 
separating duality by a bilinear form ( - , - )  and let f:  X ~ U {+or be an 
extended real-valued functional with a nonempty effective domain: 

d o m f =  {x ~ X J f ( x )  < +oo}. 

The one-sided directional derivative of f at the point x ~ dom f ,  along the 
vector h ~ X, is defined by the limit 

1 
d f ( x ; h )  = lim - [ f ( x  + eh) - f ( x ) ] .  

8---~0 + E 

The derivative Of f a t  x is then the extended real-valued functional p: X ~ { -  or 
U ~ U { + oo} defined by 

def 
p(h )  = df(x; h), 

which is easily seen to be positively homogeneous in h. 
The functional f is said to be locally convex at x when p is sublinear in h, that 

is, 

p ( a h )  = otp(h), Va >_ 0 (positive homogeneity), 

p ( h  1) + p(h  2) > p (h  1 + h2) , Vhl,  h 2 ~ X (subadditivity). 

The epigraph of p is then a convex cone in X x ~ .  
A locally convex functional f is said to be locally subdifferentiable at x if its 

one-sided derivative p is a proper sublinear functional, i.e., if it is nowhere -oo. In 
fact, denoting by p the closure of p defined by the limit formula 

p ( h )  = l iminfp(z ) ,  Vh ~ X ,  
z-"-~ h 
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a well-known result of convex analysis ensures that the proper lower semicontinuous 
(l.s.c.) sublinear functional p, turns out to be the support functional of a nonempty 
closed convex set K*, that is, 

if(h) = sup( (x* ,h) :  x* ~ K*}, 

with 

K* = {x* ~ X ' :  p ( h )  > ( x * , h ) , V h  ~ X } .  

The local subdifferential of the functional f is then defined by 

af(x) %tK*. 

A relevant special case, which will be referred to in the sequel, occurs when the 
one-sided derivative of f at x, turns out to be 1.s.c. so that p =/7. The functional f 
is then said to be regularly locally subdifferentiable at x. 

When the functional f is differentiable at x ~ X the local subdifferential is a 
singleton and coincides with the usual differential. 

For a convex functional f :  X ~, ~ u {+oo}, the difference quotient in the 
definition of a one-sided directional derivative does not increase as e decreases to 
zero [4], [11]. Hence the limit exists at every point x ~ dom f along any direction 
h E X and the following formula holds: 

1 
dr(x;  h) = inf - [ f ( x  + e,h) - f (x)] .  

B>0 E 

A simple computation shows that the directional derivative of f "is convex as a 
function of h and hence sublinear. 

Moreover the definition of local subdifferential turns out to be equivalent to 

x* ~ 8 f ( x )  r f ( y )  - f ( x )  > ( x * , y  - x ) ,  Vy ~ X ,  

which is the usual definition of subdifferential in convex analysis [11]. 

2. Classical Subdifferential Calculus 

Let fl, f2:  X ~ ~z ~ L) { -I- ~} and f:  Y ~ ~q~ u { + ~} be convex functionals and let 
L: X ~ Y be a continuous linear operator. From the definition of local subdiffer- 
ential it follows easily that 

a ( a f ) ( x )  = ~ a f ( x ) ,  ~ >__ 0, 

a(f~ + f2)(x) ~_ afl(x) + af2(x), 

8 ( f  o L ) ( x )  Z IJ 8 f ( L x ) ,  

where L' denotes the dual of L. 
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As remarked in [3] equality in the last two relations is far from being always 
realized. The aim of subdifferential calculus has thus primarily consisted in providing 
conditions sufficient to ensure that the converse of the last two inclusions does hold 
true. In convex analysis this task has been classically accomplished by the following 
kind of results [3]-[5], [11]. 

Theorem 2.1 (Additivity). I f  f l ,  f2: X ~ U {+oo} are convex and at least one of 
them is continuous at a point of  dom f t  N dom rE, then 

o ( A  + f2)(x) = OA(x) + of  2(x), Vx ~ x .  

Theorem 2.2 (Chain-Rule). Given a continuous linear operator L: X ~ Y and a 
convex functional f: Y -->~ U {+oo} which is continuous at a point of dom f A Im L, 
it results that 

3 ( f  o L ) ( x )  = L' Of(Lx),  Vx ~ X. 

The chain-rule equality above can be equivalently written with the more familiar 
notation 

O(f  o L ) ( x )  = Of(Lx)o L,  Vx ~ X .  

A generalization of the previous results can be performed to get a chain rule 
involving a locally convex functional and a nonlinear differentiable operator. 

Given a nonlinear differentiable operator A: X ~  Y and a functional 
f :  Y ~  U {+oo} which is locally convex at Yo =A(xo) ,  we have to prove the 
following equality: 

O(fo A ) ( x  o) = af[A(xo)]O dA(x 0) = [dA(x0)]( Of[A(xo)], 

where dA(x o) is the derivative of the operator A at x 0 ~ X. 
The task can be accomplished by first providing conditions sufficient to guaran- 

tee the validity of the chain-rule identity for one-sided directional derivatives: 

d ( f o  A)(x0;  x) = df[A(xo);  dA(xo)X], Vx ~ X, 

which is easily seen to hold trivially when A is an affine operator. Then, setting 
def 

L = dA(x0), we consider the sublinear functionals 

p ( y )  de=fdf(A(xo); y)  and q(x)  de=fd(f o A)(x0 ;x ) .  

The identity above ensures that q = p o L; further, observing that, by definition, 

Op(O) = Of (A(x ) )  and Oq(O) = a (po  L)(0) = O(fo A ) ( x ) ,  

the equality to be proved can be rewritten as 

O(p o L)(O) = L' Op(O). 
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This result can be inferred from the chain-rule theorem concerning convex function- 
als by assuming that the sublinear functional p is continuous at a point of 
dom p n Im L. 

In this respect we remark that it has been shown in [4] that, assuming the 
functional f to be regularly locally convex at A(x )  ~ Y, that is locally convex and 
uniformly differentiable in all directions at A(x), its derivative p turns out to be 
continuous in the whole space Y. Therein it is also proved that a convex functional is 
regularly locally convex at a point if and only if it is continuous at that point. An 
analogous generalization can be performed for the addition formula of subdifferen- 
tial calculus. 

A different and more general treatment of the nonconvex case has been 
developed, on the basis of Clarke's [1], [2] contributions, by Rockafellar [12], [13]. 
According to his approach the validity of the chain rule was proved by assuming that 
the operator A is strictly differentiable at x ~ X, that f is finite, directionally 
Lipschitzian, and subdifferentially regular at A(x )  and that the interior of the 
domain of the one-sided derivative of f at x ~ X has a nonempty intersection with 
the range of dA(x). 

Reference is made to the quoted papers for a precise assessment of definitions 
and proofs. 

3. New Results 

As illustrated above, all the contributions provided to subdifferential calculus until 
now have directed their efforts in the direction of finding conditions directly 
sufficient to ensure the validity of the equality sign in the relevant relations. This 
approach has led to the formulation of very stringent conditions which rule out a 
number of significant situations. 

In the next subsection we propose an alternative approach to the assessment of 
the chain rule pertaining to the composition of a convex functional and a differen- 
tiable operator. Further we derive the addition rule as a special case of this chain 
rule. 

In the second subsection we present the proof of a new product-rule formula of 
subdifferential calculus which deals with the composition of a monotone convex 
function and a convex functional. 

These results are applied in the last subsection to assess the existence of Kuhn 
and Tucker multipliers in convex optimization problems, under assumptions less 
stringent than the classical Slater conditions [18] (see also [11], and [14]). 

3.1. Classical Addition and Chain-Rule Formulas 

The new approach to classical rules of subdifferential calculus consists in splitting 
the procedure into two steps. It has in fact been realized that getting the equality at 
once in the related relations require s too stringent assumptions and follows less 
deep insight into the problem. 
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The classical chain rule requires the equality of  the subdifferential of  a compos- 
ite function, which is a closed convex set, to the image of  the subdifferential of a 
convex function through a linear operator. Since in general the image of a closed 
convex set fails to be closed too, it is natural to look first for conditions apt to 
provide equality of  the former set to the closure of  the latter one, leaving to a 
subsequent step the answer about the closedness of the latter set. 

The first step is performed by means of the following result. 

Theorem 3.1 (New Proof of  the Classical Chain Rule). Le tA:  X ~ Y b e  a nonlinear 
operator which is differentiable at a point x o ~ X with derivative dA(x0): X ~ Y linear 
and continuous. Let further f :  Y ~ ~ u { + oo} be a functional which is locally subdif- 
ferentiable at A ( x  o) ~ Y and assume that f o A: X ~ u {+oo}/s locally subdifferen- 
tiable at x o ~ X .  Then we have that 

O ( f  o A ) ( x o )  = O f [ A ( x o )  ] o [dA(x0) ] = IdA(x0) ]' O f [ A ( x o )  ] 

i f  and only if  

?t(x) = p ( L x ) ,  Vx  ~ X ,  

def 
where q(.) ~ f  d( f o A)(xo; . ), p ( ' )  de=f df[ A(xo); " ], and L = dA(xo), a superimposed 
bar denoting the closure. 

Proof. f being locally subdifferentiable at A ( x  o) ~ Y, its directional derivative 
p :  Y ~ ~ u {+ ~} is a proper sublinea r functional, so that 

p ( y )  = sup{(y*,  y ) ly*  ~ K*},  

where 

K* = 0p(0)d-----ef{y * ~ Y ' I p ( Y )  > ( y * , y ) , V y  ~ Y}  

is a nonempty, dosed  convex set. Then we have 

p ( L x )  = sup{(y*,  Lx) ly*  ~ K*} = sup{(x*,  x) lx* ~ L'K*}.  

Similarly, f o A being locally subdifferentiable at x 0 E X its directional derivative 
q: X ~ u {+o~} is a proper sublinear functional, so that 

~/(x) = sup{(x*,  x) lx* ~ C*}, 

where 

C* = {x* ~ S ' l q ( x )  > ( x * , x ) ,  Vx  ~ X }  

is a nonempty, dosed  convex set in X' .  
Comparison of the two expressions above leads directly to the following conclu- 

sion: 

~(x)  = f f (Lx)  if and only if C* = L'K*.  
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The statement of the theorem is then inferred by observing that 

Of[A(xo)]  = {y* ~ Y ' l d f [ A ( x o ) ;  y] > ( y * , y ) , V y  ~ Y}  

= {y* ~ g ' l p ( y )  > ( y * , y ) , V y  ~ Y}  = Op(O) = g *  

and 

O( f  o A) (Xo  ) = {x* ~ X ' l d ( f  o A)(x0; X) - (x*,  x) ,  Vx ~ X} 

= {x* ~ X ' l q ( x )  >_ ( x * ,  x ) ,  Vx  E X }  = Oq(O) = C* 

and the proof is complete. [] 

A useful variant is stated in the following: 

Corollary 3.2. Let A: X ~ Y be a nonlinear operator which is differentiable at a point 
x o ~ X w i t h  derivative dA(xo): X ~ Y l inearand  continuous. Let  further f:  Y ~ q ~  U 
{+oo} be a functional which is locally subdifferentiable at A ( x  o) ~ ]z and assume that 
the following identity holds: 

d ( f  o A)(Xo; x) = d f [ A ( x o )  ; dA(xo)x] , Vx ~ X. 

Then we have 

O( f  o A ) ( x  o) = Of[A(xo)]O [dA(x0)] = [dA(x0)]' O f [ A ( x o )  ] 

if and only if 

(p o L ) ( x )  = p ( L x ) ,  Vx  ~ X ,  

def  de f  
where p (  y ) = df[ A (  xo); y] and L = dA( xo), a superimposed bar denoting the closure. 

Proof. The result is directly inferred from the theorem above by noting that the 
assumed identity amounts to requiring that q = p o L. [] 

I t  has to be remarked that the chain rule for one-sided directional derivatives 
assumed in the statement of the corollary holds trivially for every affine operator A. 
Moreover the necessary and sufficient condition is fulfilled when the sublinear 
functional p is closed. 

The next result shows that the addition rule for subdifferentials can be directly 
derived by applying the result provided by the chain-rule theorem. 

Theorem 3.3 (New Proof of the Classical Addition Rule). We consider the function- 
als fi: X ~ 9 ~  u {+~} with i = 1 . . . .  , n  and assume that they are locally subdifferen- 

d e f  
tiable at x o ~ X with Pi(X) = dfi(xo; x). The following addition rule then holds: 

a fi (Xo)= ofi(Xo) 
i i = 1  



New Results in Subdifferential Calculus with Applications to Convex Optimization 

i f  and only if  

Pi ( x )  = ~ i ( x ) ,  Vx  ~ X .  
i i = 1  

221  

Proof. Let  A: X ~ X "  be the iteration operator defined as 

A x  = [xi[, x i = x ,  i = 1 , . . . ,  n. 

The dual operator A': X '  ~ (X" ) '  meets the identity 

( A ' i x* l , x )  = ( I x * l ,  Ax> = ( x * , x >  = x * , x  , Vx  ~ X ,  
i = 1  i 

and hence is the addition operator 

A'lx*[ = ~ x * .  
i = 1  

Defining the functional f :  X "  ~ ~ '  u { + oo} as 
( f o  A ) ( x )  = Ki~lf / (x)  and hence 

O(f~  A) (xo)  = ~ 

On the other hand, 

1 
df(Axo;  Ix/J) = lim - - [ f ( A x  0 + alx/I) f (Ax0)]  

a g O  ot 

1 n n 

a D O  O~ i = 1  i = 1  

By the definition of  local subdifferential we then get 

Ix*l ~ ~ f (AXo)  r x* ~ ~f i (xo)  

so that 

A' cgf(Zx O) = ~ Ofi(Xo). 
i = 1  

de f  n 
f(Ixil) = ~,i=lfi(xi), we have 



222 G. Romano 

def  ~-~ . def  n 
POXi[) = d f ( A x  o; [xi[) = ~ df/(x0; x i) = ~ p i ( x i ) ,  

i = 1  i = 1  

(T) (p o A ) ( x )  = Pi ( x ) ,  
i 

p(Ax) = ~ pi(x), 
i = 1  

the proof follows from the result contributed in the chain-rule theorem above. [] 

Corollary 3.4. We consider the funct ionals  fi: X ~ ~ u {+~} with i = 1 , . . . ,  n, and 
assume that they are regularly locally subdifferentiable at x o ~ X .  The fol lowing addition 
rule then holds: 

0 fi (x0)= oL(x0). 
i i = 1  

Proof.  The result follows at once by Theorem 4.3, observing that 

Pi (i = 1 , . . . , n )  closed = s  closed. 
i = 1  

[] 

We now derive a special case of the chain-rule formula which is referred to later 
when dealing with the existence Of Kuhn and Tucker vectors in convex optimization. 

A Special Case. Let A: X ~ Y be a continuous affine operator, that is, 

A ( x )  = L ( x )  + c 

with L: X ~ Y linear and continuous and c ~ Y. Let further f :  Y ~ '  u {+~} be 
the convex indicator of  the point {A(x0)}: 

f ( y )  = ind(A(xo))(y) , V y  ~ Y .  

The chain rule for one-sided directional derivatives holds true since A is affine. 
Moreover the functionals 

def  
p (  y ) = d f[  A (  xo);  Y] = indc0)(y) , 

def  
( p  o L ) ( x )  = d f [ A ( x o ) ;  Lx] = indc0~(Lx) = ind{KerL~(X) 

turn out to be sublinear, proper, and closed. 
On the basis of  the corollary to the chain-rule theorem provided above we may 

then state that 

3 ( f  o A ) ( x  o) = L ' Y '  = Im L'. 
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The particular case when Y = ~ '  will be of special interest in the sequel. In this case 
we may write 

A ( x )  = ( a * , x )  + c with a* ~ X ' ,  c ~ .  

Note that now L = a*: X ~,~2 and L': ~ '  ~ X '  with Lx = (a*, x)  and L'a = o~a*. 
It follows that Im L' = Lin{a*} is a closed subspace and hence 

O(fo A) (xo )  = Im L' = Lin{a*} = L' Of[A(xo)] = Of[A(xo)]L =~2a*, 

which is the formula of future interest. 
Two significant examples are reported hereafter to enlighten the meaning of the 

conditions required for the validity of the chain-rule formula. 

Examples. The first example shows that, when the necessary and sufficient condi- 
tion for the validity of the chain-rule formula is not satisfied, the two convex sets 
involved in the formula can i'n fact be quite different from one another. 

Let f be the convex indicator of a circular set in ~ 2  centered at the origin and 
let (x0, 0) be a point on its boundary. The one-sided directional derivative of f at 
(x0, 0) is the proper sublinear functional p: ~ 2  ~ ~o~ given by 

p(x ,  y)  = [ 0 for x < 0 and at the origin, 

t + ~, elsewhere. 

Denoting the orthogonal projector on the axis ~2'y by L = L' we have 

and then O(po/s  =~ 'y .  ( p  o L)  = ind(~x) 

On the other hand, 

c~p(O, O) =~; '+ so that L' ap(0, 0 )  = L '~ '~  + = ( 0 ,  0 ) .  

The second example provides a situation in which all the assumptions set forth 
in the corollary are met but still the two convex sets fail to be equal since the second 
one is nonclosed. Let K* be the hyperbolic convex set in ~,2 defined by 

K*de=f{(x*,y *) ~J221x*y * > 1} 

and let p be its support functional: 

p(x ,  y)a---efsup{(x*, x)  + (y* ,  y) l (x*,  y*) ~ K*}. 
/ 

Denoting the orthogonal projector on the axis ~ y  again by L = L' we then have 

( p o L ) ( x , y ) =  [0  on ~ x •  

t + ~ elsewhere. 

Hence K* = O(p o L)(0,0) =~2'f  but L' Op(O,O) = L'K* = ~ ' ] - ( 0 , 0 )  which is 
open. 
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3.2. A New Product-Rule Formula 

We present here the proof of a new product-rule formula of  subdifferential calculus 
which deals with the composition of a monotone convex function and a convex 
functional. 

The original interest of the ~ author for this kind of product rule arose in 
connection with subdifferential relations involving gauge-like functionals [11] which 
are composed by a monotone convex Young function and a sublinear Minkowsky 
functional. The new product-rule formula turns out to be of  the utmost interest in 
dealing with minimization problems involving convex constraints expressed in terms 
of level sets of convex functionals. 

A new approach to the Kuhn and Tucker theory of convex optimization can be 
founded upon these results and is carried out in the next subsection. 

Two introductory lemmas, which the main theorem resorts to, are preliminarily 
reported hereafter. 

I .emma 3.5. Let I = [A1, A2] be an interval belonging to the nonnegative real line and 
let C be a weakly compact convex set in X.  Then the set IC is convex and closed if either 

(a) 0 ~ C, or 
(b) I is compact (i.e., bounded). 

Proof. We first prove that C being convex, the set IC is convex too. 
I f x l ,  x 2 ~ I C a n d  a s , a  2 > 0 w i t h  a l + a  2 =  1, w e h a v e  

O/S.~" s + 0t2.~ 2 = o / l m l x  1 + 0 : 2 m 2 x  2 with m s ,  m 2 ~ I ,  XS, X 2 E C .  

Now, by the convexity of  C [11, Theorem 3.2], 

a lmlX  1 + a2m2x 2 E a l m l C  + ot2m2C = ( a i m  s + ol2m2)C c IC, 

the last inclusion holding true since asm s + ot2m 2 �9 I ,  b y  the convexity of  I. 
To prove the weak closedness of  IC, we consider a weak limit point z of IC and 

a sequence {akXk}, with a k �9 I and x k �9 C, converging weakly to z: 

( x* ,  akxk)  ~ (X*,  Z) ,  VX* �9 X ' .  

C being weakly compact in X, we may assume that the sequence {x k} is weakly 
convergent to a point x e C. 

Under  assumption (a) we then infer that x 4~ 0 so that there is an 2* such that 

( ~ * , x  k)  ~ ( $ * , x )  > O. 

For a sufficiently large k, (~*, x k)  > ~: > 0, and hence the sequence {a k} cannot be 
unbounded. In fact otherwise (x*,  akX k)  > ak~ ~ + %  contrary to the assumption 

w 
that akX k ~ Z. 

Under  assumption (b) the boundedness of  the sequence {a k} is a trivial conse- 
quence of  the boundedness of L 
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W 

In both cases we may then assume that  a k ~ a e I and x k ~ x  ~ C. As a 
W 

consequence we get that  {a~x~} ~ ax and hence z = ax ~ IC. [] 

Lemma 3.6. Let f:  X ~ ~9~ be a continuous nonconstant convex functional. Denoting 
its zero level set by N,  if there is a vector x ~ N such that f ( x _ )  < 0 then 

int N = N _  d--el {X ~ S l f ( x )  < 0}, 

bnd N = N o ~ f { x  e X I f ( x )  = 0}, 

and both sets turn out to be nonempty. 

Proof. Since f ( x )  < 0, by the continuity of f a ne ighborhood A / ( x )  exists such 
that  f ( x )  < O, Vx  ~d / ( x_ ) .  H e n c e A / ( x  ) c N so that  x e int N. 

Fur ther ,  f being nonconstant  and negative at x ,  by convexity there  will be an 
x o ~ X such that  f ( x  o) = 0. Let  S(xo; x )  c N be the segment joining x o and x 
and let L(x0; x)  be the line genera ted  by S(x0; x )  (see Figure l(a)). 

Setting fL(t)  = f[2(t)]  with 2(t)  = (1 - t )x  o + tx_, t ~9~, we have 

f L ( 0 ) = 0  and f L ( 1 ) < 0 .  

Hence,  by convexity (see Figure l(b)),  

f L ( t ) < 0  for 0 < t < l  and f L ( t ) > 0  for t < 0 .  

We may then conclude that  

N _ _ i n t N  and N o G b n d N  

and the relat ions 

int N = N \ b n d  N c_ N \ N o = N _ ,  

bnd N = N \ int N ___ N \ N :  = N O 

yield the converse inclusions. [ ]  

t 

(a) Oa) 
Figure 1. (a) The zero level set of f(x) and (b) the graph of fL(t). 
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The main theorem providing the new product rule can now be stated. 

Theorem 3.7 (The New Product Rule). Let  m: ~ U {+~} ~ '  U {+oo} be a 

monotone convex function with m( +o~) = +oo and let k: X ~ U {+oo} be a proper 
convex functional continuous at x ~ X .  Then, if  x is not a minimum point o f  k and m is 
subdifferentiable at k(  x ), setting f = m o k, results in 

Of (x )  = Om[k(x )]  Ok(x) .  

Proof. The proof is carried out in two steps. First we provide a representation 
formula for the closure of the one-sided directional derivative of  f ;  then recourse to 
the two preliminary lemmas will yield the result. 

To provide the representation formula, given a director h ~ X - {0}, we define 
the convex real function X: ~q~+~ ~ '  as the restriction of  k to the half-line starting 

at x and directed along h: X ( a ) ~ f k ( x  + ah)  so that x ' ( O ) ~ d k ( x ;  h). In investigat- 
ing the behavior of  dr(x; �9 ) it is basic to consider the zero level set of  dk(x;  �9 ). 

First we observe that the continuity of  k at x implies [4] the continuity 
of the sublinear function dk(x;  h) as a function of h. Its zero level set N = 
{h e X[dk (x ;  h) <_ O} is then a closed Convex cone. 

Since by assumption x is not a minimum point for k, the preliminary lemma, 
Lemma 3.6, states that the interior and the boundary of N are not empty, being 
dk(x ; .  ) < 0 in int N and dk(x ; .  ) = 0 on bnd N. The derivative dr(x; h) of the 
product functional f = m o k can then be immediately computed along the direc- 
tions h ~ int N and h ~ N. In fact if dk(x;  h) = x'(O) does not vanish, a $ 0 implies 
that definitively either ) ( a ) $  X(0) ff X'(0) > 0 or x ( a ) T  x(O) if X'(0) < 0 (see 
Figure 2). 

Hence, denoting the right and left derivatives of  m at the point k ( x )  = X(0) by 
m'+ and m ' ,  it will be seen that 

1 
d f (x ;  h) = lim - [ f ( x  + a h )  - f ( x ) ]  

a ,L O ot 

1 
lim - - [ m [ k ( x  + ah) ]  - m[k(x ) ] ]  
a,LO O~ 

1 
= lira - [ m E  x ( a ) ]  - m[ x(O)]] 

a $ O  OL 

m[ x ( = ) ]  - m[ x(O)] x ( = )  - x(O) 
lim 
~ o  x ( a )  - x (O)  a 

m[ x ( a ) ]  - m[ x(O)] 
lim �9 lira 

x(~)~ x(o) x ( a )  - x ( O )  ~ ~o 

x ( c ~ )  - x (O)  

= m ' + x ' ( O )  

if x'(O) > O. Apparently dr(x; h) = m'_x'(O) if x'(O) < O. 
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X 

z(o) 

(a) 

Figure 2. 

X, 

z(o) 

~ . .  

Co) 

(a) x'(O) > 0 and (b) x'(O) < O. 

0~ 

A more  detai led discussion has to be made  when h ~ bnd N, so that  X'(0) = 0. 
In  this case, as shown in Figure 3, the convexity of  k implies that  ei ther X ( a )  goes 
to X(0) with a strict monotonic  descent or  it attains the value X(0) for some a > 0 
and then remains  definitively constant. 

In both cases df(x; h) = 0 if the right derivative m+ is finite. In  fact, in the case 
of Figure 3(a), the formula  df(x; h) = m'+ dk(x; h) holds with dk(x; h) = 0; in the 
case of  Figure 3(b) the conclusion is trivial. 

W e  may then conclude that  

0 

dr(x;  .) = m'_ dk(x ;  .) < 0 

m+ dk(x ;  .) > 0 

on bnd N,  
in int N,  

outside N,  

so that  the following formula holds: 

m t m ! d f ( x ; h )  = s u p A d k ( x ; h )  with I =  [ _ ,  +]. 
A ~ I  

A n  indecisive situation occurs instead when m+ = + o~ since, in the case of 

Figure 3(a), df(x; h) = +~.  

X 

Z(0) 
Y 

X 

Z(o) 

Ot IX 

(a) (b) 

Figure 3. Graphs of X(a) for X'(0) = 0. (a) Monotonic descent and (b) definitive constancy. 
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m ! Noticing that Om[k(x)] = I = [ _,  m'+], the assumed subdifferentiability of  m 
at k(x) ensures that m'_ < + o~. Hence we get 

(0 or +oo 

dr(x; ") = ]m" dk(x; .) < 0 
~rn+ dk(x; .) +oo 

on bnd N, 
in int N,  

outside N. 

To resolve t h e  indecisive situation on bnd N we observe that, dk(x;. ) being 
continuous in X and vanishing on bnd N, the restriction of df(x;. ) to int N can be 
extended by continuity to zero on bnd N. 

As a consequence the closure of  dr(x;. ) will vanish on bnd N, being equal to 
dr(x;. ) elsewhere: 

0 ,  

d f (x ; . )=  m_dk(x ; . )  <0 
m+ dk(x; .) +oo 

on bnd N, 
in int N,  

outside N. 

From the analysis above we infer then the general validity of  the formula 

m ! df(x;h) = suphdk(x;h)  with I = [ _ , m ' + ]  
h ~ I  

holding whether m+ is finite or not. 
To get the product rule we finally remark that, by the continuity of  dk(x;. ), 

dk(x; h) = sup{(x*,h)lx* ~ 0k(x)} 

so that the formula above may be rewritten as 

dr(x; h) = sup{hsup{(x* ,  h)lx* ~ 0k(x)}} = sup{(x*, h)lx* ~ I Ok(x)}. 
A ~ I  

The set IOk(x) = Om[k(x)] Ok(x) being convex by Lemma 3.5, we then get 

Of(x) = Om[k(x)] Ok(x). 

Finally we observe that, by the continuity of k at x, the convex set Ok(x) is 
nonempty, closed, and weakly compact in X '  [7, Proposition 10.c.], further it does 
not contain the origin since x is not a minimum point for k. By Lemma 3.5 we may 
then infer the closure of  the set Om[k(x)] Ok(x) and the proof  is complete. [ ]  

Typical shapes of the monotone convex function rn in the case when m'+ = + 
are shown in Figure 4 depending on whether m'_ > 0 or m'__ = 0. The latter case 
reveals that a significant special choice for m is the convex indicator of  the 
nonpositive real axis. This is in fact the choice to be made in discussing convex 
optimization problems. 
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m 

~ m'+=+~ 
m' >0 

~(x) " "  

Figure 4. 

m~ 

Graphs of m when m'+ = + o~. 

m ' . l  " = -I- o o  

m' =0 
~(x) " 

3.3. Applications to Convex Optimization 

Given a proper convex functional f :  X ~ U {+~} we consider the following 
convex optimization problem: 

i n f { f ( x ) l x  ~ C},  

where C is the feasible set, defined by 

c=c~nc~ 

with 

= { n c,z, = . . . . .  n l } ,  

q = { n  ,lj = . . . . .  .=} ,  

C i = {x  ~ X [ g i ( x )  <_ 0 } ,  

Cy = {x c X l h j ( x )  = 0 } .  

In order that the optimization problem above be meaningful, we have to assume that 
the intersection between the feasible set and the domain of  the objective functional 
is not empty, i.e., dom f :~ C ~ 0 .  

Here gF X ~ : ~  are n 1 continuous convex functionals and hi: X ~ q ~  are n 2 
continuous affine functionals, that is, hi(x)  = (a~', x )  + c with a* ~ X '  and c ~J2 .  
Without loss of  generality the functionals gi and hj can be assumed to be noncon- 
stant; further it is natural to assume that each of  the convex functionals gi do 
assume negative values. 

The following preliminary result is easily proved. 

Lemma 3.8. Let  g: X ~ ~ be a nonconstant continuous convex functional. Denoting 
its zero level set by N,  i ra  vector x ~ N exists such that g( x ) < 0 we have that 

a(indt~_ I o g ) ( x )  = a ind{s~-}[g(x) ] ag i (x )  , V x  ~ N .  
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Proof. By Lemma 3.6 it follows that 

def 
int N = N_ = {x �9 XIg(x) < 0}, 

def _ 
bnd N = N O = {x �9 XIg(x) = 0}, 

and both sets turn out to be nonempty. 

G. R o m a n o  

Now, if x �9 N O the properties ensuring the validity of the new product-rule 
formula proved in Section 3.2 are fulfilled. On the other hand, if x �9 N_, by the 
continuity of g there is a neighborhood of x in which g is negative. The formula 
above then follows by observing that in this case 3 indcs~-}[g(x)] = {0}. [] 

We are now ready to discuss the convex optimization problem considered above 
which can be conveniently reformulated as 

inf ~0(x) with ~ 0 ( x ) = f ( x )  + ~ ind{y,[gi(x)] + ~ ind{0}[hj(x) ]. 
i=1  j = l  

Convex analysis tells us that 

x 0 = argmin ~0(x) ** 0 �9 O~0(x 0) 

or explicitly 

0 � 9  f (x0)  -t- i=l~ind{s~-}[gi(x~ j=t~ ind{~ hi(x~ ]" 

Under the validity of the addition rule of subdifferential calculus the extremum 
condition becomes 

0 �9 Of(x o) + ~ 0(ind{y}o gi)(Xo) + ~ 0(ind{0}o hi)(Xo). 
i=1  j = l  

Here we apply the result contributed above in Lemma 3.8 to compute the sub- 
differentials related to inequality constraints: 

0( ind{yl  o gi)(Xo) = 0 ind{s~-}[gi(xo)] Ogi(xo). 

The new proof of the chain rule provided in Section 3.1 allows us to carry out 
computation of the subdifferentials related to equality constraints: 

0(ind{0 } o hi)(Xo) = a ind{o}[ hi(xo) ] c)hi(xo). 

Finally we observe that 

O ind{~-}[gi(xo)] =,~{~-}[gi(XO)], 

ind{0}[hy(x0) ] = ~ ,  and Ohj(x o) = aT, 
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where ~4~cy}[gi(x0)] is the normal cone to ~ ' -  at the point gi(Xo). It turns out to be 
equal to {0} when gi(Xo) < 0 and to ~ +  when gi(Xo) = O. 

The extremum condition above can thus be restated explicitly in terms of Kuhn 
and Tucker complementarity relations: 

( A i E , ~  +, gi(xo) E,.~-, Aigi(x O) = O, i = 1 , . . . , n ,  
/zy ~ ,  j = l  . . . . .  m, 

and of the related stationarity condition: 

0 ~ Of(xo)+ ~ 1~ i Ogi(x O) 4- ~ tzya*. 
i=1 ]=1 

The corresponding Lagrangian is given by 

L(x ,  Ai, l~j) = f ( x )  + ~ Aigi(x) q- ~ tzjhj(x) - ~ ind{a+}(Ai) 
i=1 j = l  i=1 

- ~ ind{~}(/~j), 
y=l �9 

where the last inessential term has been added for formal symmetry. 
The Kuhn and Tucker conditions above are easily seen to be equivalent to the 

existence of a saddle point for the Lagrangian. 
Classically the existence of Kuhn and Tucker multipliers is ensured by the 

fulfillment of Slater's conditions [11], [18]: 

3 ~ X  such that f ( $ ) <  + ~  and 
gi(2) < 0 ,  i =  1 . . . . .  n, 

h j ( ~ ) = 0 ,  j = l  . . . . .  m, 

i.e., by assuming that the intersection between the domain of the objective func- 
tional and the interior of the set Cg is nonempty. 

According to the treatment developed in this paper the existence of Kuhn and 
Tucker multipliers can in fact be assessed under far less stringent conditions; these 
amount in the obvious minimal requirement that the optimization problem is well 
posed (i.e., the intersection between the domain of the objective functional and the 
feasible set is nonempty) and in the further assumption that, at the optimal point, 
the property ensuring the validity of the addition rule is satisfied. 

The graphical sketches in Figure 5 exemplify the different assumptions about 
the feasible set C = C  a D C  2 in the special case n 1 = 2  and n 2 = 0 .  Slater's 
condition is easily seen to be a straightforward consequence of the classical t heo -  
rems on addition rule for subdifferentials [11], [14]. The new condition is based on 
the results provided in the present paper. Validity of the addition rule cannot 
however be imposed a priori but has to be verified a posteriori at the extremal point. 
In this respect it has to be pointed out that when the optimal point x 0 lies on the 
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(a) (b) 

Figure 5. Assumptions about the feasible set. (a) Slater's condition and (b) new requirement. 

boundary of  the set Cg the simple sufficient condition provided by Corollary 3.4 
results in a special requirement on the local shape of Cg around x 0. 

In fact, when x 0 belongs to the boundary of  one of the sets Cg, the one-sided 
directional derivative d ( i n d ~ -  I o gi)(Xo; �9 ) will be 1.s.c. if and only if the monotone 
convex function indt~-~ is definitively constant toward zero along any direction h 
such that dg(xo; h) = 0, i.e., h �9 bnd C i (see Lemma 3.6, Theorem 3.7, and Figure 
3). This means that there must be an a o > 0  such that g(x o + a h ) = O  when 
a 0 >_ ot > 0. The boundary of  Cg must thus have a conical shape around x 0 as 
sketched in Figure 6. 

We finally provide an example in which Slater's condition fails, but the existence 
of Kuhn-Tucker  multipliers can still be assessed on the basis of the new results 
contributed above. To this end we consider a two-dimensional optimization problem 
for the convex function f (x ,  y) = 1 2 2(x + yZ) under the following inequality con- 

straints: 

h l = x - l ~ 0  , h2= - x + l ~ O  , h 3 = y - 2 E 0 ,  

h 4 = - y + 2 ~ 0 .  

It is apparent that the feasible set does have an empty interior so that Slater's 
condition is not fulfilled. On the contrary the differentiability of the constraint 
functions ensures the validity of  the addition rule so that the new requirement is 
satisfied. 

The feasible set C is depicted in Figure 7 and a set of  Kuhn-Tucker  multipliers 
at the optimal point x = 1, y = 1 is given by/~1 = 0 ,  /~2 = 1, "~3 = 0,  /~4 = 1. 

~ X O 

Figure 6. Local conical shape around the optimal point. 
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Figure 7. Feasible set and contour plot of the objective function. 

4. Conclusions 

The new approach to classical chain and addition rules of subdifferential calculus 
and the new product-rule formula presented in this paper have been shown to 
provide a useful and simple tool in the analysis of  convex optimization problems. 
Kuhn-Tucke r  optimality conditions have been proved under minimal assumptions 
on the data. Further applications of  the results contributed here can be envisaged in 
different areas of  mathematical physics. 

The original motivation for the study stemmed from problems in the theory of 
plasticity. In fact, starting from the classical normality rule of  the plastic flow to the 
convex domain of admissible static states, the new product rule provides a simple 
and effective tool to derive the equivalent expression of  the flow in terms of  plastic 
multipliers and gradients of  the yield modes. A comprehensive treatment of  the 
subject can be found in two recent papers by the author and coworkers [15]-[17]. 
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