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Summary. The basic results in homogenization theory are revisited in the abstract
context of continuum mechanics in which the constitutive behaviour and the kine-
matic constraints are governed by pairs of conjugate convex potentials. The theory
and the methods of this generalized elastic model are briefly recalled and applied to
extend the classical linear theory of homogenization to the nonlinear and possibly
multivalued constitutive framework.

1 Prolegomena

The fundamentals of homogenization theory are here revisited with reference
to an abstract structural model whose constitutive properties are character-
ized by monotone conservative multivalued laws governed by closed convex
potentials.

The theory of such constitutive behaviour, termed generalized elasticity,
was developed by the first author and his co-workers in a number of papers
(see [10], [12]) and is illustrated in detail in [17].

The topic of nonlinear homogenization theory was investigated by Tal-
bot, Willis and Toland in a series of papers [7], [8], [9]. Their approach was
based on the theory of conjugate convex problems has developed in [5]. The
present approach makes direct reference to an abstract structural problem
and is carried out under the guidelines of the theory of generalized elasticity.

2 The continuum model

In continuum mechanics the fundamental theorems concerning the variational
formulations of equilibrium and of tangent compatibility are founded on the
property that the tangent kinematic operator has a closed range and a finite
dimensional kernel at every configuration in the admissible manifold.
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The abstract framework is the following. Let V and D be the finite di-
mensional linear spaces of local values of tangent (virtual) displacememts (also
referred to as kinematic fields) and tangent strains respectively. Let further
S be the linear space of local values of stress fields, the dual space of D .

A continuous structural model, defined on a regular bounded connected do-
main Ω of an n-dimensional euclidean space En , is governed by a kinematic
operator B . This operator is the regular part of a distributional differential
operator B : VΩ 7→ D′S of order m acting on Green-regular kinematic fields
u ∈ VΩ and ranging in the space of tangent strain distributions Bu ∈ D′S in
Ω . Tangent strain distributions are linear functionals, defined on the linear
space DS = C∞o (Ω ; S) of test stress field with compact support in Ω , and
continuous according to the uniform topology on compact subsets of Ω (see
e.g. [4], [16]).

Piecewise Green-regular kinematic fields u ∈ VΩ are square integrable
fields u ∈ HV = L2(Ω ; V) such that the corresponding distributional tangent
strain fields Bu ∈ D′S are square integrable on a finite subdivision Tu(Ω) of
Ω (see [16], [18], [19]). The kinematic space VΩ is a pre-Hilbert space when
endowed with the topology induced by the norm

‖u ‖2VΩ
= ‖u ‖2

HV
+ ‖Bu ‖2HD

,

where HD = L2(Ω ; D) is the space of square integrable tangent strain fields
on Ω . The subdivision Tu(Ω) is said to be a support of regularity of the
kinematic field u ∈ VΩ .

The kinematic constrains on a continuum are imposed by a sequence of
two requirements. The first is a regularity requirement on the tangent dis-
placements and is expresseed by considering a basic finite subdivision T (Ω)
of Ω and by imposing that the tangent displacements must have T (Ω) as
a support of regularity. The closed linear subspace V(T (Ω)) ⊂ VΩ of T (Ω)-
regular tangent displacements is an Hilbert space for the topology of VΩ .

The second requirement is that tangent displacements must belong to a
conformity subspace, a closed linear subspace L = L(T (Ω)) ⊂ V(T (Ω)) .

In boundary value problems the Hilbert space L is the kernel of a
bounded linear operator which prescribes an additional linear constraint on
the boundary values of the tangent displacements u ∈ V(T (Ω)) .

The operator BL ∈ BL (L ; HD) , which yields the regular tangent strain
Bu ∈ HD corresponding to a conforming tangent displacement u ∈ L is
linear and continuous.

The tangent kinematic operator B ∈ BL (VΩ ; HD) is assumed to be
Korn-regular in the sense that for any conformity subspace L ⊂ VΩ the
following conditions are met [13], [14]:{

dim KerBL = dim ( KerB ∩ L) < +∞ ,

‖Bu ‖H ≥ cB ‖u ‖L/ KerBL
, ∀u ∈ L ⇐⇒ ImBL closed in HD .
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The requirement that these properties must hold for any conformity subspace
L ⊂ VΩ is motivated by the requirement that in engineering structural mod-
els the equilibrium condition can be imposed by a finite number of scalar
equations and that the existence results must hold for any choice of linear
kinematic constraints. The Korn-regularity of B ∈ BL (VΩ ; HD) is the ba-
sic tool for the proof of the theorem of virtual powers [16] which ensures the
existence of a stress field σ ∈ HS = L2(Ω ; S) in equilibrium with an equi-
librated system of active forces, i.e. bounded linear functional f ∈ L′ such
that 〈 f , v 〉 = 0 for all v ∈ KerB∩L . It can be shown [14] that a necessary
and sufficient condition for the Korn-regularity of B ∈ BL (VΩ ; HD) is the
validity of an inequality of the Korn’s type

‖Bu ‖HD
+ ‖u ‖H ≥ α ‖u ‖m , ∀u ∈ Hm(Ω ; V) ,

where Hm(Ω ; V) is the Sobolev space of tangent displacements which are
square integrable on Ω with their distributional derivative up to the order
m . The formal adjoint of B ∈ BL (VΩ ; HD) is the distributional differential
operator B′o : HS 7→ D′V of order m defined by the identity

〈 B′oσ , v 〉 : = (( σ , Bv )) , ∀v ∈ D′V , ∀σ ∈ H(Ω) .

The space SΩ of piecewise Green-regular stress fields on Ω is then defined
as the linear space of stress fields σ ∈ HS such that the corresponding body
force distributions B′oσ ∈ D′V, are square integrable on a finite subdivision
Tσ(Ω) of Ω (see [16], [18]). The space SΩ is a pre-Hilbert space when
endowed with the induced norm

‖σ ‖2SΩ
= ‖σ ‖2HS

+ ‖B
′

oσ ‖
2

HF
,

where B
′

o ∈ BL (SΩ ; HS) is the regular part of the distributional differential
operator B′o : HS 7→ D′V . Any pair of Green-regular tangent displacement
fields v ∈ VΩ and Green-regular stress fields σ ∈ SΩ fulfil the Green’s
formula for the operator B ∈ BL (VΩ ,HD) [15]:

(( σ , Bv )) = (B
′

oσ , v ) + 〈〈 Nσ , Γv 〉〉 , ∀v ∈ VΩ , ∀σ ∈ SΩ ,

where by definition

(( σ , Bv )) :=
∫
Ω

σ : Bv dµ , (B
′

oσ , v ) : =
∫
Ω

B
′

oσ · v dµ ,

and the duality pairing 〈〈 Nσ , Γv 〉〉 is the extension by continuity of a sum
of boundary integrals over ∂Tvσ(Ω) = ∪ ∂Ωe, e = 1, . . . ,nelements :∫

∂Tvσ(Ω)

Nσ · Γv dß .

where Tvσ(Ω) = Tv(Ω) ∨ Tσ(Ω) is finer than Tv(Ω) and Tσ(Ω) .



4 Giovanni Romano and Alessandra Romano

The trace Γ and the flux N are differential operators, with order ranging
between 0 and m − 1 , associated to the operator B and defined by m
subsequent applications of the rule of integration by parts.

2.1 Averaging operators

Let MΩ ∈ BL (HD ; D) and med ∈ BL (HD ; D) be the surjective averaging
operators defined by

MΩ(ε) : =
∫
Ω

ε(x) dµ , medΩ =
1

vol (Ω)
MΩ .

The dual operator M∗
Ω ∈ BL (S ; HS) of MΩ ∈ BL (HD ; D) is defined by

the identity

〈 M∗
Ω(T) , ε 〉 = 〈 T , MΩ(ε) 〉 , ∀T ∈ S ε ∈ HD .

When applied to T ∈ S the operator M∗
Ω ∈ BL (S ; HS) provides the con-

stant field in HS = L2(Ω ; S) given by

(M∗
Ω(T))(x) = T , ∀x ∈ Ω .

Note that the roles of the spaces D and S may be interchanged in the
preceeding definitions. We remark that medΩ ∈ BL (HS ; S) is a left inverse
of M∗

Ω ∈ BL (S ; HS) since

(medΩ ◦M∗
Ω)(T) = T , ∀T ∈ S .

The surjectivity of MΩ ∈ BL (HD ; D) yields

ImM∗
Ω = (KerMΩ)⊥ ,

which implies that a square integrable field, orthogonal to any square inte-
grable field with vanishing mean value, must be constant. Trivially we also
have that

KerM∗
Ω = ( ImMΩ)⊥ = { 0 } .

To symplify the notations we shall denote by the same symbols MΩ and M∗
Ω

also the operators MΩ ∈ BL (L1(Ω ; R) ; R) , M∗
Ω ∈ BL (R ; L∞(Ω ; R))

where L1(Ω ; R) is the space of real valued integrable functions on Ω and
L∞(Ω ; R) is the dual space of essentially bounded functions on Ω .

2.2 Conjugate convex potentials

A structural model is defined by considering a subdivision T (Ω) of the
domain Ω and the associated Hilbert space V = V(T (Ω),V) of T (Ω)-
regular displacements defined as those giving rise to distributional tangent
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strain fields which are square integrable in each element of the subdivi-
sion. Force systems are the bounded linear functionals of the dual space
F = BL (V(T (Ω),V) ; R) .

The model is further characterized by a bounded linear tangent kine-
matic operator B ∈ BL (V ; H) which provides the tangent strain field cor-
responding to any T (Ω)-regular tangent displacement field. The operator
B ∈ BL (V ; H) is assumed to fulfill an inequality of Korn’s type so that the
kernel KerB ⊂ V is finite dimensional and, for any set of linear constraints
defining a closed linear subspace L ⊂ V of conforming displacements, the
image BL is closed in H . The dual equilibrium operator B′ ∈ BL (H ; F)
is defined by the identity

〈 σ , Bv 〉 = 〈 B′σ , v 〉 , ∀v ∈ V , ∀σ ∈ HS = L2(Ω ; S) .

The constitutive properties of the elastic material are described, according
to Green [?], by a field of local potentials ϕe : D × Ω 7→ R , where R =
R∪{+∞} is the upper-extended real line. We consider a generalized Green
elasticity in which at each x ∈ Ω the local potential is assumed to be proper,
convex and everywhere subdifferentiable on its domain dom ϕe(·,x) ⊂ D .
Convex analysis provides the mathematical tools to deal with such problems
[3], [5], [6], [12]. In this context a potential theory for monotone conservative
multivalued operators was developed by the first author and his coworkers,
[10], [17].

The convex global constitutive potential Φe : H 7→ R is a function of the
(small) strain fields ε ∈ H and is defined by the integral

Φe(ε) : =
∫
Ω

(Φe(ε))(x) dµ ,

where the potential Φe : H 7→ L2(Ω ; R) is given by

(Φe(ε))(x) : = ϕe(ε(x),x) ,

and dµ is the volume form on Ω .
We consider a general nondecreasing monotone and conservative stress-

strain relation G ⊂ HS ×HD . Monotonicity means that

〈 σ2 − σ1 , ε2 − ε1 〉 ≥ 0 ∀ {σ1 , ε1} ∈ G, ∀ {σ2 , ε2} ∈ G ,

and conservativity means that∮
Πε

〈 E(ε) , dε 〉 = 0 ⇐⇒
∮

Πσ

〈 E−1(σ) , dσ 〉 = 0 ,

where Πε ⊂ HS , Πσ ⊂ HD are closed polylines and E : HD 7→ HS ,
E−1 : HS 7→ HD are the left and right multivalued maps associated with the
relation G and defined by
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E(ε) := {σ ∈ L2(Ω ; S) | {σ , ε} ∈ G } ,
E−1(σ) := { ε ∈ L2(Ω ; D) | {σ , ε} ∈ G } .

The domains dom E ∈ L2(Ω ; D) , dom E−1 ∈ L2(Ω ; S) , the loci where the
images E(ε) and E−1(σ) are non-empty, are assumed to be convex sets.

It can be shown that the integrals along segments are independent of the
special representative in the sets E(ε) and E−1(σ) choosen to evaluate the
integrands [10]. A multivalued monotone and conservative relation is governed
by a pair of conjugate convex potentials Φe : HD 7→ R and Φ∗e : HS 7→ R
related by the involutive relation

Φ∗e(σ) := sup
ε∈HD

{ 〈 σ , ε 〉− Φ(ε) } ,

Φe(ε) := sup
σ∈HS

{ 〈 σ , ε 〉− Φ∗(σ) } .

The conjugate convex potentials Φe : HD 7→ R and Φ∗e : HS 7→ R can be
evaluated by direct integration of the multivalued maps along a segment or
by the conjugacy relations above.

The effective domains dom Φe(ε) ⊂ HD and dom Φ∗e(σ) ⊂ HS are the
convex sets where the potentials Φe : HD 7→ R and Φ∗e : HS 7→ R assume
finite values in R . The convex potentials Φe : HD 7→ R and Φ∗e : HS 7→ R
are subdifferentiable in their domains. The subdifferentials are the convex sets
defined by [3], [6], [11]

∂Φe(ε) := {σ ∈ HS | Φe(ε)− Φe(ε) ≥ 〈 σ , ε− ε 〉 } ,
∂Φ∗e(σ) := { ε ∈ HD | Φ∗e(σ)− Φ∗e(σ) ≥ 〈 σ − σ , ε 〉 } .

The global generalized elastic law is expressed by the subdifferential maps:

σ ∈ ∂Φe(ε) , ε ∈ ∂Φ∗e(σ) .

By definition we have that

Φe(ε) + Φ∗e(σ)≥ 〈 σ , ε 〉 , ∀ ε ∈ HD ∀σ ∈ HS ,

Φe(ε) + Φ∗e(σ) = 〈 σ , ε 〉 ⇐⇒ σ ∈ ∂Φe(ε) ⇐⇒ ε ∈ ∂Φ∗e(σ) .

Recalling that the elastic law is pointwise defined, we remark that the convex
conjugate ϕ∗e : S × Ω 7→ R of the local potential ϕe : D × Ω 7→ R is given
by

ϕ∗e(T,x) : = sup
D∈D

{ 〈 T , D 〉− ϕe(D,x) } .

The global convex potential Φ∗e : HS 7→ R , convex conjugate to Φe : HD 7→
R , can then be evaluated by each one of the following procedures [17]:

Φ∗e(σ) : = sup
η∈HD

{ 〈 σ , η 〉− Φe(η) } ,
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Φ∗e(σ) : =
∫
Ω

(Φ∗e(σ))(x) dµ .

In an analogous way, kinematic constraints are described by a conservative
multivalued monotone nonincreasing relation G ⊂ F × V and by the pair
of conjugate proper superdifferentiable concave functional J : V 7→ R and
J∗ : F 7→ R where R : = R∪ {−∞} is the lower extended real line [17].

We remark that kinematic constraint conditions are global in character
and accordingly J : V 7→ R and J∗ : F 7→ R are global functionals which
may not be defined as integrals of local functionals.

The constraint map is nonincreasing since it provides the relation between
the diplacement fields of the constraint and the force systems that the con-
straint applies to the structure, that is the opposite of the force systems acted
by the structure on the constraint. This change in sign turns the monotone
nondecreasing constitutive map into a nonincreasing one.

Multivaluedness of the constraint relations is the rule rather then the ex-
ception: also the simplest linear frictionless bilateral kinematic constraint re-
lation is described by multivalued maps. if L is the subspace of conforming
virtual displacements the constraint relation is

G : = { {r ,v} ∈ F × V | v ∈ L , r ∈ L⊥ } ,

Both the left and right map are constant:

M(v) : = L⊥ , M−1(r) : = L .

In general reactive force systems are conjugate to the displacements with
respect to the concave functional J : V 7→ R :

r ∈ ∂J(u) ⇐⇒ J(v)− J(u) ≤ 〈 r , v − u 〉 ∀u ∈ V .

The inverse multivalued law is expressed by

u ∈ ∂J∗(r) ⇐⇒ J∗(r)− J∗(r) ≤ 〈 r− r , u 〉 ∀ r ∈ F .

By definition we have that

J(v) + J∗(r)≤ 〈 r , v 〉 , ∀v ∈ V ∀ r ∈ F ,
J(u) + J∗(r) = 〈 r , u 〉 ⇐⇒ r ∈ ∂J(u) ⇐⇒ u ∈ ∂J∗(r) .

The concave conjugate potentials J : V 7→ R and J∗ : F 7→ R are related by

J∗(r) : = inf
u∈V

{ 〈 r , u 〉− J(u) } ,

J(u) := inf
r∈F

{ 〈 r , u 〉− J∗(r) } .
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2.3 Variational formulations

Let us consider a convex structural problem governed by a kinematic operator
B ∈ BL (V ; H) under the constitutive law defined by a convex potential
Φ : H 7→ R and the constraint condition defined by a concave potential
J : V 7→ R , according to the rules{Bu = ε ,

B′σ = f ,

{
σ ∈ ∂Φ(ε) ,

f ∈ ∂J(u) ,

which respectively impose the kinematic compatibility, the equilibrium, the
global stress-strain law and the force-displacement law.

The stress-strain law is multivalued and monotone nondecreasing while
the force-displacement law is multivalued and monotone nonincreasing.

Recalling the duality between the equilibrium operator B′ ∈ BL (HS ; F)
and the kinematic operator B ∈ BL (V ; HD) :

〈 σ , Bv 〉 = 〈 B′σ , v 〉 , ∀u ∈ V , ∀σ ∈ HS = L2(Ω ; S) ,

the equilibrium condition B′σ = f may be rewritten in variational terms by
the virtual work principle

〈 σ , Bv 〉 = 〈 f , v 〉 , ∀v ∈ V ,

or explicitly ∫
Ω

〈 σ(x) , (Bv)(x) 〉 dµ = 〈 f , v 〉 , ∀v ∈ V .

The convex structural problem defined above can be associated with a family
of ten basic functionals whose stationarity points are the solutions of the
structural problem [17]. By introducing the product Hilbert spaces

H= V ×HS ×HD ×F ,
H′ = F ×HD ×HS × V ,

the operator A : H 7→ H′ governing the structural problem is given by

A =


O B′ O −IF

B O −ID O

O −IS ∂Φ O

−IV O O ∂J∗


The operator A : H 7→ H′ is apparently self adjoint and hence, by integrating
along a ray in H , we get the potential

L(ε,σ,u, f) = Φ(ε) + J∗(f) + 〈 σ , Bu 〉− 〈 σ , ε 〉− 〈 f , u 〉 ,

which is convex in ε , concave in f and linear in u and σ .
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A solution { ε,σ,u, f } is then a minimum point with respect to ε , a
maximum point with respect to f and a stationarity point with respect to u
and σ . A progressive elimination of state variables based on the conjugacy
relations, leads to a family of potentials according to the tree-shaped scheme:

{ ε,σ,u, f }

{ ε,σ,u } {σ,u, f }

{ ε,σ } {σ,u } {u, f }

{ ε } {σ } {u } { f }

The family is composed by the ten basic functionals:

L(ε,σ,u, f) = Φ(ε) + J∗(f) + 〈 σ , Bu− ε 〉− 〈 f , u 〉,

H1(ε,σ,u) = Φ(ε)− J(u) + 〈 σ , Bu− ε 〉,

H2(σ,u, f) = −Φ∗(σ) + J∗(f) + 〈 σ , Bu 〉− 〈 f , u 〉,

R1(ε,σ) = Φ(ε) + J∗(B′σ)− 〈 σ , ε 〉,

R2(u,σ) = −Φ∗(σ)− J(u) + 〈 σ , Bu 〉,

R3(u, f) = Φ(Bu) + J∗(f)− 〈 f , u 〉,

P (ε) = Φ(ε)− (J∗ ◦B′)∗(ε),

G(σ) = −Φ∗(σ) + J∗(B′σ),

F (u) = Φ(Bu)− J(u),

Q(f) = −(Φ ◦B)∗(f) + J∗(f).

All ten functionals of the family do have the same value at a solution.
Assuming that the solution {u ,σ} ∈ V × HS of the structural problem

be unique, it can be detected as the minimum point of the extremum problem

F (u) = min
v∈V

F (v) = min
v∈V

{Φ(Bv)− J(v) } ,

or as the maximum point of the extremum problem

G(σ) = max
s∈HS

G(s) = max
s∈HS

{ J∗(B′s)− Φ∗(s) } .

Moreover at the solution we have that

max
s∈HS

G(s) = G(σ) = F (u) = min
v∈V

F (v) .

This relation provides a basis for bounding techiques which will be applied in
the sequel to the effective response of homogenized media.
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3 Periodic homogenization

Let C be a periodicity cell (a parallelepiped in En ) and u] ∈ L2(En ; V)
the C-periodic extension of a vector field u ∈ HV = L2(C ; V) , defined by

u](x + k hi) : = u(x) , ∀x ∈ C ,

for any integer k and each oriented side hi , i = 1, .., n of the periodicity cell.
Let us then consider a convex structural problem in the cell C with kine-

matic constraints imposing that conforming displacement fields u ∈ LPER(C) ,
belonging to a conformity linear subspace LPER(C) , be such that the corre-
sponding C-periodic extension u] ∈ L2(En,V) be Green regular, that is
such that: ∫

ω

‖u](x) ‖2
V

+ ‖ (Bu])(x) ‖2
D
dµ < +∞ ,

for any compact subset ω in the euclidean space En .
The fulfilment of this condition means that there are no jumps of the

boundary traces of the C-periodic extension displacement field across the
interfaces of a regular mesh of repetitive periodicity cells. This condition is
equivalent to require that the boundary traces of the displacement be equal on
opposite faces of the cell. It follows that the mean value of the corresponding
strain field vanishes, since

medC (Bu) = sym
∫
∂C

Γu⊗ n dS = 0 .

Homogenization can be performed by solving the direct structural problem
of the cell under the action of a constant strain field ε = ImM∗

C ⊂ H(C) so
that ε(x) = D ∈ D for almost all x ∈ C . Setting Ω = C and T (Ω) = { C }
we denote by V(C ; V) ⊂ VC the kinematic space of displacements fields which
are Green-regular in C .

Conforming displacements fields belong to the closed linear subspace
LPER(C) ⊂ V(C ; V) . The problem is well posed since strain fields corre-
sponding to conforming displacements have null mean value and hence any
constant strain field is effective as an imposed strain. The homogenized local
constitutive law is the one that relates the mean value of the elastic stress
field to the imposed constant strain field.

3.1 Orthogonal decomposition

A basic property of conforming displacements considered in periodic homog-
enization problems is that they have a null mean value:

LPER ⊂ KerMC = ( ImM∗
C)
⊥ ,
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where LPER stands for LPER(C) . Let us then cosider the closed linear sub-
space of displacement fields which can be expressed as the sum of a conforming
one and of a constant-strain one:

L : = {v ∈ V(C ; V) | Bv ∈ BLPER u ImM∗
C } .

Then the following relations hold:

BLPER = BL ∩ KerMC , (BLPER)⊥ = (BL)⊥ u ImM∗
C ,

BL = BLPER u ImM∗
C , (BL)⊥ = (BLPER)⊥ ∩ KerMC .

By Korn’s inequality the linear subspace BL is closed in HD and hence the
following direct sum decomposition holds

HD = BLu (BL)⊥ .

It follows that the Hilbert space HD can be decomposed into the following
direct sum of three mutually orthogonal subspaces

HD = ImM∗
C u BLPER u (BL)⊥

= ImM∗
C u BLPER u (BLPER)⊥ ∩ KerMC .

This direct sum decomposition in orthogonal complements plays a basic role
in the subsequent developments.

3.2 Conjugate potentials for the cell problem

The stress-strain law is assumed to be expressed by a generalized elastic law
governed by two regular conjugate global convex potentials Φe(ε) and Φ∗e(σ) .
The conjugate potentials governing the kinematic constraint for the cell prob-
lem are given by

J(u) := uLP ER
(u− uD) ,

J∗(f) : = uL⊥P ER

(f) + 〈 f , uD 〉 ,

where uD ∈ L is a dislacement field such that (BuD)(x) = D for all x ∈ C .
Then BuD ∈ ImM∗

C . The symbol uA denotes the concave indicator of the
set A , defined by

uA(x) : =
{0 x ∈ A ,
−∞ x 6∈ A .

The functionals

F (u) = Φ(Bu)− J(u) , u ∈ V ,
G(σ) = J∗(B′σ)− Φ∗(σ) , σ ∈ H ,

take the explicit form
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F (u) = Φe(Bu) , u ∈ uD + LPER ,

G(σ)= 〈 σ , BuD 〉− Φ∗e(σ) , σ ∈ (BLPER)⊥ ,

Recalling the orthogonal decomposition (BLPER)⊥ = ImM∗
C u (BL)⊥ we

can conveniently rewrite

FD(v) = Φe(M∗
CD + Bv) , v ∈ LPER ,

GD(s,T) = 〈 M∗
CT , M∗

CD 〉− Φ∗e(M
∗
CT + s) , s ∈ (BL)⊥ , T ∈ S .

3.3 Effective response

The global effective potential of the homogenized constitutive law is defined
by

ΦH(M∗
CD)= min{FD(v) | v ∈ LPER }

= max{GD(s,T) | s ∈ (BL)⊥ ,T ∈ S } ,
or explicitly

ΦH(M∗
CD)= min{Φe(M∗

C D + η) | η ∈ BLPER }
= max{ 〈 M∗

CT , M∗
CD 〉− Φ∗e(M

∗
CT + s) | s ∈ (BL)⊥ ,T ∈ S } .

The global effective potential is convex, being the inf-convolution of the
two convex functionals. Indeed we have that

ΦH(M∗
CD)= min{Φe(M∗

C D− η) | η ∈ BLPER }
= min{Φe(M∗

C D− η) + t
BLP ER

(η) }

= (Φe �t
BLP ER

)(M∗
C D) .

We recall that the epigraph of the inf-convolution of two convex functionals
is the convex sum of the two convex epigraphs and that

Φe �t
BLP ER

= (Φ∗e + t
(BLP ER)⊥

)∗ .

The local potential of the homogenized constitutive law is then defined as

ϕH(D) =
1

vol (C)
(ΦH ◦M∗

C)(D) =
1

vol (C)

[
(Φe �t

BLP ER
) ◦M∗

C

]
(D) .

Observing that Φe = MC ϕe and that

〈 M∗
CT , M∗

CD 〉 = vol (C) 〈 T , D 〉 ,

we get the following expression for the local homogenized potential:

ϕH(D)= min{medC(ϕe(M∗
C D− η)) | η ∈ BLPER }

= max{ 〈 T , D 〉−medC(ϕ∗e(M
∗
CT + s)) | s ∈ (BL)⊥ ,T ∈ S }

=
[
max
T∈S

{
〈 T , D 〉− 1

vol (C)
(Φ∗e �t

(BL)⊥
) ◦M∗

C(T)
}]

(D) .
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Hence, setting

ψH(T) =
[

1
vol (C)

(Φ∗e �t
(BL)⊥

) ◦M∗
C

]
(T) ,

we get the conjugacy relation

ϕH = (ψH)∗ .

By the properties of the inf-convolution we know that setting

ΦH(M∗
CD)= min{Φe(M∗

C D− η) | η ∈ BLPER } = Φe(M∗
C D− εD)

= (Φe �t
BLP ER

)(M∗
C D) ,

with εD = BuD and uD ∈ LPER , we have that{
M∗

C D− εD ∈ ∂Φ∗e(σD) ,

εD ∈ ∂ t
(BLP ER)⊥

(σD) ,

where
σD ∈ ∂(Φe �t

BLP ER
)(M∗

C D) = ∂ΦH(M∗
CD) ,

is the stress solution of the direct problem [17].
By the chain rule of subdifferential calculus we have that

∂(ΦH ◦M∗
C)(D) = MC ∂ΦH(M∗

C D) ,

and from the definition of ϕH we eventually get the relation

med(σD) ∈ ∂ϕH(D) ,

that justifies the homogenization role played by the potential ϕH .

3.4 Inverse effective response

An alternative procedure to perform the homogenization process, consists
in solving the inverse structural problem of the cell under the action of a
constant stress field σ = ImM∗

C ⊂ HS(C) = L2(C ; S) so that σ(x) =
T ∈ S for almost all x ∈ C . Setting Ω = C and T (Ω) = { C } we denote
by V(C ; V) the kinematic space of displacements fields which are Green-
regular in C . Conforming displacements fields are assumed to belong to the
subspace LPER(C) ⊂ V(C,V) . Selfequilibrated stresses then belong to the
linear subspace L⊥PER(C) . The problem is well posed if the stress fields are
assumed to be the sum of the prescribed constant one and any selfequilibrated
field with zero mean value. Indeed in this case any constant stress field is
effective as an imposed stress.
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According to the inverse homogenization procedure the homogenized local
constitutive law is the one that relates the mean value of the strain field to
the imposed constant stress field.

The conjugate pairs of convex potentials governing the monotone stress-
strain and force-displacement relations are given by

Φ∗(σ) := Φ∗e(σ) + t
KerMC

(σ −M∗
CT) ,

Φ(ε) : =
(
Φe � (t

ImM∗
C

+ 〈 M∗
CT , · 〉

)
(ε) ,

J∗(f) := uL⊥P ER

(f) ,

J(u) : = uLP ER
(u) ,

Recalling that (BL)⊥ = (BLPER)⊥ ∩ KerMC and setting

σ = M∗
CT + s with s ∈ (BL)⊥ ,

The functionals

F (u) = Φ(Bu)− J(u) , u ∈ V ,
G(σ) = J∗(B′σ)− Φ∗(σ) , σ ∈ H ,

take the explicit forms

FT(v,D) = inf
D∈D

{
Φe(Bv + M∗

CD)− 〈 M∗
CT , M∗

CD 〉
}
− uLP ER

(v) ,

GT(s) = −
(
Φ∗e(M

∗
CT + s) + t

(BL)⊥
(s)

)
,

The global effective potential of the homogenized medium is the convex func-
tional ΨH : H 7→ R defined by one of the equivalent relations

−ΨH(M∗
CT) : = min

v∈LP ER

FT(v) = min
v∈L

{Φe(Bv)− 〈 M∗
CT , Bv 〉 } ,

−ΨH(M∗
CT) : = max

s∈(BL)⊥
GT(s) = max

s∈(BL)⊥
{−Φ∗e(M∗

CT + s) } ,

=− min
s∈(BL)⊥

{ Φ∗e(M∗
CT− s) + t

(BL)⊥
(s) } ,

=−(Φ∗e �t
(BL)⊥

)(M∗
CT) .

The local potential of the homogenized constitutive law is then defined as

ψH(T) : =
1

vol (C)
(ΨH ◦M∗

C)(T) .

Recall that the corresponding convex potential for the direct problem is de-
fined by the equivalent relations
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ΦH(M∗
CD) : = min

v∈LP ER

FD(v) = min
v∈LP ER

Φe(M∗
CD + Bv) ,

ΦH(M∗
CD) : = max

s∈(BLP ER)⊥
GD(s) = max

s∈(BLP ER)⊥
{ 〈 s , M∗

CD 〉− Φ∗e(s) } .

Hence, being (BLPER)⊥ = (BL)⊥ u ImM∗
C , we have that

ΦH(M∗
CD) = max

s∈(BLP ER)⊥
{ 〈 s , M∗

CD 〉− Φ∗e(s) } ,

= max
T∈S

max
s∈(BL)⊥

{
〈 M∗

CT , M∗
CD 〉− Φ∗e(M

∗
CT + s)

}
= max

T∈S

{
〈 M∗

CT , M∗
CD 〉− ΨH(M∗

CT)
}

= (ΨH)∗(M∗
CD) .

By the properties of the inf-convolution we have also that

ΨH(M∗
CT) = min{Φ∗e(M∗

C T− s) | s ∈ (BL)⊥ } = Φ∗e(M
∗
C T− sT)

= (Φ∗e �t
(BL)⊥

)(M∗
C T) ,

with sT ∈ (BL)⊥ and {
M∗

C T− sT ∈ ∂Φe(εT) ,

σT ∈ ∂ t
BL (εT) ,

where
εT ∈ ∂(Φ∗e �t

(BL)⊥
)(M∗

C T) = ∂ΨH(M∗
CT) ,

is the strain solution of the inverse problem [17].
By the chain rule of subdifferential calculus we infer that

∂(ΨH ◦M∗
C)(T) = MC ∂ΨH(M∗

C T) ,

and from the definition of ψH we eventually get the relation

med(εT) ∈ ∂ψH(T) ,

that justifies the homogenization role played by the potential ψH .

Remark 1. The conjugacy relation between the potentials of the direct and the
inverse cell problems can be also revealed by applying the following conjugacy
rules:

(α f)∗(x∗) = α f∗(
1
α

x∗), ∀α > 0 ,

(f ◦ L)∗(x∗) = inf { f∗(y∗) | L′(y∗) = x∗ } ,
(f � g)∗(x∗) = inf { f∗(x∗1) + g∗(x∗2) | x∗1 + x∗2 = x∗ } ,

which hold under reasonable global regularity conditions of the involved po-
tentials [3], [5], [6]. Less stringent local condition were contributed in [12].
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Indeed we have that

(ϕH)∗(T) =
[

1
vol (C)

(Φe �t
BLP ER

) ◦M∗
C

]∗
(T)

=
1

vol (C)

[
(Φe �t

BLP ER
) ◦M∗

C

]∗
(vol (C)T)

=
1

vol (C)
inf

{
(Φe �t

BLP ER
)∗(σ) | MC(σ) = vol (C)T

}
=

1
vol (C)

inf
{

(Φ∗e + t
(BLP ER)⊥

)(σ) | MC(σ) = vol (C)T
}

=
1

vol (C)
inf

{
(Φ∗e(M

∗T + s) + t
(BL)⊥

(s)
}

=
[

1
vol (C)

(Φ∗e �t
(BL)⊥

) ◦M∗
C

]
(T) = ψH(T) .

Note that from the relation (BLPER)⊥ = (BL)⊥ u ImM∗
C we have argued

that the conditions

σ ∈ (BLPER)⊥ , MC(σ) = vol (C)T ,

are equivalent to assume that σ = M∗
CT + s with s ∈ (BL)⊥ .

3.5 Bounds on the effective response

In computing the local potential of the homogenized constitutive law we can
get a rough estimate by taking respectively η = 0 and s = 0 in the expres-
sions to be minimized and maximized as reported in section 3.3. The upper
and lower bounds so obtained are the generalized Voigt (upper) and Reuss
(lower) bounds for the effective potential of the homogenized medium:

max{ 〈 T , D 〉−medC(ϕ∗e(M
∗
C T)) | T ∈ S } ≤ ϕH(D) ≤ medC(ϕe(M∗

C D)) .

To get the Voigt bound we consider a constant strain field M∗
C D , eval-

uate the corresponding local potential ϕ at any point of the cell and take its
mean value. In this way an aritmetic mean approximation is performed.

In the linear elastic case the Voigt approximation amount to perform
the composition of the local elastic stiffnesses by a parallel scheme of elastic
springs and the effective elastic stiffness is given by the average of the local
stiffnesses.

To get the Reuss bound we consider a constant stress field M∗
C T , evaluate

the corresponding conjugate local potential ϕ∗ at any point of the cell, take
the mean value and evaluate the conjugate local potential. In this way an
armonic mean approximation is performed.
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In the linear elastic case the Reuss approximation amount to perform the
composition of the local elastic stiffnesses by a serial scheme of elastic springs
and the effective compliance is given by the average of the local compliances.

Better bounds can be found by computing approximate solutions of the
cell problem either in the direct way, in terms of conforming displacements
with zero mean strain, to get upper bounds, or in the complementary way, in
terms of selfstresses with zero mean value, to get lower bounds.

Another approach to the problem of bounding the effective properties of
the homogenized medium is provided by polarization techniques which have
been first applied to elasticity problems by Hashin and Shtrikman in 1962
[1], [2] and then extended and generalized to the nonlinear setting by Talbot
and Willis in 1985 [7], Willis and Toland-Willis in 1989 [8], [9].

3.6 Uniform local bounds

Let us now assume that the field of local potentials ϕe is uniformly bounded
from above and from below:

ϕ− ≤ ϕe ≤ ϕ+ ,

where ϕ−, ϕ+ : D 7→ R are convex functions. From Voigt-Reuss inequalities

max{ 〈 T , D 〉−medC(ϕ∗e(M
∗
C T)) | T ∈ S } ≤ ϕH(D) ≤ medC(ϕe(M∗

C D)) ,

being
(ϕ+)∗ ≤ ϕ∗e ≤ (ϕ−)∗ ,

medC(ϕe(M∗
C D)) ≤ ϕ+(D) ,

medC(ϕ∗e(M
∗
C T)) ≤ (ϕ−)∗(T) ,

ϕ−(D)= max{ 〈 T , D 〉− (ϕ−)∗(T) | T ∈ S }

≤ max{ 〈 T , D 〉−medC(ϕ∗e(M
∗
C T)) | T ∈ S } ,

we infer that the same bounds hold for the local potential of the homogenized
constitutive law, that is

ϕ− ≤ ϕe ≤ ϕ+ =⇒ ϕ− ≤ ϕH ≤ ϕ+ .

3.7 Geometric constraints

We remark that the analysis carried out above relies only on the property
that conforming displacements belonging to the subspace LPER have a zero
mean value, that is that LPER ⊂ KerMC .
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We could thus also choose the conforming subspace

Lo(C) : = {v ∈ V(C) | Γv = 0 } = Ker Γ ⊂ KerMC ,

instead of LPER(C) . Since Lo(C) ⊂ LPER(C) , denoting by ϕo
H and ψo

H the
direct and inverse local effective potentials under the constraints defined by
Lo(C) , we get the inequalities

ϕH ≤ ϕo
H , ψH ≥ ψo

H .
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