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A class of elastoplastic relations with non-linear mixed hardening is addressed in the framework of an internal 
variable theory. The relevant finite step structural problem, resulting from the time integration of the constitutive 
laws according to a backward difference scheme, is then formulated in a geometrically linear range. Convex analysis 
and potential theory for monotone multi-valued operators are shown to provide the rationale for the development 
of a consistent variational theory. As a special result, a convex minimum principle in the final values of 
displacements, plastic strains and plastic parameters is formulated and a critical comparison with an analogous result 
proposed in the literature is presented. 

1. Introduction 

In recent papers [l-5], Maier and co-workers have addressed the formulation of variational 
principles for finite step solutions of an elastoplastic structural problem with non-linear mixed 
hardening. 

In the constitutive model assumed in [l-4], the yield condition is expressed by imposing that the 
effective stresses are bounded by limit values which are functions of suitable plastic parameters. These 
parameters provide a measure of the accumulated plastic strains and their time derivatives play the role 
of plastic multipliers. The effective stresses are assumed to be convex, positively homogeneous and 
twice differentiable functions of their arguments, while the reference stresses, which account for 
kinematic hardening, are functions of plastic strains. Both functions admit classical potentials and an 
associative flow rule is assumed. Performing the time integration of the constitutive law according to a 
backward difference scheme, a finite step structural problem is formulated in a geometrically linear 
range. 

Under these hypotheses a minimum principle for a convex functional, defined on the product space 
of finite increments of displacements, plastic strains and plastic parameters, is provided; the constraint 
conditions are expressed by positive increments of the plastic parameters and by the normality of the 
plastic strain increment to the elastic domain, so that the feasible set turns out to be non-convex. Any 
minimum point is shown to provide a solution for the elastoplastic finite step problem and vice versa. 

The variational formulation of finite step elastoplastic problems is revisited in this paper by making 
use of a convex analysis approach and of a recently contributed potential theory for monotone 
multi-valued operators [6]. In fact the problem at hand is inherently non-linear and involves multi- 
valued operators, so that the tools of classical differential calculus and potential theory are no longer 
applicable. The recourse to non-smooth analysis is thus mandatory and provides the natural mathemati- 
cal setting for a constructive development of the variational theory. A generalized version of the 
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elastoplastic constitutive relations considered in [l-4] is addressed here in the framework of an internal 
variable theory [7-191. No special assumption other than convexity is imposed on the yield modes. 

Following the procedure outlined in [20], the first step of the analysis consists of re-formulating the 
structural problem in terms of a multi-valued structural operator defined on the product space of all the 
state variables. It encompasses in a unique expression the field and the constitutive equations which 
describe the finite step elastoplastic problem. 

Then the conservativity of the structural operator is checked and the related non-smooth potential is 
obtained by direct integration. Such an approach is founded upon the results recently contributed in [6]. 
The operator formulation of the problem is thus shown to be recovered by imposing the stationarity of 
the non-smooth potential. Stationarity amounts to requiring that the null vector belongs to the partial 
subdifferential (superdifferential) of the potential with respect to the arguments in which it results 
convex (concave). On the basis of the results contributed in [20], a family of variational principles for 
the finite step structural problem can be derived by enforcing the fulfillment of field equations or 
constraint conditions. In particular, the expression of a minimum principle in displacements, plastic 
strains and plastic parameters is provided. By assuming positively homogeneous yield modes, a special 
minimum principle corresponding to the one proposed in [l-4] is then recovered. 

A detailed comparison between the two minimum principles reveals an essential difference in the 
constraint conditions. It is shown indeed that the constraints considered in [l-4], which impose 
normality of the plastic strain increment to the elastic domain, are unduly restrictive and define a 
non-convex feasible set. This kind of drawback appears to be inherent to any ad hoc analysis which, 
however ingeniously performed, is lacking in a systematic development. 

Conversely, with the present approach, the assumptions on the elastoplastic constitutive laws are 
relaxed to a maximal extent. Moreover, variationally consistent principles are formulated as optimiza- 
tion problems for convex functionals on convex feasible sets. 

The possibility of searching for the solution of the finite step elastoplastic structural problem as a 
minimum point of a convex functional on a convex feasible set is especially relevant from the 
computational point of view. Actually standard optimization algorithms can be adopted for the 
numerical solution of the relevant nonlinear programming problem resulting from a space discretiza- 
tion, e.g. by a finite element approach. 

2. 

of 

Some preliminary results 

We briefly recall here some basic definitions and properties of convex analysis as well as the concept 
stationarity for non-smooth potentials which will be useful in the sequel. 

2.1. Background of convex analysis 

A comprehensive treatment of the subject can be found in [21-251. 
Let (X,X’) be a pair of locally convex topological vector spaces (1.c.t.v.s.) placed in separating 

duahty by a bilinear form ( . , . ) and consider the convex functional g : X H 3 U { + co} ; we shall denote 
by 3 the set {-m} U%U {+m}. 

The one-sided Gateaux derivative of g at the point x, E dom g along the direction given by the 
vector x E X, is the functional f : XH $I defined by 

f(x) ‘z’dg(x,; x) =E\y+ + [g(x, + EX) - &,)] 2 

and turns out to be sublinear: 

f(ax) = af(x) V&20 (positive homogeneity) , 

f(x,) + f(x,) 2 f(x, + x,) Vx,, x2 E X (subadditivity) . 
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Clearly the epigraph of f is a convex cone in X x ZH. 
If the sublinear functional f is proper, the subdiffreential of the functional g is the multi-valued map, 

8g : XH X’, defined by 

ag(.xJdgf{x* EX’: f(x)> (x*,x> vx EX} . 

In particular, if the functional g is differentiable at x, E X, the subdifferential is a singleton and 
coincides with the usual differential. 

The chain-rule concerning the composition of a convex functional and a differentiable operator as 
well as additivity of the subdifferential of convex functionals hold true under mild assumptions [23]. 

The conjugate of a convex functional g is the convex functional g* : X’ r---) !Jl U { +M} defined by 

the elements x, x* for which the ‘sup’ is attained are said to be conjugate and, provided that g is closed, 
the following relations are equivalent: 

g(x) + g*(x*) = (x*,x) ) x* E ag(x), x E ag*(x*) . 

Analogous results hold for concave functionals by interchanging the role of +=J, 3 and ‘sup’ with 
those of -a, s and ‘inf’; the prefix ‘sub’ used in the convex case has now to be replaced by ‘super’. In 
what follows, the subdifferential (superdifferential) of a convex (concave) functional are denoted by the 
same symbol a when no ambiguity can arise. 

A relevant example of conjugate functionals is provided by the indicator LJ, and the support 
functional Llg of a convex set K: 

Moreover, we recall that the subdifferential of the indicator functional of a convex set K at a point 

ifxEK 
otherwise , 

LJ: (x*) =sup (x*,x) f 
XEK 

x E K coincides with the normal cone to K at x: 

def a LJ, (x) = fvK(X) = 
{x*EX’: (x*,y--x)60 VyEX}, xEK, 
o 

otherwise . 

A functional k : X x Y H !8 is said to be saddle (concave-convex) if k(x, y) is a concave functional of 
x f X for each y E Y and a convex functional of y for each x. 

A convex function f : X x Y H % U { +CQ} can be associated with any saddle functional k : X X 
Y’ H 9% according to the formula 

Given any saddle functional k, we define by d,k(x, y*) the superdifferential of the concave functional 
k(. , y*) at x and by a,,k(x, y*) the subdifferential of the convex functional k(x, * ) at y*. 

The subdifferential of the saddle functional k at the point (x, y*) is defined as follows: 

ak(x, y*) dAfa,k(x, y*) x +k(x, y*) . 

It can be proved [24] that, given a saddle functional k and its associated convex functional f, the 
following equivalences hold: 

(x*, y*) E ef(x, y) a t-x*, Y) E Wx, Y*) 
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and 

YEa,*&,Y*) e f(x,Y)+k(x,Y*)=(Y*,Y). 

The last relation stands as a generalization of Fenchel’s equality. 

2.2. Stationarity property 

In the classical calculus of variations, the stationarity condition for a differentiable functional 
amounts to finding its critical points, that is, the points in the domain of the functional at which its 
derivative vanishes. When dealing with non-smooth functionals, the definition of stationarity must be 
suitably re-formulated. 

A convex functional g is said to have a stationary point at x E dom g if the null vector 0 E X’ is 
included in its subdifferential at x: 

OE@(X) e dg(x;y)aO Vy~x. 

A common situation to be handled is the case of functionals which are convex with respect to some 
variables and concave with respect to some others. In this respect, let us consider a functional 
g : X = X, x X2 x X, x X4 H 3 which is jointly convex in (x1, x2) and jointly concave in (x,, x4). 

The stationarity of g is formally expressed by the condition 

(O,O,O, 0) E a&, , x2, x3, XJ , 

which has to be interpreted in the sense that, collecting in two groups the variables with respect to 
which the functional g is convex or concave, the null vector belongs to the subdifferential of g with 
respect to the former group and the null vector belongs to the superdifferential of g with respect to the 
latter. Hence, we can write 

(0, 0) E a (x,.~~)~(~l~~2~~3~~~)cxI xxi 9 

(0, 0) E a (x3,x4)&1~ x2> x39 x4) c x; x x; 9 

where d(x, x2) and $x3 x4) denote the subdifferential and the superdifferential in the corresponding 
product spaces, respectively. 

Here and in the sequel, we adopt the convention of not indicating explicitly the variables with 
respect to which the subdifferential is performed whenever they coincide with all the variables on which 
the functional depends. 

In general, the subdifferential of a convex functional defined in a product space is included in the 
Cartesian product of the corresponding partial subdifferentials [20]. 

Equality holds only in special cases, e.g. if the functional can be written as the sum of convex 
functionals, each of them being defined in a different component space. 

Accordingly, if the functional g can be written as the sum of two convex functional g, :X, I+ M U 
{+m} and g,:X, H 8 U { +m} and of a concave functional g, : X3 X X4 ++ !Jl U {--03)) the stationarity of 
g can be enforced as follows: 

OE %,(X1) 2 0 E @2(x2) ’ (O,O) E @3(X3, x4) . 

The same arguments can be repeated for a concave functional. 

3. Constitutive relations 

Let us consider an elastoplastic medium which undergoes infinitesimal deformations in an isothermal 
process whose successive events are ordered by a scalar parameter t which will be referred to as time. 
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We remark in advance that variables appearing in constitutive relations are local entities. According- 
ly, the spaces to which the variables belong will be labeled with the subscript ‘1’ to distinguish them 
from the corresponding spaces of global variables pertaining to the whole structure. 

In an internal variable approach, the plastic behaviour is described in terms of internal variables and 
thermodynamic forces belonging to two dual linear spaces X, and Xi, respectively. 

In such a context, the constitutive model of elastoplasticity is defined by the flow rule between the 
rates of internal variables and the thermodynamic forces, and by the expression of the Helmholtz free 
energy. A variety of models of elastoplastic behaviour has been proposed in the literature depending on 
the type of state variables involved in the expressions of the flow rule and of the Helmholtz free energy 
[7-191. 

In particular, the model recently considered by Maier and co-workers [l-4] in the context of 
associated plasticity is revisited here and recast in the framework of an internal variable theory. 

In the sequel, we denote by 53, the linear space of strains E, and by P’, the dual linear space of stresses 
@I where n is a point in the domain Voccupied by the body; the index x is used to represent the value of 
the field at the point x. As usual, the total strain E, E 9, is assumed to be the sum of an elastic strain e, 
and of a plastic strain px: 

ex=ee,+p,. 

To simplify the exposition, we first consider the model of uni-modal plasticity. 
In this case the yield criterion, which defines the current yield surface, is expressed in terms of a 

single yield mode y : Xi H ‘3 U { +w} and of a corresponding yield limit. Strain hardening of isotropic 
type is modelled by assuming that the yield limit is a positive monotone function y, : 2, - 9l U { +m} of 
a scalar parameter A, E 3, = zli. The elastic domain is then defined as the level set of the yield mode y at 
the value y,(A,): 

K = ix, EXI: Y(x,) ~Y,(A,)I . 

It represents the collection of thermodynamic forces X, which are admissible for a given value of the 
parameter A,; essentially this parameter can be interpreted as a scalar measure of the amount of plastic 
strain accumulated during the process. A more precise identification of A, is given in the sequel. 

We assume that the yield mode y is a closed convex function so that the elastic domain turns out to 
be convex and closed. Notice in addition that the monotonicity of y, implies the existence of a convex 
potential 7r : 2, H%U {+m} such that 

y,(h) = WA,) + 

In the model of plastic behaviour proposed by Maier and co-workers in [l-4], the yield mode y is 
assumed to be first-order positively homogeneous so that the sets K, corresponding to different values 
of y,(A,) turn out to be all proportional. The shape of the elastic domain K, thus remains fixed while its 
size changes proportionally to the yield limit. Accordingly the function y, accounts for isotropic 
hardening which depends upon the amount of accumulated plastic strain through the parameter A,. 

Actually this feature concerning the evolution of the elastic domain K, holds for any yield mode y 
which is positively homogeneous of arbitrary order m 2 1. 

More generally [24], a convex function meets the property of having its level sets all proportional if 
and only if it turns out to be the composition of a non-negative sublinear function k and of a 
non-constant, non-decreasing convex function m : %+ H 3 U { +w} : 

Y(x,) = (m o k)(xJ . 

Yield functions of this type have been termed classical yield functions in [17], where the related 
mechanical implications for the formulation of constitutive theories of associated inelastic behaviour 
have been discussed. 
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In the second part of the paper, the analysis is extended to the more general case of multi-modal 
plasticity in which the elastic domain is defined in terms of 12 2 1 yield modes yi and corresponding 
scalar parameters A,. 

In the theory of associated plasticity, the flow rule is classically expressed by the normality rule to the 
elastic domain. Maier’s model can be recovered by assuming that the time derivative p, of the plastic 
strain belongs to the normal cone to the elastic domain K, at the point x,: 

According to this relation the role of internal variables is played by the plastic strains p, since they are 
in duality with the thermodynamic forces A, which then belongs to the stress space. 

The following identifications are thus entailed: 

x, = 9, > x; =q. 

In what follows, the classical expression of the flow rule in terms of plastic multipliers is derived in a 
direct and original form; moreover, in view of the derivation of variational principles, the flow rule will 
be also recast in a more suitable form. In this respect, we remark that the adoption of an associated 
model of elastoplasticity is indispensable for the development of a related variational theory. 

The normal cone NK,(xX) can be expressed as the subdifferential of the indicator of K, at ,y,. Setting 
for convenience h(x,) = y(x,) - y,( A,), we have 

K, = {xx E X;: h(x,) s 01 , 

and hence 

where !l- is the cone of non-positive reals. 
A new chain rule of subdifferential calculus, recently contributed in [26], then yields 

w,- oh)(Xx) = a t-b MXx)l WXJ 9 

so that 

&,(Xx) = N,-MXJI ah(x,) = N!dY(X,) - YAAJI dY(XJ . 

The flow rule can accordingly be re-written in the form 

The last inclusion means that (Ye is zero when y( ,y,) < y,( A,) an d is non-negative when y(x,) = y,( A,). 
The flow rule can thus be explicitly expressed in terms of a linear complementarity condition: 

Z-4 E a, aY(xJ 9 CYxZ-O, Y(x,) -y,(h) CO > T[Y(x,) - Y,(A,)I = 0 . 

The model proposed by Maier and co-workers in [l-4] is recovered by assuming that the time 
derivative of the parameter A, coincides with the value of the plastic multiplier CX~, i.e. A, = 4. In the 
sequel, this position will tacitly be assumed to hold. 

Notice that the sign constraint on cu, implies that the parameter A, is a non-decreasing function of 
time t. 
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For future reference, we remark that the complementarity condition 

L E KJ-[Y(XJ -Y&)1 = a UT- [Y(X*) - Yo(A,)l 9 

can be re-written as 

Y(XJ -Y,(h) E a L-G- (U = a &I+ (k) 2 

so that, introducing the saddle (concave-convex) function $ : 2, x Xi ++ {-co} U 3 U { +w} defined by 

&Y(X,) , A, so > 
_w 

3 
otherwise , 

the flow rule can be given the following equivalent expression: 

In order to complete the set of constitutive relations, the expression of the Helmholtz free energy cp 
must be specified. 

The function cp is assumed here to be jointly convex in the total strains .s, and in the plastic strains p,. 
Stresses ax and thermodynamic forces xX are related to .sX and p, by means of the multi-valued relation 

where the symbol ~3 denotes the subdifferential in the product space of total and plastic strains. 
We assume the Helmholtz free energy to be the sum of two convex functions; namely the elastic 

energy 4 : 9, - 8 U { +m} and the hardening function 5 : 9, I+ 3 U { +m}: 

~o(~,~ PI> = 4(&x -PJ + 5(PJ . 

To provide an explicit expression of the subdifferential of cp with respect to the pair (E,, p,), we 
introduce the linear operator L : 9, X 9, H 9, and its dual L’ : 9, H Sp, x 9, defined by 

L(E,, p,) d2fcX -P, = e, 7 
1 

L’cTx = a, 
[ I -1 . 

The subdifferential of the elastic energy can then be achieved by means of a chain rule of 
subdifferential calculus in the form 

WW(&,, P,) = L’ W(W,, PA = L’ WW = WW[ ‘,1 y 

so that the constitutive relation becomes 

a, E d4(e,) 3 xx E Me,> - MP,) . 

In the case of a linear elastic behaviour, the elastic energy is expressed by 

with the elastic operator E symmetric and positive definite. Accordingly stresses and thermodynamic 
forces turn out to be given by 
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a; = Ee, , x, E -% - MIS> . 

The former is the classical elastic relation, while the latter accounts for a generalized ~ine~ugic 
~u~~e~~~g which specializes to the classical one when the function 5 is differentiable. In fact, in this case 
the operator a&,) turns out to be single-valued and the kinematic hardening is uniquely defined for 
each plastic strain. In accordance, the relation 

states that the stress a, belongs to the translation of the elastic domain K, by the amount de(p,). 

4. The elasto-plastic structural model 

In order to develop the variational fo~ulation of the structural problem, the relevant relations must 
be written in global form, that is, in terms of quantities pertaining to the whole structure. In the sequel, 
such quantities are referred to as ‘fields’. 

For a continuous model, such fields are functions defined in the domain V occupied by the body and 
are assumed to be elements of a suitable functional space. 

Local subdifferential relations, enforced almost everywhere in V, can be equivalently expressed in 
global form by integrating the relevant convex functions over the domain V. 

For instance, the global elastic strain energy is defined to be the functional of the elastic strain field e 
obtained by integrating the specific strain energy 4 over the whole body domain: 

Notice that, whenever the local functions are convex, the corresponding global ones turn out to be 
convex as well in the relevant fields. 

The subdifferential of the global elastic energy is defined as 

and the symbol * denotes the scalar product between the local values of dual fields. 
The subdifferential of the local elastic energy is given by 

aXEMe,) g d+(e,;nX)bO;*(nX-e,) VnX~gd,, 

for almost every (a.e.) n E V and the following equivalence can be proved [27]: 

aE &B(e) U ax Ea#(e,) a.e. in V . 

In the sequel, we denote by B and 17 the global functionals corresponding to 5 and rr, respectively. 
Denoting by ?P:LZ~X’H{--~}U%U{(S~) th e global functional corresponding to +, the global 

form of the constitutive relation stems from the following equivalence: 
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where, when dealing with fields, ‘LX+ is the convex cone of the fields ii which are non-negative a.e. in V. 
An explicit form of the partial subdifferentials of !P and of the differential of Il can be given in terms 

of the functionals Y and Y, defined as 

In fact, it is easy to show that the following formulas hold: 

a,P(L x) = i dY(x) 7 d,Wk x) = KY) > dn(i) = Y,(i). 

Finally K represents the convex set of thermodynamic force fields such that Y(x) s Y,(h), that is, 
y(x,) 6 y,(h,) a.e. in V. 

The description of the elastoplastic structural model is completed by specifying the field equations 
and the external constraints. 

We make reference to structural models in which equilibrium is unaffected by geometry changes SO 
that a linear strain measure can be adopted. 

Denoting by Ou the linear space of displacement fields u and by 53 the linear space of strain fields E, 
the corresponding duals will be the linear space 9 of external force fields f and the linear space Y of 
stress fields u. Compatibility and equilibrium equations are expressed by 

E=TU and T’u=f, 

where T : ‘3 H 9 and T’ : 9’~ 9 are dual linear operators [27,28]. 
Writing the external forces in the form f = 1+ r, where 1 denotes the applied load and r the reaction 

of the external constraints, the external constitutive relation is given by 

r E aY(u) ) 

where Y : 021 H 8 U { --03} is a concave functional. 
Such a relation provides a general model of external constraints which includes several cases of 

interest in Structural Mechanics such as bilateral or unilateral constraints, elastic or elastoviscoplastic 
foundations and so on. A survey of the particular expressions assumed by the functional Y in each of 
these cases can be found in [29]. 

The relation between external forces and displacements can then be expressed as 

where 
f E IN+) or equivalently u E ar*( f) , 

F(U) = (1, u) + Y(U) and r*(f) = Y*(f - 1) 

are concave functionals. 
In the special case of external frictionless bilateral constraints with imposed displacements U, the 

functional Y turns out to be a concave indicator. 
In fact denoting by L, the subspace of admissible displacement fields and by R = Li the subspace of 

external reaction fields, it turns out to be 

Y(u) = nLo (u - U) . 

Here the symbol L,i represents the orthogonal complement of the subspace L, and n the concave 
indicator. 

Accordingly the relation r E aY(u) is equivalent to stating that u E U + L, and that r E Lt = R. 
The structural problem for the elastoplastic medium subject to a given load history r(t) is thus 

governed by the following set of relations: 



302 G. Roman0 et al.. Variational principles for a class of finite step elastoplastic problems 

f=T’u, 

E=Tu, 

PEN,(X) ) 

static equilibrium, 

kinematic compatibility, 

flow rule, 

uEm(&-p), 

xEa@(&-p)-d2(p), 
Helmholtz free energy, 

u E C*(f) = aY*(f - 1), external constraint, 

where the explicit dependence of the state variables on time t has been dropped to 
notation. 

4.1. Elastoplastic finite step problem 

The evolutive analysis of the non-linear elastoplastic problem is performed by a 

simplify the 

preliminary 

sub-division of the load history in finite increments associated with a sequence t,, t,, . . . , ti, . . . , t, of 
times. We assume that no plastic unloading can occur during any of the intervals Ati = ti - t,_r. 

A finite step analysis of the evolutive problem amounts to evaluating the finite increments of the 
unknown variables corresponding to a given increment of load when their values are assigned at the 
beginning of the step. In the sequel, we denote by ( * ), the known quantities ( * ) at the beginning of 
each step. 

In order to formulate the finite step counterpart of the flow rule d E N&), the time derivative of p 
is replaced by the finite increment ratio (p -p,)/At; adopting a fully implicit time integration scheme 
(Euler backward difference), the flow rule is enforced at the end of the step: 

which, as NK(x) is a convex cone, can also be written 

Using for the flow rule the same arguments as in Section 3, the finite step flow rule can be expressed 
in terms of the yield condition and of the increment of the plastic parameter: 

(P -PO) E (A - 4) au(x) 9 Y(x) - Y,(A) E 3 U,+ (A -A,). 

The irreversible, path-dependent behaviour of plasticity is accounted for by updating the values of 
the internal variables A at each step. 

The finite step elastoplastic problem will then be conveniently formulated as follows: 

f=T’u, 

E=Tu, 

(P -P,) E (A - A,) aY(x) 7 

Y(x) - Y,(A) Ed U,+ (A - A,), 

(T E d@(& -p) ) 

x E a@,(& - p) - as(p) ) 

24 E ar*(f) 7 

in terms of the finite values of the fields at the end of the step. 
The extremum characterization of the solution of the finite step evolutive problem is carried out in 

the next section. 
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5. Variational formulation 

To prove that the finite step elastoplastic structural problem admits a variational formulation, it is 
convenient to recast the original problem in a suitable operator form. To this end, introducing the 
product space W = % x 9’ x Y x 28 x 6% x 9 x 9 and its dual W’, we consider the multi-valued 
structural operator 2 : W- W’ defined by 

OEZ(w)=2(w)+a, 

or in explicit form 

00 0 o-r, 
0 0 -I9 0 0 

0 0 A 0 1, 0 

0 0 0 
0 -z, 0 0 0 

0 0 Iy 0 
B 

0 

I 0 

0 

-P, + 0 

0 

0 

0 

where w f W, a E W’ and the operators I%, I, and 19, I9 are the dual pairs of identity maps in the 
spaces 071,s and Y, 9, respectively. 

The multi-valued suboperator A in the expression of 2 is defined as follows: 

A: ; 
[I-[ 

-qqA - A,7 x) 
I[ 

0 

-dJ’(A-A,,x) + 1 dII(h)+W,+(A-A,) ’ 
and the multi-valued suboperators B and Z,, are given by 

The conservativity of the operator 2 is inferred from the duality existing between T and T’, the 
duality existing between the two pairs of identity maps I,, 1, and IY, I3 and the conservativity of the 
other relations [6]. 

The existence of the potential 0 of Z is thus ensured and its expression can be evaluated by means of 
a direct integration in the product space W: 

to obtain 

fl(u> a, x, A, 8, p, f) = @(E -p) + s(p) + r*(f) - (f, u) - (a, &) + (0; 7’~) + (x, p -p,) 

- P(A - A,, x) + II(A) + U,+ (A -A,). 

The functional fl is linear in u and CT, saddle (concave-convex) with respect to the pair (x, A), jointly 
convex with respect to the pair (E, p) and concave with respect to f. 

Notice that the integral of the multi-valued operator 2 does not depend upon the particular choice of 
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an element in the set g(w). Further details concerning the mathematical aspects related to the potential 
theory for monotone multi-valued operators can be found in [6]. 

Let us now show that the stationarity of the functional R is equivalent to the operator formulation of 
the problem. 

PROPOSITION 1. A vector w is a stationary point for the functional 0 if and only if it is a solution of 
the finite step elastoplastic structural problem. 

PROOF. By virtue of the results reported in Section 2.2, the stationarity of the functional 0 at the 
point w = (u, u, A, A, E, p, f) is formally expressed by 

0 E a?(w) , 

and is enforced by the following set of conditions: 

Performing the subdifferentials in the corresponding spaces, we recover the operator form of the 
problem: 

OE~,O(w) e f=T’u, 

OEa,O(w) e E= Tu, 

O=p(4 e (P -P,)E(A-h)~Y(X) > 

oEd,R(w) e Y(X)-Y,(h)EaU,+(A-A,), 

(0, 0) E &@(W) e W E a@(& -p) , x E a@(& -p) - 85(p) , 

oqn(w) e uEz*(f). 

Reverting the steps above, we infer that a solution of the finite step elastoplastic problem makes the 
functional R stationary. 0 

6. A minimum principle 

A family of functionals can be derived from the potential fi by enforcing the fulfillment of the field 
equations and of the constitutive relations. All these functionals assume the same value as fi when 
evaluated in correspondence of a solution w of the structural elastoplastic problem. 

However, we are mainly interested in specializing the general expression of R to simpler forms which 
can result in greater interest for practical applications; more specifically, we derive from R a three-field 
functional which is jointly convex in (u, p, A). 

The interest in such a functional clearly rests on the circumstance that the solution of the 
elastoplastic structural problem (if any) can be obtained by numerically solving a minimization problem 
[30,31]. 

Let us preliminarily derive an intermediate functional in the four variables (u, p, A, x). To this end, 
we recall that a pair (f, u) fulfills the constraint relation if and only if it satisfies Fenchel’s equality 

uEw*(f) e T(u)+r*(f)= (f,u). 

In addition, enforcing the kinematic compatibility condition, the functional 0 specializes to 
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J-J,@4 P, A, x) = Q)(Tu -P) + Z(p) - W) + (x7 P -pll> -WA - A,, x) + WA) 

+U,+(A-A,), 

which is jointly convex in (u, p) and saddle (convex-concave) in (A, A). 
In order to eliminate the explicit dependence on the thermodynamic forces x in the expression of 0,) 

we make use of the results concerning the saddle functionals and the associated convex functionals (see 
Section 2.1). By definition, the convex functional qC : 2 x 9 H 3 U { +w} associated with the saddle 
(concave-convey) functional P is given by 

~(A-A,,p-PJd~fsuP {fx,p-pJ--WA-A,,X)) - 
X 

Denoting by JI, : Zj x 9, ++ % U { +m} the convex function associated 
given by 

with the saddle function 1(1 

cCt,(A, - Aox, Px - p,,) = 
[(Ax -A,~Y]*(P, -P,,) t A, -A,xaO, 

+m, otherwise , 

the functional WC turns out to be the global functional corresponding to (I: (see [27]): 

%(A - A,, P -P,) = 
i 
I/ &(A, - Aox, P, - P,~) dx . 

For any A 3 A,, a pair (p - p,, x) satisfies the relation (p - p,) E N( A - A,, X) = (A - A,) au(x) if 
and only if 

p(A - A,, x) + ‘&(A - A,, P -P,> = (xi P -P,) 7 

which substituted in the expression for the potential 0, yields 

f&(u, p, A) = @(Z-u -p) + E{(P) -r(u) + P,(A - A,, p -p,) + U(A) + I&+ (A -A,). 

The functional & turns out to be jointly convex in the three state variables (u, p, A) and we infer the 
following. 

PROPOSITION 2. A triplet (u, p, A) is an absolute minimum point for the convex functional LIZ if and 
only if it is a solution of the finite step el~topla~ti~ structural problem. 

PROOF. Let us show first that the operator formulation of the problem can be inferred by the 
stationarity of the functional &. In fact this condition is formally expressed by the relation 

where the subdifferential is performed with respect 
re-written as follows: 

to (u, p, A) jointly. The relation above can be 

r 0 7 roi 

where 
C(% P) = a(@oW(u, p) , D(A, P) = W_(A - A,, P -P,) 7 

F(A)=d17(A)+aLl,+(A-A,). 
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The operator N : % x 9 H 22 appearing in the expression of C is given by 

and is introduced simply to express the subdifferential of the elastic energy with respect to the pair 
(u, p). The dual operator N’ : Y++ 9 x Y of N is given by 

so that 

The stationa~ty of ti, 

and 
3f E Z(u): 

is thus equivalently expressed by the following set of relations: 

f E T’ d@(Tu -p) , 

3 
A 

[I 
\ 

* ED(h, Pf: 
(-AEdn(h)~aU,+(h-A,). 

I -x E -a@(Tu -p) + &Y(p) ) 

where A E 2’ = ‘3 represents the dual parameter of h. 
In order to evaluate the multi-valued suboperator D, we 

subdifferential of the functional PC and the subdifferential of 
recall the relation existing between the 
the associated saddle functional Y: 

which can be rewritten as 

-A = Y(x) 7 (p-Po>m-4Jay(x). 

We may then conclude that correspondingly to any minimum point (u, p, A) of the functional J&, there 
exists an external force satisfying the external constraint condition 

which is equilibrated by an internal stress 

CT E a@(e) , 

such that the elastic strain e is associated with 

E=Tu, e=E-- P* 

Moreover, there exists a thermodynamic force 

(P -PA E (A - A,) a%) , 

such that 

the pair (u, p) by the relations 

x satisfying the condition 

x E a@(e) - @(p) , Y(x) - Y,(A) E a u,+ (A - A,). 
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The whole elastoplastic finite step problem is thus recovered. The converse implication follows at once 
by reverting the steps above. 0 

The minimum principle presented in Proposition 2 can be re-written as a constrained optimization 
(non-linear programming) problem if we make explicit the constraint condition imposed by the 
indicator U, + . We can then state the following. 

PROPOSITION 3. A triplet (a, p, A} is a solution of the convex optimization problem 

with 

h,(u, p, A) = @(Tu -p> + B(p) - T(u) + C(A - A,, p -P,> + 17(A), 

if and only if it is a solution of the finite step elastoplastic structural problem. 

The functional f22 can be further specialized if the yield mode y is sublinear in xX. Actually, for any 
A,&AA,,, the function J/ turns out to be sublinear in xX and its conjugate with respect to ,Y, turns out to 
be the indicator of a convex set C,: 

ktr,(A, - Aox, P, -PO,) = ucx (P, - ~0,) . 

The expression of C, is provided in Appendix A and is given by C, = (A, - AOX)y,( A,)Kz where KI: is 
the polar set of K,. 

Finally, integrating over V, we obtain 

where the set C is defined as 

C = (A - A,)Y,(A)K*. 

The condition (p - p,) E C amounts then to requiring that (p, - p,,) E C, a.e. in V. 
By substituting the expression of *. in the functional L&, we obtain 

%(u- P, A) = @‘(Tu -P) + s(p) -F(u) + U, (p -p,) + n(A) + ii,+ (A -A,), 

and the following statement holds. 

PROPOSITION 4. If the yield mode is subl~near, a triplet (u, p, A) will be a solution of the convex 
optimization problem 

with 
min{&(u, p, A) 1 (A - ~6,) 3 0, (P -P,> E Cl - 

.iz,(u, p, A) = @(Tu -p) + s(p) -r(u) + IT(A), 

if and only if it is a solution of the finite step ei~toplastic structural problem. 

The meaning of the constraint conditions in the minimum problem can be elucidated if we consider 
the Von Mises yield criterion. Denoting by OX the nominal yield stress of the material determined in a 
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uniaxial test, the elastic domain K, is a cylinder in the stress space having a circular section of radius 
y,( A,) = meX,( A,) in the deviatoric subspace: 

where dev ,Y, = ax - sph uX and sph a, = +(tr a,)Z, Z being the identity tensor. Here 1) . 11 denotes the 
norm in the space of tensors; typically 11 AlI = m for any tensor A, where tr denotes the trace and 
A’ is the transpose of A. 

The polar set Kz turns out to be the circular disc of radius y,’ (A,) lying in the deviatoric subspace of 
the strain space 9,: 

Kz = {p, E 9,: Ildev p,lI sy,‘(A,); sph px = 0) , 

so that the set y,(A,)Kz is the unitary disc in the deviatoric subspace: 

y,(A,)K: = {P, E 9,: lb p,ll s 1; sph px = O> , 

and the set C, becomes 

C, = {p, E 9,: lldev p,ll s (A, - 4,); sph p, = 0) . 

Hence, the constraint conditions supplementing the minimum principle in Proposition 4 require that, 
a.e. in V, the tensor (p, - p,,) is deviatoric and its norm is not greater than the non-negative number 

(AX - AJ. 

REMARK. A non-convex minimum principle for finite step solutions of an elastoplastic model, which 
is a special case of the one considered in this paper, has been proposed by Maier and co-workers in 
[l-4]. In their papers, increments of the state variables in each finite step, instead of their final values, 
are taken as unknowns. 

Classical tools of variational analysis are resorted to in the treatment given in [l-4]. The proofs of 
necessity and of sufficiency follow two distinct paths of reasoning and require very special assumptions 
such as sublinearity of the yield mode Y and its differentiability (even twice in the proof of sufficiency). 

The minimum principle in (u, p, A) proposed in [l-4], written according to our notation, reads 

with 
min{&,(u, P, A) I A 2 4, (P -P,> E (A - 4,) aY(x>> ) 

The functional fi3 of our Proposition 4 coincides with OM if we assume a differentiable hardening 
functional B and a linear elastic behaviour. 

The significant difference between the two minimum principles is represented by the second 
constraint condition. In this respect, two observations have to be made. 

First, we remark that in the original version of the principle formulated in [l-4], the yield functional 
Y was assumed to be differentiable so that this condition was written as 

(P -P,> = (A - 4) Wx) . 

Actually such an assumption appears to be unnecessary and even questionable. In fact the sublinear 
functional Y is inherently non-differentiable at the origin since its epigraph is a convex cone; 
accordingly the notion of differentiability must be replaced by the weaker notion of subdifferentiability. 

Second, we notice that the following implication holds: 
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(P-P,)E(A-A,)~Y(x) =, (P-P,)EC=(A-A,)Y,(A)K”. 

In fact, expressing Y in terms of the Minkowski functional yK of the set K, 

Y(x) = Yo(Ahc(x) = Y,(A) U:. (xl, 

the left-hand side of the implication above can be re-written as 

(P -P,) E (A - A,)Y,(A) a U;o (xl . 

The result follows then by observing that 

The analysis performed above shows that the constraint considered in [l-4] turns out to be more 
stringent than strictly required by the variational principle. The minimum of the objective functional Q,, 
was then searched for in a non-convex subset of the convex feasible set. 

A further remark must be devoted to the variational tools which are required in the analysis of 
non-smooth structural problems. Classical differential calculus and potential theory are no longer 
applicable to this kind of problem; subdifferential calculus and potential theory for monotone multi- 
valued operators must be invoked [6,24] in their place. 

From a computational standpoint, the implications of the present results are relevant. 
Actually Propositions 3 and 4 allow us to state that the solution of the finite step elastoplastic 

structural problem can be achieved by minimizing a convex functional on a convex feasible set. 
Algorithms of convex optimization [30,31] can then be adopted for the numerical solution of the 

constrained optimization (non-linear programming) problem which arises from a suitable space 
discretization, e.g. by finite element modelling. 

7. Multi-modal plasticity 

We now address the case of multi-modal plasticity which is characterized by an elastic domain 
defined by multiple convex yield modes intersecting in a non-smooth way. 

The yield criterion is expressed in terms of a finite family of yield modes yi : Xi +-+ 8 U { +m} with 
i=l,..., m and of the corresponding yield limits which are positive monotone functions y,, : 2, - ‘3 U 
{ +w} depending upon a vectorial parameter AX E 9, = Sm. 

Accordingly, the elastic domain turns out to be the intersection of a finite number of convex 
domains: 

K = ,f) 4, with 4, = {xx E X;: Y,(x,) MY&,)) . 

Collecting the m yield modes yi in the vector y, the m functions yol in the vector y, and setting for 
convenience h( ,y,) = y(x,) - y,( A,), the flow rule 

can be written as 

dx E a uKx (xx> = a0-b; WX,) = a 4, P(x,)I WX,) = ~+(x~)I ah(X,) , 
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where .Z,- = (>NH”)- is the cone of real m-tuples with non-positive components. 
As in the uni-modal case, we assume that the time derivative of the parameter A, coincides with the 

value of the plastic multiplier a;- E NFl[h(~,)]. The flow-rule is then re-written in the form 

and its explicit formulation in terms of a linear complementarity condition reads 

where the dot . denotes the scalar product in W. 
According to a Euler backward difference scheme, the finite step flow rule is given by 

Px -P*, f %cx(xx) ; 

equivalently, in terms of yield modes, it turns out to be 

or in explicit form 

m 

Px -PO, E C CAix - “o,,) 'Yi(X.r) Y 
i=l 

In order to derive the variational formulation of the structural problem, we refer in the sequel to 
global variables which are defined and labeled in perfect analogy with the case of uni-modal plasticity. 

The finite step evolutive problem is thus governed by the following set of relations: 

f= T'a, 

E=Tu, 

(P -P,> E (A - 4,) * Wx) 7 

Y(X)-Y,(A)EdU,+(A-A,), 
(T E 3 Q(e) , 

which can be encompassed in a global structural operator whose conservativity can be inferred by 
repeating the same arguments of Section 5. 

The potential of the structural operator is then 

Mu, r, x, A+ E, P, f> = @,(e -P> + S"(P) + r*(f) - (.A u> - b, 8) + (a, Td + (x7 P -P,> 

-W(A-Ah,,x)+~(A)+Ll,+(A-A,), 

where the convex functional H : 2~ 3 is the potential of the operator Y, : A?- 3, that is, 

Y,(A) = dn(A) . 

In analogy with the uni-modal plasticity, if each yj is sublinear in xX, we have for Ai GS A,;, 
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where C = Cy!“=, (hi - h,,)Y,j(A)Kg ( see Appendix A), and KY is the polar set of Ki. 
Enforcing the externhl constraint relation, kinematic compatibility and the relation 

the following functional can be derived from J2: 

fl,(k P, A) = @(Tu -P) + s(p) - r(u) + LJ, (p -PO) + 17(A) + LJ,+ (A - A,) , 

which is jointly convex in the three state variables (u, p, A). 
We can thus state the following. 

PROFO~~~IO~ 5. If the yield modes are sublinear, a triplet (u, p, A) is a solution of the optimization 
problem 

with 

min{&u, p, A) 1 (Ai - hOi) 20, i =z: 1, . . . , m, P -p, E 2 (Ai - A,,)YOl(A)KP} , 
i=l 

fil(u, p, A) = @(Tu -p) + s(p) - Z”(u) + H(A), 

if and only if it is a solution of the finite step elastopl~tic structural problem. 

Appendix A 

We provide here the expression of the set C, in the case of sublinear yield modes yi. To this end, we 
first recall that, given the closed convex elastic domain Kx, 

Kx = {xx E 8: Y(x,) ~Y,(U 2 

the ~inkowski formula associates with Kx a non-negative sublinear closed unction yKX : Xi H 8 U (+m} 
as follows: 

rKX(xX) = inf(rY 2 0: ,Y, E cwKx} . 

The characteristic property of the functional rK, is that its unitary level set yields back the set K,. 
Denoting by KI: the closed convex set polar of K,, 

we have 

For the sake of simplicity the expression of C, is derived separately for single and multiple yield 
modes. 

A. 1. Uni-modal plasticity 

Assuming a sublinear yield mode y, we prove that, for A, zz AOx, we have 
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where 

[(Ax - 4JYl*(Px --A,) = L-Jq (P, -PO,) 3 

C, = (A, - A,x)~,(A,)KZ . 

Actually, for any given A, 2 AOX, the function [(A, - AOX)y]( xX> is convex in xX and its conjugate is 
defined as 

](A, -A,x>yl*(P, -PJ=s;p Cx,*(P, -PO,> - [(A, -A,~)Y](x,>> . 

Expressing the function y in the form 

Y(x,) = ~,(~,hc~(xx) 7 

we can write 

For A, = AOx, we trivially have 

[(A, -~JY~*(P, -P,,) =syxx*(~x -pox)= utoj (P, -P,,) 7 

so that the formula to be proved holds with C, = (0). 
For A, > AOl, we have 

[(A, - Aox)Yl*(& -PO,) = “;F 
P, -Pox 

xx * (A, _ ,$x)y,(Ax> -%&(Xx) (‘x - Aox)Yo(Ax) I 
i XX” 

Px - PO, = sup 
Xx (A, - A,Jy,(A,) 

- u:; (xJ}(h, - A,Xl~,(A,) 

= uK; 
Px -PC?, 

(A, _ A,~)~,(Q = uCI (Px -PO,) 9 1 
with C, = (A, - A,=)y,( A,)Kz. 

A 2. Multi-modal plasticity 

Assuming a finite family of sublinear yield modes yi, for any A, aA*,, the conjugate of the convex 
function [(A, - AOX) * y](x,) is given by 

](A - 4&YlX(PX -PO,) = ucx (Px -PO,) 7 

where 

Actually, expressing the function y&x,) in the form y,,(A,)y,,JxJ, the conjugate of the function 
[(AX - A,,) * y]( xX) is defined as 

](A, - ~J*Y~*(P, -PO,) ==p { x,*(P, -P,,) - <$ (4x -%,&~xx~} 

= sup XX * (P* --PO,) - 2 [(4x - A,ix)Y,i(A~)l~,,,~(X,) 1 * 
XX i--l 
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Setting for convenience &. = (A, - hOiJyOi( A,), we have 

Recalling that the conjugate of the finite sum of convex functions is given by their infimal 
convolution [24], 

(2 Pixv,*)*(Px -PO,) = inf[ ULrK,,)*hJ + . 
i=l 

and observing that 

(PixYKix)*(77ix) = ‘(pixKi”,) (77i.x) 9 

we finally obtain 

. . 

. . . + q, K” ) (77,x) mx mx 1 Iii 77ix =Px -Pox} 
i=l 

where 
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