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Continuum kinematics

Described by the following differentiable geometric structures:

« The ambient space S , in which motions take place, is a finite dimensional

Riemann manifold without boundary, endowed with a metric tensor field g ;

e The material bodyB is a finite dimensional manifold with boundary, of dimension

less than or equal to the one of the ambient space;
 The observation time interval | an open, connected subset of the reals;

« The configurations manifold C, an infinite dimensional manifold of maps which
are C'-diffeomorphisms of the body manifold onto submanifolds of the ambient

space manifold.



Motions and displacements

A motion is described by a map ¢ € CYB x [;S) from the manifold
B x I of material events into the ambient space manifold (S,g).

To a motion there correspond at each time ¢ € I a material configuration
map @, € C'(B;€;) which is a diffeomorphisms of the body manifold B
onto the placement manifold €2, .

The material displacement from a source placement €2, = ¢,(B) to the
target placement 2. = ¢_(B), is the diffeomorphism

P =0 € CHQ; ),

providing the position in €2, at time 7 € I of the particle which occupies
the given position in €2; at time t € [ .



The inclusion map

To emphasize the distinction between material fields and spatial fields, it is
expedient to consider the inclusion map:

1yt € Cl(ﬂt ;' S)
We denote by:

P = icp_,_t o, € CH(B; icp,_t(ﬁt)) the spatial configuration map

A 1 . . ) )
e, €0 (1.t (£2¢) 11 7 (£27)) the spatial displacement map
1 : ' .
Prt € CH($2:592;) the material displacement map
QAOT,t
S > S
in Tiw— = PrOlpt i=lpr 0@
2, —— 2,
CP'r‘,t
T"AOT.t
TS ——=T8
Ticp.tT TTiqo,T < TLAP’T,t O Ti(.p,t — Ticp’f,- O TLP’T,t .
T2, ——TS2,

TcP‘r,t







Manifolds and Fibre Bundles

A manifold M is the generalization of the notion of a curve or a surface in
the Euclidean space.

A fibre bundle (BUN(M), =, M) is a geometrical construction which is useful
to provide a clear mathematical description of many basic items in
mechanics and other physical sciences.

It may be naively described as a base manifold with a fibre-manifold
attached at each of its points. Each fibre is a diffeomorphic image of
a given manifold called the typical fibre.

The surjective map 7 , which associates with, to each point of the
bundle, the base point of the relevant fibre, is called the projection.



Spatial fields

Spatial tensors are multilinear maps over a tangent space to the space
manifold.

Spatial fields are defined at each point of the ambient space manifold and at

any time. Their values are spatial tensors based at that point, independently
of whether there is a body particle crossing it or not.

A spatial field is a section §; € C!(S;BUN(S)) of the tensor bundle
(BUN(S), 7, S)

BUN(S)

/ lﬂ' — mwo§ =IDg
IDs

S — S

The twice covariant metric tensor field g is a spatial field.




Material fields

tangent space at a point of the body’s placement along the motion.

Material tensors are multilinear maps that operate, at each time instant, over a

Material fields are defined, at each time instant, at particles of the body

manifold and their values are material tensors based at the particle location

evolving in the motion.

A material field at time t € [ is a section s, ; € C'(B; BUN(£2;)) of the bundle:

(BUN(£2;),m, £2;) along the motion:

BUN(£2,) v
Se.t O Bet =Pt 1
| 7rﬂ\scp.t < Sp.t — écp.t O LPT_

(Pt TrOSLP.t:IDQt.
B 2

Most fields of interest in continuum mechanics are material fields,
stretch, stretching, stress, stressing, temperature, heat flow,
thermodynamical potentials.

entropy,



Spatial-valued material fields

- Spatial-valued material fields are defined, at any instant of time, at particles of
the body manifold, their values being spatial tensors based at the particle
location evolving in the motion.

A spatial-valued material field is a section s, € C!(B; BUN(S))
of the bundle (BUN(S),w,S) along ¢, € C1(B; §2,):

§cp,t . e Scp’tA — e 1
™ Sp,t @ SLP"t — S(P.t O Lpf— Y
TOS t+ = 1D 0, ,
B Pt g Qt ) |

In Continuum Dynamics:
velocity, force and kinetic momentum are spatial-valued material fields




Material inductions of covariant spatial fields

A covariant spatial tensor field §; € CY(S;COV(S)) at time t € I in-
duces, at the configuration @, € CY(B;Q;), a spatial-valued material field
Spi = $ 0ipy € CH(Qy, COV(S)) and, by co-restriction, the material fields

spir € CHB;COV (L)) and s,; € CY(Q;COV(,)), according to the
commutative diagram:

icp,tl ( o —
S St Ol t — St
@,t ) A |8, < : Qi P,l
Sp,t lgo,tlst — St
& Py 2, iyt \ 7T O Syt = IDg, .

The bundle COV(S);, (. denotes the restriction of COV(S) to the base
i,:(Q2) CS. The pull-back i,;| € C'(COV(S)i, ) COV(§,)) between
covariant tensor bundles is defined in terms of the inclusion map 1,; €
CY(2;S) and of the push-forward i,;T € CHTQ; TS) between tangent
bundles, by:

Scp,t(acp,ta bcp,t) L= écp,t(igo,tTacp,ta icp,thcp,t) ;

for all a,4, by, € CHQy; T,) .



Spatial descriptions of spatial-valued material fields

{

A spatial-valued material field S, € CY(B x I;BUN(S)) admits in the
trajectory manifold 7 (B,®) a spatial description:

ST(B.¢) € CHT (B, ), BUN(S)), according the diagram:

/&P\
(@ . PRr)

ST (B,9)

BxI 2= T(B,¢) —% BUN(S)

\ l / = STEe) ::§(’OO<S07PRI)
B

W(B, ¢)

—1

(PRg € CHS x I:;S) and pr; € CYS x [;I)— cartesian projectors,
@ e C(BxI;S) > motion of the body in the ambient space,
W(B,¢) =¢(BxI)CS > wake manifold,
(p,P

Rr) € CY(BxI;SxI) —— events map,

)
T (B,¢) :=(¢,PR1)(B xI) — ftrajectory manifold.



In most presentations of continuum mechanics, material fields and spatial-
valued material fields are not distinguished.

The basic distinction is usually hidden by the context, in which a 3-D
dimensional body manifold is considered embedded in a 3-D ambient space

manifold.



(Geometric tools for comparing:

*Tangent vectors at different points of the space manifold.

*Tangent vectors at the same particle for different placements of a bodly.

*Tangent vectors to different particles in the same body placement.

Parallel transport along a curve: a transformation, in the ambient space
manifold, which takes a tangent vector to this manifold, that is a velocity of a
curve in the space manifold, into another such tangent vector.

Push transformation by the material displacement map:
a transformation which takes a material tangent vector, that is a velocity of
a curve in a body placement, into a material tangent vector in a displaced

placement.
It is the suitable transformation tool to compare material tensors based at

different configurations.




A material tangent vector is not in the domain of the parallel transport along a
path. Even if a material vector in a 3-D body is improperly identified with its
spatial immersion, the parallel transported vector will depend on the chosen
connection, a dependence which should be taken into account in the description
of a material behavior.

In a lower dimensional body, the image by a parallel transport along a path will,
in general, no more be the spatial immersion of a material vector (see below).

Push of a material vector tangent to a wire
and parallel transport of its spatial immersion

Parallel transport in space is applicable only to spatial-valued vectors. Material
vectors can be only tranformed by push along diffeomorphic material
displacement maps as sketched in the above figure.




The covariance paradigm

Material fields, pertaining to the same material body at different configurations,
must be compared according to the transformation by push along the material
displacement diffeomorphism.

The time rate of variation of a material tensor field
S(p,t ~ Cl(ﬂt , BUN(Qt>)

is the convective time-derivative along the motion ¢ € C*(BxI;S):




The spatial metric tensor field g € C'(S;COV(S)) induces at the configuration

@, € CH(B; ;) the material metric tensor field:
et € C1(£2:;COV(£24))

defined by ge ¢ =1p:|8p+ Where g, = goliy
and explicitly:

g(P,t (a(P,t) bﬂp,t) = éﬂp,t (i(P,tTa(P,t) icpathwat) '

To any pair of configurations ¢, € CY(B;£2;) and «, € C(B;Q;)
there corresponds a Green strain (STRETCH) tensor field:

%(Sor,tlgcpﬂ' — gcp,t) S Cl(ﬂt ; SYM(Qt))

The strain rate (STRETCHING) is the material tensor field defined by:

Ept - — %ch,t 8p — Ur=t %(‘Pfr,tlg% — gcp,t) S Cl(ﬂt SYM(€2))




The STRESS field o, € C'(£2;; SYM*(€2;)) is a section of the bundle SYM*(€2,)

of symmetric contravariant material tensor fields, defined by duality with the
stretching:

<0.‘Pst’ €Q0’t> e J1<0'Q0’t 08(’01) & Cl(ﬂt FUN(Q{))

/

Material field of linear invariants of the mixed tensor field:

O,10€,, € CH ; MIX(€))

In Continuum Mechanics, material stress fields, whose duality pairing with the
covariant stretching provide the virtual power per unit volume in the actual
configuration, are contravariant Cauchy stress fields.

The ones providing the virtual power per unit mass, or per unit reference volume,
are contravariant Kirchhoff stress fields. The mixed form of the covariant stretching
tensor is provided by the symmetric part of the material covariant derivative of the
velocity field, an outcome of Euler’s formula.

Their mixed forms are Cauchy true stress and Kirchhoff true stress fields,

respectively, the adjective true stemming from the fact that the boundary flux of
mixed stress tensor fields provides the boundary tractions field.



The stress rate (STRESSING) is the material tensor field defined by:

Ecp,t 0'90 — (97-:15 @T,tlacpﬂ' < Cl(ﬂt , SYNIX(Qt)) .

The other tool provided by Differential Geometry for spatial-valued material fields is
the covariant time-derivative along a motion @ € C1(Bx I ;S)

vcp,t SCP _— T=1 SOT,tU SLPaT

ngT’tU __, parallel transport from the spatial placement iLP,T(QT)
to the spatial placement i () -

In Continuum Dynamics, acceleration is the covariant time-derivative
of the velocity, along the motion.

Remark The convective time-derivative of a material field is well-defined,
while the covariant time-derivative is defined only for spatial-valued material
tensor fields.



A review

This excursus on fundamentals of field theories provides arguments for a critical
analysis of most treatments in which a recourse to spatial descriptions of material fields,
was made, by treating material fields as if they were spatial-valued material fields.

This geomeric flaw opened the door to difficulties and lasting, hopeless debates on
basic issues and related computational procedures.

Most troubles originated from the unwary intention of differentiating, in terms of
cartesian components, the material stress tensor field with respect to time along the
motion, an operation which is forbidden in the geometric context of continuum
Kinematics.

While the impossibility is apparent for body dimension less than the space dimension,
when the body dimension is equal to the space dimension, the procedure could look
like as performable, at first sight. A careful inspection reveals however a confusion
between material fields and spatial-valued material fields and furthermore an irregular
dependence of the spatial description on time makes this description deprived of
usefulness, in general.
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The stressing is the convective time-derivative of the material stress tensor and the
stretching is the convective time-derivative of the material metric tensor along the
motion. If the covariant time-derivative would be adopted to evaluate the rate of change
of the metric tensor, a vanishing derivative would be got, since the standard Euclid
connection is metric preserving. So, why try to use the covariant time-derivative for the
stress rate?

An easy-to-follow explanation of the difficulty may be provided by considering that the
material stress tensor is referred to a translated basis, while the material metric tensor
is referred to a basis dragged by the motion (or rotated according to a rigid body motion
with the same local spin — i.e. co-rotational)

Space-time tube



If the covariant time-derivative of the material stress tensor field is related to the
material stretching field by a constitutive relation, material frame indifference is
violated, in the sense that, in rigid body motions, a non-vanishing stress rate could

correspond to a vanishing stretching.
The shortcomings consequent to this incongruence were detected long ago:

Zaremba, S.: Sur une forme perfectionée de la théorie de la relaxation. Bull.
Int. Acad. Sci. Cracovie, 594-614 (1903).

Jaumann, G.: Geschlossenes system physikalischer und chemischer differen-
tialgesetze. Akad. Wiss. Wien Sitzber. Ila, 385-530 (1911).

The resulting objective rate is called the co-rotational Zaremba-Jaumann derivative.

Many different proposals of objective rates have been made in the relevant literature,
see e.g.:

Bruhns, O.7T., Xiao, H., Meyers. A.: Self-consistent Eulerian rate type elasto-
plasticity models based upon the logarithmic stress rate. Int. J. Plasticity 15,
479-520 (1999).

Liu, C.S.: Lie symmetries of finite strain elastic-perfectly plastic models and

exactly consistent schemes for numerical integrations. Int. J. Solids Struct. 41,
1823-1853 (2004).




Some stress rates proposed in literature

Truesdell rate of Cauchy stress — | & = ¢, «(J'S)

This stress rate is the Piola transformation of the material time derivative of the
symmetric Piola-Kirchhoff stress 8§ = J¢p* (o)

For contravariant components it has the form — | g=g—-l-o—o-lI'+ o tl‘(d)

l = Vv — spatial velocity gradient tesor.

\V/
Jaumann rate of Cauchy stress —— OC=0+0 0—W"'0T
&) — spin rate or vorticity tensor.
: \% :
Jaumann rate of Kirchhoff stress —— T=7T+T ' 0W—W"T

Green and Naghdi rate of Cauchy stress — |=0+0-2-Q -0

{) — rate of rotation tensor related to the rotation tensor K by {2 = R - R".



The adoption of the convective time-derivative along the motion was foreshadowed
by Zaremba (1903) and proposed in:

Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R.
Soc. London A 200, 523-541 (1950).

Oldroyd, J.G.: Finite strains in an anisotropic elastic continuum. Proc. R. Soc.
London A 202, 345-358 (1950).

Truesdell, C.: Hypo-elasticity. J. Rational Mech. Anal. 4, 83-133, 1019-1020
(1955).

A rationale for the formulation of objective rates, based on the expression of Lie
derivative in terms of covariant derivative, for different alterations of the stress tensor,
was proposed in:

Marsden, J.E., Hughes, T.J.R.: Mathematical foundations of elasticity.
Prentice-Hall, Redwood City, Cal (1983).

In all these proposals, however, expressions of the convective time-derivative in
terms of spatial covariant time-derivatives of stress tensor fields were taken ab initio,
so that covariance and its basic theoretic implications were not even explored.




Comments

The remedies to the lack of objectivity adopted in literature have been
eventually ineffective, because the primary cause of ill-posedness was neither
detected nor avoided, in the absence of a working covariance paradigm.

In this respect it is to be underlined that, although for three-dimensional bodies
covariant time-derivatives of spatial immersions of material tensor fields are
sometimes performable, this tool should be treated at most as a special
computational mean and not as a basic definition.

The evaluation according the Leibniz rule is subject to stringent regularity
requirements and, in addition, covariant differentations are forbidden by the
geometry of continuum mechanics for lower dimensional bodies (such as wires
or membranes).



Proposition 1 (Fibration) The trajectory manifold T (B, ) is endowed
with a structure of fibred manifold over the wake manifold by the cartesian
projection PRs € CH(T (B, p) ;W(B,®)) . Since it associates the location x €
S with a spatial event (x,t) € T (B, @), the fibre at x € W(B, @) is the set
Iy of time instants at which a particle of the body crosses the spatial location
X € §, which is a nonempty and in general neither open nor connected set.

For instance, the nonempty set [, may be a nonconnected union of connected
intervals or also a set of isolated points, since the body may cross a point of the
trajectory at nonconsecutive time instants.

Then the time-fibre [ fails to be a differentiable manifold and differentiations of
spatial descriptions, with respect to time, lose significance.

This is the rule in Solid Mechanics and in Newton’s Particle Mechanics.

Accordingly, neither the convective time-derivative of a material field, nor the
covariant time-derivative of a spatial-valued material tensor field along a motion,

can be evaluated by Leibniz rule.



The question to be properly answered consists in finding out how to compare
the expressions of a rate constitutive behaviour of the material at the same
particle in different configurations of the body and at different points in the same
placement.

This question appears to be unanswerable in a non suitably geometrized
context.

There is however a clear evidence that a definite comparison is needed to give
to a mathematical formula the proper meaning of analytical model of material
behaviour.

The covariance paradigm provides, in a natural way, a definite answer to all
these basic questions.




« Push transformation and convective time-differentiation of a material tensor field
along a motion in the space manifold are allowed.

« Parallel transport and covariant time-differentiation of a material tensor field
along a curve in the space manifold are forbidden operations for lower
dimensional bodies.

« Parallel transport and covariant time-differentiation of a spatial-valued material
tensor field along a curve in the space manifold are allowed.

« Push transformation and convective time-differentiation of a spatial-valued
material tensor field along a motion in the space manifold are allowed.



The split according to Leibniz rule, of the convective time-differentiation of a
material tensor field along a motion in the space manifold, is not performable.

The split according to Leibniz rule, of the convective or covariant time-
differentiation of a spatial-valued material tensor field along a motion in the
space manifolf, is not performable.

The split according to Leibniz rule, of the convective or covariant time-
differentiation of the spatial description of a spatial-valued material tensor field
along a motion in the space manifold, is performable only under stringent
regularity assumptions which are admissible in many modelings proper to fluid
dynamics but are not likely to be fulfilled in solid mechanics.



A nonlinear hypo-elastic response of a body undergoing a motion under the
action of a time-dependent system of forces, imposed distorsions and
kKinematical control parameters, is expressed, at each configuration, by a
morphism from the Whitney product of the stress tensor bundle times itself, to
the dual bundle of stretching fields:

The hypo-elastic response is assumed to depend in a nonlinear way on the
material stress field and relates the convective time-derivative along the motion
of the material metric field to the convective time-derivative of the dual material
stress field.



Covariance paradigm provides the hypo-elastic law at any displaced material
configuration (¢ o ), € CHB;6€)

%Lcjocp,t CTg‘P — H(Coso)t <CtTU<P,t ) LCO«P,t CTUcp)

The convective time-derivative of a pushed tensor field along the pushed motion fulfils:
Leopt (CTay) = Gl Lyt ayp)

and hence the relevant responses are related by the covariance property:

| Hog), 0C1 =¢,ToHy, |

5Qt (COQO)T,t) 597
Ct/l\ TCT — (CO(P)T,tOCt = CTOSOT,t'

Qt Pr.t QT /

Push forward of the material displacement @, ; € Cl(ﬂt;QT)




Implications of covariance of hypo-elastic law

As a first implication, if the transformation ¢, € CH(€;;0€,) is an
isometry at ¢t € I, viz. (184t = 8o+, the covariance property implies
the fulfillment of the principle of material frame indifference. In fact
it states that the hypo-elastic law transforms by push according to the
relative isometric motion, when measured by two observers. In treat-
ments of the principle of material frame indifference, inspired to the one
in (Truesdell and Noll, 1965), the response acting at the configuration
G o ¢, , was considered equal to H,, , by tacitly performing a trans-
lation to relate the material tangent spaces Tx€2; and Te¢, (x)C(€2¢) .
This does not comply with covariance.

Truesdell, C., Noll, W., 1965. The non-linear field theories of mechanics,
Handbuch der Physik, Springer, 1-591.




A second implication is got, by chosing ¢, € C'(€;;082;) to be a 6-
time translation along the trajectory: ¢, = ¢,,19; = P19 © @;'. The
covariance property assures that the hypo-elastic constitutive relation,
once defined at a given configuration, may be reproduced at every other
configuration by pushing forward according to the relevant displace-
ment map. The push according to a chain of material displacements
is equal to the composition of the pushes according to each component
displacement. By this property, the covariant constitutive relation is
independent of the chain of displacements followed to reach any other
configuration. The hypo-elastic law so formulated defines in a proper
way a hypo-elastic material. In this respect, we remark that the other
hypo-elastic constitutive laws proposed in literature do not fulfill this
basic requirement.



All constitutive properties of an hypo-elastic material are most sim-
ply investigated in terms of a reference natural configuration x, €
CY(B;,), the results being however independent of a particular choice
in the class of natural configurations. According to the diagram

QO/\
\\\st
\\\
N
Xo Q, <= &oX,= ¥

by the properties of convective time-derivatives
gtlﬁcp,t g, = €tla7':t SOT,t\LO-LP,T = ( T=t £Tl0'<p,7' )
gtl‘ccp,t Ep — €tla7':t C)Of,—,tlgcp,T — ‘\T:t STlgcp,T 3

the pull-back of the hypo-elastic law at configuration x, € C*(B;€Q,)
is given by

%‘\T:t nggLP,T — HO(gtlUcp,t ) Or—t ‘ETlULP,T) . Ho = HXO — Hﬁt_locpt '



Evaluation of the stress field

In most computational algorithms, what has to be evaluated is the con-
stitutive response in terms of stress in a given motion. Then, a basic question
concerns the evaluation of the stress field along the motion by means of the
inverse hypo-elastic response according to the formula:

LotTp=Hei(0p1, 1L0p18y)-

This highly nonlinear implicit relation is best solvable by means of itera-
tive algorithms formulated in a reference configuration with reference to the
pulled back inverse hypo-elastic law:

aT:t ST\LULP,T — I:Io(gtlo-cp,ta %aT:t £Tlgcp,7) .

Accordingly, the stress increment in a time interval |t,,t| is evaluated by
time-integration along the motion:

t
€10, —&, |0y, — / (10w, 10 £ lg..) ds.
to




The converse problem of evaluating the strain field along the motion accord-
ing to the direct hypo-elastic law:

1 —
L8 =Hypi(0pt, Loroy,),

is readily solved by the integral formula

t
%Stlgcp,t — %‘ftolgcp,to -+ / Ho(sslacp,sa 07:3 (ST\I/O-CP,T)) ds .
Jto




In the literature it has been sustained that the fulfillment of the principle of material
frame indifference requires that the hypo-elastic response be an isotropic map.

This implication, which is cannot be accepted on a physical ground, is
contradicted by the covariance paradigm.

The covariance axiom requires that the response to a pushed cause acting on a
pushed specimen should provide the pushed effect.

Material frame indifference is the more special requirement that the response to a
rotated cause acting on a rotated specimen should provide the rotated effect.

Isotropy consist instead in the property that the response to a rotated cause
acting on an unrotated specimen should provide the rotated effect.



A hypo-elastic body is g-isotropic at x € €2, , if the invariance property:
p,Hy(ox) -dox =H,(p,Tox, p,100x), YVoox € SYM"(£2,)x,

holds for any linear automorphism Q € BL (T2, ;Ty2,), which is g-
isometric, i.e. such that:

pngX — gX ‘

A linear automorphism Q € BL(Tx€,;Tx€2,) induces the following iso-
morphisms acting on the tensors gx € SYM(Q,)x, ex € SYM(L,)x,
ox € SYM"(€2,)x:

p,lex(a,b):=g(Q'a,Q'b) = (Q*g.Q 'a,b), Va,becT,Q,,

plex(a,b):=e,(Qta, Q7 'b) = (Q*e,Qta,b), Va,beT,Q,,
p,lox(a*, b*):= o (Q*a*, Q*'b*) = (QoxQ*a*,b*), Va* b* e Ti(,,
that is: p,Tgx == Q *gxQ !, p.lex = Q *exQ7 1, p.lox:=QoQ*.




The property of g-isotropy means that a relative rotation between the tan-
gent fibre to the body at a point and the pair of stress and stress-rate tensors,
implies that the corresponding strain-rate is equally rotated. Recalling that
Q4 :=gioQ*og,, we have that Q* = Q! and Q* = g0 Qog’ . Hence:

g:o(Q " 0exQ ) =gio(gxoQogl)odexoQ?=QoD,oQ?,
(Q5UXQ*)ng:QO50'xO(ngQAOgi)ng:QO(SEXOQA,

In terms of the mixed stretching tensor Dy :=gzolL,; g, and of the mixed
stressing tensor Xy := L,; 0, 0 g« , the gy-isotropy property

poT5€X — HO(poTO.X? poT50X) ) \V/CSO.X 6 SYNI:(*
takes the usual form QD,Q* = Hx(QX,Q%) - (QiX, Q™).

By the covariance paradigm:

The g-isotropy at a configuration x, € C'(B:;£,) of a hypo-elastic body
implies the &lg-isotropy at & -displaced configurations.




A hypo-elastic body is g-homogeneous at a configuration x, € C1(B; £2,),
if for any pair of points x,y € {2, there exists a linear isomorphism Qy x €
BL (Tx$2,;T,$2,) which is g-isometric, i.e.:

py,ngX =gy <= 8y(Qyx(a),Qyx(b))=gx(ab),

for all a,b € Tx{2,, and such that:

Py x| (Hx(ox) -00x) = Hy(py xT0x, py x100x), Voo, € SYM™(§2,)x.

The push py, T € T 82, of a covector a € T 82, is defined by duality:

<py,xTa7Qy,X(h)>y ‘= <a7 h>x7 Vh e lTX[ZO)

and similarly for other tensors.

By the covariance paradigm:




Let us provide an answer to the question about the integrability of a linear
hypo-elastic response, formulated as a tangent compliance. The available
mathematical tool is the standard symmetry lemma of potential theory in
linear spaces, which in its modern form concerns with the differential of an
operator from a BANACH space to its dual

In a covariant theory the symmetry lemma may be applied by consider-
ing the pull back of the hypo-elastic law to a fixed reference configuration,
according to the displacement maps associated with the motion.

The integrability may be investigated on the pulled response which, for
each particle, is defined on the linear fibre of stress-stressing pairs and takes
values into the dual stretching linear fibre based at the reference position.

The results so obtained do not agree with the ones provided by the anal-
ysis of integrability performed in

Bernstein, B.: Hypo-elasticity and elasticity. Arch. Rat. Mech. Anal. 6, 90-104
(1960).

which all the subsequent relevant literature have made reference to.



In the sequel, Ci‘? means k-fold continuous fibre-differentiability of fibre-
preserving maps.

Definition: integrability

A linear hypo-elastic response is integrable to an elastic response if there ex-
ists a strain-valued hypo-elastic stress-potential, that is a bundle morphism:

b, € Cp(SYM*(£2;);SYM(£2:)),
such that H, = dp®,, ,so that

%ﬁcp,t By = dFdBcPt (Ucp,t) ' Ecp-,t O -

It is integrable to an hyper-elastic response if it exists a scalar-valued stress-
potential E} , € CH(SYM™(£2¢);FUN(£2;)) such that H, = d%:E] ,, so
that | |

2 o
1 -
Lo t8p =dpE, ((0pt) Lot Ty .




As a consequence of the covariance paradigm, the integrability property may be

formulated in terms of the pull-back of the constitutive law to a fixed reference
configuration.

This is the basic property that opens the way to the application of the standard
symmetry lemma of potential theory in linear spaces.

Volterra, V.: Lecons sur les fonctions de lignes, professées a la Sorbonne en
1912. Gauthier-Villars, Paris (1913).

Vainberg, M.M.: Variational methods for the study of nonlinear operators. Hol-
den-Day, Inc., San Francisco (1964).

Hereafter dr denotes the fibre-derivative, in the bundle (SYM™(§2,), wcon, §2,)
taken by holding the base point fixed.



Proposition: Integrability

A linear hypo-elastic response is integrable to an elastic response if there exist

a reference configuration x, € C'(B;S) and a strain-valued stress-potential
b, c CL(SYM*(£,);SYM(S2,)), such that H, = dp®, , i.c.

% T=t1 &Tlggo,r — dF¢O(€t~L0-(p,t) ’ a’/':1‘, éTlago,Ta

which integrated provides the elastic response

%(ftlgcpt — ftolgcpto) — dso(ﬁtlo'cp,t — &tolaﬂpto) :

The linear hypo-elastic response is said integrable to an hyperlastic response

if there exists a scalar-valued potential E* € C%(SYM*(£2,);FUN(S2,)),
such that H, = d%E* | i..

% T=tL nggQOT — d%‘E; (Stlacp,t) ) a'r':t &Tlago,'rp

which integrated provides the hyper-elastic response

%(ftlgcpt - gto lgcpto) = dpE; @tlaso,t - Etolacpto) :
with hyper-elastic stress-potential E* € C4(SYM*(42,);FUN({2,)).




Proposition: Integrability conditions

The hypo-elastic response is integrable to an elastic response if and only if,
in each linear fibre, the following symmetry condition holds:

<dFHo<0'x) ) 50')( ) 510'X7520'x> — <dFHo(0'x) ) 50'x ) 520X7510X> ’

for all dox,d10x,020x € SYM™(§2,)x . The further symmetry condition:
<Ho<0'x) ' 510'X7520'x> — <Ho(0'x) ' 520X7 510'x> )

ensures that the elastic response is hyper-elastic.

This integrability condition is trivially verified if the hypo-elastic response in a
reference configuration is independent of the stress state.

This independence, if verified at a given reference configuration, will also hold at
any other one. The following chain of inclusions then holds true:




Proposition: reference configuration independence

The following proposition assures that integrability is independent of the
kind of dual tensors chosen to formalize the hypo-elastic response.

Proposition: independence of alteration

Integrability of a linear hypo-elastic response expressed in terms of covariant
stretching and contravariant stress and stressing, is equivalent to integrabil-
ity of the linear hypo-elastic response expressed in terms of mixed tensors,
provided that alteration is performed at each configuration by means of the
metric tensor pushed according to the displacement map. The relevant po-
tentials are related by:

H, = drd, < M =drd,"".
B, = dpEr = PMX = gppMIX
The relationships between the potentials are the following:

MIX
BN (o)) = g5, 0B, (0) oy, ),

X

E(I)\IIX<0.i\(IIX) _ EO(O.I\[IX o g;O) .



Let us consider a unit cube as a natural stress-free configuration of a
body and a cartesian reference system. A simple shear is a one parameter
displacement whose expression in the cartesian reference system is given by

907($,y,z) =(r+yy)e; +yey+ zes.




Let us recall that, given the matrix of a linear map with respect to an or-
thonormal basis, its transpose is the matrix of the dual linear map with
respect to the dual basis. The matrices of the relevant tangent map, of its
inverse and of the dual and its inverse, taken with respect to the orthonormal
basis {e; } and to the dual basis {e'}, with e =g, (e;), are then:

I v 0 I —v 0

—1
Tel=10 10|, [Te:1=]0 1 0
00 1 0 0 1
1007 "1 00
T'e =17 10|, [T"'l=] - 10
00 1 0 01




The matrix |E,| of Green’s strain

Eo(7) = 1, 18py —8x,) = 3(I7¢, 080 0 T¥, —8x,)

with respect to the basis {e; } is given by

0O ~ O
El() =37 7 0
000 0

From the constitutive law:

1 * * !
Esovla'so,t — gxoo(¢7/lg¢’7'_gX0>ogxo+1 — 2V

J1(8%, (¥, 186 —8x,))o8y,

we get the expression of the matrix of the referential Cauchy true stress
T, =, lo,, og, with respect to the basis {e; } and the dual {e’}:

1
(L

0

'

/

0

Y
2

Y
0

.
0
O_

_I_

vV

1 —2v

Y

o O =

o = O

— O O




Being

the matrix of the Cauchy true stress T =T, o T, 0T ¢ L is given by

The initial linearized law is expressed by the usual linear relation between

1
0
0

a%

)
1

0

1
!

.
0
1_

'T](~)

0
0

shearing stress and strains, i.e.

_|_

1
0

vV

1 —2v

S = O

o O =

Y

o O O

[ 1
0
0

S = O

— O O




A homogeneous extension is got by a one parameter displacement of a unitary
cube:

Y (,y,2) =atrex+ Ptyey + ze,




at 0 0 a’t? —1 0 0
Te =1 0 pt 0|, E,](t) =1 0 t2—1 0| .
I 0 0 1 I 0 0 0.

Tangent map Green strain Eo(t) = (1" p; 0 8pt 0 T, — 8x,)

According to the simplest rate law, the matrix of the referential Cauchy true
2 2242 . ,
stress To(t), setting k(t) = L4802 g oiven by

1-2v
. Co?t? -1 0 0 100
—[To[(t) = 0 Fe2—-1 0| —-k() |0 10
a 0 0 0 0 0 1
so that for the Cauchy true stress T =T, o T, o Ty 1 we get

. ottt -1 0 0 | 1 0 0]
—[T|(t) = 0 Pt2—1 0 |—k(t)| 0 1 0
a 0 0 0 00 1




Assuming v = 0 and Bt = (at)~!, which corresponds to a vanishing Poisson
effect and to an isochoric displacement, the normal stress Ti;(t) and the
resultant axial force N(t) = A(t) T11(t) = p(at —1/(at)) , where A(t) =
1/(at) is the transversal area, are plotted in

stress—_

axial force

stress — axial force

0 0.5 1 1.5 2 2.5
elongation



« The property of covariance is formulated as variance by push instead of
invariance under push.

« The principle of material frame indifference is accordingly correctly
reformulated and shown to be trivially satisfied by any (covariant) material
response.

« Spurious results, such as that material frame indifference should imply
isotropy of the hypo-elastic response and of plastic yield functions, are
eliminated. Accordingly, treatments devoted to recover a description of
anisotropic behaviors of elastic and plastic responses should be
reconsidered.

« Homogeneity and isotropy of the material are properly defined and shown
to be consistent with the covariant transformation of the material response
at different configurations.



Formulations in terms of different alterations of the relevant tensors
and push to other configurations may be interchanged without
affecting the result, thus restoring a sound physical basis to the
constitutive theory.

The integration needed for the evaluation of the stress may be
performed on the time dependent pull-backs of the stressing to a
fixed reference configuration, the result being got by a subsequent
push-forward to the actual configuration, in a way independent of the
chosen configuration.

The integrability conditions of the hypo-elastic behaviour may be
checked at any fixed reference configuration and the relevant
potentials may be readily computed, still in a way independent of the
chosen reference configuration.

These basic implications of the covariance paradigm require to

review most existing theoretical and computational approaches.




PART I

in electromagnetic induction
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Manifolds, Tensor Analysis, and Applications (2002)

9.3 Electromagnetism

Classical electromagnetism is governed by Maxwell’s field equations. The form of these equations depends on
the physical units chosen, and changing these units introduces factors like 47, ¢ = the speed of light, € = the
dielectric constant and pg = the magnetic permeability. The discussion in this section assumes that €q, g
are constant; the choice of units is such that the equations take the simplest form; thus ¢ = €5 = g = 1
and factors 47 disappear. We also do not consider Maxwell’s equations in a material, where one has to
distinguish E from D, and B from H.

Let E, B, and J be time dependent C''-vector fields on B® and p : R® x R — R a scalar. These are said to
satisfy Mazwell’s equations with charge density p and current density J when the following hold:

divE =p (Gauss’s law) (9.3.1)

divB =0 (no magnetic sources) (9.3.2)

curl E + %3 =0 (Faraday’s law of induction) (9.3.3)
JE

curl B — i J (Ampére’s law) (9.3.4)

E is called the electric field and B the magnetic field.
By Stokes’ theorem, equation (9.3.3) is equivalent to

/ E-ds=/(curlE)-ndS=—%/B-ndS (9.3.7)
88 s s

for any closed loop 85 bounding a surface S. The quantity [, _E-ds is called the voltage around 95. Thus,
Faraday’s law of induction equation (9.3.3), says that the voltage around a loop equals the negative of the
rate of change of the magnetic flur through the loop.



Electrodynamics

7 o o
Moving truck A .,_';
01 coil ‘
1

Faraday law

Lorentz force

According to the most formulation of electrodynamics, the man in blue sweater
explains the turning of the galvanometer needle by the Faraday law of magnetic
induction, while the green fellow explains the same phenomenon by the Lorentz force.




Jackson, D.J. Classical Electrodynamics (1999)

When Einstein began to think about these matters
There existed several possibilities:

1. The Maxwell equations were incorrect.
The proper theory of electromagnetism was invariant
under Galilean transformations.

2. Galilean relativity applied to classical mechanics,
but electromagnetism had a preferred reference frame,
the frame in which the luminiferous ether was at rest.

3. There existed a relativity principle for classical mechanics
and electromagnetism, but it was not Galilean relativity.
This would imply that the laws of mechanics were in need of
modification.

The first possibility was hardly viable.




ON THE ELECTRODYNAMICS OF MOVING
BODIES

By A. EINSTEIN
June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the recipro-
cal electrodynamic action of a magnet and a conductor. The observable phe-
nomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two
cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbour-
hood of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the
magnet is stationary and the conductor in motion, no electric field arises in the
neighbourhood of the magnet. In the conductor, however, we find an electro-
motive force, to which in itself there is no corresponding energy, but which gives
rise—assuming equality of relative motion in the two cases discussed—to elec-
tric currents of the same path and intensity as those produced by the electric
forces in the former case.
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Richard Phillips Feynman

Hendrik Antoon Lorentz

FEYNMAN:

We know of no other place in physics
where such a simple and accurate gen-
eral principle requires for its real

u:l')derstanding an analysis in terms of two F = q(E + v X B)
different phenomena. Usually such a
beautiful generalization is found to stem rot E, = —0._, B.-

from a single deep underlying principle.

Nevertheless, in this case there does

not appear to be any such profound

implication.

When we said that the magnetic force on a charge was proportional to its velocity,
you may have wondered: "What velocity”? With respect to which reference frame?"
It is,in fact, clear from the definition of B given at the beginning of this chapter

that what this vector is will depend on what we choose as a reference frame

for our specification of the velocity of charges. But we have said nothing

about which is the proper frame for specifying the magnetic field.



Benjamin Crowell, 2010.

Electricity and Magnetism

Book 4 in the Light and Matter series

Experiments show that the magnetic force on a moving charged particle
has a magnitude given by

IF] =qlv||B| sin 6,
where
v is the velocity vector of the particle, and
0 is the angle between the v and B vectors.
Unlike electric and gravitational forces, magnetic forces do
not lie along the same line as the field vector.
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:?l:th:ofMuﬂer B"“ = 7 (BI N (_?Ey) (2)
= Therm amics
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"}"(Ez - 'L'By) (1)

P .- 'u
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where q is the charge on a particle, v is its velocity, qb is the electric potential, and A

is the magnetic vector potential.
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In the introduction and survey of (Jackson, 1999, p.3) it is said: Also
essential for consideration of charged particle motion is the Lorentz force
equation, F = q(E+v xB), which gives the force acting on a point charge g
in the presence of electromagnetic fields. In dealing with FARADAY’s law of
induction, in (Jackson, 1999, p.210) it is further said: It is important to note,
however, that the electric field E' is the electric field at dl (an infinitesimal
piece of circuit) in the coordinate system or medium in which dl is at rest,
since 1s that field that causes current to flow if a circuit is actually present.
And a little bit later (Jackson, 1999, p.211) the following formula is claimed:
E' = E+v x B where E is the electric field in the laboratory and E' is the
electric field at dl in its rest frame of coordinates.

In (Sadiku, 2010, chapter 9.5) it is said that: it is worthwhile to men-
tion other equations that go hand in hand with Mazwell’s equations. The
LORENTZ force equation ¥ = q(E + v x B) s associated with Mazwell’s
equations. Also the equation of continuity s implicit in Maxwell’s equations.
No mention is made of the way the observer measuring the velocity is to be
selected, in writing the LORENTZ force equation.



Geometric Formulation of the laws of electromagnetism

Faraday Law for a moving body

dwg =0 GAUSS(1831)

1 2 2
_}'4 wg = Or= / wB = / Lot wy
0%y P+ (2t) i

dwi, = pg GAUSS(1835)

1 2 2 2 2
}é Wiy = Or—¢ / Wp —I—/ Wy = / Ly wp + Wi,
0% Pr ¢ (2t) >t >t

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)




Well-posedness of Faraday law

For any control-window C;:

/ »Ccp,t w]23 — / d([:cp,t w]23) — / »Ccp,t (dw%) = 0.
0C Cq Cq

Well-posedness of Maxwell-Ampere law

]éc (Lot Wi + w%E) — /C d(L Wi + w%E) = /C (Lot dwg, + dwﬁE) =0,

equivalent to the property of electric charge conservation:
,C%t PE + dw?]E =20 :

or in the equivalent integral form:



Let ¢ € CY(B x I;8) be a motion of a body B in the ambient space
and 4 € CY(8 x I;8) be a time-dependent automorphism of the ambient
space onto itself which we will call a relative motion. The pushed motion
A1@ € CY(S x I;8) according to the relative motion 4 € C'(S x I;8) is
defined by the composition:

(YT1@)r =¥r0@r,

and the corresponding displacement from time ¢t € I to time 7 € I along
the pushed motion is given by:
A1@)e = (Fro@r)o(Feo @) =4 o Preodr

Definition 5.1 (Invariance). The invariance of a time-dependent spatial
tensor field & under the action of a relative motion 4 € CY(S x I;8) is
expressed by the drag condition

(Yla): = =a,, Viel.
For twice covariant tensors, the invariance property is written, explicitly:
(7la).(a.b) == (7,l&)(@,b) = &(¥,]a. 4, Ibjoy, = &fa,b), V¥rel.
forall a,beTS.

The basic result concerning invariance is provided by the next Lemma.

Lemma 5.2 (Invariance of convective time-derivatives). [nvariance of
a time-dependent spatial tensor field & with respect to a relative motion, im-
plies invariance of its convective time-derivativive, expressed by:

Latgre =7 1L

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)




Covariance of electromagnetic induction laws

under relative motion

$owb=g e
03¢ 09 (2¢)

| Lovwh= [ aiLowh= [ Lo b,
2t ¥ (3t) ¥t (3t)

Invariance of electric field and magnetic flux
AN 1 _ 1

Tt IWE = WE
A 2 - 2

TtIWB: — WR

implies invariance of Faraday law

1 2
7{ Wg = — / Loiwg
8275 2t

]{ w - / L(51¢).t W -
8’3’75 (zt) ﬁ’t(zt)

t_ql—‘

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



Differential formulation of Faraday law

—dwy = L, wh rot By = —0,—; B, + 1ot (v, X By)
w]23 = dw]l_; Faraday potential deB = (0 Gauss law
| 1
Wi = Lot wp +dVE:, Lot dwi = d Ly wi

1 _ 1 1 _ 1 1 1
Lot Wy = Or—y Wg ;T Ly, . Wg = Or=t Wg . T d(wg ;" Vi) + (dwF,t) "Vt -

Y

1 1 2
—Or—t Wp, — d(Wg; Vi) —Wh, - Ver +dVE .

1 _ 1 2
Wi = —Or—t Wp, — WR, " Ve T dUgy Upt = Vet — Wpy - Vet

Et — —Or—¢ FT+Vgo,tXBt+VUE,t

L orentz force

Maxwell, J.C.. 1861. On Physical Lines of Force. The London. Edinburgh
and Dublin Philosophical Magazine and Journal of Science Fourth series,
Part L. II, IIIL. IV.

ectromagnetism for moving related questions




Electric field in a body in translational motion

across a region of spatially uniform magnetic flux.

Lemma 8.1 (Linear Faraday potential). In the EUCLID space with the
standard connection, the linear field

- 1,42
Wg, =t Byr=jwg, - r,

where r(x) := x, provides a FARADAY potential for the spatially constant

magnetic fluz, viz. dwp, = Wy, -

Proposition 8.1 (Electric field in a translating body). A body in trans-

lational motion across a region of spatially uniform magnetic fluxr experiences
an electric field given by:

1 _ 1 1,,2 .
Wy = —Or=tWp, — 3WR, " Ve T dVE: -

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



CAY T T A * Nevill Mott (1954 — 1971)

Cavendish Professors

* James Clerk Maxwell (1871 — 1879)

* Lord Rayleigh (1879 — 1884)

*J.J. Thomson (1884 — 1919)

* Lord Rutherford (1919 — 1937)

* William Lawrence Bragg (1938 — 1953)

* Brian Pippard (1971 — 1984)

* Sam Edwards (1984 — 1995)
* Richard Friend (1995 —)

J.J. Thomson was the first to apply the concept of fields to determine the electromagnetic forces
on an object in terms of its properties and of external fields.

Interested in determining the electromagnetic behavior of the charged particles in cathode rays,
J.J. Thomson published a paper in 1881 wherein he gave the force on the particles due to an
external magnetic field as

2q v X B.

J.J. Thomson was able to arrive at the correct basic form of the formula, but, because of some
miscalculations and an incomplete description of the displacement current, included an incorrect
numerical coefficient in front of the formula.

It was Oliver Heaviside, who had invented the modern vector notation and applied them to

Maxwell's field equations, that was able to correctly derive in 1885 and 1889 the correct form of
the magnetic force on a charged particle [9]. Finally, in 1892, Hendrik Antoon Lorentz derived the
modern day form of the formula for the electromagnetic force.

Darrigol, O. (2000). Electrodynamics from Ampere to Einstein.
Oxford University Press. ISBN 0-198-50593-0
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In the course of Maxwell's investigation of the values of
X, Y, Z due to induction, the terms

d . d y
_ J:E(Fu+ Gv+ Hw), — @(Fu+(rv+Hw),

d b
— (Pu+ Gv+ Hu)

respectively in the final expressions for X, ¥, Z arc included
under the ¥ terms. We shall find it clearer to keep these

terms separate and write the expressions for X, ¥, Z as

dF d d
X = —bw-—- z-t- —%(FU'I'G'U‘*'IIW)—E;—#’\
= aw—cu— %0 _ 4 y dd
Y =aw—cu g —@(Fu+ G*v-i-Hw)—@-, - (1)
. dH d d ¢
Z—.Im—av—a? &Z.(F“"'G”"'Hw“‘(fz“J

1 _ 1 1 2
Wi = —Or=t Wg , — d(Wp Vi) —wg, Ve +dVe .
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Rimuovi frame

THE HOMOPOLAR HANDBOOK:
A Definitive Guide to Faraday Disk and N-Machine Technologies
Foreword by Gary Johnson, Ph.D.

JRELSLE L TNl The rotating disk dynamo has mystified every scientist since Faraday's
1831 discovery. Also called a unipolar generator (or N-Machine by Bruce
DePalma), its efficiency is often known to above 95% in commercial
4 models. Nikola Tesla's Notes on a Unipolar Dynamo, Einstein and Laub's
article on a rotating magnetic dielectric, Inomata's new Paradigm and
N-Machine, a list of homopolar patents, and more are included. Can the
homopolar generator become a self-running free energy machine? Facts
are here so the reader can reach an informed conclusion. (192-page book)

Investigating the Paulsen UFO story and the DePalma claims of overunity,
» the author began an earnest scientific endeavor in 1980 to build a
L e o homopolar generator and test for the elusive "back torque" which had
never been measured before. The project helped complete his Master's
degree in Physics at SUNY at Buffalo. Only afterwards did the connection to John R. R. Searl's
energy and propulsion invention become apparent. (Each roller magnet in the Searl device is a
small homopolar generator and the entire set of rollers create a radial Lorentz force too.)
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In the FARADAY experiments described in Section 8.1, the spatial mag-
netic induction flux is time-independent, so that the GALILEI observer sitting
on the support of the disk axis will measure a time-independent FARADAY
potential, so that: 0._; w{;‘ﬂ_ = 0 and a velocity field of the spinning disk
given by:

Vi(x) = Q- r(x)

with r(x) := x and x a radius vector with origin at the disk axis. Then
Vv, = §2;. Assuming that the magnetic flux sz,t is spatially constant in
the disk, 1.e. V w2B’t = 0, in terms of the potential w]l?’t = %sz,t -T, we have:
L, wi.,t = vawi;\’t + wi;\,t o Vv,
= Vi, wi“,t + %(sz,t ‘r) oL,

with the covariant derivative of the magnetic potential given by:

1 2
2 chp,t wF,t = wB,t ’ V‘P’t + v

2
vv,th,t * r .

For an arbitrary vector field h in the disk plane, we have that:
2(Ly,, Wi h)=2(Vy, wp, h) +wh,(r.Q-h)
o w2B’t(Qt -r,h)+(V wZB,t -r,h) + w2B,t(r, Q;-h)=0,

V.t

being Vwg, = 0 by assumption and
wh (-1, h) = wh (- (1), 2 -h) = —wh,(r, Q- h).

The analysis reveals that the magnetically induced electric vector field in the
disk vanishes identically if the magnetic flux in the disk is spatially uniform.
However, to compute the electromotive force in the circuit we should take
into account the discontinuity points of the velocity at the axis and at the rib
brush contacts, which provide concentrated contributions to the emf whose
sum is equal to:

—wp(x1) - (- x1) + wp (x2) - (2 - X2)
= _%w2B,t X1t (Qt . xl) -+ %sz,t - X9 - (Qt . x2) .

The global emf is thus again coincident with the one evaluated by the integral
flux formula of FARADAY in which the spinning velocity of the disk radius
closing the circuit is taken into account.

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



Faraday law of induction: examples
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Let us consider the problem concerning the electromotive force (emf) gen-
erated in a conductive bar sliding on two fixed parallel rails under a transverse
magnetic field which is spatially uniform and time-independent. An observer
sitting on the rails measures a time independent FARADAY potential field
and may thus evaluate the emf due to the electric field distributed along the
bar is found by integration along the line from x; to xs:

1 — 13 . .
w1 = —3wg; Ve 1.

On the other hand, by the integral formula of FARADAY, the total emf in a
circuit closed by another fixed bar is evaluated to be:

1 2 . 2
]{WE = _%wB,t'V%t = —Wpg,; " Vel

So one-half of the total emf is lost as a result of the evaluation of the contri-
bution provided by the electric field distributed along the bar. To resolve this
puzzling result we have to consider that, in this example, the velocity field is
no more uniform in space. Moreover, being uniform in the bar and vanishing
in the rails, it presents two points of discontinuities at the sliding contacts.
Then, the observer sitting on the rails measures the distributed electric field
in the bar, as evaluated before, plus two impulses of emf concentrated at the
sliding contacts, whose sum is given by

_(wll_:‘,t(xl> - wi«“,t()@)) "Vt = %‘—"2B,t v = _%w]23,t Ve -

where x1, X, are the positions of the sliding contacts and 1 = x5 —x; . Indeed
the velocity jumps, in going from 1 to 2, are v,; and —v,,; respectively.
Thus, the two impulses of emf concentrated at the sliding contacts provide
just the lost one-half of the total emf in the translating bar and in the sliding
contacts, which therefore amounts to —wg, - vy -1 and is equal to the one

previously computed in one stroke by the integral flux rule of FARADAY.

1 1 1 2
wE‘t _— _OT:t wF,T - (1(wF.t * V(p’t) - wB’t * chqt + (iVE’t .




« Covariance means variance by push and ensures in particular Galilei and
Euclid invariance of the constitutive relations involving invariant tensors.

« Homogeneity and isotropy of the electromagnetic material properties are
consistent with the covariant transformation of the material response at
different configurations.

 Formulations in terms of different alterations of the relevant tensors and
push to other configurations may be interchanged without affecting the
result, thus restoring a sound physical basis to the constitutive theory.

 The induction laws are covariantly formulated so that a natural variance
under push due to relative motion holds.



