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Summary

The celebrated Korn’s second inequality is themilestone alongthe way that leads tothe basic existence
results in continuum mechanics and linear elastostatics. An abstract result by L. Tartar shows that Korn’s
inequality implies that the range of the kinematic operator is closed and that its kernel is finite dimensional.
A full extension of Tartar’s lemma is provided in this paper and leads to the conclusion that conversely the
closedness of the range of the kinematic operator and the finite dimensionality of its kernel are sufficient to
ensure the validity of Korn’s inequality.

Introduction

On reading the brilliant proof of Korn’s second inequality in the book by G. Duvaut and J. L.
Lions [4] the author realized that the peculiar form of the sym grad operator plays a basic role in the proof.
More specifically he realized that the finite dimensionality of the kernel of sym grad should be a necessary
property, although this condition was not appealed to explicitly in the proof. Some time later the autor became
aware of a nice result by L. Tartar concerning an abstract inequality of the Korn’s type expressed in term
of a bounded linear operator and a compact operator whose kernels have a trivial intersection. Tartar proved
that the inequality implies the finite dimensionality of the kernel and the closedness of the image of the bounded
linear operator. The conjecture about the role of the kernel of sym grad in Korn’s second inequality was
thus confirmed. At this point it raised naturally the question whether conversely the finite dimensionality of
the kernel of sym grad and the closedness of its image were also sufficient to assess the validity of Korn’s
second inequality. This converse property requires to complete Tartar’s result with the opposite implication.
A full extension of Tartar’s lemma is provided in this paper and leads to the conclusion that conversely
the closedness of the range of the kinematic operator and the finite dimensionality of its kernel are sufficient
to ensure the validity of Korn’s inequality. The main result contributed here shows that both properties are
equivalent to require that a similar inequality be valid for any linear continuous operator.

Tartar’s Lemma

A nice abstract result due to L. Tartar was reported by F. Brezzi and D. Marini in [5], lemma 4.1
and quoted by P. G. Ciarlet in [6], exer. 3.1.1. Since Tartar’s lemma plays a basic role in our discussion
about Korn’s inequality we provide hereafter an explicit proof of this result. Preliminarily we quote that
Banach’s open mapping theorem implies the following lemma (see Brezis [8] th. II.8 and [10], th. 9.1, 9.2).

Bounded decomposition. Let X be a Banach space and A ⊆ X , B ⊆ X closed linear subspaces of
X such that their sum A + B is closed. Then any x ∈ A + B admits a decomposition x = a + b , with
a ∈ A , b ∈ B , such that

‖x ‖X ≥ c ‖ a ‖X , ‖x ‖X ≥ c ‖b ‖X ,

where c > 0 .

If X = A+ B and A∩ B = {o} , the closed subspaces A and B are topological supplements in X
and the projectors PA x = a and PB x = b are well defined linear bounded operators from X to X .
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A decomposition X = A u B of X into the direct sum of two topological supplementary subspaces
A and B certainly exists if either X is a Hilbert space or at least one of them, say A , is finite dimensional.

In the former case B is simply the orthogonal complement of A in X . In the latter case we can take
as B the annihilator in X of a subspace of X ′ generated by fixing a basis in A , taking the dual basis in A′

and extending its functionals to X ′ (by the Hahn-Banach theorem).
From the bounded decomposition, being PA a = a ∀ a ∈ A , we infer that

‖x − a ‖X ≥ c ‖ (x − a) − PA (x− a) ‖X = c ‖x −PA x ‖X , ∀a ∈ A , ∀x ∈ X ,

which is equivalent to ‖x ‖X/A ≥ c ‖x− PA x ‖X ∀x ∈ X . Hence we have that

‖x − PA x ‖X ≥ ‖x ‖X/A ≥ c ‖x− PA x ‖X , ∀x ∈ X .

Tartar’sLemma. Let H beareflexive Banach space, E , F benormed linearspacesand A ∈ Lin {H,E}
a bounded linear operator. If there exists a bounded linear operator Lo ∈ Lin {H,F } such that





i) Lo ∈ Lin {H, F} is compact ,

ii) ‖Au ‖
E

+ ‖Lou ‖
F

≥ α ‖u ‖
H

∀u ∈ H ,

then we have that 



a) dim ( KerA) < +∞ ,

b) ‖Au ‖
E

≥ cA ‖u ‖
H/KerA ∀u ∈ H .

Proof. Let’s prove that the closed linear subspace KerA ⊂ H is finite dimensional. We first note that ii)
implies that

‖Lou ‖F ≥ α ‖u ‖H ∀u ∈ KerA .

On the other hand, denoting by w→ the weak convergence in H , the compactness property i) implies that

{un} ⊂ KerA ,

un
w→u∞ in H ,



 ⇒ ‖Lo(un − u∞) ‖F → 0 ⇒ ‖un − u∞ ‖H → 0 ,

We may then conclude that every weakly convergent sequence in KerA is strongly convergent. Hence, by the
reflexivity of H ([8] III.2, remark 4) we must have dim ( KerA) < ∞ and a) is proved. Then KerA admits
a topological supplement S and we can consider the bounded linear operator PA ∈ Lin {H,H} which is
the projector on KerA subordinated to the decomposition H = KerA u S . Let us now suppose that b) is
false. There would exists a sequence {un} ⊂ H such that ‖Aun ‖E → 0 and ‖un ‖H/KerA = 1 . By the

inequality ‖un ‖H/KerA ≥ c ‖un − PA un ‖H the sequence un − PAun is bounded in H . Hence the

compactness of theoperator Lo ∈ Lin {H,F} ensuresthatwecanextractfromthesequence Lo(un−PAun)
a Cauchy subsequence Lo(uk −PAuk) in F . The sequence Auk is convergent in E by assumption and
hence we infer from ii) that uk−PAuk is a Cauchy sequence which by the completeness of H converges
to an element u∞ ∈ H . Since Auk converges to zero in E the boundedness of A ∈ Lin {H, E} ensures
that u∞ ∈ KerA so that also PAuk + u∞ ∈ KerA . Finally from ii) we get that

α ‖uk ‖H/KerA ≤ ‖Auk ‖E + ‖Lo(uk − PAuk − u∞) ‖F → 0 ,

and this is absurd since ‖uk ‖
H/KerA = 1 .
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Remark. Tartar’s lemma is quoted in [6] referring to [5] for the proof of the statement. Although in [5]
and [6] the space H was assumed to be a (non reflexive) Banach space, property a) cannot be inferred
in this general context. A well-known counterexample is provided by the space l1 of absolutely convergent
real sequences. In fact Shur’s theorem states that in this infinite dimensional Banach space every weakly
convergent sequence is also strongly convergent (see [3] V.1 theorem 5 and [8] III.2, remark 4). We also note
that the proof of property b) , as developed in [5], requires the existence of a weakly convergent subsequence
of a bounded sequence and hence, by the Eberlein-Shmulyan theorem, the Banach space H should be
reflexive. The proof of property b) proposed here is instead based on a completeness argument which does not
require the reflexivity of the Banach space H (private communication by Renato Fiorenza).

Inverse Lemma

Let us now face the question whether Tartar’s lemma can be completed by assessing the converse
implication. A positive answer needs an existence result. We have in fact to prove that properties a) and b) in
Tartar’s lemma imply the existence of a compact operator Lo ∈ Lin {H, F} fulfilling property ii) . Firstly
we observe that ii) implies that KerA ∩ KerLo = {o} . Our strategy consists in relaxing the requests on
Lo by considering at its place any operator L ∈ Lin {H,F} . We then try to establish the inequality

‖Au ‖E + ‖Lu ‖F ≥ αL ‖u ‖H/(KerA∩KerL) ∀u ∈ H

for any L ∈ Lin {H,F } . Once this goal has been achieved we can choose L to be compact and such that
KerA ∩ KerL = {o} . We need some preliminary results. From the bounded decomposition we infer the
next proposition.

Distance inequalities. Let X be a Banach space and A ⊆ X , B ⊆ X closed linear subspaces of X such
that their sum A + B is closed. Then, setting k = c−1 > 0 we have

i) ‖x ‖X/A∩B ≤ ‖x− a ‖X + k ‖ a + b ‖X , x ∈ X , ∀ {a,b} ∈ A× B .

If A admits a topological supplement S so that X = A u S then we infer that

ii) ‖x ‖X/A∩B ≤ ‖x − PA x ‖X + k ‖PA x ‖X/B , x ∈ X .

where PA is the projector on A subordinated to the direct sum decomposition of X .

Proof. The bounded decomposition ensures that for every x ∈ X , a ∈ A , b ∈ B there exists a ρ ∈ A∩B
such that ‖ a + ρ ‖X ≤ k ‖ a + b ‖X . Hence we infer i) :

‖x ‖X/A∩B ≤ ‖x + ρ ‖X ≤ ‖x − a ‖X + ‖ a + ρ ‖X ≤ ‖x− a ‖X + k ‖ a + b ‖X .

Setting a = PA x and taking the infimum with respect to b ∈ B we get the inequality ii) .

The following two lemmas yield the tools for the main result. The first one is a variant of a result quoted
in [9] with reference to symmetric quadratic forms.

Projection inequality. Let H be a Banach space and E , F be linear normed spaces. Let moreover
A ∈ Lin {H,E} e L ∈ Lin {H,F } be linear bounded operators such that





i) ‖Au ‖E ≥ cA ‖u ‖H/KerA , ∀u ∈ H ,

ii) ‖Lu ‖
F

≥ cL ‖u ‖
H/KerL , ∀u ∈ KerA .
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Let moreover KerA admit a topological supplement S so that H = KerA u S . Then we have

a) ‖Au ‖E + ‖Lu ‖F ≥ α ‖PAu ‖H/KerL , ∀u ∈ H .

where PA ∈ Lin {H, H} is the projector on KerA subordinated to the decomposition H = KerA u S .

Proof. If a) would be false we could find a sequence {un} ⊂ H such that

‖PAun ‖H/KerL = 1 , ‖Aun ‖E → 0 , ‖Lun ‖F → 0 .

Since ‖u ‖H/KerA ≥ c ‖u −PA u ‖H ∀u ∈ H we infer from i) that

‖Aun ‖E → 0 ⇒ ‖un − PAun ‖H → 0 .

Moreover we have 


‖L ‖ ‖un − PAun ‖H ≥ ‖L(un − PAun) ‖F ,

‖LPAun ‖F ≤ ‖L(un − PAun) ‖F + ‖Lun ‖F .

Hence ‖LPAun ‖F → 0 and from ii) we get

‖LPAun ‖F ≥ cL ‖PAun ‖H/KerL ⇒ ‖PAun ‖H/KerL → 0 ,

which is absurd since ‖PAun ‖
H/KerL = 1 .

Abstract inequality. Let H be a Banach space and E , F be linear normed spaces. Let moreover
A ∈ Lin {H,E} e L ∈ Lin {H,F } be linear bounded operators such that





i) ‖Au ‖E≥ cA ‖u ‖H/KerA , ∀u ∈ H ,

ii) ‖Lu ‖F ≥ cL ‖u ‖H/KerL , ∀u ∈ KerA ,

iii) KerA + KerL closed in H .

Let moreover KerA admit a topological supplement S so that H = KerA u S . Then we have

c) ‖Au ‖E + ‖Lu ‖F ≥ α ‖u ‖H/(KerA∩KerL) .

Proof. Summing up the inequalities a) and i) in proposition projection inequality we get

‖Au ‖E + ‖Lu ‖F ≥ αo

(
‖u ‖H/KerA + ‖PAu ‖H/KerL

)
, ∀u ∈ H .

Moreover by assumption iii) the proposition distance inequalities implies that

‖u− PAu ‖H + k ‖PAu ‖H/KerL ≥ c ‖u ‖H/KerA∩KerL , ∀u ∈ H .

Recalling that ‖u ‖
H/KerA ≥ c ‖u− PA u ‖

H
∀u ∈ H we get the result.
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The next lemma yields the crucial result for our analysis.

Inverse lemma. Let H be a Banach space and E , F be linear normed spaces. Let moreover A ∈
Lin {H,E} be a linear bounded operator such that





a) dim KerA < +∞ ,

b) ‖Au ‖E ≥ cA ‖u ‖H/KerA , ∀u ∈ H .

Then for any L ∈ Lin {H,F} we have

i) ‖Au ‖E + ‖Lu ‖F ≥ α ‖u ‖H/(KerA∩KerL) , ∀u ∈ H .

Proof. It suffices to observe that any finite dimensional subspace admits a topological supplement in H and
that condition a) implies the validity of ii) and iii) of the abstract inequality for any L ∈ Lin {H,F} .

Now we recall that

• any continuous projection operator on a finite dimensional subspace is compact.

It follow that if dim KerA < +∞ there exists at least a compact operator Lo ∈ Lin {H,F } such that
KerA ∩ KerLo = {o} . Indeed we can set Lo = PA ∈ Lin {H,H} , the projection operator on the finite
dimensional subspace KerA ⊂ H defined by a direct sum decomposition H = ( KerA) u S with S
topological supplement of KerA .

We can now provide a full extension of Tartar’s lemma by including the converse implication and
the equivalence to a new property.

Equivalent inequalities. Let H be a reflexive Banach space, E , F be normed linear spaces and
A ∈ Lin {H,E} a bounded linear operator. Then the following propositions are equivalent:

P1)





dim KerA < +∞ ,

‖Au ‖E ≥ cA ‖u ‖H/KerA , ∀u ∈ H ,

P2)

There exists Lo ∈ Lin {H, F} compact

such that KerA ∩ KerLo = {o} and

‖Au ‖
E

+ ‖Lou ‖
F

≥ α ‖u ‖
H

, ∀u ∈ H ,

P3)





dim KerA < +∞ ,

‖Au ‖
E

+ ‖Lu ‖
F

≥ α ‖u ‖
H/(KerA∩KerL)

, ∀u ∈ H , ∀L ∈ Lin {H,F } ,

Proof. P3 ⇒ P1 setting L = O . P3 ⇒ P2 setting L = Lo = PA . P1 ⇒ P3 by the inverse lemma.
Finally P2 ⇒ P1 by Tartar’s lemma which is the one requiring the reflexivity of the Banach space H .
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Korn’s Inequality

In continuum mechanics the fundamental theorems concerning the variational formulation of equili-
brium and compatibility are founded on the property that the kinematic operator has a closed range and a finite
dimensional kernel. Theabstractframework isthefollowing. Astructuralmodel isdefined onaregularbounded
domain Ω of an euclidean space and is governed by a kinematic operator B which is the regular part of a
distributional differential operator B : V(Ω) 7→ D′(Ω) of order m acting on kinematic fields u ∈ V(Ω) which
are square integrable on Ω and such that the corresponding distributional linearized strain field Bu ∈ D′(Ω)
is square integrable on a finite subdivision T u(Ω) of Ω . The kinematic space V(Ω) is a pre-Hilbert space
when endowed with the topology induced by the norm

‖u ‖2V(Ω)
= ‖u ‖2

H(Ω)
+ ‖Bu ‖2H(Ω)

,

where H(Ω) and H(Ω) are the spaces of kinematic and linearized strain fields which are square integrable on
Ω [11]. The conforming kinematisms u ∈ L(Ω) belong to a closed linear subspace L(Ω) ⊂ Hm(T (Ω)) ⊂
V(Ω) of the Sobolev space Hm(T (Ω)) , where T (Ω) is a given finite subdivision of Ω . Thus L(Ω) ⊂
Hm(T (Ω)) is an Hilbert space and the operator BL ∈ Lin {L(Ω),H(Ω)} defining the linearized regular
strain Bu ∈ H(Ω) associated with the conforming kinematic field u ∈ L(Ω) is linear and continuous. The
kinematic operator B ∈ Lin {V(Ω),H(Ω)} is assumed to be regular in the sense that for any L(Ω) ⊂ V(Ω)
the following conditions are met [11]





dim KerBL < +∞ ,

‖Bu ‖H(Ω)
≥ cB ‖u ‖L(Ω)/KerBL

, ∀u ∈ L(Ω) ⇐⇒ Im BL closed in H(Ω) .

The requirement that the property must hold for any L(Ω) ⊂ V(Ω) is motivated by the observation that in
applications it is fundamental to assess that the basic existence results hold for any choice of the kinematic
contraints. The regularity of B ∈ Lin {V(Ω),H(Ω)} is the basic tool for the proof of the theorem of virtual
powers which ensures the existence of a stress field in equilibrium with an equilibrated system of active forces.

Theorem of Virtual Powers. Let f ∈ L′(Ω) be a system of active forces. Then

f ∈ ( KerBL)⊥ ⇒ ∃ σ ∈ H(Ω) : 〈 f , v 〉 = (( σ , Bv )) , ∀v ∈ L(Ω) .

Proof. Let B
′

L ∈ Lin {H(Ω),L′(Ω)} be the equilibrium operator dual to BL . By Banach’s closed range

theorem we have that f ∈ ( KerBL)⊥ = Im B
′

L and the duality relation yields the result.

A linearized strain field ε ∈ H(Ω) is kinematically compatible if there exists a conforming kinematic
field u ∈ L(Ω) such that ε = Bu . Self-equilibrated stress fields are the elements of H(Ω) which belong to
the kernel of the equilibrium operator B

′

L ∈ Lin {H(Ω),L′(Ω)} . The regularity of B ∈ Lin {L(Ω),H(Ω)}
provides the following variational condition.

Kinematical compatibility.

(( σ , ε )) = 0 ∀σ ∈ KerB
′

L ⇒ ∃ u ∈ L(Ω) : ε = Bu .

Proof. By Banach’s closed range theorem we have that Im BL = ( KerB
′

L)⊥ .
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The regularity of the kinematic operator B ∈ Lin {V(Ω),H(Ω)} is then a fundamental property to be
assessed in a structural model. Our analysis shows that a necessary and sufficient condition is the validity of
an inequality of the Korn’s type

‖Bu ‖H(Ω) + ‖u ‖H(Ω) ≥ α ‖u ‖Hm(Ω) , ∀u ∈ Hm(Ω) ,

Note that by Rellich selection principle [2] the canonical immersion from Hm(Ω) into H(Ω) = L2(Ω)
is compact. If Korn’s inequality holds for any u ∈ Hm(Ω) it will hold also for any u ∈ Hm(T (Ω)) and
then a fortiori for any u ∈ L(Ω) .

With reference to the three-dimensional continuous model we remark that Korn’s first inequality can
be easily derived from Korn’s second inequality by appealing to the inverse lemma.

In fact denoting by H1/2(∂Ω)3 , the space of traces of fields in H1(Ω)3 on the boundary ∂Ω of Ω

and taking L to be the boundary trace operator Γ ∈ Lin {H1(Ω)3,H1/2(∂Ω)3} we get

‖Bu ‖H(Ω) + ‖Γu ‖H1/2(∂Ω)3 ≥ α ‖u ‖H1(Ω)3 ∀u ∈ H1(Ω)3 ,

and hence
‖Bu ‖H(Ω) ≥ α ‖u ‖H1(Ω)3 ∀u ∈ H1(Ω)3 ∩ KerΓ = H1

0 (Ω)3 ,

which is Korn’s first inequality. The original form of the second inequality as stated by Korn was in fact

‖ sym grad u ‖L2(Ω) ≥ α ‖u ‖H1(Ω) ∀u ∈ H1(Ω) :
∫

Ω

emi grad u dµ = O .

By the inverse lemma also this original form can be recovered simply by setting

L ∈ Lin {H1(Ω)3,<6} , Lu : =
∫

Ω

emi grad u dµ .

We thus get the inequality

‖ sym grad u ‖L2(Ω) +
∥∥∥∥

∫

Ω

emi grad u dµ
∥∥∥∥ ≥ α ‖u ‖H1(Ω) ∀u ∈ H1(Ω) .

which immediately implies Korn’s original inequality.
The proof of the converse implication is more involved and can be found in G. Fichera’s article [2],

remark on page 384. A more detailed version of the proof is provided in [10], lemma 7.11.

From the inverse lemma we can also infer Poincaré inequality.
Let Ω be an open bounded connected set in <d with a regular boundary. We set

• A ∈ Lin {Hm(Ω),L2(Ω)k} continuous linear operator Au = {Dpu} , with k = card{p ∈ Nd :
|p | = m} and |p | = m ,

• Lo ∈ Lin {Hm(Ω),Hm−1(Ω)} compact identity map Lou = u ,

• L ∈ Lin {Hm(Ω),L2(Ω)r} continuous linear operator defined by

Lu =
{

1√
meas Ω

∫

Ω

Dpu(x) dµ
}

, 0 ≤ |p | ≤ m − 1 ,

with r = card{p ∈ Nd : |p | < m} ,

where p is a d-multi-index and |p | is the sum of the components of p .
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We set H = Hm(Ω) , E = L2(Ω)k , Eo = Hm−1(Ω) , F = L2(Ω)r , so that

A ∈ Lin {H,E} , Lo ∈ Lin {H, Eo} , L ∈ Lin {H,F } .

Then property P2 of proposition equivalent inequalities is fulfilled since



‖Au ‖2

E
+ ‖Lou ‖2

Eo
= ‖u ‖2

H
,

Lo ∈ Lin {H,Eo} is compact .

We remark that KerA = Pm−1(Ω) is the finite dimensional linear subspace of polynomials of total degree
not greater than m − 1 so that dim P m−1(Ω) = (m − 1 + d)!/(d! (m − 1)!) . Moreover we have that

KerA ∩ KerL = {o} ,

and hence property P3 of proposition equivalent inequalities yields

‖Au ‖E + ‖Lu ‖F ≥ α ‖u ‖H ∀u ∈ H ,

or explicitly

∑

|p |=m

∫

Ω

|Dpu(x) |2 dµ +
∑

|p |<m

∣∣∣∣∣∣∣

∫

Ω

Dpu(x) dµ

∣∣∣∣∣∣∣

2

≥ α ‖u ‖2
Hm(Ω)

, ∀u ∈ Hm(Ω) ,

which is Poincaré inequality.

While proof-reading this paper the author became aware of a result, quoted by Roger Temam in
[7], section I.1, which is a special case of the inverse lemma. This result was not explicitly proved in [7] and
was resorted to in deriving a proof of Korn’s inequality from the property that the distributional operator
grad ∈ Lin {L2(Ω)n,H−1(Ω)n×n} has a closed range and a one-dimensional kernel consisting of the
constant fields on Ω (see [10] for an explicit proof). This property is in turn a direct consequence of a
fundamental inequality due to J. Necas [1].
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