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Summary

The celebrated KorN’ ssecond inequality isthemilestone alongthe way that |eadstothe basic existence
results in continuum mechanics and linear elastostatics. An abstract result by L. TARTAR showsthat KORN'S
inequality implies that the range of the kinematic operator is closed and that its kernel is finite dimensional.
A full extension of TARTAR’slemmais provided in this paper and leads to the conclusion that conversely the
closedness of the range of the kinematic operator and the finite dimensionality of its kernel are sufficient to
ensure the validity of KoOrRN’sinequality.

Introduction

On reading the brilliant proof of KorN’s second inequality in the book by G. DuvauT and J. L.
L1ons [4] the author realized that the peculiar form of the sym grad operator plays abasic role in the proof.
More specificaly he realized that the finite dimensionality of the kernel of sym grad should be a necessary
property, although this condition was not appealed to explicitly in the proof. Sometime later the autor became
aware of aniceresult by L. TARTAR concerning an abstract inequality of the KORN’ stype expressed in term
of abounded linear operator and a compact operator whose kernels haveatrivial intersection. TARTAR proved
that the inequality impliesthefinite dimensionality of thekernel and the closedness of theimage of the bounded
linear operator. The conjecture about the role of the kernel of sym grad in KORN’s second inequality was
thus confirmed. At this point it raised naturally the question whether conversely the finite dimensionality of
the kernel of symgrad and the closedness of its image were also sufficient to assess the validity of KORN'S
second inequality. This converseproperty requiresto complete TARTAR’ sresult with the oppositeimplication.
A full extension of TARTAR’'S lemma is provided in this paper and leads to the conclusion that conversely
the closedness of the range of the kinematic operator and the finite dimensionality of its kernel are sufficient
to ensure the validity of KorN’sinequality. The main result contributed here shows that both properties are
equivalent to require that a similar inequality be valid for any linear continuous operator.

Tartar’sLemma

A niceabstract result dueto .. TARTAR wasreported by F'. BREzzi and D. MARINT in[5], lemmad4.1
and quoted by P. G. CIARLET in[6], exer. 3.1.1. Since TARTAR’slemma playsabasicrolein our discussion
about KORrN’s inequality we provide hereafter an explicit proof of this result. Preliminarily we quote that
BANACH’ sopen mapping theorem impliesthefollowing lemma (see BrEzis [8] th. 11.8 and [10], th. 9.1, 9.2).

Bounded decomposition. Let X bea BANACH spaceand A C X, B C X closed linear subspaces of
X such that their sum A + B isclosed. Then any x € A 4+ B admits a decomposition x = a + b, with
ac A, be B, suchthat

[x[[y > cllally, [[xly>clblly,
where ¢ > 0. O

If ¥ = A+ B and AN B = {o}, the closed subspaces .4 and B are topologica supplementsin X
and the projectors P 4 x = a and Pz x = b are well defined linear bounded operators from X" to X'.



A decomposition X = A + B of X into the direct sum of two topological supplementary subspaces
A and B certainly existsif either X' isaHILBERT space or at |east one of them, say A, isfinite dimensional.

In the former case B issimply the orthogonal complement of .4 in X' . Inthelatter case we can take
as B the annihilator in X of asubspace of X’ generated by fixing abasisin A, taking the dual basisin A’
and extending its functionalsto X’ (by the HAHN-BANACH theorem).

From the bounded decomposition, being P yja =a Va c A, weinfer that

[x—al,>cl(x—a)-Py(x—a)|,=cl[x-Pyx|l,, VacA, Vxed,
which is equivalent to HXHX/A >cllx =P x|, VxeX.Hencewehavethat

||X—PAXHXZ||x||X/AZcHx—PAx||X, VxeX.

Tartar’sLemma. Let H beareflexive BANACH space, E, F' benormed linearspacesand A € Lin{H, E}
a bounded linear operator. If there exists a bounded linear operator L, € Lin{H, F'} such that

i) Lo €Lin{H,F} iscompact,
i) [[Au| g+ [ Loulp> alul, YuecH,

then we have that

a) dim(KerA) < + o0,
{ Vue H.

b) HAu”EZ CAH“HH/KerA

Proof. Let’sprove that the closed linear subspace Ker A C H isfinite dimensional. Wefirst note that i)
implies that
[Loullp > allully; Vue KerA.

On the other hand, denoting by % the weak convergencein H , the compactness property 4) implies that

{u,} C KerA,

Uy S U iN H,} = [oltin =) llp =0 = ftn = oo g =9,

Wemay then conclude that every weakly convergent sequencein Ker A isstrongly convergent. Hence, by the
reflexivity of H ([8] 111.2, remark 4) wemust have dim (Ker A) < oo and a) isproved. Then Ker A admits
a topological supplement S and we can consider the bounded linear operator P, € Lin{H, H} whichis
the projector on Ker A subordinated to the decomposition H = Ker A +S. Let us how suppose that b) is
false. There would existsasequence {u,, } C H suchthat || Au, |, — 0 and ||u, ||H/KerA =1.Bythe
inequality || u,, ||H/KerA > c|u, —Pyu, || thesequence u, — Pu,, isboundedin H. Hencethe
compactnessof theoperator L, € Lin{H, F'} ensuresthatwecanextractfromthesequence L, (u,,—Pau,,)
aCaucHy subsequence L,(u, —Pauy) in F. Thesequence Au,, isconvergentin E by assumption and
henceweinfer from i:) that u;, — P o u; isaCaucny sequence which by the completenessof H converges
to an element u, € H. Since Auy, convergesto zeroin E the boundednessof A € Lin{H, E} ensures
that uy € Ker A sothatalso P pouy + u,, € Ker A. Finaly from ii) we get that

allug g ke < 1Al +[[Loluy —Paug —uy)|[p =0,
/

and thisisabsurd since || u,, HH/KerA =1. O



Remark. TARTAR’slemmais quoted in [6] referring to [5] for the proof of the statement. Although in [5]
and [6] the space H was assumed to be a (non reflexive) BANACH space, property a) cannot be inferred
in this general context. A well-known counterexample is provided by the space 11 of absol utely convergent
real sequences. In fact SHUR’S theorem states that in this infinite dimensional BANACH space every weakly
convergent sequence is also strongly convergent (see [3] V.1theorem 5 and [8] 111.2, remark 4). Weaso note
that the proof of property b), as developed in [5], requires the existence of aweakly convergent subsequence
of a bounded sequence and hence, by the EBERLEIN-SHMULYAN theorem, the BANACH space H should be
reflexive. The proof of property b) proposed hereisinstead based on acompleteness argument which does not
require the reflexivity of the BANACH space H (private communication by RENATO FIORENZA). ]

InverseLemma

Let us now face the question whether TARTAR’s lemma can be completed by ng the converse
implication. A positive answer needs an existenceresult. Wehavein fact to provethat properties a) and b) in
TARTAR’slemmaimply the existence of acompact operator L, € Lin{H, F'} fulfilling property i) . Firstly
we observe that i) impliesthat Ker A N KerL, = {o}. Our strategy consists in relaxing the requests on
L, by considering at its place any operator L € Lin{H, F'} . Wethen try to establish the inequality

[Auf|p+ | Lul|p = ag | uHH/(KerAmKerL) VueH

forany L € Lin{H, F'}. Once this goa has been achieved we can choose L to be compact and such that
Ker AN KerL = {o}. Weneed some preliminary results. From the bounded decomposition we infer the
next proposition.

Distanceinequalities. Let X bea BANACH spaceand A C X', B C X closed linear subspacesof X such
that their sum A + B isclosed. Then, setting k¥ = ¢~ > 0 we have

i) HXHX/AHB <|[x-al,+ kllat+b|,, xeX, V{ab}ecAxB.
If A admitsatopological supplement S sothat X = A + S then weinfer that
W) N %ly/a0p < Ix=Paxly+ k[[Paxlly/ g, xci.
where P 4 isthe projector on A subordinated to the direct sum decomposition of X' .

Proof. The bounded decomposition ensuresthat forevery x e X', a€ A, b € B thereexistsa p € ANB
suchthat |a+p|, < k[la+b], . Henceweinfer 4):

Ixllx/anp < Ix+ply <lIx—aly +latplly <lx—al,+kllatbl,.

Setting a = P 4 x and taking the infimum with respect to b € B we get the inequality i) . O

Thefollowing two lemmasyield thetoolsfor the main result. Thefirst oneisavariant of aresult quoted
in [9] with reference to symmetric quadratic forms.

Projection inequality. Let H be a BANACH space and F, F' be linear normed spaces. Let moreover
A € Lin{H,E} eL € Lin{H, F'} belinear bounded operators such that

{i) [Aufp> callully/ken, YueH,

i) |Lullp > epullyker » Yue KerA.



Let moreover Ker A admit a topological supplement S sothat H = Ker A + S . Then we have
@) |Au|g+ILulp> a|Pauly ar, YueH.
where P o € Lin{H, H} istheprojector on Ker A subordinated to the decomposition H = KerA + S .
Proof. If a) would be false we could find asequence {u,,} C H such that
IPawy, |y ker, =1, [Au, |z =0, [[Lu,|p—0.
Since HuHH/KerA >cllu-Pyull; Vue H weinferfrom ¢) that
| Au, | —0 = Ju, —Pau, |, —0.

Moreover we have
{H L {lu, =Pau, g > [L(u, —Pau,) |z,
|LPAu, | < [|L(u, —Pauy,) |z + [[Luy, |-

Hence ||[LP pu,, || — 0 andfrom i) we get
|LP AU, HF >cp, || Pau, HH/KerL = [[Pau, HH/KerL — 0,

whichisabsurd since || Py u =1. O

n HH/KerL

Abstract inequality. Let H be a BANACH space and E, F be linear normed spaces. Let moreover
A € Lin{H,E} eL € Lin{H, F'} belinear bounded operators such that

i) lAulg=>callully/kear YuecH,
ii) [|[Lullp > CL”“”H/KerL , VYue KerA,
iii) KerA+ KerL closedin H.

Let moreover Ker A admit a topological supplement S sothat H = Ker A +S. Then we have
c) [[Auflgp+[[Lufp > afu ”H/(KerAmKerL) -
Proof. Summing up the inequalities a) and ¢) in proposition projection inequality we get
| A+ Ll = ap (1ulea + IPawlykar ) VueH.
Moreover by assumption i) the proposition distance inequalitiesimplies that

||u—PAuHH~|— kHPAu”H/KerLZ CHuHH/KerAﬂKerL’ Yue H.

Recalling that HuHH/KerA >cllu—Pyull,; Vue H wegettheresult. O



The next lemmayieldsthe crucial result for our analysis.

Inverselemma. Let H bea BANACH space and E, F' be linear normed spaces. Let moreover A €
Lin{H, E} bealinear bounded operator such that

a) dimKerA <+ o0,
b) [[Aulg > CAHUHH/KerA’ YueH.

Thenfor any L € Lin{H, F'} wehave
) lAulp+|Lulp > allully, keanker): YueH.

Proof. It sufficesto observe that any finite dimensional subspace admits a topological supplement in H and
that condition «) impliesthe validity of ii) and iii) of the abstract inequality forany L € Lin{H, F'}. O

Now we recall that
e any continuous projection operator on afinite dimensional subspace is compact.

It follow that if dim Ker A < + oo there exists at least a compact operator L, € Lin{H, F'} such that
Ker AN KerL, = {o}. Indeedwecanset L, = P, € Lin{H, H}, the projection operator on the finite
dimensional subspace KerA C H defined by a direct sum decomposition H = (KerA) + S with S
topological supplement of Ker A .

We can now provide a full extension of TARTAR’slemma by including the converse implication and
the equivalenceto a new property.

Equivalent inequalities. Let H be a reflexive BANACH space, F, F' be normed linear spaces and
A € Lin{H, E} abounded linear operator. Then the following propositions are equivalent:

dmKer A < + o0,
Pq) {|

|AU-||EZ CAHU-HH/KerAa VueH,

Thereexists L, € Lin{H, F'} compact
Py) | suchthat KerA N KerL, = {o} and
lAullp +[[Loullp > aflully, YueH,

{dim KerA < 400,

||Au||E+||Lu||F2 a||u||H/(KerAﬂKafL)7 Vue H, VLelin{H F},

Proof. P = Py setting L = O. P3 = Py setting L =L, =Py . Py = P3 by theinverselemma.
Finally P, = P; by TARTAR'slemmawhichisthe onerequiring the reflexivity of the BANACH space H . O



Korn’slnequality

In continuum mechanics the fundamental theorems concerning the variational formulation of equili-
brium and compatibility are founded on the property that the kinematic operator has a closed range and afinite
dimensional kernel. Theabstractframework isthefollowing. Astructuralmodel isdefined onaregularbounded
domain (2 of an euclidean space and is governed by a kinematic operator B which is the regular part of a
distributional differential operator B : V(£2) — D’ (£2) of order m actingonkinematicfields u € V(£2) which
are square integrable on 2 and such that the corresponding distributional linearized strain field Bu € D’(£2)
issquare integrable on afinite subdivision 7, (£2) of (2. Thekinematic space V({2) isapre-HILBERT space
when endowed with the topology induced by the norm

lali2 ) = lal g + I Bul g

where H(£2) and H({2) arethe spaces of kinematic and linearized strain fields which are square integrable on
2 [11]. The conforming kinematisms u € £({2) belong to aclosed linear subspace £(2) Cc H™ (7 ({2)) C
V(£2) of the SOBOLEV space H™* (7 (£2)), where 7 (2) isagivenfinite subdivision of (2. Thus £(£2) C
H™(T(£2)) isan HILBERT space and the operator B € Lin{L(£2), H(£2)} defining the linearized regular
strain Bu € H({2) associated with the conforming kinematic field u € £({2) islinear and continuous. The
kinematic operator B € Lin{V(£2), H({2)} isassumed to beregular in the sensethat for any L£({2) C V(£2)
the following conditions are met [11]

dmKerB, < + o0,
”B“”H(Q)20B||“||L(Q)/KerB£7 Vue L(f2) < ImB, closedin H({2).

The requirement that the property must hold for any £(£2) C V({2) is motivated by the observation that in
applications it is fundamental to assess that the basic existence results hold for any choice of the kinematic
contraints. The regularity of B € Lin{V(£2), H(2)} isthe basic tool for the proof of the theorem of virtual
powers which ensures the existence of astressfield in equilibrium with an equilibrated system of activeforces.

Theorem of Virtual Powers. Let f € £'(£2) bea system of active forces. Then

fe(KeB)t = JoeH(2) : (f,v)=(0o,Bv), VYveL).

Proof. Let B/E € Lin{H(£2),L'(£2)} be the equilibrium operator dual to B . By BANacH'sclosed range
theorem we havethat f ¢ (KerB )+ = ImBlﬁ and the duality relation yields the result. O

A linearized strainfield e € H({?2) iskinematically compatibleif there exists a conforming kinematic
field u € £(2) suchthat € = Bu. Self-equilibrated stress fields are the elements of 7 ((2) which belong to

the kernel of the equilibrium operator B’L € Lin{H(£2),£'(2)}. Theregularity of B € Lin{L(£2), H(£2)}
provides the following variational condition.
Kinematical compatibility.

(o,e)=0 Vo e KerB/E = Jue L(f?) : e =Bu.

Proof. By BANAcH’sclosed range theorem we havethat ImB, = (KerBlﬁ)l . O



Theregularity of the kinematic operator B € Lin{V(£2),H(£2)} isthen afundamental property to be
assessed in a structural model. Our analysis shows that a necessary and sufficient condition is the validity of
an inequality of the KOrN’stype

IBullyo + 1l 2 o [l YueH™@),

Note that by RELLICH selection principle [2] the canonical immersion from H™(£2) into H(2) = L£2(0)
is compact. If KorN’sinequality holds for any u € H™(£2) it will hold also for any u € H™(7(£2)) and
then afortiori for any u € £(£2).

With reference to the three-dimensional continuous model we remark that Korn’ sfirst inequality can
be easily derived from KorN’ssecond inequality by appealing to the inver selemma.

Infact denoting by H'/2(042)3 , the space of traces of fieldsin H1(£2)3 on the boundary 12 of 12
and taking L to be the boundary trace operator T' € Lin{H(12)3, H'/2(812)3} we get

1
||BuH’]—((Q)+||Fu||H1/2(aQ)3ZaHuHHl(Q)?) Vue H (9)3»

and hence . .
IBully o) = allullgigs YueH (2)° N KerT = Hy(2)°,

which is KorN’sfirst inequality. The original form of the second inequality as stated by KorN was in fact

| symgradu | g2y > al|ullgr () Yue H(9) :/emi gradu du = O.
(9}

By the inver selemma also this original form can be recovered simply by setting

L cLin{H}(2)?,%%, Lu ::/ emi gradu dy .
Q

Wethus get the inequality

I symgradu||£2(m+H/emi gradu du H 2a||u||H1(Q) Vue HY(1).
2

which immediately implies KorN’sorigina inequality.
The proof of the converseimplication is more involved and can be found in G. FICHERA'sarticle[2],
remark on page 384. A more detailed version of the proof is provided in [10], lemma 7.11.
From the inver selemma we can aso infer POINCARE inequality.
Let £2 be an open bounded connected set in ¢ with aregular boundary. We set
e A cLin{H™(),£2(2)F} continuous linear operator Au = {DPu}, with k& = card{p € N¢ :
|p|=m} and [p|=m,
e L, cLin{H™(£2), H™ 1(£2)} compact identity map Lou = u,
e LeLin{H™(R),£%(0)"} continuous linear operator defined by

1
= — p < < —
Lu {\/7({D u(x)d,u}, 0<|p|<m-1,

with » = card{p e N¢ : |p| <m},
where p isa d-multi-index and | p | isthe sum of the components of p.



Weset H = H™(2), E = L2(2)F, E, = H™ (), F = £?(2)", so that
A elLin{H,E}, L,elin{H E,}, LelLin{H F}.

Then property P, of proposition equivalent inequalitiesisfulfilled since

2 2 2
lAulf + [Loully, = llully
L, € Lin{H,E,} iscompact.

Weremark that Ker A = P,,,_1(£2) isthefinite dimensional linear subspace of polynomials of total degree
not greater than m — 1 sothat dimP,,,_{(f2) = (m —1+d)!/(d! (m — 1)!). Moreover we have that

KerAN KerL = {o},
and hence property P4 of proposition equivalent inequalities yields
[Au| g+ Lulp > afully Yuel,

or explicitly
2

 [IpPuePdu+ X | [DPu)de| = allulyng, . YueH™(Q),
\p|:mQ |pl<m 0

which is POINCARE inequality.

While proof-reading this paper the author became aware of a result, quoted by ROGER TEMAM in
[7], section 1.1, which is a special case of the inverse lemma. This result was not explicitly proved in [7] and
was resorted to in deriving a proof of KORN’s inequality from the property that the distributional operator
grad e Lin{£2(2)", H 1 (2)"*"} has a closed range and a one-dimensional kernel consisting of the
constant fields on 2 (see [10] for an explicit proof). This property is in turn a direct consequence of a
fundamental inequality dueto J. NEcAs [1].
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