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1 Plan of the presentation

(1) Abstract Action Principle with no fixed-boundary conditions.
(2) Euler extremality conditions, Symmetry Lemma, Noether Theorem.
(3) Extremal principles for Lagrangians, Hamilton-Jacobi eikonal equation.
(4) Law of motion in the configuration manifold.
(5) Linear connections in the configuration manifold.
(6) Lagrange and Hamilton laws of motion for connections with torsion.
(7) Locality and criticism of vakonomic Dynamics.
(8) Configuration manifold versus ambient manifold representations.
(9) Extension of kinetic energy: Ansatz of virtual mass conservation.

(10) Nonlinear constraints and multivalued monotone relations.
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2 Variational approach

A variational approach to Dynamics, in alternative to a differential one 1 , is
mainly motivated by the viability of a general geometric treatment and by the
effectiveness of direct methods in computational Dynamics. The basic tool
is the Ampère-Gauss-Green-Ostrogradski-Kelvin-Poincaré integral
transformation formula ∫

Σ
dωk−1 =

∮
∂Σ
ωk−1 ,

(the so-called Stokes-formula) and on the related notion of exterior derivative
of volume forms on a k-manifold Σ . A variational approach has the advan-
tage of being independent of the introduction of a connection, leading to more
general expressions for the extremality condition. The pleasant flavour of per-
fection of a law of nature expressed as an extremality property is appealing,
but will not be mentioned here.

1 R. Abraham, J.E. Marsden: Foundations of Mechanics, second edition, the Ben-
jamin/Cummings Publishing Company, Reading Massachusetts (1978)
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3 Action principle and extremality conditions

• An extremality principle is meant to be a property to be fulfilled by the
action integral: ∫

Σ
ωk

of a governing volume form on an evolving k-dimensional trajectory mani-
fold Σ flying in the (infinite dimensional) container manifold M .

Contrary to most statements, the variational condition of extremality does
not express the stationarity of a functional. Rather it requires that, when the
trajectory manifold is drifted by a flow, the gap between rate of variation of
the action integral and the outward flux of the drifting velocity through the
trajectory boundary be equal to the integral of the virtual power of the force
form over the trajectory. Denoting by vΦ := ∂λ=0 Φλ , the virtual velocity, the
Action Principle states the extremality property as a variational balance law:

∂λ=0

∫
Φλ(Σ)

ωk −
∮
∂Σ
ωk · vΦ =

∫
Σ
α(k+1) · vΦ .
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This definition is the generalization of the property of a geodesic line on a
surface: when the line is drifted by a flow, the rate of change of its length is
only due to the lack of equiprojectivity of the flow velocity at the end-points.

Stokes formula, Reynolds formula and Fubini’s theorem may be combined
to yield the so-called extrusion formula:

∂λ=0

∫
Φλ(Σ)

ωk −
∮
∂Σ
ωk · vΦ =

∫
Σ
dωk · vΦ .

A localization argument leads to the equivalence between the Action Principle
and the generalized Euler’s differential condition of extremality which is a
homogeneous condition expressed in terms of exterior derivative:

(dωk −α(k+1)) · vΣ · vΦ = 0 , vΣ ∈ trial(Σ) , ∀vΦ ∈ test(Σ) .

trial(Σ) ⊆ TΣM and test(Σ) ⊆ TΣM , restriction of TM to Σ , with

trial(Σ) ⊇ test(Σ) .
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Palais’ formula for the exterior derivative

dωk · vΣ · vΦ = dvΣ
(ωk · vΦ)− dvΦ

(ωk · v̂Σ)− ωk · [v̂Σ , v̂Φ] ,

leads to the equivalent formulation:

• Symmetry Lemma 2 :

dvΣ
(ωk · vΦ) = dvΦ

(ωk · v̂Σ) +α(k+1) · vΣ · vΦ ,

where the vector field v̂Σ ∈ C1(M ; TM) is the transversal extension of the
natural frame vΣ = (v1,v2, . . . ,vk) ∈ C1(Σ ; (TxΣ)k) performed by pushing
the frame along the flow Flv̂Φ

λ ∈ C1(M ; M) generated by the transversal
field v̂Φ ∈ C1(M ; TM) extension of the transversal virtual velocity field
vΦ ∈ C1(Σ ; test(Σ)) to a tubular neighbourhood of Σ ,

In this context, Emmy Noether’s theorem is a corollary of the Lemma.

2 G. Romano, M. Diaco, R. Barretta: The general law of dynamics in nonlinear
manifolds and Noether’s theorem, in Mathematical Physics Models and Engineering
Sciences, Acc. Sc. Fis. Mat. Liguori, Napoli, (2008) 439-453.
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4 Paradigms of extremal length principles

Paradigmatic extremality principles characterizing paths in riemannian geom-
etry, light rays in geometrical Optics and trajectories in geometrical Dynamics,
are (extremality becomes minimality for sufficiently short paths):

• Principle of minimal length (Geodesics),
• Fermat’s principle of minimal optical length,
• Maupertuis’ principle of least action (principle of minimal dynamical

length).

The configuration manifold C is a riemannian manifold endowed with a metric
tensor field g having, in the various physical contexts, the meaning of

• length metric tensor field,
• optical index tensor field,
• mass metric tensor field.
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The extremality principle for the parametrization-independent length of a path
γ ∈ C1(I ; C) :

Lenght(γ) :=
∫
I
‖vt‖g dt ,

whose velocity vt := ∂τ=t γ(τ) ∈ test(γ) is conforming to imposed linear
constraints, is expressed by the variational condition:

∂λ=0

∫
I
‖Tϕλ(vt)‖g dt=

∮
∂I
〈 gvt
‖vt‖g

, δvt 〉 dt

where γ = γ(I) is the path image, vϕ := ∂λ=0ϕλ ∈ test(γ) is the con-
forming virtual velocity, δvt = vϕ(τ (vt)) = vϕ(γ(t)) and T is the tangent
functor.

The Lagrangian is the sublinear functional

L(v) :=
√

g(v ,v) = ‖v‖g ,

whose fiber-derivative is
dfL(v) =

gv

‖v‖g
.
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The extremality principle for the lenght of a path takes the form of Hamil-
ton’s extremality principle for the action integral associated with a Lagrangian:

Action(γ) :=
∫
I
Lt(vt) dt ,

expressed by the variational condition:

∂λ=0

∫
I
Lt(Tϕλ(vt)) dt=

∮
∂I
〈dfLt(vt), δvt 〉 dt

The proper mathematical context for the discussion of the extremality prin-
ciple for the lenght of a path is Convex Analysis 3 .The Hamiltonian is the
Fenchel-Legendre convex conjugate function, that is the indicator of the
unit ball in T∗C according to the metric g−1 :

H(v∗) := sup{〈v∗,v〉 − ‖v‖g | v ∈ TC}= tB1(T∗C,g−1)(v
∗) .

3 G. Romano: New Results in Subdifferential Calculus with Applications to Convex
Optimization, Appl. Math. Optim. 32, 213-234 (1995).
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The eikonal functional Jt ∈ C1(C ;<) associated with a central field of tra-
jectories starting at (x0 , t0) in the configuration-time manifold C× I , is

J(x, t) :=
∫
γ

Lt(γ̇(t)) dt =
∫

Γ∗I

ω1 ,

where x = γ(t) , Γ∗I is the lifted trajectory in the cotangent-time manifold
T∗C× I and ω1 := θ −Hdt is the fundamental one-form on T∗C× I , with
the Liouville one-form θ on T∗C defined by

θ(v∗) ·Y(v∗) := 〈v∗, Txτ
∗ ·Y(v∗)〉 , ∀Y(v∗) ∈ Tv∗T∗C .

Setting v∗t = dfLt(γ̇(t)) , the differential of the action functional is:

dJ(x, t) = v∗t −Ht(v
∗
t )dt ∈ T∗(x,t)(C× I) ⇐⇒

 dJt(x) = v∗t ,

∂τ=t Jτ (x) = −Ht(v
∗
t ) ,

which gives the Hamilton-Jacobi equation for the eikonal functional:

∂τ=t Jτ (γt) +H(dJt(γt)) = 0 .
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Being H = tB1(T∗Cg−1) , the Hamilton-Jacobi equation splits into

∂τ=t Jτ (γt) = 0 , dJt(γt) ∈ B1
γt(T

∗C,g−1) ,

which implies that eikonal inequality ‖dJ(γt)‖g−1 ≤ 1 .

In components with respect to dual natural bases ∂qi and dqi , the expression
of the differential of the eikonal functional and of the fundamental one-form

dJ(x, t) = v∗t −Ht(v
∗
t ) dt ∈ T∗(x,t)(C× I) ,

ω1(v∗, t) = θ(v∗t )−Ht(v
∗
t ) dt∈ T∗(v∗,t)(T∗C× I) .

setting pi = dq̇iL(q, q̇) , are given by

dJ(q, t) = pi dq
i −Ht(q, p) dt ,

ω1(q, p, t) = {pi dqi , 0 ∂qj} −Ht(q, p) dt ,
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� The fiber-subdifferential of the Hamiltonian (unit ball indicator) at the point
v∗ ∈ T∗C is the convex outward normal cone, so that

v ∈ NB1(T∗C,g−1)(v
∗) ,

to the unit ball B1(T∗C,g−1) . Hence the trajectory speed is in this cone.
- If ‖v∗‖g−1 < 1 then v∗ ∈ T∗C is internal to the unit ball and the normal

cone degenerates to the null vector.
- If ‖v∗‖g−1 = 1 then v∗ ∈ S1

x(T∗C,g−1) and the normal cone at v∗ ∈ T∗C
is the half-line generated by g−1(v∗) ∈ TC .

It follows that, during propagation, the eikonal equation holds:

‖dJ(γt)‖g−1 = 1 .

A comparison with standard treatments 4 5 in which the Hamiltonian is said
to vanish identically, instead of being an indicator, should be made.

4 F. John: Partial differential equations, Mathematics Applied to Physics, pp. 229-
347, Ed. Roubine É., Springer-Verlag, Berlin (1970).
5 Y. Choquet-Bruhat. Géométrie Différentielle et Systèmes extérieurs, Travaux et
recherches matématiques, Collège de France, Dunod, Paris, (1970).
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5 Extremal energy principle

The kinetic energy is the quadratic functional E(v) := 1
2
g(v ,v) .

A path γ ∈ C1(I ; C) fulfils the extremal length principle if and only if, when
parametrized with a constant kinetic energy, it fulfils the extremality principle
for the energy:

∂λ=0

∫
I

1
2

(ϕλ↓g)(vt,vt) dt =
∮
∂I

gτ (vt) (vt, δvt) dt ,

which is the action principle for the quadratic Lagrangian

L(v) := 1
2
g(v ,v) ,

with fiber-derivative dfL(v) = gv .
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6 Geometric Action Principles

Let θL ∈ T∗vTC be the Poincaré-Cartan one-form, subordinated to a
fiber-differentialble Lagrangian Lt :

〈θL(v),Y(v)〉 = 〈dfL(v), TvτC ·Y(v)〉 , ∀Y(v) ∈ TvTC ,

with Γ ∈ C1(I ; TC) projecting on the path γ ∈ C1(I ; C) .

The action functional is defined, by Legendre transform, as:

A(v) := 〈dfL(v),v〉 = L(v) + E(v) , ∀v ∈ TC .

Forces at the configuration γt ∈ C are covectors ft ∈ T∗γtC . On the lifted
trajectory Γ = Tγ · 1 in the tangent bundle TC forces are well-defined as
horizontal one-forms Ft ∈ T∗ΓtTC by:

〈Ft(v
C
t ),Y(vC

t )〉 = 〈ft(τC(vC
t )), TvC

t
τC ·Y(vC

t )〉 , ∀Y(vC
t ) ∈ TvC

t
TC .
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The action principle for the Lagrangian is equivalent 6 to the following energy
constrained action principle:

∂λ=0

∫
Φλ(ΓI)

θL =
∮
∂ΓI
θL · vTϕ ,

to hold for any phase-velocity vTϕ := ∂λ=0 Tϕλ ∈ test(Γ) fulfilling along Γ
the constraint of virtual energy balance:

〈dEt − Ft,vTϕ 〉 = 0 .

The energy constrained action principle is written explicitly as

∂λ=0

∫
I
At(ϕλ↑vt) dt =

∮
∂I
〈dfLt(vt), δvt 〉 dt .

6 G. Romano, R. Barretta, A. Barretta: On Maupertuis principle in dynamics,
Reports on Mathematical Physics 63, 3 (2009) 331-346.
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The related Euler’s differential condition of extremality is:

dθL·v̇t·vTϕ(vt) = 0 , v̇t ∈ trial(Γ) , ∀vTϕ(vt) ∈ test(Γ)∩ker(dEg(vt)−F(vt)) .

Lagrange’s multiplier theorem assures that the parametrization of the path
Γ ∈ C1(I ; TC) can be fixed so that energy balance is fulfilled along the path
and that Euler’s differential condition of extremality is equivalent to:

dθL · v̇t · vTϕ(vt) = (F− dE)(vt) · vTϕ(vt) , ∀vTϕ(vt) ∈ test(Γ) .

In the velocity-time manifold we introduce the action one-form

ω1
L(vt , t) := θL(vt)− E(vt)dt ,

and the force two-form α2 := dt ∧ F . Euler’s differential condition for the
trajectory ΓI(t) := (Γ(t) , t) writes

(dω1
L −α2) · (v̇t , 1t) · (vΦ(vt) , 0) = 0 ,

with (v̇t , 1t) ∈ trial(ΓI) , for any phase-velocity field vΦ ∈ test(Γ) ⊂ TTC
which projects to a virtual velocity field vϕ ∈ conf ⊆ TC : Tτ ◦vΦ = vϕ◦τ .
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This is the extremality condition for the synchronous geometric action prin-
ciple for the trajectory ΓI in the velocity-time bundle TC× I :

∂λ=0

∫
Φλ(ΓI)

ω1
L =

∮
∂ΓI
ω1
L · (vΦ , 0) +

∫
ΓI
α2 · (vΦ , 0) ,

equivalent to the asynchronous action principle which, in the covelocity-time
bundle T∗C× I , writes:

∂λ=0

∫
Φ∗λ(Γ∗I )

ω1 =
∮
∂Γ∗I

ω1 · (vΦ∗ ,Θ) +
∫

Γ∗I

α2 · (vΦ∗ ,Θ) ,

with Θ a time-change speed and ω1 := θ −Hdt .

In applications to Dynamics, the action one-form (and the generating La-
grangian) is defined only along the dynamical trajectory. The kinetic energy
is in fact defined only along the trajectory. In performing the variations, the
Lagrangian should then be extended in a proper way outside the trajectory.
This extension is a basic assumption to be explicitly declared in the Action
Principle.
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7 Laws of dynamics in the configuration manifold

The extremality principle in the configuration manifold is:

∮
∂I
〈dfLt(vt), δvt 〉 − ∂λ=0

∫
I
Lt ◦ Tϕλ ◦ v ◦ γ dt =

∫
I
〈ft, δvt 〉 dt ,

for any virtual flow ϕλ ∈ C1(γ ; C) with velocity δvt = vϕ(γt) ∈ testγtC ,
being vt = vγ(γt) . The law of motion in the configuration manifold writes:

∂τ=t 〈dfLτ (vτ ), δvτ 〉 − ∂λ=0 Lt(Tϕλ(vt)) = 〈ft(γt), δvt 〉 , ∀ δvt ∈ conf(γt) ∩ rig(γt) ,

with the drifting flow defined in a neighbourhood of the trajectory.

A basic result in Dynamics states that it is only the virtual velocity at the
current configuration to be involved in the extremality condition.

The proof of this result requires a linear connection and the related covariant
derivative ∇ to be given in the configuration manifold C .
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8 Laws of dynamics in terms of a connection

The tangent to the composition L ◦ v ∈ C1(C ;<) splits as:

T (L ◦ v) = TL ◦ Tv = dfL(v) · ∇v + dbL(v) .

with the base derivative given by: dbL(vx) ·wx = ∂λ=0 L(Flwλ ⇑vx) .Then

∂λ=0 (Lt ◦ Tϕλ ◦ v)(γt) = T (Lt ◦ v̂γ) · δvt
= dfLt(vt) · ∇δvtv̂γ + dbLt(vt) · δvt ,

where v̂γ ◦ Fl
vϕ
λ := Fl

vϕ
λ ↑vγ , so that [v̂γ ,vϕ] = 0 . Moreover

∂τ=t 〈dfLτ (vτ ), δvτ 〉= ∂τ=t 〈γt,τ⇑ dfLτ (vτ ), γt,τ⇑ δvτ 〉

= 〈∂τ=t γt,τ⇑ dfLτ (vτ ), δvt 〉+ 〈dfLt(vt), ∂τ=t γt,τ⇑ δvτ 〉

= 〈∂τ=t dfLτ (vτ ), γτ,t⇑ δvt 〉+ 〈dfLt(vt),∇vtvϕ 〉 .
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9 Generalized Lagrange and Hamilton laws of dynamics

An analysis based on tensoriality of the torsion 7 shows that the extremality
condition may be written as a Lagrange’s law of Dynamics in the form:〈∂τ=t dfLτ (vτ ), γτ,t⇑ δvt 〉 − 〈dbLt(vt), δvt 〉+ 〈v∗t ,tors(vt, δvt)〉 = 〈ft(γt), δvt 〉 ,

v∗t = dfLt(vt) , ∀ δvt ∈ conf(γt) ∩ rig(γt) .

Lagrange’s law may be transformed by means of a generalized version of
Donkin’s theorem (1854):

dbHt(v
∗
t ) + dbLt(dfHt(v

∗
t )) = 0 .

to get Hamilton’s law of Dynamics in the form:〈∂τ=t v
∗
τ , γτ,t⇑ δvt 〉+ 〈dbHt(v

∗
t ), δvt 〉+ 〈v∗t ,tors(vt, δvt) = 〈ft(γt), δvt 〉〉 ,

vt = dfHt(v
∗
t ) , ∀ δvt ∈ conf(γt) ∩ rig(γt) .

7 G. Romano, R. Barretta and M. Diaco, On the general form of the law of dynam-
ics, Int. J. Non-Linear Mech., 44, (2009) 689-695.
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10 Criticism of vakonomic mechanics

As a rule, forces and constraints on dynamical systems are defined only along
the trajectory and are known only till the actual time. The property inferred
from the generalized Lagrange’s and Hamilton’s laws of Dynamics is then
of fundamental importance and may be stated as follows:

Locality property: All flows sharing the same virtual velocity along the trajec-
tory in the configuration manifold are equivalent in testing the extremality.

Data: The dynamical equilibrium condition depends on the constraint relation
between the force systems acting of the body and the velocity fields pertaining
to configurations along the dynamical trajectory.

Integrability issues concerning the constraints are therefore in most cases ei-
ther not applicable or inessential and then also whether constraints are holo-
nomic or nonholonomic is of no concern. According to these considerations,
the recent emphasis on nonholonomic dynamics appears to be overemphasized
and vakonomic mechanics should be considered as a proposal to be rejected.
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11 Vakonomic mechanics

In 8 the variational principle of vakonomic mechanics is stated as follows.

The trajectory of a vakonomic dynamical system in the configuration manifold
is a regular path γ ∈ C1(I ; C) fulfilling the extremality principle:∫

I
〈dfLt ◦ vγ ,∇vγvϕ 〉 dt+

∫
I
〈dbLt ◦ vγ ,vϕ 〉 dt = 0 ,

for all virtual velocities vϕ ∈ C1(γ ; TγC) vanishing at the boundary points
of the interval I and fulfilling the symmetry condition:

W(vγ ,vϕ) = W(vϕ,vγ)

for the Weingarten map W(vϕ,vγ) := Π⊥∇vϕv̂γ with v̂γ ∈ C1(C ; TC)
extension of vγ ∈ C1(γ ; ∆γ) and ∇ a torsion-free linear connection.

8 I. Kupka, W.M. Oliva: The Non-Holonomic Mechanics, J. Differential Equations,
169, 169-189 (2001).
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It can be proved that 9 , if the linear connection is torsion-free and the trajec-
tory speed fulfils the linear constraint i.e. vγ ∈ C1(γ ; ∆γ) , then

W(vγ ,vϕ) = W(vϕ,vγ)

for any virtual velocity vϕ ∈ C1(γ ; TγC) . So the condition put on the virtual
velocity field results to be identically satisfied.

Questions to Kozlov:

How to analyze the dynamical behavior of a byke or of a car driven by a
controller who applies forces and kinematical constraints?

Which are the constraints and the forces in a varied configuration?

How to prove the existence of a field of lagrangian multipliers?

Vakonomic mechanics is neither mathematically consistent nor physically sound.

9 G. Romano, R. Barretta: Variational Principles and Constraints in Continuum
Dynamics, research report, University of Naples Federico II (2008)
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12 The missing link

The link between the formulations of Dynamics in the ambient manifold S
and in the configuration manifold C is most conveniently described by means
of the position map 10 :

posp ∈ C1(C ;S) is a surjective submersion providing the position

posp(ξ) := ξ(p) ∈ ξ(B)

of a particle p ∈ B at the configuration ξ ∈ C1(B ;S) .

To any p ∈ B there corresponds a fiber bundle (C ,posp ,S) , whose fiber
over the position ξ(p) ∈ S is the class of all configurations ζ ∈ C1(B ;S)
mapping the particle into that position. The surjective tangent map Tξposp ∈
BL (TξC ; Tposp(ξ)S) induces a linear correspondence: vposp(ξ) = Tξposp · vC

ξ ,
between the tangent spaces, being vC

ξ ∈ TξC and vposp(ξ) ∈ Tposp(ξ)S .

10 G. Romano, R. Barretta: On Continuum Dynamics, to appear in the October
issue of Journal of Mathematical Physics (2009).
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Let a tangent vector field u be given on a placement ξ(B) ⊂ S with u ∈
Tposp(ξ)S , for any p ∈ B . Then the tangent vector uC ∈ TξC is well-defined
by the posp-relatedness:

Tposp ◦ uC = u ◦ posp , ∀p ∈ B .

There is a natural way of endowing C , an infinite dimensional manifold of
maps, with a connection induced by one in the finite dimensional space S . 11 12

Indeed, a parallel transport in S yields the parallel transport C defined by
posp-relatedness: Tposp ◦ Flv

C

λ ⇑uC = Flvλ⇑u ◦ posp , ∀p ∈ B , so that

Tposp ◦ ∇C
vC uC = ∇vu ◦ posp ,

Tposp ◦ [vC ,uC] = [v ,u] ◦ posp ,

Tposp ◦ torsC(vC,uC) = tors(v,u) ◦ posp ,

Tposp ◦ curvC(vC,uC)(wC) = curv(v,u)(w) ◦ posp .

11 H.I. Eliasson, Geometry of Manifolds of Maps, J. Diff. Geom. 1, 169-194 (1967)
12 R.S. Palais, Foundations of Global Non-Linear Analysis, (Benjamin, New York
1968)
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Setting Ωξ = ξ(B) , the metric of the riemannian ambient manifold {S ,g}
induces in the configuration manifold a metric defined by

gC(uC,vC) :=
∫

Ωξ

g(u,v) mξ ,

and the mass form mξ is such that displacements preserve the mass. The
lagrangian LC

t ∈ C0(TC ;<) on the velocity manifold is defined by:

(LC
t ◦ vC

γ )(γt) :=
∫

Ωt

(Lt ◦ vt) mt .

It is assumed that the mass-form is drifted by virtual flows:

Lδvtmt = 0 ⇐⇒ ∂λ=0

∫
ϕλ,t(P)

mt = 0 , ∀P ⊆ Ωt .

Setting Tors(v) · u = tors(v,u) , ∀v,u ∈ C1(M ; TM) it is:

Lδvtmt = ∇δvt mt + tr(∇δvt + Tors(δvt)) mt ,

so that virtual conservation of mass involves only the virtual velocity at the
actual placement.
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13 The law of motion in the ambient manifold

Let the force form be defined by a body force field (per unit volume) and a
boundary traction field (per unit surface):

〈ft, δvC 〉 :=
∫

Ωξ

〈bt, δv〉µ+
∫
∂Ωξ

〈tt, δv〉 ∂µ ,

The ansatz of virtual conservation of mass and the generalized Lagrange law
in the configuration manifold, yield the generalized Euler’s law of motion in
the ambient manifold:

∂τ=t

∫
γτ,t(Ωt)

〈dfLτ (vτ ), γτ,t⇑ δvt 〉mτ −
∫

Ωt

〈dbLt(vt), δvt 〉mt

+
∫

Ωt

〈dfLt(vt),tors(vt, δvt)〉mt =
∫

Ωt

〈bt, δvt 〉µ+
∫
∂Ωt

〈tt, δvt 〉 ∂µ ,

for any conforming and rigid virtual velocity field δvt ∈ conf(Ωt)∩rig(Ωt) .
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14 Constraints

14.1 Linear Constraints

A most useful concept in Mechanics is that of perfect, bilateral constraints
(ideal constraints), introduced in its modern formulation by d’Alembert.

The mathematical modeling consists in assuming that, at any constrained
configuration, conforming velocities belong to a linear subspace conf of the
tangent fibre and that reactive force systems belong to its annihilator (conf)

◦

in the cotangent fibre.

The theoretical and computational merits of this concept are far reaching. It
allows to perform the (exact or approximate) evaluation of a solution to a
dynamical problem either by solving a linear problem or a sequence of global
linear trials followed by nonlinear local corrections, in an algorithmic iterative
scheme. The evaluation of reactive forces requires, as a rule, that a constitutive
elastic behaviour be defined for the material.
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14.2 Nonlinear Constraints

In many important engineering problems nonlinear behaviours play an es-
sential role and their simulation is most conveniently described by maximal
monotone potential relations between dual variables 13 . These relations are
called constitutive laws and play a basic role in describing the essential aspect
of inherently nonlinear material behaviours such as plasticity, friction, phase
transformations etc. To monotone relations there correspond a right and a left
multivalued map. Linear (or affine) constraints are special cases in this class
of constitutive laws characterized by the property that the maximal monotone
multivalued maps are constant. This is the only case in which the knowledge
of domain and codomain completely describes the relation.

Nonlinear constraints must instead be properly described as maps between
dual spaces. This observation should help in resolving the longly debated issue
of nonlinear kinematical constraints in Dynamics.

13 G. Romano, L. Rosati, F. Marotti de Sciarra, P. Bisegna: A potential theory for
monotone multi-valued operators, Quart. Appl. Math. 51 (4) 613-631 (1993).
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15 Maximal monotone potential relations

A fairly general formulation 14 of this kind of constraints is got by considering
in each linear fibre of the Whitney product TC×CT∗C a monotone maximal
and potential graph:

(v ,v∗) ∈ G ⇐⇒ v∗ ∈ λ(v) ⇐⇒ v ∈ ρ(v∗)

〈v∗2 − v∗1,v2 − v1 〉 ≥ 0 , ∀ (v1 ,v
∗
1), (v2 ,v

∗
2) ∈ G∮

c
λ(v) = 0 ⇐⇒

∮
c∗
ρ(v∗) = 0 ,

where λ and ρ are the left and right multivalued maps associated with the
graph G and c ⊂ TxC ( c∗ ⊂ T∗xC ) is an arbitrary closed polyline in the
domain of λ (ρ ). Potentiality, expressed by the vanishing of the circuital
integrals, means that left λ and right ρ multivalued maps associated with
the graph G are subdifferentials of convex conjugate potentials.

14 G. Romano: Continuum Mechanics on Manifolds, Lecture notes, University of
Naples Federico II, Italy, URL http://wpage.unina.it/romano/ (2007-2009).
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16 Conclusions (features) in ten points

(1) Variational statements are written explicitly in terms of trial and test
fields.

(2) The unspecified and/or undefined variation symbol δ is never adopted
in expressing extremality properties.

(3) The fixed-ends assumption in action principles has been eliminated.
(4) Covariant derivatives are introduced only when useful and connection are

left as general as possible.
(5) Extensions of the Lagrangian outside the trajectory are explicitly de-

clared.
(6) Convex Analysis concepts and methods are adopted when fibrewise non-

differentiable Lagrangians are considered.
(7) An explicit statement of the relations between ambient and configuration

manifolds is made.
(8) Component expressions are avoided in general treatments, are limited to

specific formulations and properly stated.
(9) Linear constraints to be fulfilled by virtual displacement fields are re-

quired to be defined only at the actual placement along the trajectory.
(10) Nonlinear constraints are expressed as multivalued monotone relations

between dual variables.
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