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Two paradigmatic examples of the role of 

differential geometry in classical physics 

Rate laws of material behavior 
and 

Electromagnetic induction 



The Covariance Paradigm 

PART  I


in material behavior  



Continuum kinematics  

•  The ambient space    , in which motions take place, is a finite dimensional 

Riemann manifold without boundary, endowed with a metric tensor field     ; 

•  The material body     is a finite dimensional manifold with boundary, of dimension 

less than or equal to the one of the ambient space; 

•  The observation time interval     an open, connected subset of the reals; 

•  The configurations  manifold    , an infinite dimensional manifold of maps which 

are C1-diffeomorphisms of the body manifold onto submanifolds of the ambient 

space manifold. 

Described by the following differentiable geometric structures: 



Motions and displacements 



The inclusion map 
To emphasize the distinction between material fields and spatial fields, it is 
expedient to consider the inclusion map: 

We denote by: 

the spatial configuration map, 
the spatial displacement map, 
the material displacement map. 



Continuum Mechanics is a field theory aimed to describe the evolution 
of a material body in the physical ambient space. 

A treatment, in the spirit of differential geometry on manifolds, induces 
to underline the need for a careful distinction between the various 
typologies of fields involved in the analysis: 

•  Spatial fields; 

•  Material fields; 

•  Spatial-valued material fields; 

•  Material inductions of spatial fields; 

•  Spatial descriptions of spatial-valued material fields. 



Manifolds and Fibre Bundles 

A manifold      is the generalization of the notion of a curve or a surface in 
the Euclidean space. 

A fibre bundle                          is a geometrical construction which is useful 
to provide a clear mathematical description of many basic items in 
mechanics and other physical sciences. 
It may be naïvely described as a base manifold with a fibre-manifold 
attached at each of its points. Each fibre is a diffeomorphic image of 
a given manifold called the typical fibre.

The surjective map    , which associates with, to each point of the 
bundle, the base point of the relevant fibre, is called the projection. 



Spatial fields 
•  Spatial tensors are multilinear maps over a tangent space to the space 

manifold. 

•  Spatial fields are defined at each point of the ambient space manifold and at 
any time. Their values are spatial tensors based at that point, independently 
of whether there is a body particle crossing it or not. 

     A spatial field is a section                                         of the tensor bundle 

                                 : 

The twice covariant metric tensor field        is a spatial field. 



Material fields 
•  Material tensors are multilinear maps that operate, at each time instant, over a 

tangent space at a point of the body’s placement along the motion. 

•  Material fields are defined, at each time instant, at particles of the body 
manifold and their values are material tensors based at the particle location 
evolving in the motion. 

     A material field at time            is a section                                         of the bundle: 

                                    along the motion:               

Most fields of interest in continuum mechanics are material fields, for instance, 
stretch, stretching, stress, stressing, temperature, heat flow, entropy, 
thermodynamical potentials. 



Spatial-valued material fields 
•  Spatial-valued material fields are defined, at any instant of time, at particles of 

the body manifold, their values being spatial tensors based at the particle 
location evolving in the motion. 

   A spatial-valued material field is a section                                        

    of the bundle                            along                            : 

In Continuum Dynamics: 
velocity, force and kinetic momentum are spatial-valued material fields. 



Material inductions of covariant spatial fields 



Spatial descriptions of spatial-valued material fields 
A spatial-valued material field                                       admits in the 
trajectory manifold                   a  spatial description:  

                                                        according the diagram: 

 cartesian projectors, 

motion of the body in the ambient space, 
wake manifold, 
events map, 

trajectory manifold. 



In most presentations of continuum mechanics, material fields and spatial-
valued material fields are not distinguished. 

The basic distinction is usually hidden by the context, in which a 3-D 
dimensional body manifold is considered embedded in a 3-D ambient space 
manifold. 

Material and spatial-valued material fields on a membrane 



Geometric tools  for  comparing: 

 Parallel transport along a curve: a transformation, in the ambient space 
manifold, which takes a tangent vector to this manifold, that is a velocity of a 
curve in the space manifold, into another such tangent vector.  

Push transformation by the material displacement map:  
a transformation which takes a material tangent vector, that is a velocity of 
a curve in a body placement, into a material tangent vector in a displaced 
placement.  
It is the suitable transformation tool to compare material tensors based at 
different configurations. 

• Tangent vectors at different points of the space manifold. 

• Tangent vectors at the same particle for different placements of a body. 

• Tangent vectors to different particles in the same body placement. 



Push of a material vector tangent to a wire  
and parallel transport of its spatial immersion 

A material tangent vector is not in the domain of the parallel transport along a 
path. Even if a material vector in a 3-D body is improperly identified with its 
spatial immersion, the parallel transported vector will depend on the chosen 
connection, a dependence which should be taken into account in the description 
of a material behavior. 
In a lower dimensional body, the image by a parallel transport along a path will, 
in general, no more be the spatial immersion of a material vector (see below). 

Parallel transport in space is applicable only to spatial-valued vectors. Material 
vectors can be only tranformed by push along diffeomorphic material 
displacement maps as sketched in the above figure. 



The covariance paradigm 

Material fields, pertaining to the same material body at different configurations, 
must be compared according to the transformation by push along the material 
displacement diffeomorphism. 

The time rate of variation of a material tensor field 

is the convective time-derivative along the motion                              : 



Continuum Mechanics 
The spatial metric tensor field                                    induces at the configuration                             

    the material metric tensor field: 

defined by                                 where                                      

and explicitly: 

The strain rate (STRETCHING) is the material tensor field defined by: 

To any pair of configurations                                 and                               
there corresponds a Green strain (STRETCH) tensor field: 



Material field of linear invariants of the mixed tensor field:  

The STRESS field                                             is  a section of the bundle  

of symmetric contravariant material tensor fields, defined by duality with the 
stretching: 

In Continuum Mechanics, material stress fields, whose duality pairing with the 
covariant stretching provide the virtual power per unit volume in the actual 
configuration, are contravariant Cauchy stress fields. 

The ones providing the virtual power per unit mass, or per unit reference volume, 
are contravariant Kirchhoff stress fields. The mixed form of the covariant stretching 
tensor is provided by the symmetric part of the material covariant derivative of the 
velocity field, an outcome of Euler’s formula. 

Their mixed forms are Cauchy true stress and Kirchhoff true stress fields, 
respectively, the adjective true stemming from the fact that the boundary flux of 
mixed stress tensor fields provides the boundary tractions field. 



The stress rate (STRESSING) is the material tensor field defined by: 

The other tool provided by Differential Geometry for spatial-valued material fields is 
the covariant time-derivative along a motion  

parallel transport from the spatial placement                  
                                to the spatial placement                . 

In Continuum Dynamics, acceleration is the covariant time-derivative  
of the velocity, along the motion. 

Remark The convective time-derivative of a material field is well-defined, 
while the covariant time-derivative is defined only for spatial-valued material 
tensor fields. 



This excursus on fundamentals of field theories provides arguments for a critical 
analysis of most treatments in which a recourse to spatial descriptions of material fields, 
was made, by treating material fields as if they were spatial-valued material fields. 

This geomeric flaw opened the door to difficulties and lasting, hopeless debates on 
basic issues and related computational procedures. 

Most troubles originated from the unwary intention of differentiating, in terms of 
cartesian components, the material stress tensor field with respect to time along the 
motion, an operation which is forbidden in the geometric context of continuum 
kinematics. 

While the impossibility is apparent for body dimension less than the space dimension, 
when the body dimension is equal to the space dimension, the procedure could look 
like as performable, at first sight. A careful inspection reveals however a confusion 
between material fields and spatial-valued material fields and furthermore an irregular 
dependence of the spatial description on time makes this description deprived of 
usefulness, in general. 

A review 



The stressing is the convective time-derivative of the material stress tensor and the 
stretching is the convective time-derivative of the material metric tensor along the 
motion. If the covariant time-derivative would be adopted to evaluate the rate of change 
of the metric tensor, a vanishing derivative would be got, since the standard Euclid 
connection is metric preserving. So, why try to use the covariant time-derivative for the 
stress rate? 
An easy-to-follow explanation of the difficulty may be provided by considering that the 
material stress tensor is referred to a translated basis, while the material metric tensor 
is referred to a basis dragged by the motion (or rotated according to a rigid body motion 
with the same local spin – i.e. co-rotational) 

The spatial description of a spatial-valued material field is highly irregular in 
time, with the exception of very special instances. 



If the covariant time-derivative of the material stress tensor field is related to the 
material stretching field by a constitutive relation, material frame indifference is 
violated, in the sense that, in rigid body motions, a non-vanishing stress rate could 
correspond to a vanishing stretching.  
The shortcomings consequent to this incongruence were detected long ago: 

The resulting objective rate is called the co-rotational Zaremba-Jaumann derivative.  

Many different proposals of objective rates have been made in the relevant literature, 
see e.g.: 



Truesdell rate of Cauchy stress                            .  
This stress rate is the Piola transformation of the material time derivative of the 
symmetric Piola-Kirchhoff stress  

Jaumann rate of Cauchy stress  

Some stress rates proposed in literature   

spatial velocity gradient tesor. 

For contravariant components it has the form  

Jaumann rate of Kirchhoff stress  

Green and Naghdi rate of Cauchy stress  

spin rate or vorticity tensor. 

rate of rotation tensor related to the rotation tensor         by                         . 



The adoption of the convective time-derivative along the motion was foreshadowed 
by Zaremba (1903) and proposed in: 

A rationale for the formulation of objective rates, based on the expression of Lie 
derivative in terms of covariant derivative, for different alterations of the stress tensor, 
was proposed in: 

In all these proposals, however, expressions of the convective time-derivative in 
terms of spatial covariant time-derivatives of stress tensor fields were taken ab initio, 
so that covariance and its basic theoretic implications were not even explored. 



The remedies to the lack of objectivity adopted in literature have been 
eventually ineffective, because the primary cause of ill-posedness was neither 
detected nor avoided, in the absence of a working covariance paradigm. 

In this respect it is to be underlined that, although for three-dimensional bodies 
covariant time-derivatives of spatial immersions of material tensor fields are 
sometimes performable, this tool should be treated at most as a special 
computational mean and not as a basic definition. 

The evaluation according the Leibniz rule is subject to stringent regularity 
requirements and, in addition, covariant differentations are forbidden by the 
geometry of continuum mechanics for lower dimensional bodies (such as wires 
or membranes). 

Comments 



Accordingly, neither the convective time-derivative of a material field, nor the 
covariant time-derivative of a spatial-valued material tensor field along a motion, 
can be evaluated by Leibniz rule. 

For instance, the nonempty set     may be a nonconnected union of connected 
intervals or also a set of isolated points, since the body may cross a point of the 
trajectory at nonconsecutive time instants.  
Then the time-fibre      fails to be a differentiable manifold and differentiations of 
spatial descriptions, with respect to time, lose significance.  
This is the rule in Solid Mechanics and in Newton’s Particle Mechanics.  

Failure of Leibniz rule 



The question to be properly answered consists in finding out how to compare 
the expressions of a rate constitutive behaviour of the material at the same 
particle in different configurations of the body and at different points in the same 
placement. 

This question appears to be unanswerable in a non suitably geometrized 
context. 

There is however a clear evidence that a definite comparison is needed to give 
to a mathematical formula the proper meaning of analytical model of material 
behaviour. 

The covariance paradigm provides, in a natural way, a definite answer to all 
these basic questions. 



•  Push transformation and convective time-differentiation of a material tensor field 
along a motion in the space manifold are allowed. 

•  Parallel transport and covariant time-differentiation of a material tensor field 
along a curve in the space manifold are forbidden operations for lower 
dimensional bodies. 

•  Parallel transport and covariant time-differentiation of a spatial-valued material 
tensor field along a curve in the space manifold are allowed. 

•  Push transformation and convective time-differentiation of a spatial-valued 
material tensor field along a motion in the space manifold are allowed. 

Synopsis 



•  The split according to Leibniz rule, of the convective time-differentiation of a 
material tensor field along a motion in the space manifold, is not performable. 

•  The split according to Leibniz rule, of the convective or covariant time-
differentiation of a spatial-valued material tensor field along a motion in the 
space manifolf, is not performable. 

•  The split according to Leibniz rule, of the convective or covariant time-
differentiation of the spatial description of a spatial-valued material tensor field 
along a motion in the space manifold, is performable only under stringent 
regularity assumptions which are admissible in many modelings proper to fluid 
dynamics but are not likely to be fulfilled in solid mechanics. 



Covariant hypo-elasticity 
A nonlinear hypo-elastic response of a body undergoing a motion under the 
action of a time-dependent system of forces, imposed distorsions and 
kinematical control parameters, is expressed, at each configuration, by a 
morphism from the Whitney product of the stress tensor bundle times itself, to 
the dual bundle of stretching fields:  

The hypo-elastic response is assumed to depend in a nonlinear way on the 
material stress field and relates the convective time-derivative along the motion 
of the material metric field to the convective time-derivative of the dual material 
stress field. 



Covariance paradigm provides the hypo-elastic law at any displaced material 
configuration                                          : 

The convective time-derivative of a pushed tensor field along the pushed motion fulfils:  

Push forward of the material displacement 

and hence the relevant responses are related by the covariance property:                                     



Implications of covariance of hypo-elastic law 







Evaluation of the stress field 





The isotropy property 
In the literature it has been sustained that the fulfillment of the principle of material 
frame indifference requires that the hypo-elastic response be an isotropic map. 

This implication, which is cannot be accepted on a physical ground, is 
contradicted by the covariance paradigm. 

The covariance axiom requires that the response to a pushed cause acting on a 
pushed specimen should provide the pushed effect. 

Material frame indifference is the more special requirement that the response to a 
rotated cause acting on a rotated specimen should provide the rotated effect. 

Isotropy consist instead in the property that the response to a rotated cause 
acting on an unrotated specimen should provide the rotated effect. 



Definition of isotropy 



By the covariance paradigm: 



The homogeneity property 

and similarly for other tensors.  

By the covariance paradigm: 



Integrability of a linear hypo-elastic law 



Definition: integrability 



As a consequence of the covariance paradigm, the integrability property may be 
formulated in terms of the pull-back of the constitutive law to a fixed reference 
configuration. 

This is the basic property that opens the way to the application of the standard 
symmetry lemma of potential theory in linear spaces. 



Proposition: Integrability 



Proposition: Integrability conditions 

This integrability condition is trivially verified if the hypo-elastic response in a 
reference configuration is independent of the stress state. 

This independence, if verified at a given reference configuration, will also hold at 
any other one. The following chain of inclusions then holds true: 



Proposition: reference configuration independence 

Proposition: independence of alteration 



Simple isochoric shearing 









Homogeneous extension 
A homogeneous extension is got by a one parameter displacement of a unitary 
cube: 



Tangent map Green strain 





Concluding remarks 
•  The property of covariance is formulated as variance by push instead of 

invariance under push. 

•  The principle of material frame indifference is accordingly correctly 
reformulated and shown to be trivially satisfied by any (covariant) material 
response. 

•  Spurious results, such as that material frame indifference should imply 
isotropy of the hypo-elastic response and of plastic yield functions, are 
eliminated. Accordingly, treatments devoted to recover a description of 
anisotropic behaviors of elastic and plastic responses should be 
reconsidered. 

•  Homogeneity and isotropy of the material are properly defined and shown 
to be consistent with the covariant transformation of the material response 
at different configurations. 



•  Formulations in terms of different alterations of the relevant tensors 
and push to other configurations may be interchanged without 
affecting the result, thus restoring a sound physical basis to the 
constitutive theory. 

•  The integration needed for the evaluation of the stress may be 
performed on the time dependent pull-backs of the stressing to a 
fixed reference configuration, the result being got by a subsequent 
push-forward to the actual configuration, in a way independent of the 
chosen configuration. 

•  The integrability conditions of the hypo-elastic behaviour may be 
checked at any fixed reference configuration and the relevant 
potentials may be readily computed, still in a way independent of the 
chosen reference configuration. 

These basic implications of the covariance paradigm require to 
review most existing theoretical and computational approaches. 



PART  II


in electromagnetic induction 

The Covariance Paradigm 





Henry-Faraday Law (1826-1831) 

Classical Formulation of the laws of electromagnetism 
as introduced in most modern textbooks 

Maxwell-Ampère Law (1820-1861) 



Abraham R., Marsden J.E., Ratiu T., 
Manifolds, Tensor Analysis, and Applications (2002) 



According to the most formulation of electrodynamics, the man in blue sweater 
explains the turning of the galvanometer needle by the Faraday law of magnetic 
induction, while the green fellow explains the same phenomenon by the Lorentz force. 

Electrodynamics  

Moving truck 

Faraday law 

Lorentz force 



   When Einstein began to think about these matters     
   There existed several possibilities: 

1.  The Maxwell equations were incorrect.  
     The proper theory of electromagnetism was invariant  
     under Galilean transformations. 

2.  Galilean relativity applied to classical mechanics,  
     but electromagnetism had a preferred reference frame,  
     the frame in which the luminiferous ether was at rest. 

3.  There existed a relativity principle for classical mechanics     
     and electromagnetism, but it was not Galilean relativity.  
     This would imply that the laws of mechanics were in need of 
     modification. 

The first possibility was hardly viable.  

                Jackson, D.J.         Classical Electrodynamics (1999) 



Albert Einstein  1905 



References 



Faraday law of induction: examples 



Lorentz force (1892) 

FEYNMAN: 
We know of no other place in physics 
where such a simple and accurate gen- 
eral principle requires for its real 
understanding an analysis in terms of two 
different phenomena. Usually such a 
beautiful generalization is found to stem 
from a single deep underlying principle. 
Nevertheless, in this case there does 
not appear to be any such profound 
implication. 
When we said that the magnetic force on a charge was proportional to its velocity, 
you may have wondered: "What velocity? With respect to which reference frame?"  
It is,in fact, clear from the definition of B given at the beginning of this chapter 
that what this vector is will depend on what we choose as a reference frame 
for our specification of the velocity of charges. But we have said nothing 
about which is the proper frame for specifying the magnetic field. 

Hendrik Antoon Lorentz 
Richard Phillips Feynman 



Experiments show that the magnetic force on a moving charged particle  
has a magnitude given by 

|F| = q|v||B| sin θ ,  
where  
v is the velocity vector of the particle, and  
θ is the angle between the v and B vectors.  
Unlike electric and gravitational forces, magnetic forces do 
not lie along the same line as the field vector.  

Benjamin Crowell, 2010. 

Electricity and Magnetism  

Book 4 in the Light and Matter series 



Lorentz force 







Geometric Formulation of the laws of electromagnetism 

Faraday Law for a moving body 

Maxwell-Ampère Law for a moving body 

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Well-posedness of Faraday law 

Well-posedness of Maxwell-Ampère law 

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Invariance of electric field and magnetic flux 

implies invariance of Faraday law 

Covariance of electromagnetic induction laws  
under relative motion 

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Differential formulation of Faraday law 

Faraday potential 

Lorentz force 

Gauss law 

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Electric field in a body in translational motion 
across a region of spatially uniform magnetic flux. 

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



J.J. Thomson was the first to apply the concept of fields to determine the electromagnetic forces 
on an object in terms of its properties and of external fields.  
Interested in determining the electromagnetic behavior of the charged particles in cathode rays, 
J.J. Thomson published a paper in 1881 wherein he gave the force on the particles due to an 
external magnetic field as 

½ q v x B.  

J.J. Thomson was able to arrive at the correct basic form of the formula, but, because of some 
miscalculations and an incomplete description of the displacement current, included an incorrect 
numerical coefficient in front of the formula.  
It was Oliver Heaviside, who had invented the modern vector notation and applied them to 
Maxwell's field equations, that was able to correctly derive in 1885 and 1889 the correct form of 
the magnetic force on a charged particle [9].  Finally, in 1892, Hendrik Antoon Lorentz derived the 
modern day form of the formula for the electromagnetic force. 

Joseph John Thomson   

Cavendish Professors 

    * James Clerk Maxwell (1871 – 1879) 
    * Lord Rayleigh (1879 – 1884) 
    * J.J. Thomson (1884 – 1919) 
    * Lord Rutherford (1919 – 1937) 
    * William Lawrence Bragg (1938 – 1953) 
    * Nevill Mott (1954 – 1971) 
    * Brian Pippard (1971 – 1984) 
    * Sam Edwards (1984 – 1995) 
    * Richard Friend (1995 – ) 





Faraday Disk 
Dynamo 

Electromagnetic induction 



Mathematica Demonstration Project 
Faraday Disk Dynamo 





Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Faraday law of induction: examples 



Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010) 



Concluding remarks 
•  Covariance means variance by push and ensures in particular Galilei and 

Euclid invariance of the constitutive relations involving invariant tensors. 

•  Homogeneity and isotropy of the electromagnetic material properties are 
consistent with the covariant transformation of the material response at 
different configurations. 

•  Formulations in terms of different alterations of the relevant tensors and 
push to other configurations may be interchanged without affecting the 
result, thus restoring a sound physical basis to the constitutive theory. 

•  The induction laws are covariantly formulated so that a natural variance 
under push due to relative motion holds. 


