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Manifolds and Fibre Bundles

A manifold M is the generalization of the notion of a curve or a surface in
the Euclidean space. It is a set of points which can be put in a piecewise
one-to-one correspondence with a linear space (the model space) with
smooth transitions.

A fibre bundle (BUN(M),w, M) is a construction envisaged to provide a
geometrical description of many basic items in mechanics and physical
sciences.

It may be naively described as a base manifold with a fibre-manifold
attached at each of its points. Each fibre is a diffeomorphic image of
a given manifold called the typical fibre.

The surjective map 7 , which associates with, to each point of the
bundle, the base point of the relevant fibre, is called the projection.



Continuum kinematics

Differentiable geometric structures:

« The ambient space § , in which motions take place, a finite dimensional

Riemann manifold without boundary, endowed with a metric tensor field & ;

 The material body B, a finite dimensional manifold with boundary, of dimension

less than or equal to the one of the ambient space;
« The observation time interval | an open, connected subset of a line;

« The configurations manifold C, an infinite dimensional manifold of maps which
are C'-diffeomorphisms of the body manifold onto submanifolds of the ambient

space manifold.



Motions and displacements

A motion is described by a map ¢ € CYB x [;S) from the manifold
B x I of material events into the ambient space manifold (S,g).

To a motion there correspond at each time ¢ € I a material configuration
map @, € C'(B;€;) which is a diffeomorphisms of the body manifold B
onto the placement manifold €2, .

The material displacement from a source placement €2, = ¢,(B) to the
target placement 2. = ¢_(B), is the diffeomorphism

P =0 € CHQ; ),

providing the position in €2, at time 7 € I of the particle which occupies
the given position in €2; at time t € [ .



The inclusion map

To emphasize the distinction between material fields and spatial fields, it is
expedient to consider the inclusion map:

1yt € Cl(ﬂt ;' S)
We denote by:

P = icp_,_t o, € CH(B; icp,_t(ﬁt)) the spatial configuration map
Prit € Cl(iso,t(”t) i, (927)) the spatial displacement map
Prit © Cl (82 42;) the material displacement map
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At a point x € €2, , the linear space of Oth order material tensors (scalars)
is denoted by FUNx(€2;), the dual spaces of tangent and cotangent material
vectors by Ty(2; and T, (2,.

Covariant, contravariant and mixed 2nd order material tensors belong to
linear spaces of scalar-valued bilinear maps (or linear operators):

COVx(Qt) =L (Tth ) Tx €2, ; R) =L (TXQt aT;Qt) )
CONx (%) = L(T:Qy, TEQ ; R) = L (TEQ ; TxS) |
MIX, (92;) = L (Tx;, T:Q,; R) = L (Tx 2, ; T ,) .

A generic material tensor space is denoted by TENS,(£2;).

At a given fixed time ¢t € I, a map (; € C'(£;;S), with the co-
restriction ¢, € C'(Q;:;{;"(€2;)) a diffeomorphism, will be called a geometric
displacement to contrast its physical interpretation, of displacement at fixed
time, In comparison with the one of a material displacement ¢_, := ¢, o
;' € CY(y; ;) along the motion. This distinction will become significant
in the discussion about time-independence and invariance in Section 5.



The push of a material scalar f,;(x) € FUN£,;, along a geometric
displacement ;" € C'(€;:;S), is a change of its base point:

(Celfo)(Ce(x)) = foo(X) .

The push of a tangent material vector v ;(x) € Tx€2; is the evaluation of
the tangent geometric displacement Ty(, € L(Tx€;T¢,(x)C:(€2:)), by the
formula:

Cil(Vpe(x)) = TxC(; - Vpu(X)

and the push of a material cotangent vector v7,,(x) € T;€2; is defined by
Invariance:

(CtTV;,ta CtTV(P,t> — CtT<V<’:>,tv V‘P:t> :

The push of a tensor is also defined by invariance. For a twice-covariant
material tensor field s, ; € C'(€;; COV(£2;)), the push is explicitly defined,
for any pair of material tangent vector fields ay;, by, € CH(2;;TS2,;), by:

(CtTS(p,t)(CtTago,ta Cthcp,t) = CtT(S(p,t(a(p,ta b(p,t)) .



Introducing the co-tangent map T¢ ¢, € L(T¢ )Co(€2:) ; TE2) such

that:

<aCt(X)) Tth ' bx) — <T2t(x)Ct " AL, (x) bx> )

for every by € Tx€2; and a¢,x) € th(x)Ct(Qt) . With the abridged notation
Sx = Set(X), the pushes of covariant, contravariant and mixed material

tensors are given by:

1
Cel

Cel

w1 . -1
sy =T o8y o Te,x)Cr
sCON = T ¢, 0sSON o T )Gt s

siX = T ¢, 0 sMX o Ty ¢y

The material metric field gy, € CH(Q;; COV(£2;)) at time ¢t € I is induced
in the configuration ¢, : B +— €2; by the spatial metric field
Alteration of tensors is defined by the relations:

SMIX —1 COV CON

:gx OSx ZSX ng7

which, in components form, correspond to lowering and rising of indexes.



The adjoint ct(X)Ct € L(T¢,x)C,(€2:) ; Tx€2;) of the tangent map is de-
fined by Tg(x)ct =g’ T¢ ()Gt © 8¢,(x) - Then:

(Ctlggt(x))MIX Té(x)Ct 0 Ix Gy

a formula that is referred to in evaluating the mixed form of the stretch. The
pull is the push along the inverse diffeomorphism: ¢,| = ¢;'1. All these
definitions extend directly to the push along a material displacement.

The convective time-derivative at time t € I of a material tensor field

spt € CH(Q; TENS(€,)), along ™ : B x I — S, is defined by:

L(p\t Scp = aT:t ‘PT,tlS‘p,T :

The pulled-back tensors (¢, ,ls,-)(x) belong, for all 7 € I, to the same
linear tensor space TENS,(€2;) so that the derivative 0,_; makes sense.
A simple but quite important property is that the pull-back of a convective
time-derivative 1s equal to the time-derivative of the pull-back:

()Ot,sl(L(PtS(P) T t(’P'rslS‘P""



The parallel transport of a spatial tensor along a curve ¢ € C'(R;S) in
space 1s deduced, from the definition of parallel transport of a tangent spatial
vector, by invariance, for a twice-covariant tensor, according to the formula:

(cafrs)(cafra,cyftb):=s(a,b)ocy, AeR, abeTS,

and similarly for other spatial tensors.

The parallel (or covariant) derivative along a curve ¢ € C'(R;S) of a
spatial tensor field s € C'(S; TENS(S)), is accordingly defined by:

vé,\ S = 8/\=0 c/\U' (S © C)\) ;

where c¢) := 0dy—oc) 1s the parametrization velocity of the curve at A = 0
and c,| denotes the parallel transport from c(\) to c(0). If the curve is
time-parametrized the definition of parallel time-derivative is got.

The parallel time-derivative along the motion: Vi, s3 := 0.— 7| s .
of a spatial-valued material tensor field s, € C'(€;; TENS(S)) is also
well-defined.



Warning

As a rule, neither the convective time-derivative nor the parallel time-
derivative along the motion may be evaluated by resorting to LEIBNIZ rule to
get a split into the sum of partial time and space derivatives. The celebrated
D'ALEMBERT-EULER formula for the acceleration:

R SP _
acp,t T aT:t (707-’15“' ch,T — Ur=t ch,T + vvcp,t ch,t )

is in fact applicable only in investigations about continuous flows of a fluid in
a region of space, as in problems of hydrodynamics, where it was originarily
conceived. A well-known application is to the formulation of the NAVIER-
STOKES-ST.VENANT equations of fluid-dynamics.



In most presentations of continuum mechanics, material fields and spatial-
valued material fields are not distinguished.

The basic distinction is usually hidden by the context, in which a 3-D
dimensional body manifold is considered embedded in a 3-D ambient space

manifold.






Spatial fields

Spatial tensors are multilinear maps over a tangent space to the space
manifold.

Spatial fields are defined at each point of the ambient space manifold and at

any time. Their values are spatial tensors based at that point, independently
of whether there is a body particle crossing it or not.

A spatial field is a section §; € C!(S;BUN(S)) of the tensor bundle
(BUN(S), 7, S)

BUN(S)

/ lﬂ' — mwo§ =IDg
IDs

S — S

A

The twice covariant metric tensor field & is a spatial field.




Material fields

tangent space at a point of the body’s placement along the motion.

Material tensors are multilinear maps that operate, at each time instant, over a

Material fields are defined, at each time instant, at particles of the body

manifold and their values are material tensors based at the particle location

evolving in the motion.

A material field at time t € [ is a section s, ; € C'(8; BUN({2;)) of the bundle

(BUN(£2;),m, £2;) along the motion:

BUN(£2,) v
Se.t O Bet =Pt 1
| 7rﬂ\scp.t < Sp.t — écp.t O LPT_

(Pt TrOSLP.t:IDQt.
B 2

Most fields of interest in continuum mechanics are material fields,
stretch, stretching, stress, stressing, temperature, heat flow,
thermodynamical potentials.

entropy,



Spatial-valued material fields

- Spatial-valued material fields are defined, at any instant of time, at particles of
the body manifold, their values being spatial tensors based at the particle
location evolving in the motion.

A spatial-valued material field is a section s, € C!(B; BUN(S))
of the bundle (BUN(S),w,S) along ¢, € C1(B; §2,):

§cp,t . e Scp’tA — e 1
™ Sp,t @ SLP"t — S(P.t O Lpf— Y
TOS t+ = 1D 0, ,
B Pt g Qt ) |

In Continuum Dynamics:
velocity, force and kinetic momentum are spatial-valued material fields




Spatial descriptions of material fields

A material field S, € CY(B x I;BUN(S)) admits a spatial description:
ST(8.9) € CH(T(B,$), BUN(S)),

defined in the trajectory manifold 7 (B, ¢) according the diagram:

/&P\\
(

@, PRy) ST (B,¢p)

BxI 2= T(B,¢)—% BUN(S)

\ l / = S7(8.¢) = Se0(P, PRI)"
B

W(B, @)

( PR € CHS x I:8) and PRr; € CYS x [;I)— cartesian projectors,
peCl(BxI;S) > motion of the body in the ambient space,
{ WIB, @) :=pBx1I)C > spatial trajectory manifold,

~

(@,PRy) € C (BxI;SxI) — events map,

T (B,¢) :=(¢,PR1)(B x I) — trajectory manifold.



Material pull-back

» Spatial metric tensor g c CH(S;COV(S))

» Material metric tensor gyt € C'(€2,; COV(€2,))

ggo,t(acp,ta bgo,t) = g(icp,tTacp,ta icp,thcp,t) O igo,t

ot — icp,tlg = Cl(ﬂt : COV(TQt))



e 1D: wire

e 2D: membrane




(Geometric tools for comparing:

« Spatial tangent vectors at different points of the space manifold.

« Material tangent vectors at the same particle for different placements of a body.

Parallel transport along a curve:

a transformation, in the ambient space manifold, which takes a tangent vector to
this manifold, that is a velocity of a curve in the space manifold, into another
such tangent vector.

Push transformation by the material displacement map:

a transformation which takes a material tangent vector, that is a velocity of a
curve in a body placement, into a material tangent vector in a displaced
placement.

It is the suitable transformation tool to compare material tensors based at
different configurations.




A material tangent vector is NOT in the domain of the parallel transport along
a path.

Even if a material vector in a 3-D body is improperly identified with its spatial
Immersion, the parallel transported vector will depend on the chosen
connection, a dependence which should be taken into account in the
description of material behavior.

In a lower dimensional body, the image by a parallel transport along a path
will, in general, no more be the spatial immersion of a material vector (see
below).

Push of a material vector tangent to a wire and parallel transport of its spatial
Immersion

Pr

Parallel transport in space is applicable only to spatial tangent vectors.
Material tangent vectors can be only transformed by push along a diffeomorphic
map (material displacement) as sketched in the figure above.




COVARIANCE PARADIGM

Material fields, pertaining to the same material body at different configurations,

must be compared according to the transformation by push along the material
displacement diffeomorphism.

Time-rate of a material tensor

The time rate of variation of a material tensor field

Scp,t < Cl(ﬂt X BUN(Qt))

is the convective time-derivative along the motion ¢ € C}(BxI:S)

LoiSp = Ori P, 4184+




Relative motions

Push by a time-dependent diffeomorphism




Covariance and Relative motions

A pushed physical law still relates

iInvolved fields and motions
when they are pushed forward according to a relative motion.

Group invariance

Material fields are group invariant if they are dragged by relative motions
of a group:

Syiot = YilSpt, ViEl

Naturality of the convective time-derivative:
£(’)’T‘P)at (’YTSQO) — p)/tT'Cgo,t Sy

Convective time-derivatives of group invariant fields are invariant too:

STt = ’YtTSso,t — ﬁ('vTcp),t STt = 'YtTEso,t Se

A physical law, involving group invariant fields and their convective

time-derivatives, is group invariant too.




To any pair of configurations ¢, € C1(B;$2;) and ¢, € C(B;Q;)
there corresponds a George Green strain (STRETCH) tensor field:

%(Qor,tlgcp,'r — gcp,t) < Cl(ﬂt ; SYM(Qt))

The strain rate (STRETCHING) is the material tensor field defined by:

Epit - — %Ecp,t 8p — Ur=t %(‘Pr,tlg%r o g«p,t) S Cl(Qt ; SYM(Qt))




The STRESS field o, € C'(£2;; SYM*(€2;)) is a section of the bundle SYM*(€2,)

of symmetric contravariant material tensor fields, defined by duality with the
stretching:

<0.‘Pst’ €Q0’t> e J1<0'Q0’t 08(’01) & Cl(ﬂt FUN(Q{))

/

Material field of linear invariants of the mixed tensor field:

O,10€,, € CH ; MIX(€))

In Continuum Mechanics, material stress fields, whose duality pairing with the
covariant stretching provide the virtual power per unit volume in the actual
configuration, are contravariant Cauchy stress fields.

The ones providing the virtual power per unit mass, or per unit reference volume,
are contravariant Kirchhoff stress fields. The mixed form of the covariant stretching
tensor is provided by the symmetric part of the material covariant derivative of the
velocity field, an outcome of Euler’s formula.

Their mixed forms are Cauchy true stress and Kirchhoff true stress fields,

respectively, the adjective true stemming from the fact that the boundary flux of
mixed stress tensor fields provides the boundary tractions field.



The stress rate (STRESSING) is the material tensor field defined by:

Ecp,t U‘P .= 87-:15 @T,tlacpﬂ' < Cl(ﬂt , SYNIX(Qt)) .

The other tool provided by Differential Geometry for spatial-valued material
fields is the covariant time-derivative along a motion @ € C'(Bx1I;S8):

Vgo,t Sp .= a’i':t SOT,tU’ S, T

@T’ti} — parallel transport from the spatial placement iLP,T(QT)
to the spatial placement i () -

In Continuum Dynamics, acceleration is the covariant time-derivative of
the velocity, along the motion.

Remark The convective time-derivative of a material field is well-defined,
while the covariant time-derivative is defined only for spatial-valued material

tensor fields.
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SOME STRESS RATES PROPOSED IN LITERATURE

Truesdell rate of Cauchy stress — | & = ¢, «(J'S)

This stress rate is the Piola transformation of the material time derivative of the
symmetric Piola-Kirchhoff stress 8§ = J¢p* (o)

For contravariant components it has the form — |g=o-1l-o—o-l'+ o tl‘(d)

l = Vv — spatial velocity gradient tesor.

v
Zaremba-Jaumann rate of Cauchy stress —— O=0+0 @ — W T
&) — spin rate or vorticity tensor.
\Y% :
Zaremba-Jaumann rate of Kirchhoff stress —— T=TT7T W@ 7T
Green-Naghdi rate of Cauchy stress — |g=0+0-2-Q 0

{) — rate of rotation tensor related to the rotation tensor K by {2 = R - R".



Spinning
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The stressing is the convective time-derivative of the material stress tensor and the
stretching is the convective time-derivative of the material metric tensor along the
motion. If the covariant time-derivative would be adopted to evaluate the rate of change
of the metric tensor, a vanishing derivative would be got, since the standard Euclid
connection is metric preserving. So, why try to use the covariant time-derivative for the
stress rate?

Space-time tube



Comments

The remedies to the lack of objectivity adopted in literature have been
eventually ineffective, because the primary cause of ill-posedness was neither
detected nor avoided, in the absence of a working covariance paradigm.

In this respect it is to be underlined that, although for three-dimensional bodies
covariant time-derivatives of spatial immersions of material tensor fields may
be performable, this tool should be treated at most as a special computational
mean and not as a basic definition.

The evaluation according the Leibniz rule is subject to stringent regularity
requirements and, in addition, covariant differentations are forbidden by the
geometry of continuum mechanics for lower dimensional bodies (such as wires
or membranes).



« Push transformation and convective time-differentiation of a material tensor field
along a motion in the space manifold are allowed.

« Parallel transport and covariant time-differentiation of a material tensor field
along a curve in the space manifold are forbidden operations for lower
dimensional bodies.

« Parallel transport and covariant time-differentiation of a spatial-valued material
tensor field along a curve in the space manifold are allowed.

« Push transformation and convective time-differentiation of a spatial-valued
material tensor field along a motion in the space manifold are allowed.



The split according to Leibniz rule, of the convective time-differentiation of a
material tensor field along a motion in the space manifold, is not performable.

The split according to Leibniz rule, of the convective or covariant time-
differentiation of a spatial-valued material tensor field along a motion in the
space manifolf, is not performable.

The split according to Leibniz rule, of the convective or covariant time-
differentiation of the spatial description of a spatial-valued material tensor field
along a motion in the space manifold, is performable only under stringent
regularity assumptions which are admissible in many modelings proper to fluid
dynamics but are not likely to be fulfilled in solid mechanics.



Time invariance - Frame indifference - Isotropy

TIME INVARIANCE: (according to covariance)
PUSH BY MATERIAL DISPLACEMENT ALONG THE MOTION.

The response to the pushed cause acting on the pushed specimen
provides the pushed effect.

MATERIAL FRAME INDIFFERENCE:

PUSH BY ISOMETRIC DISPLACEMENT AT FROZEN TIME.

The response to a rotated cause acting on a rotated specimen provides
the rotated effect.

ISOTROPY:

The response to a rotated cause acting on an unrotated specimen
provides the rotated effect.



Change of Observer

A change of observer is a time-dependent family of diffeomorphic maps
~0E € CH(S; S) of the ambient space onto itself. It induces a relative motion
from any given motion.

A change of Euclid observer requires that the change of observer ~;*° &
C'(S;S) be an isometry: gyso1por = ¥ °184, . Invariance under change of
Euclid observer is called frame-indifference. The material metric tensor is
frame-indifferent by definition.

A basic physical assumption is that the stress tensor is frame-indifferent,
that is, invariant under a change of Euclid observer. Of course, in general, the
stress tensor will not be time-independent, that is invariant under a material
displacement of the body along the motion, even if the material displacement
Pry =P 0P e CYQ,:Q,) is isometric, i.e. the material metric tensor is
time-independent: g, . = @, ,;18,:. Time-independence of the stress tensor
under isometric material displacements holds however for elastic materials.



Hypo-elasticity

A hypo-elastic response of a body B in motion ¢° : B x [ +— S is
expressed, at each time ¢t € I, by assuming that the stretching at the con-
figuration ¢, : B +— €2 is a function of stress and stressing.

Hypo-elastic law

The hypo-elastic response at time ¢ € I is governed by a stress-dependent
constitutive linear operator Hg; which provides the stretching 1L, ;g
corresponding to the stressing L, ;0 :

. B _
Ept = 3Lp18p =Hepi(0pt) Lo1 Ty

The operator Hy; is defined on the linear space CON(£2;) and takes val-
ues in the linear space L(CON(£;); COV(£2;)) whose elements are linear
operators between the domain space CON(£2;) and its dual COV(£2;). At
each o,; € CON(€2;) the tangent compliance H, (o, ;) is assumed to be
an invertible linear operator.

A
In (Truesdell and Noll, 1965) the symbol T has been proposed for the
mixed form of the stressing, there called convected stress rate. In their nota-
tion, the hypo-elastic law is written in components as:

A

D} = Hj(T) T .



Time-independent hypo-elasticity

A hypo-elastic constitutive operator is time-independent in a time-interval
[ if the instantaneous operators at any pair of time instants 7.t € [ are re-
lated by push along the material displacement:

H‘va — LPT,tTH‘Pat )

the pushed operator, being defined by:

il (Het(0pt)  Lot0g) = (0r THe) (@ 1001) - Pri1 (Lot Tg) .

This means that time-invariant material tensor fields, fulfilling the consti-
tutive relation at time ¢t € [, are still related by the law at time 7 € I.
To endow the mathematical definition of hypo-elastic law with a physical
meaning apt to describe a material behavior, it is compelling to show in-
dependence of the change of EUCLID observer of the motion, which is the
meaning of material frame-indifference (M.F.1.).



The physical assumption is that the stress is frame-indifferent, i.e.:

ISO
Tyttt =Yt | Ot

for any change of EUCLID observer. Frame-indifference of the material metric
tensor and Proposition 5.1 assure that stressing and stretching are frame-
indifferent too. i.e.

Loysotpt Tysotp = Ve 1Lt Op,  Lopotpr 8ysoto =i | Lot B
so that:
Vi 13Lopt 8p = 3Lys01pt 8ysotp = Huysorpt(Tymo1pt) + Lasojpt Tsoe

— H ~1S0 T o ¢ (’YISOTU'CP,t) ISOT£ t 0.

Hence M.F'.I. holds, being expressed by the following condition of invariance
under change of EUCLID observer on the hypo-elastic constitutive operator:

Hoysoror = 7" THg



Non covariant stress rates

In literature the following expression is exposed for the convected stress
rate (Truesdell and Noll, 1965, formula 36.20, p. 97):

A .
T=T+L'T+TL.

According to our notation, this formula, when written for the contravariant
stress field, should be:

A :
Opt=0pt —25yM (VVy004,,).

with V covariant derivative, for instance the one induced by a co-ordinate
system and the time-derivative along the motion defined by:

. NS SP SP
Opt -— 0‘1’=t ¢T,t (UCP,T © Lp'r,t) :

Here the particle is held fixed and the comparison of material stress tensors at
two instants along the motion is performed by parallel transport. an operation
in contrast with the prescription of the covariance paradigm. Most often. by
considering the spatial description of the stress field, defined on the body’s
trajectory:

TB,p)={(x",0)|x" =¢"(p,t),peB, tel},

by: orme) (X", t) = 0,(p.t). X = @(p.t), the time-derivative along

the motion is split into the sum of partial time and spatial derivatives:

OT(B,p)t= Or=t OT(Bp)r T Vve. OT(Bp)it -



EVALUATION of the STRESS FIELD

In most computational algorithms, a basic issue concerns the evaluation of
the stress field along the motion in terms of the hypo-elastic tangent stiffness
at a time t € [:

Lot Op = (Hcp,t(a'cp,t))_l 3Lt 8o -

The computation is conveniently carried out in terms of a reference configu-
ration x, : B+ €2,. A schematic view of the relations between the body, a
reference configuration and the material configurations along the motion, is
provided by the diagram below:

=
A7 Lplt{EF .
— REF
\\\\ ;\‘\ Y= Pr °OX,

T, — —1
X, Q—>Q, = (Pr=PO0P

— REF REF\—1 __ REF
V Pri= Pr © (907: ) = Prit
Pr




By pulling back to a reference configuration x, : B — {2, the hypo-elastic
law writes:

Or=t 37 138pr = (@1 [ Hpt) (i |0 gt) - Ors 77 |0 r .

Its inverse is given by:

Ort P LT pr = (7 [ Hp ) (01 10 p1)) ™" - Orey 15 | 3800r

so that:

‘P?EFl(Hcp,t(Ucp,t))_l = ((¢ REFchp, ) (g REFlo'cp, ))_1 :

To evaluate the referential stress increment in a time interval [s,t|, the fol-
lowing integral equation should be solved:

REF REF

t
_ REF REF 1 /1 REF
10— 1T = [ (P Ho) (P 10700)) (2000 ¢ L) 46
S
The strategy adopted by Pinsky et al. (1983), for the numerical integration of
the rate constitutive equation, should be mentioned as an iterative algorithm
for the solution of the discretized integral equation.



SIMPLEST HYPO-ELASTIC MODEL

The simplest hypo-elastic model, corresponding to the rate form of the
standard linear isotropic elasticity model adopted in the small displacements
range, has been most widely adopted in computational mechanics, see e.g.
(Key and Krieg, 1982). The model was investigated in (Sim¢6 and Pister,
1984; Sansour and Bednarczyk, 1993) who, by adopting the incorrect integra-
bility conditions provided in (Bernstein, 1960), found that this hypo-elastic
material is not hyper-elastic. On the contrary, on the basis of the covariant
theory and of the correct integrability conditions provided above, it will be
shown that the simplest hypo-elastic model is indeed hyper-elastic. Denoting
the mixed forms of stretching and stressing at time t € I by:

A
Dcp,t = gc;,lt O %(Ecp,t gcp) ’ T(p,t = %(Ecp,t ch) O gcp,t y

the simplest hypo-elastic model is described by the linear, isotropic rate law:

| v A A
Dcp,t - 5 Tcp,t _EJI (Tcp,t) Icp,t — HCI\pI,ItX(Tcp,t)' Tcp,t ;

,. 1 v
Hcll\ol,ItX(Tcp,t) = 2—/1 Lp: — E Lot @ 1ge .

with £ EULER (or YOUNG) modulus, v POISSON ratio and pu = 3 (fw)

LamE shear modulus. Here I, (x) € MIX,(€2;) is the identity tensor,
% is the tensor product in the inner product tensor space MIX,(€2;) and

[,:(x) € L (MIXx(€2): MIX«(€2;)) is the identity operator.




Time-independency of the simplest hypo-elastic constitutive operator, is
expressed by the equality:

%4 17

; 1 ]
2# 5o ler = plor 9Tor =001 (5 Tor — lee 9 1)
which is inferred from the formulas: ¢, Tl =lyr, @, 1o = 1y and:

QOT,tT(I‘P,t X Igo,t) (SOTtTICP, ) (907' tTLPa )

Let us now assume that ¢, : B — (2, is a natural, stress-free reference
configuration. The hyper-elastic law may then be written in terms of the
mixed (GREEN's strain tensor, as:

1 v
Ee , = <I>MIX(SOT A Ter) = 2/-4 PrilLor — EJl(Sor,tchp,T) 1
or, in inverse form:
L Ty, =B, + 2 Jy(Ey )1
2 Pritter = Sen, 1 —2p e et

The CavcHy true stress T, € CH(Q,; MIX(€2,)) is recovered from the
reference one ¢ | Ty, € CH(Q; ; MIX(£;)) by push forward:

TCP,T — ‘Tsor,t © (SOT,tlT‘-P,T) O TSO;,tl



Let us consider a unit cube as a natural stress-free configuration of a body
and a cartesian reference system. A simple shear, see fig. 3. is described by
a material displacement whose expression in the reference system, setting

Yrt = (7 — 1), is given by:

G, y.2) =(r+vy)er +yey + zes.

7T,t




A homogeneous extension is got by a one parameter displacement of a unitary
cube:

Y (,y,2) =atrex+ Ptyey + ze,




Assuming v = 0 and Bt = (at)~!, which corresponds to a vanishing Poisson
effect and to an isochoric displacement, the normal stress Ti;(t) and the
resultant axial force N(t) = A(t) T11(t) = p(at —1/(at)) , where A(t) =
1/(at) is the transversal area, are plotted in

stress—_

axial force

stress — axial force

0 0.5 1 1.5 2 2.5
elongation



« The property of covariance is formulated as variance by push instead of
invariance under push.

« The principle of material frame indifference is accordingly correctly
reformulated and shown to be trivially satisfied by any (covariant) rate
material response.

« Spurious results, such as that material frame indifference should imply
isotropy of the hypo-elastic response and of plastic yield functions, are
eliminated. Accordingly, treatments devoted to recover a description of
anisotropic behaviors of elastic and plastic responses should be
reconsidered.

« Homogeneity and isotropy of the material are properly defined and shown
to be consistent with the covariant transformation of the material response
at different configurations.



Formulations in terms of different alterations of the relevant tensors
and push to other configurations may be interchanged without
affecting the result, thus restoring a sound physical basis to the
constitutive theory.

The integration needed for the evaluation of the stress may be
performed on the time dependent pull-backs of the stressing to a
fixed reference configuration, the result being got by a subsequent
push-forward to the actual configuration, in a way independent of the
chosen configuration.

The integrability conditions of the hypo-elastic behaviour may be
checked at any fixed reference configuration and the relevant
potentials may be readily computed, still in a way independent of the
chosen reference configuration.

By these basic implications of the covariance paradigm most existing

theoretical and computational approaches should be reviewed.




PART I

in electromagnetic induction
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9.3 Electromagnetism

Classical electromagnetism is governed by Maxwell’s field equations. The form of these equations depends on
the physical units chosen, and changing these units introduces factors like 47, ¢ = the speed of light, €5 = the
dielectric constant and pg = the magnetic permeability. The discussion in this section assumes that eg, g
are constant; the choice of units is such that the equations take the simplest form; thus ¢ = ¢y = g = 1
and factors 47 disappear. We also do not consider Maxwell’s equations in a material, where one has to

distinguish E from D, and B from H.
Let E, B, and J be time dependent C*-vector fields on B® and p : R® x R — R a scalar. These are said to

satisfy Maxwell’s equations with charge density p and current density J when the following hold:

divE = p (Gauss’s law) (9.3.1)

divB =0 (no magnetic sources) (9.3.2)
JB

curl E + r 0 (Faraday’s law of induction) (9.3.3)
JE

curl B — i J (Ampére’s law) (9.3.4)

E is called the electric field and B the magnetic field.

By Stokes’ theorem, equation (9.3.3) is equivalent to

/ E»ds=/(curlE)-ndS:—,i/B-ndS (9.3.7)
8 S ot Jg

for any closed loop 85 bounding a surface S. The quantity [, _E-ds is called the voltage around 95S. Thus,
Faraday’s law of induction equation (9.3.3), says that the voltage around a loop equals the negative of the
rate of change of the magnetic flur through the loop.

Abraham, R., Marsden, J.E., Ratiu, T., 1988. Manifolds, Tensor Analysis.
and Applications, second ed. (third ed. 2002) Springer Verlag, New York.



TABLE 9.1 Generalized Forms of Maxwell’s Equations

Differential Form Integral Form Remarks
V-D=p, % D-dS = [ P, dv Gauss’s law
J~g .",
V-B=20 + B-dS=0 Nonexistence of i1solated
magnetic charge*
B .
VXE= vy % E-dl = [B ds Faraday’s law
oD o
VXH=] + — + H-dl = [ (J + —5?) - dS Ampere’s circuit law
)

*This is also referred to as Gauss’s law for magnetic fields.

Sadiku, M.N.O., 2010. Elements of Electromagnetics (Fifth ed.). Oxford Uni-
versity Press. USA. ISBN-13: 9780195387759



Electrodynamics

Moving truck

01 coil

Faraday law

Lorentz force

According to the most formulation of electrodynamics, the man in blue sweater
explains the turning of the galvanometer needle by the Faraday law of magnetic

induction, while the green fellow explains the same phenomenon by resorting to
the Lorentz force.




ON THE ELECTRODYNAMICS OF MOVING
BODIES

By A. EINSTEIN
June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the recipro-
cal electrodynamic action of a magnet and a conductor. The observable phe-
nomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two
cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbour-
hood of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the
magnet is stationary and the conductor in motion, no electric field arises in the
neighbourhood of the magnet. In the conductor, however, we find an electro-
motive force, to which in itself there is no corresponding energy, but which gives
rise—assuming equality of relative motion in the two cases discussed—to elec-
tric currents of the same path and intensity as those produced by the electric
forces in the former case.




When Einstein began to think about these matters
there existed several possibilities:

1. The Maxwell equations were incorrect.
The proper theory of electromagnetism was invariant
under Galilean transformations.

2. Galilean relativity applied to classical mechanics,

but electromagnetism had a preferred reference frame,
the frame in which the luminiferous ether was at rest.

3. There existed a relativity principle for classical mechanics
and electromagnetism, but it was not Galilean relativity.

This would imply that the laws of mechanics were in need of
modification.

The first possibility was hardly viable.




Richard Phillips Feynman

Hendrik Antoon Lorentz

FEYNMAN:

We know of no other place in physics
where such a simple and accurate gen-
eral principle requires for its real

u:l')derstanding an analysis in terms of two F = q(E + v X B)
different phenomena. Usually such a
beautiful generalization is found to stem rot E, = —0._, B.-

from a single deep underlying principle.

Nevertheless, in this case there does

not appear to be any such profound

implication.

When we said that the magnetic force on a charge was proportional to its velocity,
you may have wondered: "What velocity”? With respect to which reference frame?"
It is,in fact, clear from the definition of B given at the beginning of this chapter

that what this vector is will depend on what we choose as a reference frame

for our specification of the velocity of charges. But we have said nothing

about which is the proper frame for specifying the magnetic field.



Benjamin Crowell, 2010.

Electricity and Magnetism

Book 4 in the Light and Matter series

Experiments show that the magnetic force on a moving charged particle
has a magnitude given by

IF] =qlv||B| sin 6,
where
v is the velocity vector of the particle, and
0 is the angle between the v and B vectors.
Unlike electric and gravitational forces, magnetic forces do
not lie along the same line as the field vector.
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In the introduction and survey of (Jackson, 1999, p.3) it is said: Also
essential for consideration of charged particle motion is the Lorentz force
equation, F = q(E+v xB), which gives the force acting on a point charge g
in the presence of electromagnetic fields. In dealing with FARADAY’s law of
induction, in (Jackson, 1999, p.210) it is further said: It is important to note,
however, that the electric field E' s the electric field at dl (an infinitesimal
piece of circuit) in the coordinate system or medium in which dl is at rest,
since 18 that field that causes current to flow if a circuit s actually present.
And a little bit later (Jackson, 1999, p.211) the following formula is claimed:
E' = E+ v x B where E is the electric field in the laboratory and E’ is the
electric field at dl in its rest frame of coordinates.

In (Sadiku, 2010, chapter 9.5) it is said that: it s worthwhile to men-
tion other equations that go hand in hand with Mazxwell’s equations. The
LORENTZ force equation F = q(E + v x B) s associated with Mazwell’s
equations. Also the equation of continuity s implicit in Mazwell’s equations.
No mention is made of the way the observer measuring the velocity is to be
selected, in writing the LORENTZ force equation.
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Geometric Formulation of the laws of electromagnetism

Faraday Law for a moving body

dwg =0 GAUSS(1831)

1 2 2
_}'4 wg = Or= / wB = / Lot wy
0%y P+ (2t) i

dwi, = pg GAUSS(1835)

1 2 2 2 2
}é Wiy = Or—¢ / Wp —I—/ Wy = / Ly wp + Wi,
0% Pr ¢ (2t) >t >t

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)




Well-posedness of Faraday law

For any control-window C;:

/ »Ccp,t w]23 — / d([:cp,t w]23) — / »Ccp,t (dw%) = 0.
0C Cq Cq

Well-posedness of Maxwell-Ampere law

]éc (Lot Wi + w%E) — /C d(L Wi + w%E) = /C (Lot dwg, + dwﬁE) =0,

equivalent to the property of electric charge conservation:
,C%t PE + dw?]E =20 :

or in the equivalent integral form:



Relative motions

Push by a time-dependent diffeomorphism

Lyt (YTag) =7 1L 0t

Naturality of the convective time-derivative




_74 wg:@_t/ sz:/ h
0% pr.¢(2¢) i

2
.t YB

1 _ 2 2 2 2
jé wy = Or= / Wp T / i / Lot wp + Wi,
0% @, (2t) 2 >

dwﬁ = —L,; w]23 Faraday law

1 _ 2 2 Amng
dwy = Ly wp +wj_ | Maxwell-Ampére

law

Naturality of the convective time-derivative
with respect to push:

Listors () =Y 1Lt @ty

and the commutation property
between push and exterior derivative:

o/l (dacp,t) — d('YtTacp,t)

iImply covariance of the induction laws.

Lack of covariance of the standard induction laws is due to
lack of naturality of the partial time-derivative with respect to push:

Or=t (Y1tp)r = 4,1 (Or=t Gpr) = Loyt (Y1G)




a,—:t / PE + % w:_)]E =0 <— a—,-:t PE - + (IC&J?IE =0
Q; 0€); |

0,— / pE+7é wﬁE:O < £¢_tpE+dw§E:O
pr.+(82) OS2

Naturality of the convective time-derivative

Lot (YTay) =9 1Ly
with respect to push: Aot (YTap) = 71 Lo

and the commutation property
between push and exterior derivative:

Vel (dags) = d(v;Tau )

Imply covariance of the charge conservation law for moving bodies.

old

new



Covariance of electromagnetic induction laws

under relative motion

$ owh=9 Al
0%y Oy (%t)

/ Lot “’123 — / YT Lo, "-’123 = / L51¢)t ('AYT""%) :
> Y () Y (Bt)

&
MP—‘
|

ok

. . . . /Yt/\
Invariance of electric field and magnetic flux —
TtIWB: = WBy

1 2
R 74 Wp — — LW “—
implies invariance of Faraday law Iy E /2 t Pt “YB

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



Differential formulation of Faraday law

1 2
dwE — _ch,t Wwpy 1ot Et — —3T:t BT + rot (Vgo,t X Bt)
2 1 - 2 _
wpg = dwy  Faraday potential dwg = 0 Gauss law
1 1
wllil,t = — Lot Wy + AVe Lotdwp =d Ly, wg
1 1 1 1 1 1
Lot Wp = Or— Wg ;T Ly, . Wrt = Or=t Wg ; T d(wF,t Vi) + (dwF,t) " Vot
1 1 1 2
wE,t — _a'r:t wF,T - d(wF’t * chﬂt) - wB’t * V(P,t —|_ dVE,t .
1 12
Wt = —Or—y Wgp, —WRy Vei t+ AUg,
1
E: = -0~ F’T_|_V(p,t XBi+VUg UE,t — VE,t — Wgt Vit

‘ L orentz force ‘

Maxwell, J.C.. 1861. On Physical Lines of Force. The London. Edinburgh

and Dublin Philosophical Magazine and Journal of Science Fourth series,
Part L. II, IIL, IV.

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)




Electric field in a body in translational motion

across a region of spatially uniform magnetic flux.

Lemma 8.1 (Linear Faraday potential). In the EUCLID space with the
standard connection, the linear field

- 1,42
Wg, =t Byr=jwg, - r,

where r(x) := x, provides a FARADAY potential for the spatially constant

magnetic fluz, viz. dwp, = Wy, -

Proposition 8.1 (Electric field in a translating body). A body in trans-

lational motion across a region of spatially uniform magnetic fluxr experiences
an electric field given by:

1 _ 1 1,,2 .
Wy = —Or=tWp, — 3WR, " Ve T dVE: -

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



CAY T T A * Nevill Mott (1954 — 1971)

Cavendish Professors

* James Clerk Maxwell (1871 — 1879)

* Lord Rayleigh (1879 — 1884)

*J.J. Thomson (1884 — 1919)

* Lord Rutherford (1919 — 1937)

* William Lawrence Bragg (1938 — 1953)

* Brian Pippard (1971 — 1984)

* Sam Edwards (1984 — 1995)
* Richard Friend (1995 —)

J.J. Thomson was the first to apply the concept of fields to determine the electromagnetic forces
on an object in terms of its properties and of external fields.

Interested in determining the electromagnetic behavior of the charged particles in cathode rays,
J.J. Thomson published a paper in 1881 wherein he gave the force on the particles due to an
external magnetic field as

2q v X B.

J.J. Thomson was able to arrive at the correct basic form of the formula, but, because of some
miscalculations and an incomplete description of the displacement current, included an incorrect
numerical coefficient in front of the formula.

It was Oliver Heaviside, who had invented the modern vector notation and applied them to

Maxwell's field equations, that was able to correctly derive in 1885 and 1889 the correct form of
the magnetic force on a charged particle [9]. Finally, in 1892, Hendrik Antoon Lorentz derived the
modern day form of the formula for the electromagnetic force.

Darrigol, O. (2000). Electrodynamics from Ampere to Einstein.
Oxford University Press. ISBN 0-198-50593-0



NOTES

OoN

RECENT RESEARCHES IN

ELECTRICITY AND MAGNETISM

INTENDED A% A SRQUEL YO

PROFESSOR CLERK-MAXWELL'S TREATISE
ON ELECTRICITY AND MAGNETISM

oY

J. J. THOMSON, M.A.,, F.RS
Hox, So. D. Dusnix

YELLOW ©OF THLINITY COLLEGE
PROFESSOR OF EXFERIMENTAL FHYSICH IN TIE UNIVEREITY OF CaMBRIDGE

Oxford
AT THE CLARENDON PRESS

18g3

In the course of Maxwell's investigation of the values of
X, Y, Z due to induction, the terms

d . d y
- JE(FU'+ Gv + Hw), —@(Fu+(rv+Hw),

d Y
-~ (E(Fu+ Crv+IIw)

respectively in the final expressions for X, ¥, Z arc included
under the ¥ terms. We shall find it clearer to keep these
terms separate and write the expressions for X, ¥, Z as

dF d d
X=c —bw- TE —d—x(Fu+Gv+Hw)— d—::’\
dG@ d d
— | Jr— : — —— — — Y ¢
Y =aw—cu i dy(Fu+G-v+Hw)——dy, : (1)
dH d d
Z =by —av— 20— L d¢
bu —av 7t dz(Fu-i-Gv-l-Hu 7
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In the FARADAY experiments described in Section 8.1, the spatial mag-
netic induction flux is time-independent, so that the GALILEI observer sitting
on the support of the disk axis will measure a time-independent FARADAY
potential, so that: 0,_; wix,r = 0 and a velocity field of the spinning disk
given by:

Voi(x) = Q- r(x)

with r(x) := x and x a radius vector with origin at the disk axis. Then
Vv = §2;. Assuming that the magnetic flux sz,t is spatially constant in
the disk, 1.e. V sz,t = 0, In terms of the potential wi;\,t = %w%’t -1, we have:
‘cv‘p,e wi‘,t = va,tw%‘,t + wi’,t © VV‘P,t
= Vi, wi‘,t + %(sz,t -T) 082,

with the covariant derivative of the magnetic potential given by:

1 _ .2 2
2 Vvq’,t wF,t _ wB,t . V‘P,t + Vv‘p,th,t * r -

For an arbitrary vector field h in the disk plane, we have that:
2(Ly, wpph)=2(Vy, wi, h) +wh,(r,Q-h)
= sz,t(Qt -1, h) +(V "'-’2B,t -r,h) + sz,t(ra Q-h)=0,

V.t

being V wg, = 0 by assumption and
wh (-1, h) =wh (- (1), Q- h) = —wh,(r,Q - h).

The analysis reveals that the magnetically induced electric vector field in the
disk vanishes identically if the magnetic flux in the disk is spatially uniform.
However, to compute the electromotive force in the circuit we should take
into account the discontinuity points of the velocity at the axis and at the rib
brush contacts, which provide concentrated contributions to the emf whose
sum is equal to:

_wll?,t(xl) (- x1) + wll?,t(XZ) (¢ - x2)
= _%sz,t Xy - (e x1) + %WZB,t “Xg - (£2¢ - X2) .

The global emf is thus again coincident with the one evaluated by the integral
flux formula of FARADAY in which the spinning velocity of the disk radius
closing the circuit is taken into account.

1 1 1 2
WE,t = _aT:t wF’T - d(wF’t * V(P,t) - wB,t * V(p,t + dVE’t .

Romano, G.: The laws of Electromagnetism for moving bodies and related questions (2010)



Faraday law of induction: examples
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Let us consider the problem concerning the electromotive force (emf) gen-
erated in a conductive bar sliding on two fixed parallel rails under a transverse
magnetic field which is spatially uniform and time-independent. An observer
sitting on the rails measures a time independent FARADAY potential field
and may thus evaluate the emf due to the electric field distributed along the
bar is found by integration along the line from x; to xs:

2
wB ch,t * 1.

On the other hand, by the integral formula of FARADAY, the total emf in a
circuit closed by another fixed bar is evaluated to be:

1 2 2
%WE = _?{‘—‘-’B,t'vcp,t = —Wg, Ve - L.

So one-half of the total emf is lost as a result of the evaluation of the contri-
bution provided by the electric field distributed along the bar. To resolve this
puzzling result we have to consider that, in this example, the velocity field is
no more uniform in space. Moreover, being uniform in the bar and vanishing
in the rails, it presents two points of discontinuities at the sliding contacts.
Then, the observer sitting on the rails measures the distributed electric field
in the bar, as evaluated before, plus two impulses of emf concentrated at the
sliding contacts, whose sum is given by

_(wll?,t(xl) - wll?,t(x2>) "Vt = %w123,t vy = _%""]23 1 Vet -l

where x1, x5 are the positions of the sliding contacts and 1 = x5, —x; . Indeed
the velocity jumps, in going from 1 to 2, are v,; and —v,; respectively.
Thus, the two impulses of emf concentrated at the sliding contacts provide
just the lost one-half of the total emf in the translating bar and in the sliding
contacts, which therefore amounts to —wg, - v, - 1 and is equal to the one
previously computed in one stroke by the integral flux rule of FARADAY.

1 1 2
WE+— =t W F.r d( ) Vgo.t> — W ch,t + dVE,t .




« By covariance of electromagnetic induction laws,
Galilei invariance of the involved fields and fluxes implies
Galilei invariance of the laws.

« This result contradicts most treatment of Electrodynamics and
provides the correction of physically untenable statements.

« The electrodynamic motivation for special relativity
should be properly revised.

 Feynman’s beautiful generalization stems from a proper formulation
of the original Faraday flux principle.

 The Lorentz force law should be eliminated from physics textbooks and
treated as a direct consequence of Faraday law, in special situations.



Material inductions of covariant spatial fields

A covariant spatial tensor field §; € CY(S;COV(S)) at time t € I in-
duces, at the configuration @, € CY(B;Q;), a spatial-valued material field
Spi = $ 0ipy € CH(Qy, COV(S)) and, by co-restriction, the material fields

spir € CHB;COV (L)) and s,; € CY(Q;COV(,)), according to the
commutative diagram:

icp,tl ( o —
S St Ol t — St
@,t ) A |8, < : Qi P,l
Sp,t lgo,tlst — St
& Py 2, iyt \ 7T O Syt = IDg, .

The bundle COV(S);, (. denotes the restriction of COV(S) to the base
i,:(Q2) CS. The pull-back i,;| € C'(COV(S)i, ) COV(§,)) between
covariant tensor bundles is defined in terms of the inclusion map 1,; €
CY(2;S) and of the push-forward i,;T € CHTQ; TS) between tangent
bundles, by:

Scp,t(acp,ta bcp,t) L= écp,t(igo,tTacp,ta icp,thcp,t) ;

for all a,4, by, € CHQy; T,) .



Two paradigmatic examples of the role of

differential geometry in classical physics

Rate laws of mechanical material
behavior and

Electromagnetic induction




