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An historical sketch

James Clerk-Maxwell (1831 - 1879)

The Lorentz force expression, for the magnetically induced electric field on
a charged particle in motion, was actually introduced by Maxwell in 1855
when he was twenty-four and Lorentz was only two years old.
Maxwell treatment was improved in 1893 by J.J. Thomson who put into
evidence another velocity dependent term in the expression of the
magnetically induced electric field.
The contribution by J.J. Thomson seems to have been not acknowledged
and not quoted in literature until 2010 when I independently found the
same expression, in intrinsic form. l have also detected a correcting factor
one-half for the electric field induced on a charged body translating in a
field of magnetic vortices, a factor quoted in a history book by Darrigol 1

and there attributed to a mistaken calculation by J.J. Thomson,
afterwards corrected by Hertz and Heavyside.
Since the beginning of the story 2015− 1855 = 160 years have gone by.

1Electrodynamics from Ampère to Einstein (2000)
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Geometry of
Space-time manifold

Linearized Continuum Electrodynamics and Mechanics
can be modeled by Linear Algebra
and Calculus on Linear Spaces.
Linearization requires however the support of a fully nonlinear theory.

Non-Linear Continuum Electrodynamics and Mechanics
calls for Differential Geometry and Calculus on Manifolds as natural
tools for the developments of theoretical and computational models.
The role of Linear spaces is played by
tangent spaces to nonlinear manifolds.
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Math1 – Tensor bundles on a manifold M

I Vector fields v : x ∈M 7→ vx ∈ TxM ,

I Covector fields v∗ : x ∈M 7→ v∗
x ∈ T ∗

x M ,

I Tensors sx : (vx , v∗
x) 7→ s(vx , v∗

x) multilinear

I Tensorial map (2nd order)
real-valued multilinear map s(v , v∗) that lives at points

s(v , v∗)x = sx(vx , v
∗
x)

I Tensor fields (2nd order)
covariant s : x ∈M 7→ s(ux , vx) ∈ R
contravariant s : x ∈M 7→ s(u∗

x , v
∗
x) ∈ R

mixed s : x ∈M 7→ s(ux , v∗
x) ∈ R
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Math2 - Push forward and pull back

Given a map ζ : M 7→ N with Tζ : T M 7→ T N

I The pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

is defined by
(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I The push-forward of a tangent vector field

v : M 7→ T M 7→ ζ↑v : N 7→ T N

is defined by
(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .

I Push and pull transformations of all other tensors are defined to
comply with the previous ones.
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Math3 – Convective and covariant derivatives

Marius Sophus Lie (1842 - 1899)

Derivatives of a tensor field s : M 7→ Tens(T M)
along the flow of a tangent vector field

I Tangent vector fields and Flows

Flvλ : M 7→M , v = ∂λ=0 Flvλ : M 7→ T M

I Lie derivative - LD (also called convective derivative)

Lv s := ∂λ=0 Flvλ↓ (s ◦ Flvλ) .

I Parallel derivative - PD (also called covariant derivative)

∇v s := ∂λ=0 Flvλ ⇓ (s ◦ Flvλ) .

Tullio Levi-Civita (1873 - 1841)
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Math4 – Foliation of the space-time manifold

An observer performs a double foliation of the 4D space-time manifold E
into two complementary families of submanifolds.

I Z field of time-arrows tangent to 1D time-lines of isotopic events
(same space location).

I t : E 7→ R time projection with

〈dt,Z〉 = 1, tuning

R = dt ⊗ Z projector on time-lines

⊗ tensor product (dt ⊗ Z) · X = 〈dt,X〉Z .
I P = I− R projector on 3D space-slices of isochronous events (same

time instant).
I P2 = P , R2 = R , RP = 0 , R · Z = Z , Ker (dt) = Im (R) .

time lines

space slices

Euclid space-time slicing.
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Math5 – Differential forms

Hermann Günther Grassmann (1809 - 1877)

I Differential forms
skew-symmetric covariant tensor fields

I Skew-symmetric covariant tensors of maximal degree (equal to the
manifold dimension) belong to a 1D linear space.

I Volume forms
non-null skew-symmetric covariant tensor fields of maximal degree.

I Differential forms of degree greater than maximal vanish identically.
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Math6 – Integrals of spatial volume forms

Vito Volterra (1860 - 1940)

I Ω compact spatial submanifold of E

I Boundary operator ∂ : Ω 7→ ∂Ω dim Ω = dim ∂Ω + 1

I Exterior derivative d : Λk (Ω) 7→ Λ(k+1)(Ω) deg(d) = 1

I Volterra-Stokes-Kelvin formula ( d co-boundary operator)∮
∂Ω

ω =

∫
Ω

dω ⇐⇒ 〈∂Ω,ω 〉 = 〈Ω, dω 〉

deg(ω) = dim(∂Ω) , deg(dω) = dim(Ω)
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Math7 – Closed and exact forms

Élie Cartan (1869 - 1951)

I Closed form dω = 0

I Exact form ω(k+1) = dωk

I Exact forms are closed ddω = 0 ⇐⇒ d ◦ d = 0

I Volume forms are closed ( (k + 1)-forms on a kD manifold vanish)

dµ = 0

I Poincaré lemma:
In a manifold contractible to a point
(Betti numbers vanish) closed forms are exact.

Enrico Betti (1823 - 1892)
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Élie Cartan (1869 - 1951)

I Closed form dω = 0

I Exact form ω(k+1) = dωk

I Exact forms are closed ddω = 0 ⇐⇒ d ◦ d = 0

I Volume forms are closed ( (k + 1)-forms on a kD manifold vanish)

dµ = 0

I Poincaré lemma:
In a manifold contractible to a point
(Betti numbers vanish) closed forms are exact.

Enrico Betti (1823 - 1892)



Math8 – Time derivative of integrals

Carl Gustav Jacob Jacobi (1840 - 1851)

Ω ⊂ E compact spatial submanifold

I Jacobi formula
ω volume form on Ω , α time-lapse, ϕα : Ω 7→ E displacement∫

ϕα(Ω)

ω =

∫
Ω

ϕα↓ω

I Lie derivative and Lie-Reynolds transport formula (1888)

LV ω := ∂α=0 (ϕα↓ω) =⇒ ∂α=0

∫
ϕα(Ω)

ω =

∫
Ω

LV ω

V = ∂α=0ϕα = v + Z , v = PV
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Math9 - Extrusion and Homotopy

Henri Paul Cartan (1904 - 2008)

Extrusion formula H.P. Cartan (1951),

∂α=0

∫
ϕα(Ω)

ω =

∫
Ω

(dω) · V +

∫
Ω

d(ω · V)

homotopy formula (H.P. Cartan magic formula)

LV ω = (dω) · V + d(ω · V)

Recursion on the form-degree yields R.S. Palais formula (1954) for the
exterior derivative d in terms of Lie derivatives.

LV ω
0 = (dω0) · V ,

LV ω
1 = (dω1) · V + d(ω1 · V) = (dω1) · V + L(ω1 · V) .
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LV ω
0 = (dω0) · V ,

LV ω
1 = (dω1) · V + d(ω1 · V) = (dω1) · V + L(ω1 · V) .



Math10 - Symplexes

lenght of symplex’s edges

I Norm axioms

A
c

&&
B

C

b

OO

a
88

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

B
a // C

A

b

FF

a //

a+b

88

D

b

EE
b−a
YY

‖a + b‖2 + ‖a− b‖2 = 2
[
‖a‖2 + ‖b‖2

]
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Math11

The metric tensor

I Theorem (Fréchet – von Neumann – Jordan)

g(a ,b) :=
1

4

[
‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

•

::

// •

::

•

OO

// •

OO

• e1 //

e3

OO

e2
::

•

OO

::

)2

= det

 g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·
g(e3 , e1) · · · g(e3 , e3)


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Maurice René Fréchet (1878 - 1973)
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I Theorem (Fréchet – von Neumann – Jordan)
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Pascual Jordan (1902 - 1980)



Math11
The metric tensor

I Theorem (Fréchet – von Neumann – Jordan)

g(a ,b) :=
1

4

[
‖a + b‖2 − ‖a− b‖2

]
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g(e3 , e1) · · · g(e3 , e3)



Kosaku Yosida (1909 - 1990)



Math12

Bernhard Riemann (1826 - 1866)

Metric tensor field: g : M 7→ Cov(TM)

I Riemann manifold: (M , g)

I Fundamental theorem:
A unique linear connection, the Levi-Civita connection,
is metric and symmetric, i.e. such that

1. ∇vg = 0
2. ∇vu−∇uv = [v , u]

The torsion of the connection is defined by

Tors(v ,u) = ∇vu−∇uv − [v ,u]
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Math13 – Euler split formula

Leonhard Euler (1707 - 1783)

Parallel derivative of the space-time velocity field V = Z + v along the motion

a := ∇V V := ∂α=0ϕα ⇓ (V ◦ϕα)

=∇ZV +∇vV

= v̇ +∇vv

The last expression is the celebrated Euler split formula, especially useful in
problems of hydrodynamics, where it was originally conceived.
It eventually leads to the Navier-Stokes-St.Venant differential equation of motion
in fluid-dynamics.

In most treatments Euler split formula is adopted to define the so called material
time derivative but the outcome is a space vector field, better to be called parallel
time derivative.
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Math14 – Euler’s formula for the stretching

I Stretching

ε(v) := 1
2LV gmat = 1

2∂α=0 (ϕα↓gmat)

I Πe : TeS 7→ TeΩ projection
Π∗e : T ∗e Ω 7→ T ∗e S immersion

I Euler’s formula (generalized)

ε(v) = 1
2LV gmat = Π∗ ·

(
1
2∇V gspa + sym (gspa · L(v))

)
·Π

where L := ∇+ Tors .
Mixed form of the stretching tensor (standard Levi-Civita
connection):

1
2LV gspa = gspa · sym (∇v)

since Tors = 0 and ∇V gspa = 0
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Math15 – Differential forms vs vectors

cross product: u× v = µ · u · v , dim(Et) = 2

cross product: g · (u× v) = µ · u · v , dim(Et) = 3

cross product: (g · u) ∧ (g · v) = µ · (u× v) , dim(Et) = 3

gradient: d f = g · ∇f , dim(Et) = any

rotor: d (g · v) = rot(v) · µ , dim(Et) = 2

rotor: d (g · v) = µ · rot(v) , dim(Et) = 3

divergence: d (µ · v) = div(v) · µ . dim(Et) = any
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Math16 – Change of observer

I Change of observer ζE : E 7→ E , time-bundle automorphism

I Relative motion ζ : T 7→ Tζ , time-bundle diffeomorphism

E
ζE //

tE

&&

E

tE

xx

T
ζ=ζT //

i

OO

tT

��

Tζ
tT

��

iζ

OO

Z oo id // Z
I Pushed motion

Tζ
ζ↑ϕT

α // Tζ

T
ϕT

α //

ζ

OO

T

ζ

OO ⇐⇒ (ζ↑ϕTα ) ◦ ζ = ζ ◦ϕTα .
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Math17 – Time-invariance and Frame-covariance

I Time-invariance s = ϕα↑s , ϕα : E 7→ E motion

I Frame-covariance sζ = ζ↑s , ζ : T 7→ Tζ frame-change

I Naturality of Lie derivative under diffeomorphisms

ζ↑(LV s) = Lζ↑V (ζ↑s)

Frame-covariance of a material tensor implies
frame-covariance of its time-rate.



Math17 – Time-invariance and Frame-covariance

I Time-invariance s = ϕα↑s , ϕα : E 7→ E motion

I Frame-covariance sζ = ζ↑s , ζ : T 7→ Tζ frame-change

I Naturality of Lie derivative under diffeomorphisms

ζ↑(LV s) = Lζ↑V (ζ↑s)

Frame-covariance of a material tensor implies
frame-covariance of its time-rate.



Math17 – Time-invariance and Frame-covariance

I Time-invariance s = ϕα↑s , ϕα : E 7→ E motion

I Frame-covariance sζ = ζ↑s , ζ : T 7→ Tζ frame-change

I Naturality of Lie derivative under diffeomorphisms

ζ↑(LV s) = Lζ↑V (ζ↑s)

Frame-covariance of a material tensor implies
frame-covariance of its time-rate.



Math17 – Time-invariance and Frame-covariance

I Time-invariance s = ϕα↑s , ϕα : E 7→ E motion

I Frame-covariance sζ = ζ↑s , ζ : T 7→ Tζ frame-change

I Naturality of Lie derivative under diffeomorphisms

ζ↑(LV s) = Lζ↑V (ζ↑s)

Frame-covariance of a material tensor implies
frame-covariance of its time-rate.



Math18 – Frame-covariance of space-time velocity

Transformation rule

VTζ := ∂α=0 (ζ↑ϕTα ) = ζ↑VT .

The 4-velocity is natural with respect to frame transformations

ζE :

{
x 7→ Q(t) · x + c(t)

t 7→ t

[TζE ] · [V] =

Q (Q̇x + ċ)

0 1

 ·
v

1

 =

Qv + Q̇x + ċ

1





F1a – Faraday Law - examples

Faraday law of induction: examples 



F1b – Faraday disk (1831) and flux rule

Faraday Disk Dynamo 



F2 – Difficulties with flux rule

According to Feynman (1964): as the disc rotates, the ”circuit”, in the sense of the place in

space where the currents are, is always the same. But the part of the ”circuit” in the disc is in

material which is moving. Although the flux through the ”circuit” is constant, there is still an

EMF, as can be observed by the deflection of the galvanometer. Clearly, here is a case where the

v × B force in the moving disc gives rise to an EMF which cannot be equated to a change of flux.

We know of no other place in physics where such a simple and accurate general principle requires

for its real understanding an analysis in terms of two different phenomena. Usually such a beautiful

generalization is found to stem from a single deep underlying principle. Nevertheless, in this case

there does not appear to be any such profound implication. We have to understand the rule as the

combined effect of two quite separate phenomena.

Quoting Lehner (2010): (The flux rule) only applies in situations when the loop during its motion

or deformations maintains its material identity and is penetrated by a uniquely identifiable flux.

This is neither the case for the Unipolar machine (Faraday disc) nor Hering’s experiment.

Looking back, we could have supposed this because of the spring contacts, which may have

seemed minor. Brushes and sliding contacts require extra caution. In case of doubt, it is best to go

back to the fundamental laws (Lorentz force).
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E1 – Electromagnetic fields

inner orientation. outer orientation.

ω1
E = g · E electric field (inner one-form)

ω2
B = µ · B magnetic vortex (inner two-form)

ω1
A = g · A magnetic momentum (inner one-form)

ω1
H = g ·H magnetic field (outer one-form)

ω2
D = µ ·D electric displacement (outer two-form)

ω2
J = µ · J electric current (outer two-form)

ω2
B = dω1

A ⇐⇒ B = rot(A)

dω2
B = ddω1

A = 0 ⇐⇒ div(B) = divrot(A) = 0
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E2 – Induction law - standard

Faraday-Maxwell rule

−
∮
∂Σinn

ω1
E = ∂α=0

∫
ϕα(Σinn)

ω2
B =

∫
Σinn

LV(ω2
B)

By Stokes formula

−
∫

Σinn

dω1
E =

∫
Σinn

LV(ω2
B)

Locally

−dω1
E = LV(ω2

B)

= LZ(ω2
B) + Lv(ω2

B)

= LZ(ω2
B) + (dω2

B) · v + d(ω2
B · v)



E2 – Induction law - standard

Faraday-Maxwell rule

−
∮
∂Σinn

ω1
E = ∂α=0

∫
ϕα(Σinn)

ω2
B =

∫
Σinn

LV(ω2
B)

By Stokes formula

−
∫

Σinn

dω1
E =

∫
Σinn

LV(ω2
B)

Locally

−dω1
E = LV(ω2

B)

= LZ(ω2
B) + Lv(ω2

B)

= LZ(ω2
B) + (dω2

B) · v + d(ω2
B · v)



E2 – Induction law - standard

Faraday-Maxwell rule

−
∮
∂Σinn

ω1
E = ∂α=0

∫
ϕα(Σinn)

ω2
B =

∫
Σinn

LV(ω2
B)

By Stokes formula

−
∫

Σinn

dω1
E =

∫
Σinn

LV(ω2
B)

Locally

−dω1
E = LV(ω2

B)

= LZ(ω2
B) + Lv(ω2

B)

= LZ(ω2
B) + (dω2

B) · v + d(ω2
B · v)



E3 – Induction law - standard

Hendrick Antoon Lorentz (1853 - 1928)

dω1
E = d(g · E) = µ · rot(E) ,

(dω2
B) · v = d(µ · B) · v = div(B) · (µ · v) ,

d(ω2
B · v) = d(µ · B · v) = d(g · (B× v)) = µ · (rot(B× v)) .

The differential induction law, being div(B) = 0 and LZ(µ) = 0 , and
setting B = rot(A) , writes

rot(E) = −LZ(B) + rot(v × B) = rot(−LZ(A) + v × B) .

−LZ(A) , transformer e.m.f. force

v × B , motional (Lorentz) e.m.f. force

+ ??? , gradient of a scalar potential.



E3 – Induction law - standard

Hendrick Antoon Lorentz (1853 - 1928)

dω1
E = d(g · E) = µ · rot(E) ,

(dω2
B) · v = d(µ · B) · v = div(B) · (µ · v) ,

d(ω2
B · v) = d(µ · B · v) = d(g · (B× v)) = µ · (rot(B× v)) .

The differential induction law, being div(B) = 0 and LZ(µ) = 0 , and
setting B = rot(A) , writes

rot(E) = −LZ(B) + rot(v × B) = rot(−LZ(A) + v × B) .

−LZ(A) , transformer e.m.f. force

v × B , motional (Lorentz) e.m.f. force

+ ??? , gradient of a scalar potential.



E3 – Induction law - standard

Hendrick Antoon Lorentz (1853 - 1928)

dω1
E = d(g · E) = µ · rot(E) ,

(dω2
B) · v = d(µ · B) · v = div(B) · (µ · v) ,

d(ω2
B · v) = d(µ · B · v) = d(g · (B× v)) = µ · (rot(B× v)) .

The differential induction law, being div(B) = 0 and LZ(µ) = 0 , and
setting B = rot(A) , writes

rot(E) = −LZ(B) + rot(v × B) = rot(−LZ(A) + v × B) .

−LZ(A) , transformer e.m.f. force

v × B , motional (Lorentz) e.m.f. force

+ ??? , gradient of a scalar potential.



E4 – Balance principle

A new induction law is provided by a balance principle involving
magnetic momentum, electric field and electrostatic potential∫

Γinn

ω1
E +

∮
∂Γinn

PE = − ∂α=0

∫
ϕα(Γinn)

ω1
A . (1)

Applying Lie-Reynolds transport formula, and localizing
we get the differential law

−ω1
E = LV(ω1

A) + dPE . (2)

Assuming that the path Γinn = ∂Σinn is the boundary of an inner
oriented surface Σinn undergoing a regular motion, the integral law
yields the vortex rule (Faraday-Maxwell flux rule):

−
∮
∂Σinn

ω1
E = ∂α=0

∫
ϕα(Σinn)

ω2
B , (3)
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E5 – Induction law explicated

Decomposition of space-time velocity and homotopy formula give

−ω1
E = LV(ω1

A) + dPE

= LZ(ω1
A) + Lv(ω1

A) + dPE

= LZ(ω1
A) + (dω1

A) · v + d(ω1
A · v) + dPE

In terms of vector fields, since ω1
E = g · E , ω1

A = g · A , we have

LZ(g · A) = g · LZ(A) , (LZ(g) = 0)

d(g · A) · v = µ · rot(A) · v = g · (rot(A)× v)

d(g · A · v) = g · ∇(g(A , v))
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E6 – J.J. Thomson force

Joseph John Thomson (1856 - 1940)

Recalling that dPE = g · ∇PE we get the expression

E = −LZ(A) + v × rot(A)−∇(g(A , v))−∇PE

proposed by J.J. Thomson in 1893
as explication of Maxwell potential (1855)

Ψ = g(A , v) + PE

−LZ(A) , transformer e.m.f. force

v × B , motional e.m.f. (Lorentz force)

−∇(g(A , v)) , motional e.m.f. (J.J. Thomson force)
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E7 – J.J. Thomson original



E8 – Flux of electromagnetic power

Nikolay Alekseevich
Umov (1846–1915)

John Henry
Poynting (1852–1914)

Electric and magnetic power expended per unit volume:

ω3
power :=ω1

E ∧ (ω2
J + LV(ω2

D)) + ω1
H ∧ LV(ω2

B)

=ω1
E ∧ dω1

H − ω1
H ∧ dω1

E

= − d(ω1
E ∧ ω1

H) (graded derivation rule)

Umov (1874)-Poynting (1884) spatial outer two-form

ω2
umov := ω1

E ∧ ω1
H ∈ Λ2(E) ,

Balance of electromagnetic power∫
Cout

ω3
power +

∫
∂Cout

ω2
umov = 0 .



E9 – Space-time forms

Harry Bateman (1882 - 1946)

A framing R := dt ⊗ Z induces a representation formula for space-time
forms Ω ∈ Λk (E) in terms of time-vertical restrictions and of the time
differential (extended to mobile bodies)

Ω = P↓Ω + dt ∧ (P↓(Ω · V)− (P↓Ω) · V) .

I The space-time Faraday two-form Ω2
F is related to

1. magnetic time-vertical space-time two form Ω2
B := P↓Ω2

F

2. electric time-vertical space-time one form Ω1
E := P↓(Ω2

F · V)

by

Ω2
F = Ω2

B − dt ∧ (Ω1
E + Ω2

B · V)
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E10 – Space-time forms

Closeness of Faraday 2-form is equivalent to Gauss-Maxwell laws:

dΩ2
F = 0 ⇐⇒

{
dω2

B = 0 ,

LV ω
2
B + dω1

E = 0 ,

and to the magnetic vortex rule (Faraday flux rule)

∂α=0

∫
ϕα(Σinn)

ω2
B = −

∮
∂Σinn

ω1
E ,



E11 – Space-time forms

I The space-time Faraday 1-form Ω1
F and the pair of

1. magnetic space-time 1-form Ω1
A

2. electrostatic space-time 0-form Ω0
E

are related by

Ω1
A := P↓Ω1

F magnetic time-vertical 1-form

−Ω0
E := P↓(Ω1

F · V) electrostatic time-vertical 0-form

Ω1
F = Ω1

A − dt ∧ (Ω0
E + Ω1

A · V) Faraday space-time 1-form



E12 – Space-time forms

By Poincaré lemma, closeness of Faraday 2-form ensures exactness:

dΩ2
F = 0 ⇐⇒ Ω2

F = dΩ1
F

expressed by

Ω2
F = dΩ1

F ⇐⇒

{
ω2

B = dω1
A ,

−ω1
E = LV(ω1

A) + dPE ,

and by the magnetic momentum balance law

− ∂α=0

∫
ϕα(Γinn)

ω1
A =

∫
Γinn

ω1
E +

∮
∂Γinn

PE ,



E13 – Space-time matrix formulations


0 B3 −B2 −E1

−B3 0 B1 −E2

B2 −B1 0 −E3

E1 E2 E3 0


If this matrix expression is retained also for a non-vanishing spatial
velocity, the following expression is got

0 B3 −B2 −E1

−B3 0 B1 −E2

B2 −B1 0 −E3

E1 E2 E3 0

·


v1

v2

v3

1

 =


v2 B3 − v3 B2 − E1

−v1 B3 + v3 B1 − E2

v1 B2 − v2 B1 − E3

v1 E1 + v1 E2 + v1 E3

 =

v × B− E

g(E, v)





E14 – Relativistic Frame transformation - amended

Synoptic table I ( v = 0 )

new old

(E‖ ,E⊥) → (γ E‖ ,E⊥) versus (E‖ , γ (E⊥ + w × B))

(B‖ ,B⊥) → (B‖ , γ (B⊥ − (w/c2)× E)) idem

(H‖ ,H⊥) → (γH‖ ,H⊥) versus (H‖ , γ (H⊥ −w ×D))

(D‖ ,D⊥) → (D‖ , γ (D⊥ + (w/c2)×H)) idem

(J‖ , J⊥) → (J‖ , γ J⊥) versus (γ (J‖ − ρw) , J⊥)

ρ → γ (ρ− g(w/c2 , J)) idem

PE → PE versus γ (PE − g(w,PH))

(P
‖
H ,P

⊥
H ) → (γ (P

‖
H + (w/c2)PE) ,P⊥H ) idem



E15 – Relativistic Frame transformation - amended

Synoptic table II ( v 6= 0 )

(E‖ ,E⊥) → (γ (E‖ − g(v/c ,E) w/c) ,E⊥)

(B‖ ,B⊥) → (B‖ , γ (B⊥ − (w/c2)× (E + B× v))

(H‖ ,H⊥) → (γH‖ ,H⊥)

(D‖ ,D⊥) → (D‖ , γ (D⊥ + (w/c2)× (H−D× v))

(J‖ , J⊥) → (J‖ , γ J⊥)

ρ → γ (ρ− g(w/c2 , J + ρ v))

PE → PE

(P
‖
H ,P

⊥
H ) → (γ (P

‖
H − (w/c2)(PE + g(v,PH))) ,P⊥H )
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