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SUMMARY

A mixed method of approximation is discussed starting from a suitably modi�ed expression of the
Hu-Washizu variational principle in which the independent �elds are displacements, stresses and strain
gaps de�ned as the di�erence between compatible strains and strain �elds. The well-posedness of the
discrete problem is discussed and necessary and su�cient conditions are provided. The analysis of the
mixed method reveals that the discrete problem can be split into a reduced problem and in a stress
recovery. Accordingly, the discrete stress solution is univocally determined once an interpolating stress
subspace is chosen. The enhanced assumed strain method by Simo and Rifai is based on an orthogonality
condition between stresses and enhanced strains and coincides with the reduced problem. It is shown
that the mixed method is stable and converges. Computational issues in the context of the �nite element
method are discussed in detail and numerical performances and comparisons are carried out. Copyright
? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years mixed methods based on multi-�eld variational principles with enhanced strains
have become popular in �nite element method (FEM) literature since they provide the possi-
bility to improve the performance of low-order FES and to overcome locking phenomena.
The enhanced assumed strain (EAS) method proposed in Reference [1] was originally

developed to provide a variational basis to the incompatible mode element of Wilson et al.
[2]. Enhanced strain methods have been widely adopted in the literature for both linear and
non-linear elastic models as well as for elastoplastic problems [3–9].
The treatment developed in Reference [1] is based on the Hu-Washizu variational principle

in which the independent �elds are displacements, enhanced strains and stresses. The role of
three conditions to be imposed on these �elds is emphasized in References [1; 10] to provide
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well-posedness, convergence and stress independence of the FEM problem. The three assump-
tions are: (i) compatible and enhanced strain shape functions must be linearly independent;
(ii) the shape functions of the stress �elds and those of the enhanced strains must be mu-
tually orthogonal; (iii) the space of stress �elds must include at least piece-wise constant
functions.
Condition (iii) was motivated in Reference [1] by the ful�lment of the patch test. Condition

(i) ensures the uniqueness of the discrete solution in terms of displacements and enhanced
strains. Condition (ii) is designed to eliminate the stress parameters from the mixed problem.
An a posteriori stress recovery strategy must then be envisaged and in fact several proposal
have been made in the literature [1; 7; 11–13].
This paper is motivated by the observation that variationally consistent stress recovery

strategies can be derived from the formulation of the mixed method which ful�ls the well-
posedness conditions. It is then aimed to get a deeper understanding of the EAS method and
of the related well-posedness and convergence properties. The di�erence between compatible
strains and independent strain �elds are called strain gaps. Accordingly, the new formulation
of the discrete method is referred to as the strain gap method (SGM).
It is shown that necessary and su�cient conditions for well-posedness of the SGM, that is

for existence and uniqueness of its solution, are the following (a) e�ective strain gaps (i.e. the
ones orthogonal to the stress �elds) and compatible strains must be linearly independent and
(b) stresses must be controlled by strain gaps. Condition (a) ensures the uniqueness of the
solution in terms of displacement and strain gap and condition (b) pertains to the uniqueness
of the stress solution.
According to the general treatment of mixed methods [14; 15], the SGM can be split into

a sequence of two steps: a reduced problem, formulated in terms of displacements and strain
gaps, in which the orthogonality constraint between stresses and strain gaps is assumed to be
ful�lled and a stress recovery problem which depends on the solution of the reduced problem.
An explicit comparison between the SGM and the EAS method clari�es the signi�cant

di�erences of the two formulations. According to the SGM, the subspaces of strain gap and
stress �elds are assigned so that the well-posedness requirements (a) and (b) are ful�lled. On
the contrary, in the EAS method these two discrete subspaces are imposed to be mutually
orthogonal so that the well-posedness requirement (b) is violated.
The troubles faced in envisaging an a posteriori stress recovery strategy are in fact due to

the partially ill-posedness of the EAS method.
The reduced problem which is the �rst step of the SGM is equivalent to the whole EAS

method. It can be reformulated as a modi�ed displacement method with an enhanced 
exibility.
Once the reduced problem has been solved in terms of nodal displacements and strain gap
parameters, the stress parameters can be univocally recovered at the element level by following
the stress recovery strategy de�ned by the second step of the SGM. In this respect, we shall
prove that the computation of the discrete stress according to the elastic constitutive relation
is variationally consistent despite of the opposite opinion expressed in References [7; 11; 12].
This result is in accordance with the analogous statement in Reference [13] which was based
on a more involved matricial arguments and limited to undistorted meshes.
The convergence analysis of the EAS method developed in References [10; 16] was based

on the interpolation properties of the displacement shape functions and on a special orthog-
onality assumption between the enhanced strains and polynomials of suitable degree. This
spourious requirement is in apparent contradiction with the observation that no interpolation
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WELL-POSEDNESS AND NUMERICAL PERFORMANCES 105

properties are required to the strain gap shape functions since any strain gap subspace includes
the null �eld, that is the exact solution.
In fact, the convergence analysis of the SGM shows that the error estimate depends only

on the interpolation properties of the discrete subspaces of stress and displacement shape
functions [15].
Finally, we develop a general formulation of the SGM, in which the orthogonality constraint

is not satis�ed a priori but enters as one of the equations of the discrete mixed problem. This
formulation is a useful tool in detecting the computational performances relevant to di�erent
implementations of the discrete method.
Numerical examples of two-dimensional elastostatic problems, which are commonly adopted

in the literature as signi�cant benchmarks, are developed and discussed to get information
about the comparative convergence properties, the distortion sensitivity and the reliability of
the stress approximation.

2. THE STRUCTURAL MODEL

In this paper we will perform the analysis of mixed methods for a continuous linearly elastic
structural model de�ned on a bounded domain 
 of an Euclidean space with boundary @

and closure �
=
∪ @
.
The kinematic space V is endowed with a suitable Hilbert topology and its dual F is the

space of external forces. To each displacement �eld u∈V there corresponds a boundary �eld
���u∈ @V. Conforming displacement �elds belong to the subspace L. The dual space @F of
@V is the space of boundary tractions �t. Body forces �b belong to the Hilbert space W of
square integrable vector �elds on the structural model. External forces are collected in the
set �‘= {�b; �t}∈F. Strains � and stresses b belong to the Hilbert space H of square integrable
vector �elds on 
 [17; 18]. The strain space will be also denoted by D≡H.
The kinematic operator B∈Lin{V;D} associates the strain �elds � with the corresponding

displacement �elds u and it is a continuous linear map from V into D with closed range [19]
and �nite dimensional kernel [20].
The stress �elds belong to the Hilbert space S= {b∈H: B′

ob∈H} where the di�erential
operator B′

o ∈Lin{S; W} is the formal adjoint of B and provides the body forces corresponding
to the stress �eld b∈S.
The elastic strain energy � :H 7→<∪{+∞} is the convex quadratic functional given by

�(U)= 1
2((E(U); U))H

where E is the elastic sti�ness of the material.
The structural problem can be written in an operator form as [21; 22]

Bu= U; B′b= �‘; b=d�(U) (1)

where B′ ∈Lin{S;F} is the dual operator of B de�ned as ((b;Bb))H=((B′b; b))H for any
u∈V and b∈S.
Let us consider the Hu-Washizu functional [23] given by

H (u; U; b)=�(U)− ((b; U))H + ((b;Bu))H − 
o(u) (2)
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where the unknown displacement �eld is conforming, i.e. u∈L. The linear functional


o(u)= 〈 �‘ ; u〉=(�b; u)W + 〈 �t;���u〉

yields the virtual work of body forces and boundary tractions.
The stationarity conditions of the functional H provides the constitutive relation, the equi-

librium equation and the constitutive relation given by (1).
Let us now introduce the SGM by de�ning the strain gap �eld g∈D as the di�erence

between the compatible strain Bu∈D and the stress U∈D in the form g=Bu−U. Accordingly,
the Hu-Washizu functional can be re-written as

H̃ (u; g; b) =�(Bu − g) + ((b; g))H − 〈 �‘ ; u〉
= 1

2((E(Bu − g);Bu − g))H + ((b; g))H − 〈 �‘ ; u〉

with u∈L; g∈D; b∈S.
The stationarity of H̃ yields the mixed variational problem in the three �elds {u; g; b}:




((EBu;B�u))H − ((Eg;B�u))H = 〈 �‘ ; �u〉 ∀�u∈L

((Eg; �g))H + ((b; �g))H − ((EBu; �g))H = 0 ∀�g∈D

((�b; g))H = 0 ∀�b∈S

Note that the last equation imposes the kinematic compatibility by requiring that the strain
gap g must vanish in correspondence of a solution of the continuous problem.

2.1. FEM interpolation

With a standard notation in FE analysis [24] we consider, for each element, the interpolations

ueh(x)=Nu(x)p
e
u ∈ Ve

h ; geh(x)=Ng(x)p
e
g ∈De

h ; beh(x)=Nb(x)peb ∈Se
h x∈ �
 e

where �
 e ∈TFEM(
) is the domain decomposition induced by the meshing of 
.
Let us set neu=dimVe

h ; n
e
g = dimDe

h ; n
e
b=dimSe

h . The interpolating spaces are collected in
the following product spaces:

Vh=
N∏
e=1

Ve
h ; Dh=

N∏
e=1

De
h ; Sh=

N∏
e=1

Se
h (3)

No interelement continuity condition is imposed on the strain gap and stress �elds so that
the corresponding global �elds are simply the collection of the local ones:

gh=
{
g1h; g

2
h; : : : ; g

N
h

} ∈ Dh; bh=
{
b1h ; b2h ; : : : ; bNh

} ∈ Sh

where N is the total number of elements pertaining to the FE discretization.
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Accordingly, the virtual work performed by an interpolating stress �eld bh ∈Sh by an
interpolating strain gap �eld gh ∈Dh is de�ned as the sum of the contributions of each
element

((bh; gh))=
N∑
e=1
((beh; geh))
e =

N∑
e=1

∫

e
Nebp

e
b ∗Negpeg

The local parameters peg ∈ <neg and peb ∈<neb can be condensed at the element level.
We shall consider a conforming FE interpolation. The conforming displacement �elds

uh=
{
u1h; u

2
h; : : : ; u

N
h

} ∈ Lh⊂Vh

satisfy the homogeneous boundary constraints and the interelement continuity conditions. The
dimension of the subspace Lh⊂Vh will be denoted by ndof = dimLh.
As customary we assume that rigid-body displacements are ruled out by the conformity

requirements so that L∩KerB= {0} and the condition Lh⊂L implies Lh ∩KerB= {0}.
The parameters peu ∈ <neu can be expressed in terms of the nodal parameters qu ∈<ndof by

means of the standard FE assembly operator Ae
u according to the parametric representation

peu=Ae
uqu. On the contrary, the strain gap and stress local parameters are simply collected in

the global lists qg and qb according to the expressions peg=Je
g qg and peb=Je

b qb where the
operators Je

g and Je
b are the canonical extractors which pick up, from the global lists qg and

qb, the local parameters peg and peb.
The interpolated counterpart of the Hu-Washizu functional H̃h(uh; gh; bh) is obtained by

adding-up the contributions of each non-assembled element and imposing that the interpolating
displacement uh satis�es the conformity requirement to get

H̃h(uh; gh; bh)= 1
2((E(Bu h − gh);Bu h − gh)) + ((bh; gh))− 〈 �‘ ; uh〉 (4)

where {uh; gh; bh}∈Lh×Dh×Sh.
The matrix form of the discrete problem is obtained by imposing the stationarity of H̃h and

is given by

Ph) M

∣∣∣∣∣∣∣∣
qu

qg

qb

∣∣∣∣∣∣∣∣
=

N∑
e=1




AeT
u K

eAe
u −AeT

u G
eTJe

g 0

−JeT
g G

eAe
u JeT

g H
eJe
g JeT

g Q
eJe
b

0 JeT
b Q

eTJe
g 0



∣∣∣∣∣∣∣∣
qu

qg

qb

∣∣∣∣∣∣∣∣

=



K −GT 0

−G H Q

0 QT 0



∣∣∣∣∣∣∣∣
qu

qg

qb

∣∣∣∣∣∣∣∣
=

N∑
e=1

∣∣∣∣∣∣∣∣
AeT
u f

e
u

0

0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
fu

0

0

∣∣∣∣∣∣∣∣
(5)
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The component submatrices and subvectors appearing in Equation (5) are de�ned by

He =
∫

e
NeTg (x)E∗(x)Neg(x); Qe =

∫

e
NeTg (x)N

e
b(x)

Ge =
∫

e
NeTg (x)E∗(x)B∗Neu(x); Ke=

∫

e
(B∗Neu)

T (x)E∗(x)B∗Neu(x) (6)

f eu =
∫

e
NeTu (x)�b(x) +

∫
@
e
(���Neu)

T (x) �t(x)

Here B∗ and E∗ denote the matrix form of the operators B and E. The elastic sti�ness matrix
E∗ is positive de�nite and hence the matrix H turns out to be positive de�nite as well.
From the computational point of view it is more convenient to carry out the assembly

operation after the condensation, at the element level, of the strain and stress parameters to
put the global discrete problem in terms of the sole displacement parameters qu. The procedure
will be illustrated in Section 7. On the contrary, the well-posedness analysis discussed in the
next two subsections is more conveniently developed in terms of the three-�eld problem Ph.

3. WELL-POSEDNESS ANALYSIS

As customary in computational analysis we will assume that the structure cannot undergo
conforming rigid displacements.

• De�nition of well-posedness: The discrete mixed problem Ph is said to be well-posed if
there exists a unique solution {uh; gh; bh} ∈ Lh×Dh×Sh for any data fu.

Well-posedness is often characterized in the literature by the requirements that the discrete
problem admits a unique solution for any data and that the discrete solution tends to the
solution of the continuous problem as the FE mesh is re�ned ever more. We prefer here to
treat separately these two requirements since the conditions for their ful�lment can be proved
following two di�erent arguments.
A necessary and su�cient condition for well-posedness is thus provided by the next state-

ment. The proof, in terms of the kernel of the matrix M, is reported in the appendix.

Proposition 3.1 (Well-posedness criterion). If there are no rigid conforming displacements,
that is KerB∩Lh= {0}; the conditions

D̃h ∩BLh= {0}
Sh ∩D⊥

h = {0}
(7)

are necessary and su�cient for the well-posedness of the discrete mixed problem Ph.

The strain gaps gh belonging to the subspace D̃h=Dh ∩S⊥
h are referred to as e�ective strain

gaps since they e�ectively contribute to relax the compatibility condition. The orthogonality
relation ⊥ is intended according to the inner product in L2(
).
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The well-posedness condition (7)1 requires that e�ective strain gaps gh ∈ D̃h=Dh ∩S⊥
h

and compatible discrete strains Bu h ∈BLh must be linearly independent. The well-posedness
condition (7)2 means that stresses bh ∈Sh must be controlled by strain gaps gh ∈Dh. Condition
(7)1 can be conveniently substituted by the local condition D̃h ∩BVh= {0} which does not
involve the unknown assembly operation. Condition (7)2 can be imposed by chosing Dh such
that Sh⊆Dh.
The conditions which guarantee that the convergence in the energy norm of the discrete

solution to the continuous one will be analysed in Section 5 by resorting to the general
treatment of mixed methods [14].

3.1. Element shape functions

The shape functions are de�ned in the reference element K and are evaluated in each element

e of the mesh by performing the composition with the one-to-one isoparametric map
fe: K 7→ 
e. We shall denote the gradient by Fe=grad fe and the Jacobian determinant by
J e=det Fe, if the transformation is a�ne we have J e=Ve=VK .
The condition Dh ∩S⊥

h 6= {0} can be e�ectively checked in terms of the subspaces DK and
SK de�ned in the reference element by means of the change of co-ordinates described by
the map f−1e . The corresponding inner product in K is performed by an integration over the
reference element which involves an unknown Jacobian determinant.
If we consider a�ne equivalent FE meshes, the Jacobian determinant is constant and no

problem arises in imposing the orthogonality conditions.
On the contrary, in the case of general isoparametric maps, the Jacobian determinant is no

more constant and as a consequence the integral of the product of two �elds in the reference
element is no more proportional to the corresponding integral in an actual element of the
mesh.
A skilful trick was proposed in Reference [1] in order to overcome this di�culty. Following

their proposal, the shape functions of the stresses and of the strain gaps are de�ned according
to

beh(x)= be
[
f−1e (x)

]
; geh(x)=

J eo
J e

[
f−1e (x)

]ge [f−1e (x)] ; x∈ �
e (8)

where J eo is obtained by evaluating J
e(^) at ^= 0. Setting x= fe(^), we have∫


e
beh(x) · geh(x) dx=

∫

e
be

[
f−1e (x)

] · J eo
J e

[
f−1e (x)

]ge [f−1e (x)] dx= J eo
∫
K
b(^) · g(^) d^

and the orthogonality condition is preserved by general isoparametric mapping.
It is worthnoting that this procedure leads to a non-polynomial approximation of the strain

gap since in De�nition (8) the polynomials ge(^) are divided by the Jacobian J e(^). Never-
theless, it is admissible since the approximation properties of the strain gap subspace Dh do
not play any role in the estimate of the asymptotic rate of convergence as proved in Reference
[15] and discussed hereafter in Section 5.
Additional transformation rules which preserve the point-wise inner product between stress

and strain tensors can be envisaged but it seems that they can only be motivated by an
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a posteriori evaluation of the quality of the numerical results. Examples are provided by the
push=pull transformations of di�erential geometry [25]. In this respect, the following expres-
sions for plane problems have been adopted, see e.g. References [1; 26]:

beh(x)=Teobe
[
f−1e (x)

]
; geh(x)=

J eo
J e

[
f−1e (x)

]Te−To ge
[
f−1e (x)

]
(9)

where Teo is the value, at the origin of the reference element, of the matrix �eld

Te(^)=



F211 F212 2F11F12
F221 F222 2F21F22
F11F21 F12F22 F11F22 + F12F21



e

(^) with ^∈K

Accordingly, the inner product in the real space is given by

∫

e
beh(x) · geh(x) dx=

∫

e
Teobe

[
f−1e (x)

] · J eo
J e

[
f−1e (x)

]Te−To ge
[
f−1e (x)

]
dx = J eo

∫
K
b(^) · g(^) d^

4. REDUCED PROBLEM AND STRESS RECOVERY

The SGM can be cast in the theoretical framework of the mixed methods analysed in Refe-
rence [14]. In fact, the discrete mixed problem deriving from the stationarity of Equation (4)
can be written in the form




((E(Buh − gh);B�uh)) = 〈 �‘; �uh〉 ∀�uh ∈Lh

((E(Buh − gh)− bh; �gh)) = 0 ∀�gh ∈Dh

((�bh; gh)) = 0 ∀�bh ∈Sh

(10)

The relations (10) provide the discrete equilibrium, elastic equations and the compatibility
conditions. It is convenient to consider (10)3 as a constraint condition for the discrete problem
in which the discrete stresses play the role of Lagrangian multipliers. This constraint amounts
to require that gh ∈ D̃h=Dh ∩S⊥

h . The {uh; gh} solution of problem (10) can be obtained by
solving the following reduced problem in which the strain gap variations meet the constraint
condition:



((E(Buh − gh); B�uh)) = 〈 �‘; �uh〉 ∀�uh ∈Lh

((E(Buh − gh); �gh)) = 0 ∀�gh ∈ D̃h

(11)
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Once the solution {uh; gh} of Equation (11) has been obtained, the discrete stresses bh ∈Sh
can be evaluated by solving the stress recovery problem

((E(Buh − gh)− bh; �gh))=0 ∀�gh ∈Dh (12)

This condition involves a number of equations which is larger than the number of unknown
stress parameters. Nevertheless, the stress recovery problem (12) admits a unique solution if
the well-posedness requirement Sh ∩D⊥

h = {0} is ful�lled, since then the number of indepen-
dent equations is equal to the number of unknowns.
The stress recovery (12) can be interpreted in geometrical terms as a projection procedure:

to get the approximate stress bh ∈Sh, the �eld (Buh − gh) must be projected on the subspace
Sh with a projection orthogonal in elastic energy to the subspace Dh.

4.1. The elastic stress recovery

From the computational standpoint, the most convenient stress recovery consists in comput-
ing the discrete stresses at the element level according to the elastic constitutive relation
bh=E(Buh − gh) once the reduced problem has been solved.
Some authors [7; 11; 12] claimed that this simple computation is not variationally consistent

but the following direct argument leads to the opposite conclusion.
Let us preliminarily observe that the well-posedness conditions require that any admissible

choice of the subspaces Sh and Dh must ful�ll the following three rules: (a) Sh ∩D⊥
h = {0},

(b) Dh ∩S⊥
h 6= {0}, (c) constant stress �elds must be included in SK . Conditions (a) and

(b) can always be satis�ed by setting Dh=Sh⊕ D̃h since the choice of Dh is not subjected
to other conditions. The subspace D̃h is de�ned as the linear span of shape functions with
zero mean values. This choice is motivated by the orthogonality condition D̃h⊆S⊥

h since Sh
must ful�l the condition (c).
Condition (a) ensures uniqueness and convergence of the approximate stress solution as

will be discussed in the next section. Condition (b) is necessary in order to get an enhanced

exibility since otherwise the mixed method would collapse into the standard displacement
method. Condition (c) is also motivated by convergence requirements (see next section).
To prove the variational consistency of the elastic stress recovery, we consider the stress

subspace ��h composed by the stress �elds �bh=E(B�uh − �gh) with �uh ∈Vh and �gh ∈ D̃h. The
elastic stress is bEh =E(Buh − gh) with {uh; gh} solution of the reduced problem. It is then
apparent that bEh ∈ ��h. Moreover, by condition (4:2)2, we have also that bEh ∈ D̃⊥

h . Then bEh
belongs to the subspace

�h= { �bh ∈ ��h: (( �bh; �gh))=0 ∀�gh ∈ D̃h}= ��h ∩ D̃⊥
h

We can then de�ne the stress subspace to be Sh=�h⊕S∗
h where S∗

h is any subspace
included in D̃⊥

h . As a consequence �h⊆Sh and Sh⊆ D̃⊥
h .

Being bEh ∈�h⊆Sh, the projection procedure (12) of the stress recovery problem yields
trivially bh= bEh .
The variationally consistency of the elastic stress recovery has been recently claimed in

Reference [13] by an argument explicitly limited to undistorted meshes and based on a
matricial formulation.
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As a consequence of the choice Dh=Sh⊕ D̃h, the stress recovery strategy (12) reduces to
an orthogonal projection of bEh =E(Buh − gh) on the subspace Sh:

((bEh − bh; �bh))=0 ∀�bh ∈Sh

In fact, the condition containing the variations �gh ∈ D̃h are identically satis�ed by the virtue
of (11)2.
Several non-variational stress recovery procedures have been envisaged in the literature to

complement the enhanced strain method. The one proposed in Reference [1] performs the
orthogonal projection in the elastic energy of the discrete �eld EBuh on a subspace Sh ful�lling
the condition Sh⊆D⊥

h . This stress recovery is not variationally consistent since it cannot be
deduced from a projection procedure of the type (12).

5. CONVERGENCE PROPERTIES

The convergence of the approximate solution provided by the SGM method to the exact one
requires that the discrete problems must be uniformly well-posed with respect to the mesh
size parameter h.
In geometrical terms, this requirement consists in assessing that the subspaces BVh and D̃h

must not tend to become parallel and that the subspaces Sh and Dh must not tend to become
orthogonal as h goes to zero. In topological terms, these two conditions can be stated by
requiring that the subspaces BLh + D̃h and Sh + D⊥

h must be uniformly closed in H with
respect to the parameter h and, in turn, uniform closedness is equivalent to the following
inequalities [15]:

‖�BLhgh‖H 6 �‖gh‖H ∀gh ∈ D̃h �¡1

‖�Dhbh‖H ¿ c‖bh‖H ∀bh ∈Sh c¿0
(13)

with � and c independent of h. The symbols �BLh and �Dh denote the orthogonal projectors
on the subspaces BLh and Dh and ‖ · ‖H is the norm in H.
Being Sh⊂Dh, we have ‖�Dhbh‖H= ‖bh‖H so that the inequality (5:1)2 is trivially ful�lled

with c=1. A su�cient local condition for Equation (5:1)1 can be obtained by substituting
Lh with the non-conforming displacement subspace Vh⊇Lh to get:

‖�BVhgh‖H6�‖gh‖H ∀gh ∈ D̃h �¡1

If this condition is ful�lled, the following error estimate holds

‖b − bh‖0 + ‖u − uh‖16�
(
inf
�uh∈Lh

‖u − �uh‖1 + inf
�bh∈Sh

‖b − �bh‖0
)

where ‖ · ‖0 and ‖ · ‖1 are the norms in the SOBOLEV spaces H 0(
)=L2(
) and H 1(
) [15].
A linear rate of convergence is ensured by polynomial interpolation theory [27] if the

displacement shape functions can reproduce any polynomial of degree 61 and the stress shape
functions can reproduce any constant tensor �eld. More precisely, the subspace VK generated
by the displacement shape functions on the reference element K must ful�ll the property
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VK ⊇P1(K) for simplicial elements or VK ⊇Q1(K) for n–cubes. As usual P1(K) denotes the
subspace of polynomials of degree 61 and Q1(K) denotes the subspace of polynomials of
degree 61 separately in each variable.
The stress subspace SK must ful�ll the constant stress condition SK ⊇P0(K)=Q0(K). This

condition was also recognized to be necessary for convergence in Reference [1] by appealing
to the patch test. The e�ective strain gaps must then have a null mean value, a property also
referred to in Reference [1]. Under these assumptions the following linear estimates for the
rate of convergence hold [27]:

‖u − uh‖16cuh(|u|2 + |b|1); ‖b − bh‖06cbh(|u|2 + |b|1)
provided that the solution is smooth in the sense that u∈H 2(
) and b∈H 1(
). Here the
symbol | · |m is the seminorm in the Sobolev space Hm(
) involving only derivatives of total
order m.

6. UNIFORM WELL-POSEDNESS

In the FE analysis the local su�cient conditions for the uniform well-posedness of the SGM

D̃h ∩ BVh= {0}; D̃h + BVh uniformly closed in H (14)

have to be veri�ed on the reference element K in terms of shape functions, that is

D̃K ∩ BeKVK = {0}; D̃e
K + B

e
KVK uniformly closed in H (15)

The kinematic operator BeK , which acts on the �elds uK in the reference element, is de�ned
by BeKuK(�

−1
e (x))=Bu(x) for any x∈
e.

In the case of undistorted elements BeK and B are proportional through the mesh size h, i.e.
BeK = hB. This proportionality implies that the subspace B

e
KVK is equal to BVK and hence is

independent of h. The condition D̃K ∩BeKVK = D̃K ∩BVK = {0} can be checked by evaluating
the Gram determinant [28] of a set of shape functions spanning the subspace D̃K ×BVK . The
Gram determinant is in fact positive if and only if this set of shape functions is linearly
independent [29]. Remarkably, the uniform closedness condition concerning D̃K + BeKVK is
trivially ful�lled since BeKVK =BVK is independent of h.
For general isoparametric maps, the condition (15) cannot be checked in the reference

element, a drawback which seems to have been overridden in previous analyses [1; 11].

7. THE DISCRETE PROBLEM

Let us assume a strain gap interpolation in the reference element of the form

DK =SK ⊕ D̃K (16)

where D̃K ⊆S⊥
K is the subspace of e�ective strain gaps and the symbol ⊕ denotes the direct

sum.
Then Dh=Sh⊕ D̃h but in general we do not have D̃h⊆S⊥

h unless the Jacobians of the
isoparametric maps are constant. As a consequence, in the general case, it is not possible to
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split the variational problem into a sequence of a reduced problem and of a stress recovery
projection.
Let us then develop hereafter a general formulation of the SGM in which the orthogonality

constraint D̃h⊆S⊥
h is not satis�ed a priori but enters as one of the equations of the discrete

problem. This formulation is a useful tool in detecting the computational performances relevant
to di�erent implementation of the method and will be referred to in the numerical examples
discussed in Section 8.
The well-posedness condition Sh ∩D⊥

h = {0} is equivalent to the non-singularity of the
matrix Q as de�ned in Equation (6). The property KerQ= {0} is crucial for the derivation of
the element sti�ness matrix. We can in fact eliminate the stress and the strain gap parameters,
at the element level, according to the procedure



Hepeg=G

epeu −Qepeb
(QeTHe−1Qe)peb=Q

eTHe−1Gepeu
[Ke +GeTHe−1(He −He)He−1Ge]peu= f

e
u

where He=Qe(QeTHe−1Qe)−1QeT. Denoting the element sti�ness matrix by

Se=Ke +GeTHe−1(He −He)He−1Ge (17)

the mixed problem at the element level can be written as Sepeu= f eu . The global problem is
then expressed in terms of nodal displacement parameters as

Kqu=
N∑
e=1

(
AeT
u K

eAe
u

)
; qu=

N∑
e=1

AeT
u f

e
u = fu

We underline that, due to the positive de�niteness of He and the non-singularity of Qe, the
matrix QeTHe−1Qe is invertible. Once the global structural problem has been solved in terms
of nodal displacements, the stress and the strain parameters can be evaluated at the element
level by following the elimination procedure backwards:

peb =
(
QeTHe−1Qe)−1QeTHe−1Gepeu

peg = H
e−1(Gepeu −Qepeb)

(18)

If the Jacobian determinant is introduced in the de�nition of the strain gaps according to
formula (8), the property D̃h⊆S⊥

h is preserved by the isoparametric map. In this case, a more
convenient computation strategy, based on the reduced problem (11) and the stress recovery
projection (12), can be exploited.

7.1. Reduced problem and stress recovery

Let us now derive the expression of the element sti�ness matrix and of the stress recovery for
the SGM. To solve the reduced problem (11), we preliminary note that the discrete strain gaps
belonging to the subspace D̃h are such that the corresponding parameters belong to KerQeT,
see also the equivalence (A.6) reported in the appendix.
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The reduced problem (11) at the element level reduces to the following matrix form:[
Keuu −GeTQu
−GeQu He

QQ

] ∣∣∣∣peupeQ
∣∣∣∣ =

∣∣∣∣f eu0
∣∣∣∣ (19)

where peQ is the element e�ective strain gap parameter.
The element sti�ness matrix Se is then

Se=Keuu −GeTQuHe−1
QQ G

e
Qu (20)

so that the problem at the element level can be written as Sepeu= f eu .
Once the global problem has been solved in terms of nodal parameters, the e�ective strain

gap parameters can then be computed from (19) in the form:

peQ=H
e−1
QQ G

e
Qup

e
u (21)

At this point, the variationally consistent stress recovery (12) can be pursued to get

−Gebupeu +He
bQp

e
Q +Q

e
bbp

e
b= 0

and recalling the expression (21) of peQ we have

peb=Q
e−1
bb (G

e
bu −He

bQH
e−1
QQ G

e
Qu)p

e
u (22)

It is worthnoting that the reduced problem (19) coincides with the matrix formulation of
the EAS method where the enhanced strains of the EAS method coincide with the e�ective
strain gaps of the SGM to within an irrelevant change of sign. The well-posedness of the
SGM provides the variationally consistent stress recovery (22).

8. COMPUTATIONAL ANALYSIS

Let us preliminarily consider some shape functions adopted in the literature in the context of
the EAS method for plane problems with reference to a standard four-node bilinear isopara-
metric square element = [−1; 1]× [−1; 1].
A �ve-parameter interpolation for the strain gap �eld is provided in Reference [1] starting

from the six-parameter strain interpolation of Wilson et al. incompatible element. The shape
functions for the strain gaps are

Ng =



� 0 0 0 ��
0 � 0 0 −��
0 0 � � �2 − �2


 (23)

Note that, deleting the last column of Ng , we obtain the shape functions pertaining to the
modi�ed incompabile mode approximation of Taylor et al. [30]

N̂g =



� 0 0 0
0 � 0 0
0 0 � �


 (24)
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A seven-parameter strain gap interpolation has been assumed in References [7; 8] which is
given by

Ng =



� 0 0 0 �� 0 0
0 � 0 0 0 �� 0
0 0 � � 0 0 ��


 (25)

Over the standard four-node isoparametric element , the strain gap shape functions (23)–
(25) and the Pian and Sumihara stress shape functions [31] given by

Nb =



1 0 0 � 0
0 1 0 0 �
0 0 1 0 0


 (26)

are apparently mutually orthogonal in the L2( ) inner product.
According to the decomposition (16), the e�ective strain gap interpolation of the SGM is

given by Equation (23). The strain gap shape functions are the collection of Equations (26)
and (23).
The well-posedness condition requires that compatible and e�ective strain gap shape func-

tions must be linear independent. Noting that the compatible strain subspace BV is given
by

BV =span



1 0 0 � 0
0 1 0 0 �
0 0 1 � �




well-posedness can be checked by considering the vectors {a1; a2; : : : ; a15}, which represent
the columns of the set {BV ;Ng } and imposing that the Gram matrix Gij=

∫
ai · aj is not

singular.

8.1. Numerical examples

The numerical performances of the SGM are evaluated with reference to some discriminating
examples selected from the literature and compared with the EAS, the Hellinger–Reissner
(HR) and the standard displacement methods. All the examples are two-dimensional, linearly
elastic isotropic and in plane stress state. A square four-node isoparametric element is adopted.
We begin by considering the results for the tapered cantilever, commonly known as the

Cook membrane problem. The values E=250 and �=0:4999 for Young’s modulus and Pois-
son’s ratio are used such that a nearly incompressible response is e�ectively obtained, as
reported in Reference [26]. A uniformly distributed in-plane shearing load with total value
100 is applied on the free end. Figure 1 shows a graph of the vertical tip de
ection obtained
by adopting the SGM, the EAS, the HR and the standard displacement methods. The superior
coarse mesh accuracy achieved with the various enhanced strain or assumed stress elements
is apparent.
The aim of this example is to illustrate the computational performances relevant to di�er-

ent implementations of the discrete method. In particular, the SGM0 plot shows the results
obtained following the general formulation, according to formulae (17) and (18), in which
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Figure 1. Vertical tip displacement for the Cook membrane problem.

the orthogonality constraint is considered as one of the equations of the discrete mixed prob-
lem. The SGM1 and SGM2 plots are obtained by adopting the formulation which include the
Jacobian determinant (8) and the push-transformation (9), respectively.
The results provided by the SGM0 and SGM1 are similar showing that the variability of

the Jacobian determinant (8) has only minor in
uence on the numerical performances.
The two-�eld HR method provides comparably good results for coarse meshes and the same

convergence behaviour of the SGM and EAS method. The displacement method exhibits a
rather poor performance for coarse meshes but no locking phenomenon is shown in contrast
with the example reported in Reference [26].
In Figures 2(a)–2(c), the normal and tangential stresses �x; �y and �xy at the node A

are plotted. The elastic stress recovery is reported in the SGM3 plot and turns out to be
numerically similar to the EAS stress recovery. Figures 2(a) and 2(b) clearly shows a poor
performance of the SGM and EAS method for coarse meshes.
The next test example of Figure 3 consists of a rectangular plate constrained at one end

and subjected to a uniformly distributed shearing load, with intensity 100, at the other. The
values of Young’s modulus and Poisson’s ratio are E=1500 and �=0:25. Since the mesh is
not distorted, the Jacobian determinant and the push-transformation has no in
uence on the
numerical performance of the SGM and of the EAS method which coincides with the HR
method according to a limitation phenomenon. A detailed analysis can be found in References
[11; 12; 32].
As a further example, we analyse a classical benchmark [16; 13] consisting in the bending

problem of the rectangular plate reported in Figure 4 to address the issue of sensitivity to
mesh distorsions. The values E=1500 and �=0:25 for Young’s modulus and Poisson’s ratio
are used.
A two-element mesh is considered for the plate which is constrained at one end and is

subjected to a linearly distributed axial load, equivalent to a couple with value 2000, at the
other. The analytical solution in terms of displacements and stresses is

u(x; y)=2x(1− y)
v(x; y)= x2 + 1

4(y
2 − 2y) and �x(x; y)=3000(1− y); �y(x; y)= �xy(x; y)=0
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Figure 2. Stress results for the Cook membrane problem: (a) axial stress;
(b) vertical stress; (c) tangential stress.
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Figure 3. Vertical displacement of the bottom corner point for a cantilever
rectangular plate subjected to a shearing force.

Figure 4(a) gives the results for the vertical displacement of the point A measured against
the distorsion parameter d. It is evident that the push-transformation has a bene�cial e�ect. In
Figure 4(b), we report the vertical displacement of the point B measured against the distorsion
parameter d. In this case, the EAS method with the push-transformation and the SGM2 have
the worst performance since the di�erence between the discrete and the exact null solution
increases with the distortion. On the contrary, the SGM0, SGM1 and the HR method provide
more reliable results.
Further results concerning the normal and tangential stresses at the point B are reported

in the Figures 5(a)–5(c). In terms of axial stress, the SGM2 and the EAS shows a less
distortion sensitivity. In terms of vertical stress the SGM, the EAS and the HR methods give
similar results. The SGM2 and the EAS method have the better performance in terms of the
tangential stress.

9. CONCLUDING REMARKS

Since the original formulation of the EAS method proposed by Simo and Rifai in Refer-
ence [1], the theoretical aspects and the computational performances of this method have
been investigated in a number of subsequent papers (see e.g. References [6; 16; 13; 12]). All
these treatments rely on the basic assumption, made in Reference [1], concerning the mutual
orthogonality between stress and enhanced strain subspaces.
Seemingly, the merit of this orthogonality assumption is that the discrete stress �elds are

eliminated from the problem. A displacement-like formulation is thus obtained in which a
modi�ed sti�ness operator provides an enhanced 
exibility and better numerical performances
with coarse meshes.
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Figure 4. Vertical displacements for a cantilever rectangular plate subjected to a
couple: (a) for the point A; (b) for the point B.

In reality, as a consequence of this assumption, two main troubles become apparent. The
�rst one concerns with the evaluation of the discrete stress �eld, an issue which has been
longly debated with several proposal [11–13].
The analysis carried out in this paper, which is based on the standard theoretical treatment

of mixed methods [14], reveals that the three-�eld discrete problem can always be split into
a sequence of two steps: (a) the resolution of a reduced problem in which the orthogonality
constraint between stresses and strain gaps is imposed and (b) a stress recovery problem
which is analogous to the evaluation of the Lagrangian multiplier relevant to the constraint.
Such a decomposition requires no a priori orthogonality assumption.
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Figure 5. Stress results at the node A for a cantilever rectangular plate subjected to a couple: (a) axial
stress; (b) vertical stress; (c) tangential stress.
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In the EAS method only the reduced problem was discussed since the orthogonality con-
straint was assumed to be identically satis�ed. Such an assumption is in contrast with the
well-posedness requirement concerning the uniqueness of the solution in terms of discrete
stress �eld. It is thus clear that the troubles faced with the theoretical assessment of the EAS
method and in envisaging an a posteriori stress recovery strategy are motivated by the fol-
lowing consideration: the discrete variational problem of the EAS method is partially ill-posed
due to the orthogonality assumption which leads to a complete indeterminancy of the discrete
stress solution.
Another observation concerns with the peculiar convergence properties of the EAS method.

In fact, since the exact constraint imposes the vanishing of the enhanced strain at the solution,
it is apparent that no interpolation properties are required to the discrete space of enhanced
strains.
The convergence analysis developed in References [10; 16] with reference to the EAS

method was instead based on interpolation properties of the displacement shape functions and
on a special orthogonality requirement of the enhanced strain subspace to polynomials of
degree k − 1 if k is the degree of the displacement polynomial interpolation.
This spourious requirement is in apparent contradiction with the previous observation that

any discrete subspace of enhanced strain �elds includes the null �eld (i.e. the exact strain gap
solution).
In fact, there is no variational motivation for this orthogonality requirement and it seems

that the authors of References [10; 16] were compelled to an escamotage in order to prove
the convergence of the reduced problem without resorting to the interpolation properties of
the stress �elds.
Such interpolation properties were anyway invoked in References [10; 16] to prove the

convergence of their stress recovery strategy.
No problem arises if all the variational well-posedness conditions are respected and speci�-

cally if the discrete strain gaps e�ectively control the discrete stresses so that a unique discrete
stress solution is ensured. This feature seems to have been overlooked in previous treatments
of the EAS method [10; 16].
We conclude this comparison between the EAS method and the SGM with the following

considerations. The original idea contributed in Reference [1] was far reaching. In fact, the
choice of the strain gap as a basic unknown of the three-�eld problem has some peculiar and
important consequences. Due to the simplicity of the constraint, the reduced problem can be
formulated as a modi�ed displacement method with an enhanced 
exibility. No interpolation
requirements are requested on the discrete strain gaps and this fact allows to adopt a non-
polynomial interpolation whose orthogonality properties can be controlled on the reference
element of an isoparametric FE mesh.
On the other hand, the simplicity of the constraint instigates to jump to the conclusion that

the convergence of the reduced discrete problem is independent of the choice of the discrete
stress space which, in fact, does not explicitly appear in the reduced problem.
A full comprehension of the method requires however to recognize that the basic role

played by the stress interpolation is hidden in the orthogonality condition.
The main di�erence between the EAS method and the SGM stems from the circumstance

that in the EAS method the orthogonality condition Sh⊂D⊥
h was imposed as an essential

requirement of the method and hence a well-posedness condition of the mixed method
was violated. On the contrary, the SGM, which is fully respectful of the well-posedness
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conditions, allows for a consistent variational computation of the stress parameters and leads
to a consistent method of approximation which permits to get a full convergence result.
The numerical tests reveal that there is no apparent motivation to a preferential adoption

of the SGM or EAS method in comparison with the two-�eld HR method. Further, special
procedures, such as the push-transformation, have no variational ground, show better results
in terms of displacements for coarse meshes but poorer results in terms of stress �elds. In
this respect, the local lack of convergence of the stress �eld shown in the Cook membrane
problem reveal that further improvements are needed and that scienti�c and commercial codes
are still not completely reliable for engineering purposes.

APPENDIX

To discuss the well-posedness of the discrete problem Ph (5), it is essential to provide a
representation formula for the kernel of the matrix M in terms of the component submatrices.
To this end let us �rst de�ne the reduced matrix

A=
[
K −GT
−G H

]
(A.1)

obtained from the global matrix M and the associated bilinear form

a({qu; qg}; {�qu; �qg})=Hqg · �qg −Gqu · �qg −GTqg · �qu +Kqu · �qu (A.2)

We can now prove a preparatory result.

Proposition A.1 (The quadratic form of the reduced matrix). The positive quadratic form
a({qu; qg}) associated with A is given by

a({qu; qg}) =Hqg · qg − 2Gqu · qg +Kqu · qu

=
N∑
e=1

∫

e
E∗

(
NegJ

e
gqg − B∗NeuAe

uqu
) · (NegJe

gqg − B∗NeuAe
uqu

)
(A.3)

with a({qu; qg})¿0 for any qu and qg; and its kernel is

Ker a=
{{qu; qg}: NegJe

gqg − B∗NeuAe
uqu=0; e=1; : : : ;N

}
(A.4)

Proof. The proposition is a direct consequence of the de�nitions of H, G and K and of
the positive de�niteness of the elastic matrix E∗.

To provide a representation of the kernel of the matrix M we preliminarily recall that, due
to the positivity of a({qu; qg}), the matrix A and the associated quadratic form a(qu; qg) have
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the same kernel [28], that is

KerA=Ker a (A.5)

We are now ready to prove the next result.

Proposition A.2 (Representation of the kernel of the matrix M). The interpolation param-
eters which annihilate the response of the global matrix M, that is {qu; qg; qb}∈KerM; are
characterized by the property


qg ∈KerQT

NgJe
gqg − B∗NeuAe

uqu= 0; e=1; : : : ;N

qb ∈KerQ:
Proof. Let {qu; qg; qb}∈KerM then



(i) Kqu −GTqg= 0
(ii) −Gqu +Hqg +Qqb= 0
(iii) +QTqg= 0

From Equation (iii) we can infer qg ∈KerQT.
By taking the dot product of (ii) by qg we get Hqg·qg + Qqb·qg − Gqu·qg=0 so that,

by means of equation (iii), it turns out to be Hqg·qg − Gqu·qg=0. Moreover, by summing
up this equation and equation (i) multiplied by qu, given by Kqu·qu − Gqu·qg=0, we get
Hqg·qg − 2Gqu·qg+Kqu·qu=0. Then the displacement and the strain gap parameters {qu; qg}
belong to the kernel of the bilinear form a(qu; qg) so that, from Proposition A.1, we have
NgJe

gqg − B∗NeuAe
uqu= 0 for e=1; : : : ;N.

Moreover, the displacement and the strain gap parameters {qu; qg} belong to the kernel of
the reduced matrix A so that we have

{
Kqu −GTqg = 0
−Gqu +Hqg = 0

A comparison with equations (i)–(iii) shows that Qqb= 0 or equivalently qb ∈KerQ. Con-
versely, the properties qb ∈KerQ, qg ∈KerQT, and NgJe

gqg−B∗NeuAe
uqu= 0 for e=1; : : : ;N

ensure that {qu; qg; qb}∈KerM.
A better understanding of well-posedness can be got by means of an equivalent geomet-

rical formulation in terms of interpolating subspaces. To this end we quote the following
equivalences:

qb ∈KerQ ⇔ bh ∈ Sh ∩D⊥
h

qg ∈KerQT ⇔ gh ∈Dh ∩S⊥
h

(A.6)
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The kernel of M can then be rewritten, by virtue of Proposition A.2, as∣∣∣∣∣∣
qu
qg
qb

∣∣∣∣∣∣ ∈KerM ⇔



gh ∈Dh ∩S⊥

h

uh ∈Lh: gh=Buh
bh ∈Sh ∩D⊥

h

(A.7)

The necessary and su�cient condition for well-posedness is hereafter proved.
• Well-posedness criterion: If there are no rigid conforming displacements, that is
KerB∩Lh= {0}, the conditions

G1) D̃h ∩BLh= {0}; G2) Sh ∩D⊥
h = {0}

are necessary and su�cient for the well-posedness of the discrete mixed problem Ph.

Proof. Conditions G1 and G2 are equivalent to assume that KerM= {0}. Due to the sym-
metry of the global matrix M we have ImM=(KerMT)⊥=(KerM)⊥=Dh × Sh × Lh so
that there exists a unique solution for any data.
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