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ENERGY FUNCTIONAL 

S O M M A R I O :  Si analizza la stabilita di una configurazione 
d'equilibrio critico di un sistema elastico conservativo su//a base 
delmetodo energetico, come esistenza di un minimo stretto del 

funziona/e energia potenziale (f.e.p.). 
Si fa  riferimento a sistemi discreti che vengono studiati con 

i metodi dell'algebra lineare. 
L'analisi originale di Koiler ~ riformulata con una tralta- 

zione pi~ compatta. 
2Vel caso generale di un punto critico mu#iplo si swTuppa un 

procedimento alternalivo consistenle nell'indagine del comporta- 
nmnto del f.e.p, lungo i percorsi critici. 

It, un punto critico semplice In sviluppo delt'autoproblema 
critico consenle di fornire una semptice ed interessante interpre- 
tazione meccanica delle usualmenle complesse espressioni il cui 
segno ~ decisivo per la va/utaztlone della stabilita. 

Un semplice esempio illustra l'analisi generak svih~pata. 

S U M M A R Y :  The stability o f  a critical equi/ibrinm configu- 
ration o f  a conservative elastic ~,sletn is analyzed , o11 the basis 
o f  the energ O, method, as the existence o f  a strict minimum of  
the potential energ o, functional (p.e.f.). 

_Finite dimensional systems are investigated in the framework 
o f  a linear algebraic approach. 
Koiter's original anaO,sis o f  the subject is reviewed with a more 
compact formulation. 

A n  alternative procedure is developed by looking at the beha- 
viour o f  the p.e.f, along the critical paths, in the general case o f  
a multiple criticalpoint. A t  a simple critical point the expansion 
o f  the critical eigenproblem allows to give a simple and interesting 
Mechanical interpretation o f  the usually involved expressions 
whose sign is decisive for stabilio,. 

A simple example illustrates the general anal2sis developed. 

1. Introduction. 

In the mechanics of  conservative systems the concept 
o f  the potential energy functional (p.e.f.) plays a funda- 
mental role. 

Equil ibrium configurations are characterized as statio- 
nary points o f  the p.e.f, o f  the system and their stability 
or instability is defined according to whether  there is a 
strict local min imum of  the p.e.f, or  not. 

The  connection between this definition of  stability and 
the dynamical approach (according to Lyapounov ' s  de- 
fruition) is still a main open problem in the theory o f  con- 
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servative systems, al though many valuable results in this 
direction are available, especially for  finite dimensional 
systems. 

According to the well-known Lagrange-Dirichlet  theo- 
rem of  analytical mechanics, a strict local min imum of  the 
p.e.f, at an equilibrium configuration ensures its dynamical  
stability. 

The  inverse implication has been proved  only under  
some special assumptions concerning the structure of  the 
p.e.f. [11. 

A complete converse of  the Lagrange-Dirichlet  theorem 
is however  available if  an arbitrary positive definite velo- 
city dependent dissipation is assumed [21 , [31. 

The  situation is much more  difficult in the case o f  in- 
finite dimensional systems where some basic existence 
results are lac-ldng due to the non-compactness of  the con- 
figuration space. 

A discussion o f  the difficulties involved may be found 
in  [4]. 

In  spite o f  this situation the energy definition is usually 
adopted in the technical literature on elastic stability and 
its equivalence to the dynamical definition is assumed, 
both  for discrete and continuous systems [5]. 

A strict ininimum of  a functional at a stationary point  
is usually discussed by means of  a Taylor 's  expansion in 
a ne ighbourhood of  the point. 

While the analysis is generally s topped at the inspection 
o f  the second differential o f  the functional, the so called 
"doubtful  case", in which the second differential is non- 
negative definite, occurs in the most  interesting situations 
in the investigation of  the stability of  a conservative elas- 
tic system: when  a lack of  uniqueness appears in the in- 
cremental static equilibrium solution. 

This situation will be referred to as a critical state of  
the system or as a critical point  o f  the p.e.f. 

A general procedure has been first developed, to the 
author 's  knowledge, by Koi ter  in his pioneering work  
on the stability of  continuous elastic systems [6], [7]. 

The  existence of  a strict min imum of  the p.e.f, at a 
critical point  depends upon  the positiveness o f  a for th  
order homogeneous  functional involving second and 
forth order differentials o f  the p.e.f. 

An original approach to the problem is developed in 
this paper and interesting and useful interpretations of  
this condition are given. 

Reference is made to finite dimensional systems where 
a simple general analysis can be performed.  

Indeed, while a formal  extension to the infinite dimen- 
sional case is straightforward, a r igorous approach would  
require a much  deeper mathematical treatment. 
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It must be pointed out to this regard that most  "contin- 
uum" analyses consist in purely notational changes f rom 
the discrete case, white basic conceptual problems as 
cxistence and regularity are completely disregarded. 

The analysis is carried out f rom the point o f  view and 
in the language of  abstract linear algebra which allows 
to emphasize the geometric interpretations o f  the problem. 

This is a distinguishing feature, with respect to previous 
treatments of  the subject, [8], [9]. 

Some background definitions and results f rom linear 
algebra, which are referred to in the sequel, are first re- 
called to make the exposition reasonably self-contained. 

A detailed discussion of  the basic minimum problem 
which occurs in the analysis and o f  its equivalent formu- 
lations is given in a separate section. 

Koiter 's  approach, founded upon a Taylor 's  expansion 
of the functional at the critical point, is then reviewed 
with a very compact formulation. The general case o f  a 
multiple critical point  is considered. 

By investigating the behaviour of  the restrictions of  the 
p.e.f, along any critical path, it is shown that a strict 
minimum of  the p.e.f, at a critical point  exists if and only 
if the same is true for the restrictions o f  the p.e.f, along 
any critical.path. 

In  the case of  a simple critical point, the expansion of  
the critical eigenvalue problem along the critical path 
allows~to give an interesting new interpretation o f  the 
expressions whose sign is decisive for stability. I t  is shown 
that if the lowest stiffness of  the system, which is zero at 
the critical point, has a minimum along this path, the crit- 
ical point is stable and unstable otherwise. The critical 
path is moreover  characterized as the envelope whose 
~angent at any point is the principal direction o f  minimal 
~tiffness of  the system. This point of  view allows to estab- 
lish in a direct way the connexion between the stability 
of the critical point itself and the postcritical behaviour 
of the system [10]. 

2. Some  results  f r o m  l inear  a lgebra .  

Let us recall some notions and resuks of  linear and 
multihnear algebra which will be needed in the sequel. 

Let V be a finite dimensional inner product  linear space 
on the real field R. The inner product  o f  two vectors 
x, y a V will be denoted by x • y and the induced norm 

b y  llxll • 
To every linear functional I and every bilinear functional 

b on V there correspond biunivocally a vector f and 

a couple of  Linear operators on I7, T and T such that: 

l(x) ----- f -  x V x e V (2.1) 

b(x, y) = T x .  y = x .  ~'y V (x, y)  e V ,  (2.2) (t) 

The operators T and T are said to be adjoint each other. 
If: 

b(x, y) -~ b(y, x) V x, y ~ V 

we have T-----~7 and b and T are said to be symmetric. 
Analogously we say that a muldlinear functional on  V 

is symmetric if  it is independed of  any permutation o f  its 
arguments. 

I f  h ( x ~ ,  x~ . . . .  , xn) is a symmetric n - linear functional 
on  V denoting by: 

hn(x) = h(x, x, ..., x) (2.3) 

the associated n-th order functional on  V, the following 
identity holds: 

1 
-= ~e. cr(x)hn(x) (2.4) (a) h(xl ,  x2 . . . . .  x,)  nl 2c,-x~ x~ 

where C is the set o f  all distinct linear combinations of  
the form: 

x = + _  x l +  x2_+ . . . +  x .  (2.5) 

such that x ~ C  = ~ - - x ~ C .  
The set C is finite and contains 2(n-x) vectors. 
I f  we call even or  odd an element o f  C depending on  

whether there is an even or odd number o f  minus in (2.5), 
the functional a(x) in (2.4 7 is defined by:  

I_+ 1 if  x is even 
a(x) = 1 if x is o d d .  

In  the simplest case o f  a symmetric bilinear functional 
b and the associated quadratic functional q, formula (2.4) 
reduces to the usual polar identity: 

1 b(x,y)=--.T-lq(x+y)--e(x--y)]. (2.6) 

A simple but useful consequence of  (2.4 7 is that: 

h.(x) = 0 [ V x  c v 
(2.7) 

h(x l ,  x2 ,  . . . ,  x . )  = 0 V ( x t ,  x~,  ..., x. )  e V " .  

Let us define the following sets: 

N(q) = {x ~ V :  q(x) ----- 0) null set o f q  (2.8) 

N(b) = (x c V:  b(x, y) = 0 V j  ~ V} null set of  b (2.9) 

N(I) = {x E V:  l(x) = 0} null set o f l  (2.10) 

_N(T) = (x ~ V :  "Ix = 0} null set o f  T(2.11) 

R(T) = {x e V;  x = Ty ,  y E V} range o f T .  (2.12) 

I t  is easily verified that N(b), N(T) ,  N(l)  and R(T)  
are linear subspaces o f  I7. 

For  every linear operator T on V we have: 

N ( ~ )  = R ( T )  l (2 .13)  

R('r) = N ( T )  -L (2.14) 

(1) V" denotes the cartesian product V × V × ... × V 
n times. Obviously V 1 = If. 

(3) Formula (2.4), which is not found ha usual textbooks, 
has been derived by the author. 
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where R(T)"  and N ( T )  ± denote the orthogonal comple- 
ments o f  R(T)  and N ( T )  respectively. 

F rom (2.13) taking orthogonal  complements we have: 

R(T)  = N ( T )  ± (2.15) 

Hence the solution set o f  the linear equation: T x  = a 
a e IF, wilI be non empty iff: (3) 

a ~ R ( T )  = N ( T )  ± . (2 .16)  

I f  the operator T is symmetric condition (2.16) becomes: 

a ~ N ( T ) "  <~> a • e = O V e ~ N ( T ) .  (2 .17)  

I f  b is symmetric and q is the associated quadratic func- 
tional f rom definition (2.8), (2.9) and (2.11) we have: 

N(T)  = N(b) c N ( q ) .  

I f  moreover  q is non  negative definite on V, i. e. : 

(2.18) 

we have: 

q(x)~> 0 V x E V  

Y(b)  = N(q)  

Indeed by Schwatz inequality: 

[b(x, y)l ~ < q(x)q(y) 

it follows that: 

(2.19) 

N(b) D N ( q ) .  (2.20) 

Hence from (2.18) we have (2.19). 
I f  the operator T is symmetric, there exists an ortho- 

normal set {e,} of  eigenvectors o f  T :  

Te ,  = r ,e,  e, • ej = &~ (4) i , j  = 1, 2 . . . .  , n 

which is a basis for V. 
The eigenvalues T, are real and we assume the set o f  

eigenvectors {e,} to be ordered so that: 

i < j  ~ ~r,<~ vl i , j = l ,  2 .. . .  , n .  

I f  z~ = zf+l . . . . .  Z~+m~-i the eigenvalue v, is said to 
be o f  multiplicity m, .  The invariant subspace spanned 
by the set {ev}, 20 ---~ i, i + 1 . . . .  , i + m~ - -  1 is called the 
(m, - dimensional) eigenspace o f  z', and is denoted by S, .  

The r-th eigenvalue problem: 

Ter  ~ rrer 

is equivalent to the minimum problem: 

Zr = rain { T x - x ;  [[x[[ = 1, x .  e , = 0 ,  i =  1 ,2  . . . . .  r - - l )  

= T e r -  er,  I1~1t - -  1, e~ ~ S~.  

(3) Here and in the sequel "'iff'" stands for "if and only if". 
(4) ~1 is the Kronecker symbol. 
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3. A b a s i c  m i n i m u m  p r o b l e m .  

Let us consider the functional: 

1 
p(,,) = - ~ -  q(,,) - -  tOO (3.1) 

with q(x) non-negative definite, and denote by b, T and f 
the bilinear symmetric functional, the symmetric operator 
and the vector associated to q and l respectively. 

The following discussion will be basic in the sequel: 

T H E O R E M  3.1. 

The solution set X of  the equivalent problems: 

i) rain {p(x); x e V)  

ii) b(x, z) ----- l ( z ) ,  x ~ V ,  V z ~ V 

iii) T x  = f x e V 

(3.2) 

is non-empty iff: 

N(I)  ~ N(q)  (3.3) 

or equivalently : 

f ~ R(T)  = N(q? 

I f  (3.3) is satisfied we have: 

A" = v0 + N(q)  (3.4) 

where v0 ~ R(T) is the unique solution of  the equivalent 
problems : 

i) min {p(v); v ~ R(T) )  

ii) b(v, z) = / ( z )  v ~ R(T),  V z E V (3.5) 

iii) T v  = f v ~ R(T) 

and moreover :  

rain {p(x); x E V} = min {p(v) ; v ~ R ( T )  } (3.6) 

Most  of  the p roof  follows directly f rom well-known 
results o f  linear algebra. 

We shall only hint that setting: 

x = e + v e ~ N ( q ) ,  v ~ N ( q )  z = R ( T )  

we have: 

1 
p(x) = p(e + v) = p ( v )  + -~ -q (e )  + b(e, v) + l(e) = p ( v )  

since N ( q ) =  iV(b) by (2.19), and N ( / ) D  2V(q) by (3.3). 
Moreover,  if  v0 is the unique solution o f  problems (3.5) 

ii) or iii) setting v * ~ - v - - v 0  it follows: 

p(v) = p ( v o  + v*) - - - lq (v* )  + b(v0, v*)--/(v*) + 

+ p(v0)/_- p(vo). 
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Finally we let us note that if (3.3) does not hold:  

inf{p(x); x • V} ~< inf{p(e) ;  e • N ( q ) }  = 

= inf {l(e); e • N (q ) }  = - -  oo.  

At a minimal point xo • X we have: 

q(xo) =/(x0) 

and the minimum value in (3.6) is the non-positive number:  

1 1 
p(xo) = - -  2 q ( x o ) = - -  2 /(xo). (3.7) 

Let dim N ( T ) =  m, then: dim R ( T ) =  n - - m .  I f  {a,} 
k = m + l ,  ..., n is an orthonormal basis o f  R(T)  we 
have the following explicit expressions for the minimal 
mlution o f  (3.5) and for the minimal value (3.6): 

f -  ak ~ l(a,) (3.8) 

1 ~ ( f .  a~)' 1 ~ l(ag)2 (3.9) 
/,(vo) = ~ ~_~+~ Y ~ :  ~% = 2 ,o~+~ q(a~) 

I f  the or thonormal  basis o f  R(T) consists o f  eigenvectors 
of T :  

Tel = rie~ i =  m + 1 .. . . .  n 

formulas (3.8) and (3.9) may be written as: 

Vo = ~ f .  e____~ ek = ~. /(ee)_e~ (3.10) 
k=m+l "gk k=ra+l "KI¢ 

1 ~ (f.e,Oz 1 ~ Z(e,O' (3.11) 
/~(Vo) = - -  T k=m+l T;¢ = - -  --2--/~=m+l "~----~ 

4. T h e  crit ical point .  

Let /~n be an euclidean n-dimensional space and V a 
linear inner product  space o f  translations for En. For  a 
fixed origin 0 in /~n the following corrispondence holds: 

P = 0 + x  P e E , ,  x • V .  

It  is wor th  noting that the choice o f  a scalar product  
or another is inessential in what  follows due to the equiv- 
alence o f  any two normed linear finite dimensional spaces. 

Let $(x) be an m-times Fr~chet differentiable functional 
on V. Taylor 's formula for 4~ at 0 holds:  

m 1 
4(x) = ~ o  T D,~(O)x~ + ~o(x.,) (4.1) 

where Dk$(0)x • is the k-th Fr6chet differential o f  $ at 
0 along x and o~(xm) is such that: 

lira Co(xm) 
~z 1 1 - * o  ~ = 0 .  
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The following simplified notation will be used: 

1 
$~ = ~ D*$(0) (4.2) 

and more generally: 

1 D ~l+'''+~r ~b(0). (4.3) 
~ t " %  = kll ... k,l 

Taylor's formula (4.1) may then be written: 

¢(x) = ~ ~,xk + o,(xm). (4.4) 
k - O  

Se~ing x = x l + x 2 + . . . + x r  f rom (4.3) and (4.4) we 
have: 

¢(x) = ~ ¢'1--- ~, X*l --- x~" + o(xm). 
kl+k2+---+kr=0 

(4.5) 

Let us now suppose the origin 0 o f  En  to be a stationary 
point for 4~: 

~l = 0 .  (4.6) 

Taylor 's formula (4.4) for m = 2 yields: 

~(x) = c/,=x= + a~(x 2) (4.7) 

hence a sufficient condition for a strict minimum of  
at 0 will be: 

min(~z(x); I l x l l = l } >  o (4.8) 

and a necessary condition is that the minimum in (4.8) 
be greater than or equal to zero. An  indecisive case is got  if: 

rain £~=x=; ]lxll = 1} = 0 (4.9) 

i. e. if the quadratic functional ~o is non-negative definite. 
The minimum problem (4.9) is equivalent to the following 

equations : 

~bnxz = 0 V z • V (4.10) 

Kx ----- 0 (4.11) 

where: K is the symmetric operator associated to the quad- 
ratic functional 2ff~ = D2~(0). 

In  this case the origin will be called a critical point for 
the functional ~b2. The operator K is singular, the null- 
space of  K is called the critical subspace and its dimension 
is the multiplicity of  the critical point. I f  the multiplicity 
is equal to one the critical point  is said to be simple, other- 
wise multiple. 

The analysis o f  the behaviour o f  the functional ~ about 
a critical point  is the subject o f  the following sections. 

5. Taylor expansion about the critical point. 

Let the quadratic functional ~ be non-negative definite. 
A Taylor expansion of  ~ in the critical subspace gives 
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the following necessary conditions for a strict min imum 
o f~b  at O: 

~se  3 = 0 V e e N ~ )  (5.1) 

$4e a >~ 0 V e ~ N ( K ) .  (5.2) 

I f  conditions (5.1) and (5.2) are satisfied, we fix a given 
e e N ( K )  and set: 

x = e + y (5.3) 

Taylor 's  formula (4.5) gives: 

4;(x ) .__ ~4e 4 + $2xe2y + $~y2 (5.4) 

where the symbol - means that, in a sufficiently small 
ne ighbourhood of  0, both  members  of  (5.4) have the same 
sign. 

Let  us now look for the min imum value of  the second 
member  of  (5.4) for the given e ~ N(K) .  

By theorem (3.1) we must  solve one of  the equivalent 
problems : 

min {~zy 2 + ~2te~y; y e V} (5.5) 

~ n y z  = - -  rfi21e2z V Z ~. W. (5.6) 

Problems (5.5) and (5.6) are well-posed for every given 
e e N ( K )  iff: 

~_,e2e * = 0 Ve* e N ( K )  (5.7) 

which is satisfied since, by (2.7), it is equivalent to (5.1). 
The  solution set o f  (5.5) and (5.6) is the linear variety: 

X = v 0 + N ( K )  (5.8) 

where v0 is the unique solution of  the equivalent problems:  

min {~2v a + ~ leZv ;  v E R(T)}  (5.9) 

~ n v z  = - -  421eez V z e V (5.10) 

If {ae} and {ek} k = m + 1 . . . .  , n are the or thonormal  
bases defined in Sec. 3, with T = K, the minimal vector 
v0 may be expressed as: 

vo ~ / +21e'ae \ (~b21e'e~ ~ 
~'=m+l k = m + l  \ "gk / 

(5.11) 

The  min imum in (5.5) or  (5.9) is the non positive value: 

1 
- -  4 . ' ~  = ~ 4 2 ~ e %  xo ~ x (5.12) 

which is an homogeneous  functional o f  the fourth order 
in e, since by (5.11) we have: 

2 ~=~+, 4 2 a ~  

= _ _  1_1__. i (q~'e2ee)2 
2 k=m+l  Tk 

The  minimum value of  the second member  of  (5.4) 
is then: 

1 2 
$,le 4 -  ~2xo z = ~4e 4 + ~ ~2te x0 x0 e X .  (5.13) 

A sufficient condition for a strict min imum of  ~ at 0 
will then be: 

min {q~4e 4 -  ~2xo 2 ; Ilell = 1, e ~ N ( K ) }  > 0 

(5.14) 

while a necessary condition is a non-negative minimum 
(5.14). 

I f  the functional (5.13) is non-negative definite, the anal- 
ysis must be continued looking for the directions along 
which it vanishes. 

The  situation is more  complex than in the previous dis- 
cussion. This further investigation is however  straight- 
forward in the simplest case of  a simple critical point  in 
which the min imum problem (5.14) is trivial. 

6. E x p a n s i o n  a l o n g  the  cri t ical  pa ths .  

An interesting interpretation may given to the results 
o f  the previous section by investigating the behaviour 
of  the restrictions of  the functional ~(x) along any path 
emerging f rom the origin:. 

x = x ( t ) ,  x(0)  = 0 .  (6.1) 

Let  us denote by :~, ~, .... x(-I respectively the first, 
second, ..., n-th derivatives o f  x(t)  with respect to t at 
t = 0. Setting : xn = (1/n l)x(n) we have the following 
expansion of  (6.1) : 

x(t)  ---- x , t  + x2t2 + ... + x # , ,  + ... (6.2) 

Analogously setting: 

9(0 = 4(x(0) (6.3) 

we have the expansion: 

9( t )  = 9z t  + 98t 2 + ... + 9nt" + ... (6.4) 

The  following explicit expressions will be needed: 

9* = ~ix* (6.5) 

2 
9~ = ¢~.x, + ¢,x~ (6.6) 

9a = ~zx~ + ~,zx,x2 q- ~blxz (6.7) 

2 9 ,  = ¢4x~ + ¢2xxxx2 + ¢**xxxa -t- eex2 + ¢ , x a .  (6.8) 

I f  the origin is a critical point  we have: 

91 ---- ~1xl - -  0 V x l  ~ V (6.9) 

min {q)2 = ~ x ~  ; Ilxl[l = 1} = 0 .  (6.10) 
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The minimum problem (6.10) is equivalent to the equa- 
tion: 

~11Xl z = 0 V z ~ V (6.11) 

and the solution set is N(K).  
The paths (6.1) satisfying (6.11) will be referred to as 

critical paths. 
F rom (6.7), taking into account (6.9) and (6.10), we have 

that a necessary condition for a strict minimum at 0 o f  
the restrictions o f  ~b along any critical path is: 

9a = $~e a = 0 V e ~ N ( K ) .  (6.12) 

If  (6.12) is satisfied, a sufficient condition will be given 
by a positive minimum of: 

2 2 
q~4 = (/)4e 4 -~- ~2x2 -~- ~9~1e X9 (6 .13)  

as a functional of  
A non negative 

condition. 
We are thus led 

x2, for every fixed e e N(K).  
minimum of  (6.13) will be a necessary 

to the study of  the minimum problem: 

min {~b2x~ + ~b~.te2x~. ; x2 E V} (6.14) 

which is identical to (5.5). 
We remark that (6.14) is equivalent to:  

$1tx2z = - -  $21eZz ~V z e V (6.15) 

so that the critical path along which the minimum (6.14) 
is attained may be written, to the second order: 

x ( t ) - - - - e t + x 0 t  2 with x 0 ~ X = v 0 + N ( K )  (6.16) 

and will be referred to as the minimal path. 
We remark that the indeterminacy of  e and x0 is due to 

the arbitrariness in the choice of  the parameter t. 
I t  is worth noting that (6.16) is the second order expan- 

sion o f  the equilibrium paths defined by: 

$~(x(t) - -  0 (6.17) 

Since (6.11) and (6.15) are the first and second order 
perturbations o f  (6.17). 

We remark that, if the sufficient condition for a strict 
minimum (5.14) is satisfied, the third order expansion of  the 
equilibrium path does not exist, for every e E N(K).  

Indeed, we have: 

$lxxsz = - -  ($stx~z + Smxlxaz)  V z ~ W (6.18) 

which admits solutions iff: 

~baleae * + ~bnlee*x0 : 0 V e* ~ N(K) 

while by (5.14): 

1 9 o 
~,~" + -~- ~21e'x0 = ~ , e ' - -  ~2x~ > o V e  E N(K). 

This is not  surprising: if the functional $ has a strict 
minimum at 0, the existence o f  an equilibrium path (a 
path along which $ is constant (by (6.17)) is ruled out. 

7. E x p a n s i o n  o f  the  cri t ical  e i g e n p r o b l e m .  

Let us consider the revelant special case in which the 
origin is a simple critical point for the functional $(x), i. e. : 

~t -= 0 ; 7r2> 0 .  

I f  we consider the eigenvalue problems: 

K(x)e i (x )  = z , ( x ) e , ( x )  

since the functions T,(x) are continuous, it will exist, a 
neighbourhood of  the origin where 

~, (x)  < r~.(x) 

and hence the eigenspace associated with the critical eigen- 
value T1 is still one-dimensional. 

Setting r ( x ) =  zl(x) and e ( x ) =  el(x) we have: 

K(x)e(x) = v(x)e(x) (7.1) 

and 

K e  = z e  = 0 (r  = (3) (7.2)  

where functions with no argument are intended to be 
evaluated ~it the origin. 

Let us now consider, in a neighbourhood of  the origin, 
the path defined by: 

x(t) = f l  e(x(0) dO (7.3) 

or equivalently 

~(t) = e(x(t)),  x(0) = 0 .  (7.4) 

I f  we expand the eigenproblem (7.1) along the path 
(7.3) we have: 

Ke = "re = 0 (r  = 0) 

K ~  = ~e  + r e - -  D K e  2 

K'e = :re -Jr- 2"r~ -q- T e . -  D ~ K e  z -  3 D K e  ~. 

(7.5) 

(7.6) 

(7.7) 

The first order perturbation (7.6), since z = 0, yields 
the compatibility condition: 

+ D K e  s . (7.8) 

A comparison with (5.1) shows that a necessary condi- 
tion for a strict minimum of  ~b at the origin is 

+ = 0 .  (7.9) 
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I f  (7.9) is verified Eq. (7.6) becomes: 

K~ = -- DKe~ (7.10) 

whose solution set is the one dimensional linear variety: 

eo + N(K) (7.11) 

where eo~ liCK) is given by: 

~= ( DKe=ek ) (7.12) 
e 0  ~ ~ e/~ 

The second order perturbation (7.7), taking into account 
that z - =  ~ = 0, yields the compatibility condition: 

= D~Ke 4 + 3DKe2eo (7.13) 

or equivalently by (7.10): 

¥ ---- D~Ke 4 - -  3K&~. (7.14) 

Now a simple algebra shows that: 

~:o = 2vo 

and 

DZ1Ke ' __ 3K&0 ~ = 24(~b,e 4 - -  ¢=v0 =) 

and hence a comparison with (5.13) shows that a sufficient 
condition for a strict minimum is given b y : -  

:~ > 0 (7.15) 

and a necessary condition by: 

¥ ~< 0 .  (7.16) 

Under the assumption "c = 0 the second order expression 
of the path (7.3) about the origin will then be: 

1 
x(t) : el + ~ e0/~ + ... (7.17) 

The analysis developed shows how, to look for a strict 
minimum of $ at the origin, is equivalent to investigate 
about a strict minimum of T(x) along the "critical path" 
(7.3). 

This result has a simple and interesting structural in- 
terpretation which will be exploited in the next section. 

8. Structural stability.  

I f  we assume ~(x) to be the potential energy of  a discrete 
conservative structural system S, the energy criterion for 
stability states that: 

"An equilibrium configuration of  S is stable if  the po- 
tential energy functional has there a strict minimum". 

The analysis developed in the previous paragraphs gives 
then necessary and sufficient conditions for the stability 
in terms of the subsequent differentials of  the potential 
energy. 

In particular the procedure of  Sec. 7 yields, in the case 
of a simple critical point, an interesting interpretation of 
the expressions which are decisive for stability. These 
are shown to be the subsequent derivatives of  the lowest 
eigenvalue of  the second differential D=~(x) of  the poten- 
tial energy along the critical path defined by (7.3). 

Noting that the operator K(x) = D~¢(x) has the meaning 
of the incremental stiffness of  the structural system, we 
may significantly ca~ its eigenvalue and eigenvectors 
respectively the principal stiffnesses and the principal 
directions of  the system. The analysis of  the stability on 
an equilibrium configuration of a structural system may 
be carried out" by looking at the behaviour of  the lowest 
principal stiffness along the critical path. A comparison 
between (7.17) and (6.16) shows that this path can be 
characterized as the path along which the @stem "tends 
to have an adjacent equilibrium configuration". 

The vector tangent at any point of  the critical path is 
the principal direction of minimal stiffness, as sbown by 
(7.3) and (7.4). 

At a simple critical point the system may be displaced 
infinitesimally along the critical direction without any 
effort. Depending on whether the critical stiffness has a 
minimum at the critical configuration, and hence tends 
to became positive when the system is displaced, or doesn't 
have a minimum and hence there is a direction in which 
the stiffness becomes negative, the critical configuration 
itself will be respectively stable or unstable. This resuh 
gives a quite clear picture of  the connection, first empha- 
sized by Koiter [6], between the stability of  the critical 
configuration and the kind of  postcritical behaviour of  the 
system [10]. 

The general analysis developed until now is applied to 
a simple example in the next section. 

9. A s imple  example .  

Let us investigate the stability of  the undeflected posi- 
tion of a two degrees of  freedom structural system charac- 
terized by the potential energy functional: 

where 

1 4 a 2 1 
~(u) = --4- (-1 + u.) + kulu~ + - g -  huo. 

u = is the displacement vector 
u~ 

the first and the second gradients of  (9.1) are: 

r 1 

D=~(u) = [3,~ + 2ku= 2kul ] .  

L 2,~,x 3u~ -'1- b 

(9.1) 

(9.2) 
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Hence, following the analysis of  Sec. 5, we have: 

[0 o I D ~ ( 0 ) =  0 b e =  

D ~ ( u > ~  = 3 , , ,  ~ + 2k,,.+ 

Da+(u)e z ___-- [6u,t2k ].1 Da+(0)e= = [2 O] 

Da~(u)e  a = 6u~ DS~(0)e a = 0 

D ~ 4 ( u ) ~  = 6 > o . 

Hence the necessary conditions for min imum at u = 0 
are then satisfied. The solution of  the problem: 

i . e . :  

gives: 

D~'~(0)~ ___ __ Da~(0)e 2 

{°0 :] {2 °] 

2k/h] 
where the condition e .  e ~ - 0  has been imposed. 

The  sufficient condition for a strict min imum will then be: 

~2 
D~dp(O)e ~ -  3D2~(O3e . = 6 - -  12 T > 0 

The  situation is depicted in Fig. 1: 

Fig. 1. 

where the dashed region denotes the points of  the plane 
(h, k) where stability occurs. 

I t  can be interesting to refind the previous results by a 

direct investigation of  the critical eigenvalue problem, 
in the spirit o f  the analysis developed in Sec. 7. 

Setting 

K ( u )  = D~(u) 

the characteristic equation o f  K(u)  is: 

~2(u) - -  ~(u) tr K(u)  + det K(u)  ~- 0 

where: 

tr K(u) = 3(.12 + u~) + 2 ~  + h 

det K(u) = (3u~ + 2ku~)(3u~ + h) - -  zk~, ~ . 

(9.3) 

Solving the homogeneous  equation associated to (9.2), 

e ( u )  = [ 3 ,  with e o, 1 +-~-u~ I = 
2k 
~- ul J 

we find: 

Now the first order perturbation of  (9.3) along the critical 
path (7.3), setting ~ = r(0) = 0, yields: 

with 

~(tr K) = (det K)" 

( d e t K ) ' = D ( d e t K ) . e = 0 ;  t r K = h  

hence 

+ = 0  

the second order perturbation gives: 

:/(tr K) = (det K)"  

where 

(det K)'" = D2(det K)e • e + D(de t  K) • ~ = 

- - - -6b- -8kz  + 2k (--  2-~-~ ) ---. 6h--12k ~ 

12k~ 
~ = 6 - - ~  

b 

and hence finally 

in accordance with the previous analysis. 
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