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The Geometric Approach to
Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by
Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls instead for
Differential Geometry (DG) and Calculus on Manifolds (CoM)
as natural tools to develop theoretical and computational models.
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Prolegomena

Hermann Weyl (1885–1955)

In these days the angel of topology and the devil of abstract
algebra fight for the soul of each individual mathematical
domain.

H. Weyl, ”Invariants”, Duke Mathematical Journal 5 (3): (1939) 489–502

Adapted to NLCM
In these days the angel of differential geometry and the devil of algebra

and calculus on linear spaces fight for the soul of each individual

continuum mechanics domain.

This lecture is in support of the angel.
Differential Geometry provides the tools to fly higher and see what before
was shadowed or completely hidden.
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A basic question in NLCM

I How to compare material tensors at corresponding points in displaced
configurations of a body?

I Devil’s temptation:

In 3D bodies it might seem as natural to compare by translation the
involved material vectors.
This is tacitly done in literature, when evaluating the material
time-derivative of the stress tensor T :

Ṫ(p, t) := ∂τ=t T(p, τ)

or the material time-derivative of the director n of a nematic liquid
crystal:

ṅ(p, t) := ∂τ=t n(p, τ)

These definitions are connection dependent and geometrically
untenable when considering 1D and 2D models (wires and
membranes).

I Hint: Tangent vectors to a body placement are transformed into tangent
vectors to another body placement by the tangent displacement map.
This is the essence of the GEOMETRIC PARADIGM.
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Basic requirements

DIMENSIONALITY INDEPENDENCE:
A geometrically consistent theoretical framework should be
equally applicable to body models of any dimension.

GEOMETRIC PARADIGM motivation1:

1G. Romano, R. Barretta, Covariant hypo-elasticity.
Eur. J. Mech. A-Solids 30 (2011) 1012–1023
DOI:10.1016/j.euromechsol.2011.05.005
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Math1

Tangent vector to a manifold:

velocity of a curve c ∈ C1([a, b] ; M) , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxM
Cotangent vector:

v∗ ∈ L (TxM ;R) ∈ T∗x M

Tangent map:

I A map ζ ∈ C1(M ; N) sends
a curve c ∈ C1([a, b] ; M) into
a curve ζ ◦ c ∈ C1([a, b] ; N) .

I The tangent map Txζ ∈ C0(TxM ; Tζ(x)N)
sends a tangent vector at x ∈ M
v ∈ Tx(M) := ∂µ=λ c(µ)
into a tangent vector at ζ(x) ∈ N
Txζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ ◦ c)(µ)
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Math2

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM ∈ C1(TM ; M)

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM ∈ C1(TvTM ; TxM) is surjective

I Tangent functor

ζ ∈ C1(M ; N) 7→ Tζ ∈ C0(TM ; TN)
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Math3

Fiber bundles

I E,M manifolds

I Fiber bundle projection:
πM,E ∈ C1(E ; M) surjective submersion

I Total space: E

I Base space: M
I Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E ∈ C0(TE ; TM)

I Vertical tangent subbundle TπM,E ∈ C0(VE ; TM) with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0
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Trivial and
non-trivial
fiber bundles

Torus Listing-Möbius strip Klein Bottle
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Math5

Sections of fiber bundles

I Fiber bundle πM,E ∈ C1(E ; M)

I Sections sE,M ∈ C1(M ; E) , πM,E ◦ sE,M = idM

I Tangent v.f. vE ∈ C1(E ; TE) , τE ◦ vE = idE

I Vertical tangent sections TπM,E ◦ vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v ∈ C1(M ; TM) : τM ◦ v = idM

I Bi-tangent vector fields:

X ∈ C1(TM ; TTM) : τTM ◦ X = idTM

I Vertical bi-tangent vectors X ∈ KerTvτM
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Math6

Tensor spaces

I Covariant sCov
x ∈ Covx(TM) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(TM) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(TM) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I with the alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

Tensor bundles and sections
I Tensor bundle τTens

M ∈ C1(Tens(TM) ; M)

I Tensor field sTens
M ∈ C1(M ; Tens(TM))

I with: τTens
M ◦ sTens

M = idM
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Push and pull

Given a map ζ ∈ C1(M ; N)

I Pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

defined by:
(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I Push-forward of a tangent vector field

v ∈ C1(M ; TM) 7→ ζ↑v : N 7→ TN

defined by:
(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .
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Push and pull of tensor fields

I Covectors

〈ζ↓v∗ζ(x), vx 〉 = 〈v∗ζ(x), ζ↑vx 〉 = 〈T ∗ζ(x)ζ ◦ v∗ζ(x), vx 〉

I Covariant tensors

ζ↓sCov
ζ(x) = T ∗ζ(x)ζ ◦ sCov

ζ(x) ◦ Txζ ∈ Cov(TM)x

I Contravariant tensors

ζ↑sCon
x = Txζ ◦ sCon

x ◦ T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMix
x = Txζ ◦ sMix

x ◦ Tζ(x)ζ
−1 ∈Mix(TN)ζ(x)
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Math9
Parallel transport along a curve c ∈ C1([a, b] ; M)

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ ◦ cµ,ν ⇑ = cλ,ν ⇑
I Covector fields v∗x ∈ T∗xM (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)
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Derivatives of a tensor field
s ∈ C1(M ; Tens(TM))

along the flow of a tangent vector field

I Tangent vector fields and Flows

v ∈ C1(M ; TM) Flvλ ∈ C1(M ; M)

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s ◦ Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s ◦ Flvλ)
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I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric
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Math11

lenght of symplex’s edges

I Norm axioms

A
c

&&LLLLLLL

B

C

b

OO

a
88rrrrrrr

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

B
a // C

A

b

FF������� a //

a+b

88qqqqqqqqqqqqqq
D

b

EE�������

b−a
YY3333333

‖a + b‖2 + ‖a− b‖2 = 2
[
‖a‖2 + ‖b‖2

]
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The metric tensor

I Theorem (Fréchet – von Neumann – Jordan)

g(a ,b) :=
1
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‖a + b‖2 − ‖a− b‖2
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)2

= det

 g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·
g(e3 , e1) · · · g(e3 , e3)


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Events manifold fibrations

I Time and space fibrations: γ : E 7→ S × I (observer)

S oo idS // S

E
γ //

πI,E
��

πS,E

OO

S × I
πI,(S×I )

��

πS,(S×I )

OO

I oo idI // I

⇐⇒
πI ,E = πI ,(S×I ) ◦ γ
πS,E = πS,(S×I ) ◦ γ

I Space-time metric: gE := πS,E↓gS + πI ,E↓gI

I Time-vertical subbundle: spatial vectors

v ∈ VeE ⇐⇒ TeπI ,E · v = 0

I ve ∈ VeE ⇐⇒ γ↑ve = (vx,t , 0t) ∈ TxS × Tt I
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Trajectory

I Trajectory 7→ a manifold Tϕ with injective immersion in the events
time-bundle: iE,Tϕ ∈ C1(Tϕ ; E)

I Trajectory metric: gTϕ := iTϕ,E↓gE

I Trajectory time-fibration πI ,Tϕ := πI ,E ◦ iE,Tϕ
I time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration πS,Tϕ := πS,E ◦ iE,Tϕ
I not a space bundle 7→ fibers: irregular subsets of the observation

time interval I

I Time-vertical subbundle: material vectors

v ∈ VeTϕ ⇐⇒ TeπI ,Tϕ · v = 0
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Evolution

I Evolution operator ϕTϕ

I Displacements: diffeomorphisms between placements

ϕ
Tϕ
τ,t ∈ C1(Ωt ; Ωτ ) , τ, t ∈ I

I Law of determinism (Chapman-Kolmogorov):

ϕ
Tϕ
τ,s = ϕ

Tϕ
τ,t ◦ϕ

Tϕ
t,s

I Simultaneity of events is preserved:

πI ,Tϕ(ϕ
Tϕ
τ,t (et)) = τ

I Trajectory speed:

vTϕ(et) := ∂τ=t ϕ
Tϕ
τ,t (et) =⇒ TeπI ,Tϕ · vTϕ(et) = 1t
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Body and particles

I Equivalence relation on the trajectory:

(e1 , e2) ∈ Tϕ × Tϕ : e2 = ϕ
Tϕ
t2,t1

(e1) .

with ti = πI ,E(ei ) , i = 1, 2 .

Body = quotient manifold (foliation)
Particles = equivalence classes (folia)

I mass conservation∫
Ωt1

mTϕ,t1 =

∫
Ωt2

mTϕ,t2 ⇐⇒ LvTϕmTϕ = 0

mTϕ ∈ C1(Tϕ ; Vol(TTϕ)) mass form
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Tensor fields in NLCM

Space-time fields sE ∈ C1(E ; Tens(TE)) Space-time
metric tensor

Spatial fields sE ∈ C1(E ; Tens(VE)) Spatial
metric tensor

Trajectory fields sTϕ ∈ C1(Tϕ ; Tens(TTϕ)) Trajectory metric,
trajectory speed

Material fields sTϕ ∈ C1(Tϕ ; Tens(VTϕ)) Stress, stressing,
material metric,
stretching.

Trajectory-based
space-time fields

sE,Tϕ ∈ C1(Tϕ ; Tens(TE)) Trajectory speed
(immersed)

Trajectory-based
spatial fields

sE,Tϕ ∈ C1(Tϕ ; Tens(VE)) Virtual velocity,
acceleration,
momentum, force
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Covariance Paradigm

Material fields at different times along the trajectory must be compared
by push along the material displacement.
Material fields on push-related trajectories must be compared by push
along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality
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Time derivatives =
derivatives along the flow of the trajectory speed

Lie time derivative - LTD

I Trajectory and material tensor field

ṡTϕ := LvTϕ sTϕ = ∂λ=0 Fl
vTϕ
λ ↓ (sTϕ ◦ Fl

vTϕ
λ ) ,

Material time-derivative - MTD

I Trajectory-based space-time and spatial fields

ṡE,Tϕ := ∇E
vTϕ

sE,Tϕ = ∂λ=0 Fl
vE,Tϕ
λ ⇓E (sE,Tϕ ◦ Fl

vTϕ
λ ) ,

with vE,Tϕ := iE,Tϕ↑vTϕ .
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vTϕ
λ ) ,
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Rivers and Cogwheels
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(∇E
vTϕ
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E
τ,t ⇓

E(sE,Tϕ,τ ◦ϕτ,t) = ∂τ=t sE,Tϕ,τ +∇πS,Tϕ↓vTϕ sE,Tϕ,t

Gottfried Wilhelm von Leibniz (1646 - 1716)

rule cannot be applied unless
the following special properties of the trajectory hold true:

(x , t) ∈ Tϕ =⇒ (x , τ) ∈ Tϕ ∀ τ ∈ It

(x , t) ∈ Tϕ =⇒ (ϕτ,t (x) , t) ∈ Tϕ

Both conditions are not fulfilled in solid mechanics, in general.
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Acceleration

MTD of the velocity field

(aE,Tϕ)t := (∇E
vTϕ

vE,Tϕ)t := ∂τ=t ϕ
E
τ,t ⇓ (vE,Tϕ,τ ◦ϕτ,t)

= ∂τ=t vE,Tϕ,τ +∇πS,Tϕ↓vTϕ vE,Tϕ,t

This is the celebrated Euler split formula, applicable only in special problems of
hydrodynamics, where it was originally conceived.
This eventually led to the Navier-Stokes-St.Venant differential equation of motion
in fluid-dynamics.

Notwithstanding its limitations, Euler split formula has been improperly adopted to
provide the very definition of acceleration in mechanics 2

2 See e.g.
1) C. Truesdell, A first Course in Rational Continuum Mechanics
Second Ed. Academic Press, New-York (1991). First Ed. 1977
2) M.E. Gurtin, An Introduction to Continuum Mechanics
Academic Press, San Diego (1981)
3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of Elasticity
Prentice-Hall, Redwood City, Cal. (1983)
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Stretching = Lie time derivative
of the material metric

Leonhard Euler (1707 - 1783)

I Stretching:
ε̇Tϕ,t := 1

2 (LvTϕ gTϕ)t = 1
2∂τ=t (ϕτ,t↓gTϕ,τ )

I Euler’s formula (generalized)

1
2LvTϕ gTϕ = 1

2∇
Tϕ
vTϕ gTϕ + sym (gTϕ ◦ (TorsTϕ +∇Tϕ)vTϕ)

I Trajectory connection defined by:

gTϕ ◦ ∇TϕuTϕ := iE,Tϕ↓(gE ◦ ∇EuE,Tϕ)

I with ∇TϕvTϕgTϕ = iE,Tϕ↓(∇E
vE,Tϕ

gE)

gTϕ ◦TorsTϕ(aTϕ) = iE,Tϕ↓(gE ◦TorsE(iE,Tϕ↑aTϕ))

I Mixed form of the stretching tensor (standard):

DTϕ := g−1
Tϕ ◦ 1

2LvTϕ gTϕ = sym (∇TϕvTϕ)
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Stress and stressing

I Stress: σTϕ ∈ C1(Tϕ ; Con(VTϕ)) in duality with the

I Stretching: ε̇Tϕ := 1
2
ġTϕ = 1

2
LvTϕ gTϕ ∈ C1(Tϕ ; Cov(VTϕ))

I Stressing: Lie time derivative

σ̇Tϕ,t := (LvTϕ σTϕ )t = ∂τ=t (ϕτ,t↓σTϕ,τ )

The expression in terms of parallel derivative:

LvTϕσTϕ = ∇TϕvTϕ
σTϕ − sym (∇TϕvTϕ ◦ σTϕ )

is not performable on the time-vertical subbundle of material tensor fields

because the parallel derivative ∇TϕvTϕ
on the trajectory does not preserve

time-verticality.

I Treatments which do not adopt a full geometric approach do not even perceive
the difficulties revealed by the previous investigation.
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Objective stress rate tensors

A sample of objective stress rate tensors

Co-rotational stress rate tensor, Zaremba (1903), Jaumann (1906,1911), Prager
(1960):

◦
T= Ṫ−WT + TW

with Ṫ material time derivative.

Convective stress tensor rate, Zaremba (1903), Oldroyd (1950), Truesdell
(1955), Sedov (1960), Truesdell & Noll (1965):

M
T= Ṫ + LT T + TL

These formulas, and similar ones in literature, rely on the application of Leibniz rule
and on taking the parallel derivative of the material
stress tensor field according to the trajectory connection.

The lack of regularity that may prevent to take partial time derivatives and

the lack of conservation of time-verticality by parallel transport, are not taken into

account.
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Deformation gradient

The equivalence class of all material displacements whose tangent map have the
common value:

Txϕτ,t ∈ L (TxΩt ; Tϕτ,t (x)Ωτ )

I is called the first jet of ϕτ,t at x ∈ Ωt in differential geometry

I and the relative deformation gradient in continuum mechanics.

The chain rule between tangent maps:

Tϕτ,s (x)ϕτ,s = Tϕt,s (x)ϕτ,t ◦ Txϕt,s ,

implies the corresponding one between material deformation gradients:

Fτ,s = Fτ,t ◦ Ft,s .

Time rate of deformation gradient, Truesdell & Noll (1965)

Ḟt,s = Lt Ft,s

with Ḟt,s := ∂τ=t Fτ,s and Lt := ∂τ=t Fτ,t time derivatives.

Lt (x) · hx := ∂τ=t Fτ,t (x) · hx ∈ TxΩt , ∀ hx ∈ TxΩt

with Fτ,t (x) · hx ∈ TxΩτ . The Lie time derivative gives:

∂τ=t (Txϕτ,t )−1 · (Txϕτ,t · hx) = ∂τ=t hx = 0



Change of observer

I Change of observer ζE ∈ C1(E ; E) ,
time-bundle automorphism

I Relative motion ζ ∈ C1(Tϕ ; Tζ↑ϕ) ,
time-bundle diffeomorphism
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⇐⇒ (ζ↑ϕ)τ,t = ζτ ◦ϕτ,t ◦ ζ
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Consequences of the Geometric Paradigm

Time Invariance and Frame Invariance
of material fields

I Time Invariance sTϕ,τ = ϕτ,t↑sTϕ,t

I Frame Invariance sTζ↑ϕ = ζ↑sTϕ

with: ζ ∈ C1(Tϕ ; Tζ↑ϕ) relative motion

Properties of Lie derivative

I Push of Lie time derivative to a fixed configuration

ϕt,fix↓(LvTϕ sTϕ)t = ∂τ=t ϕτ,fix↓sTϕ,τ

I Lie time derivative along pushed motions

LvTζ↑ϕ
(ζ↑sϕ) = ζ↑(LvTϕ sTϕ)
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Constitutive laws

I Constitutive operator HTϕ

A material bundle morphism whose domain and codomain are Whitney
products of material tensor bundles

I Constitutive time invariance

HTϕ,τ = ϕτ,t↑HTϕ,t

(ϕτ,t↑HTϕ,t)(ϕτ,t↑sTϕ,t) = ϕτ,t↑(HTϕ,t(sTϕ,t))

I Constitutive invariance under relative motions

HTζ↑ϕ = ζ↑HTϕ

(ζ↑HTϕ)(ζ↑sTϕ) = ζ↑(HTϕ(sTϕ))
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Hypo-elasticity

I Constitutive hypo-elastic law
elTϕ elastic stretching{

ε̇Tϕ = elTϕ
elTϕ = Hhypo

Tϕ (σTϕ) · σ̇Tϕ

I Cauchy integrability

〈dF Hhypo
Tϕ (σTϕ) · δσTϕ · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ Hhypo
Tϕ (σTϕ) = dF ΦTϕ(σTϕ)

I Green integrability

〈Hhypo
Tϕ (σTϕ) · δ1σTϕ , δ2σTϕ 〉 = symmetric

=⇒ ΦTϕ(σTϕ) = dF E∗Tϕ(σTϕ)
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Elasticity

I Elastic constitutive operator:
hypo-elastic constitutive operator which is integrable and time
invariant

I Constitutive elastic law:
elTϕ elastic stretching{

ε̇Tϕ = elTϕ

elTϕ = d2
F E∗Tϕ(σTϕ) · σ̇Tϕ

I pull-back to reference:

ϕt,fix↓elTϕ,t = d2
F E∗fix(ϕt,fix↓σTϕ,t) · ∂τ=t ϕτ,fix↓σϕ,τ

= ∂τ=t dF E∗fix(ϕτ,fix↓σϕ,τ )

ϕτ,fix :=ϕτ,t ◦ϕt,fix

E∗fix :=ϕt,fix↓E∗Tϕ,t time invariant
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Conservativeness of hyper-elasticity

Green integrability of the elastic operator HTϕ
as a function of the Kirchhoff stress tensor field
implies conservativeness:∮

I

∫
Ωt

〈σTϕ,t , elTϕ,t 〉mTϕ,t dt = 0

for any cycle in the stress time-bundle,
i.e. for any stress path σTϕ ∈ C1(I ; Con(VTϕ))

such that:
σTϕ,t2 = ϕt2,t1

↑σTϕ,t1 , I = [t1, t2]
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Elasto-visco-plasticity

I Constitutive law

elTϕ elastic stretching
plTϕ visco-plastic stretching

ε̇Tϕ = elTϕ + plTϕ stretching additivity

elTϕ = d2
F E∗Tϕ(σTϕ) · σ̇Tϕ hyper-elastic law

plTϕ ∈ ∂FFTϕ(σϕ) visco-plastic flow rule
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Reference strains

I total strain in the time interval I = [s, t] :

εTϕ,t,s := ϕt,s↓gTϕ,t − gTϕ,s

I reference total strain:

εfix
Tϕ,I := 1

2

∫
I

∂τ=t ϕτ,fix↓gTϕ,τ dt

= 1
2ϕt,fix↓gTϕ,t − 1

2ϕs,fix↓gTϕ,s
= 1

2ϕs,fix↓(ϕt,s↓gTϕ,t − gTϕ,s) = 1
2ϕs,fix↓εTϕ,t,s

I reference elastic and visco-plastic strain:

elfixTϕ,I :=

∫
I

ϕt,fix↓elTϕ,t dt , plfixTϕ,I :=

∫
I

ϕt,fix↓plTϕ,t dt

I additivity of reference strains:

εfix
Tϕ,I = elfixTϕ,I + plfixTϕ,I
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Material Frame Indifference (MFI)

Ansatz

I Material fields are frame invariant

Principle of MFI

I Any constitutive law must conform to the principle of MFI which
requires that material fields, fulfilling the law, will still fulfill it when
evaluated by another Euclid observer

HT
ζiso↑ϕ

(ζiso↑sTϕ ) = ζiso↑HTϕ (sTϕ ) ,

for any isometric relative motion ζiso ∈ C1(Tϕ ; Tζiso↑ϕ) induced by a change

of Euclid observer ζiso
E ∈ C1(E ; E) .

Equivalent condition

I Constitutive operators must be frame invariant
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MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

Hhypo
Tζiso↑ϕ

= ζiso↑Hhypo
Tϕ

Pushed operator

(ζiso↑Hhypo
Tϕ )(ζiso↑σTϕ ) · ζiso↑σ̇Tϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σ̇Tϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

Hhypo
Tϕ,t (TTϕ,t ) :=

1

2µ
ITϕ,t −

ν

E
ITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simó & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.
Meth. Appl. Mech. Eng. 46 (1984) 201–215.
J. C. Simó & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive
equations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.
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Tϕ

Pushed operator

(ζiso↑Hhypo
Tϕ )(ζiso↑σTϕ ) · ζiso↑σ̇Tϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σ̇Tϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

Hhypo
Tϕ,t (TTϕ,t ) :=

1

2µ
ITϕ,t −

ν

E
ITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simó & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.
Meth. Appl. Mech. Eng. 46 (1984) 201–215.
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J. C. Simó & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive
equations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.



MFI in elasto-visco-plasticity

I Frame invariance of the hypo-elastic operator

Hhypo
Tζiso↑ϕ

= ζiso↑Hhypo
Tϕ

Pushed operator

(ζiso↑Hhypo
Tϕ )(ζiso↑σTϕ ) · ζiso↑σ̇Tϕ = ζiso↑(Hhypo

Tϕ (σTϕ ) · σ̇Tϕ )

Examples:

I the simplest hypo-elastic operator is Green integrable and frame invariant:

Hhypo
Tϕ,t (TTϕ,t ) :=

1

2µ
ITϕ,t −

ν

E
ITϕ,t ⊗ ITϕ,t

I the visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:
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Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Covariant formulation of constitutive laws

I Notion of time and frame invariance

I Rate constitutive relations in the nonlinear range

I Covariant theory of hypo-elasticity

I Integrability of simplest hypo-elasticity

I Covariant theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I Covariant formulation of Material Frame Indifference

I Notions and treatments of constitutive models in the nonlinear range should be
revised and reformulated

I Algorithms for numerical computations must be modified to comply with the
covariant theory; multiplicative decomposition of the deformation gradient
should be deemed as geometrically inconsistent
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