
Universität Innsbruck
Arbeitsbereich für Geotechnik und Tunnelbau

Geometry &
Continuum Mechanics

Giovanni Romano

DIST – Dipartimento di Strutture per l’Ingegneria e l’Architettura
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Geometric Approach to
Non-Linear Continuum Mechanics

Linearized Continuum Mechanics (LCM) can be modeled by
Linear Algebra (LA) and Calculus on Linear Spaces (CoLS).

Non-Linear Continuum Mechanics (NLCM) calls for
Differential Geometry (DG) and Calculus on Manifolds (CoM)
as natural tools to develop theoretical and computational models.
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Math1 - Tangent spaces

Tangent vector to a manifold:

velocity of a curve c : [a, b] 7→ M , λ ∈ [a, b] , x = c(λ) base point

v := ∂µ=λ c(µ) ∈ TxM

Cotangent vector:
v∗ : TxM 7→ R ∈ T∗x M linear

Tangent map:

I A map ζ : M 7→ N sends
a curve c : [a, b] 7→ M into
a curve ζ ◦ c : [a, b] 7→ N .

I The tangent map Txζ : TxM 7→ Tζ(x)N
sends a tangent vector at x ∈ M
v ∈ Tx(M) := ∂µ=λ c(µ)
into a tangent vector at ζ(x) ∈ N
Txζ · v ∈ Tζ(x)(N) := ∂µ=λ (ζ ◦ c)(µ)
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Math2 - Tangent functor

Tangent bundle

I disjoint union of tangent spaces:

TM := ∪x∈MTxM

I Projection: τM : TM 7→M

v ∈ TxM , τM(v) := x base point

I Surjective submersion:

TvτM : TvTM 7→ TxM is surjective

I Tangent functor

ζ : M 7→ N 7→ Tζ : TM 7→ TN
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Math3 - Fiber bundles

Fiber bundles

I E,M manifolds

I Fiber bundle projection:
πM,E : E 7→M surjective submersion

I Total space: E

I Base space: M

I Fiber manifold: (πM,E(x))−1 based at x ∈M

I Tangent bundle TπM,E : TE 7→ TM

I Vertical tangent subbundle TπM,E : VE 7→ TM with:

δe ∈ VE ⊂ TE =⇒ TeπM,E · δe = 0
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Math4 - Fiber bundle samples

Trivial and
non-trivial
fiber bundles

Torus Listing-Möbius strip Klein Bottle
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Math5 - Sections

Sections of fiber bundles

I Fiber bundle πM,E : E 7→ M

I Sections sE,M : M 7→ E , πM,E ◦ sE,M = idM

I Tangent v.f. vE : E 7→ T E , τE ◦ vE = idE

I Vertical tangent sections TπM,E ◦ vE = 0

Sections of tangent and bi-tangent bundles

I Tangent vector fields:

v : M 7→ T M : τM ◦ v = idM

I Bi-tangent vector fields:

X : T M 7→ T T M : τT M ◦ X = idT M

I Vertical bi-tangent vectors X ∈ KerTvτM
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Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections

I Tensor bundle τTens
M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math6 - Tensor spaces

I Covariant sCov
x ∈ Covx(T M) = L (TxM2 ;R) = L (TxM ; T∗x M)

I Contravariant sCon
x ∈ Conx(T M) = L (T∗x M2 ;R) = L (T∗x M ; TxM)

I Mixed sMix
x ∈Mixx(T M) = L (TxM ,T∗x M ;R) = L (TxM ; TxM)

I Alteration rules:

sCov
x = gx ◦ sMix

x , sCon
x = sMix

x ◦ g−1
x

being gx ∈ Covx(T M) non degenerate, i.e. invertible.

Tensor bundles and sections
I Tensor bundle τTens

M : Tens(T M) 7→ M

I Tensor field sTens
M : M 7→ Tens(T M)

I with: τTens
M ◦ sTens

M = idM



Math7 - Push and pull

Given a map ζ : M 7→ N

I Pull-back of a scalar field

f : N 7→ Fun(N) 7→ ζ↓f : M 7→ Fun(M)

defined by:
(ζ↓f )x := ζ↓fζ(x) := fζ(x) ∈ Funx(M) .

I Push-forward of a tangent vector field

v : M 7→ TM 7→ ζ↑v : N 7→ TN

defined by:
(ζ↑v)ζ(x) := ζ↑vx = Txζ · vx ∈ Tζ(x)N .
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Math8 - Push-pull of tensor fields

I Covectors
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x ◦ T ∗ζ(x)ζ ∈ Con(TN)ζ(x)

I Mixed tensors

ζ↑sMix
x = Txζ ◦ sMix

x ◦ Tζ(x)ζ
−1 ∈Mix(TN)ζ(x)
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Math9 - Connections
Parallel transport along a curve c : [a, b] 7→M

I Vector fields

x = c(µ) , vx ∈ TxM 7→ cλ,µ ⇑ vx ∈ Tc(λ)M

cµ,µ ⇑ vx = vx

cλ,µ ⇑ ◦ cµ,ν ⇑ = cλ,ν ⇑
I Covector fields v∗x ∈ T ∗x M (by naturality)

〈cλ,µ ⇑ v∗x , cλ,µ ⇑ vx 〉 = cλ,µ ⇑ 〈v∗x , vx 〉

I Tensor fields (by naturality)
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Math9 - Connections
Parallel transport along a curve c : [a, b] 7→M

I Vector fields
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Tullio Levi-Civita (1873 - 1941)



Math10 - Lie and parallel derivatives

Derivatives of a tensor field
s : M 7→ Tens(TM)

along the flow of a tangent vector field

I Tangent vector fields and Flows

v : M 7→ TM Flvλ : M 7→M

v := ∂λ=0 Flvλ

I Lie derivative - LD

Lv s := ∂λ=0 Flvλ↓ (s ◦ Flvλ)

I Parallel derivative - PD

∇v s := ∂λ=0 Flvλ ⇓ (s ◦ Flvλ)
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Math11

lenght of symplex’s edges

I Norm axioms

A
c

&&
B

C

b

OO

a
88

‖a‖ ≥ 0 , ‖a‖ = 0 =⇒ a = 0

‖a‖+ ‖b‖ ≥ ‖c‖ triangle inequality,

‖α a‖ = |α| ‖a‖

I Parallelogram rule

B
a // C

A

b

FF

a //

a+b

88

D

b

EE
b−a
YY

‖a + b‖2 + ‖a− b‖2 = 2
[
‖a‖2 + ‖b‖2

]
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Math12

The metric tensor

I Theorem (Fréchet – von Neumann – Jordan)

g(a ,b) :=
1

4

[
‖a + b‖2 − ‖a− b‖2

]

vol

( • // •

•

::

// •

::

•

OO

// •

OO

• e1 //

e3

OO

e2
::

•

OO

::

)2

= det

 g(e1 , e1) · · · g(e1 , e3)

· · · · · · · · ·
g(e3 , e1) · · · g(e3 , e3)


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Math13

Bernhard Riemann (1826 - 1866)

Metric tensor field: g : M 7→ Cov(TM)

I Riemann manifold: (M , g)

I Fundamental theorem:
There exists a unique linear connection, the Levi-Civita
connection, that is metric and symmetric, i.e. such that

1. ∇vg = 0
2. ∇vu−∇uv = [v , u]

The torsion of the connection is defined by

Tors(v ,u) = ∇vu−∇uv − [v ,u]
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J.C. Simó A framework for finite strain elastoplasticity based on maximum plastic
dissipation and the multiplicative decomposition: Continuum formulation
Comp. Meth. Appl. Mech. Eng. 66 (1988) 199–219.

G. Romano & R. Barretta Covariant hypo-elasticity
Eur. J. Mech. A-Solids 30 (2011) 1012–1023

G. Romano, R. Barretta, M. Diaco Geometric Continuum Mechanics
Meccanica 49 (2014) 111–133



Nonlinear Continuum Mechanics - Key contributions
C. Truesdell & W. Noll The non-linear field theories of mechanics
Handbuch der Physik, Springer (1965)

C. Truesdell A first Course in Rational Continuum Mechanics
Second Ed., Academic Press, New-York (1991). First Ed. (1977).

M.E. Gurtin An Introduction to Continuum Mechanics
Academic Press, San Diego (1981)

J.E. Marsden Lectures on Geometric Methods in Mathematical Physics, SIAM,
Philadelphia, PA (1981)

J.E. Marsden & T.J.R. Hughes Mathematical Foundations of Elasticity
Prentice-Hall, Redwood City, Cal. (1983)

E.H. Lee Elastic-plastic deformations at finite strains ASME Trans. J. Appl. Mech.
36(1) (1969) 1–6.
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A basic question in NLCM

I How to compare material tensors at corresponding points in displaced
configurations of a body?

I Devil’s temptation:

In 3D bodies it might seem as natural to compare by translation the
involved material vectors.
This is tacitly done in literature, when evaluating the material
time-derivative of the stress tensor T :

Ṫ(p, t) := ∂τ=t T(p, τ) = ∂τ=t ϕα ⇓T(p, τ)

or the material time-derivative of the director n of a nematic liquid
crystal:

ṅ(p, t) := ∂τ=t n(p, τ) = ∂τ=t ϕα ⇓ n(p, τ)

These definitions are connection dependent and geometrically
incorrect when considering 1D and 2D models (wires and
membranes).

I Geometric hint:

Tangent vectors to a body placement are transformed into vectors
tangent to another body placement by the tangent displacement
map. This is the essence of the COVARIANCE PARADIGM.
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Principles

DIMENSIONALITY INDEPENDENCE:
A geometrically consistent theoretical framework should be
equally applicable to body models of any dimension.

GEOMETRIC PARADIGM: A notion concerning material tensors
is said to be natural if it depends only on the metric properties
of the event manifold and on the motion, no other arbitrary
assumption (such as the choice of a parallel transport) being
involved.
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NLCM: Nonlinear Continuum Mechanics

How to play the game
according to a full geometric approach

Kinematics

I Event manifold: E – four dimensional Riemann manifold

I Observer split into space-time: γ : E 7→ S × I

I time is absolute (Classical Mechanics)

I distance between simultaneous events 7→ space-metric

I distance between localized events 7→ time-metric
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Event manifold foliation

Each observer performs a double foliation of the 4D event manifold E
into complementary

I 3D space-slices S of isochronous events (with a same corresponding
time instant). P orthogonal projector on space slices.

I 1D time-lines of isotopic events (with a same corresponding space
location). Z time arrow field.

time lines

space slices

Figure : Euclid space-time slicing.
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Space-time decomposition

Commutative diagram

TE

tE

$$

ϕE
α // TE

tE

zz

T
i

OO

tT ��

ϕT
α // T

i

OO

tT��
Z tα // Z

⇐⇒

{
ϕEα ◦ i = i ◦ϕTα ,

tE ◦ϕEα = tα ◦ tE ,

time translation tα : Z 7→ Z is defined by tα(t) := t + α , t, α ∈ Z .
Decomposition

1. a time-preserving spatial displacement ϕSα : E 7→ E ,
2. a location-preserving time step ϕZα : E 7→ E ,

Commutative diagram

TE
ϕS
α //
ϕE
α

((
ϕZ
α
��

E
ϕZ
α
��

E
ϕS
α // TE

⇐⇒ ϕEα = ϕSα ◦ϕZα = ϕZα ◦ϕSα . (1)
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Trajectory

I Trajectory 7→ manifold T with injective immersion in the event
time-bundle: i : T 7→ E

I Immersed trajectory TE := i(T ) ⊂ E subbundle of the event
time-bundle.

I Trajectory time-fibration tT := tE ◦ i

I time bundle 7→ fibers: body placements Ωt

I Trajectory space-fibration pT := pE ◦ i (not a space bundle)

I Space-time time-vertical subbundle: spatial vectors

d ∈ VeE ⇐⇒ TetE · d = 0

I Trajectory time-vertical subbundle: material vectors

h ∈ VeT ⇐⇒ TetT · h = 0
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Evolution

I Evolution operator ϕT

I Displacements: diffeomorphisms between placements

ϕTα : Ωt 7→ Ωτ , τ, t ∈ I , α = τ − t ∈ R
I Law of determinism (Chapman-Kolmogorov):

ϕTα+β = ϕTα ◦ϕTβ
I Simultaneity of events is preserved:

tT (e) = t =⇒ (tT ◦ϕTα )(e) = τ

I Trajectory velocity: α ∈ R time lapse

VT (e) := ∂α=0ϕ
T
α (e) =⇒ TetT · VT (e) = 1

I Space-time velocity:

V(e) := ∂α=0ϕ
E
α(e) =⇒ TetE · V(e) = 1

I V = i↑VT = v + Z , space and time components.
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Body and particles bodysource placement target placement

I Equivalence relation on the trajectory
Motion related trajectory events (particle):

(e1 , e2) ∈ T × T : e2 = ϕTt2,t1
(e1) , ti = tT (ei ) , i = 1, 2

Body = quotient manifold (foliation)
Particles = equivalence classes (folia)

I mass conservation∫
Ωt1

m =

∫
Ωt2

m ⇐⇒ LVm = 0

m : T 7→ Vol(TT ) mass form
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Tensor fields in NLCM

Space-time fields sE : E 7→ Tens(TE) Space-time
metric tensor

Spatial fields sspa : E 7→ Tens(V E) Spatial metric tensor

Trajectory fields sT : T 7→ Tens(TT ) Trajectory-metric,
trajectory speed

Material fields smat : T 7→ Tens(VT ) Material-metric,
stress, stressing,
stretching.

Trajectory-based
space-time fields

sE : TE 7→ Tens(TE) Trajectory speed
(immersed)

Trajectory-based
spatial fields

sspa : TE 7→ Tens(V E) Virtual velocity,
acceleration, force
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Covariance Paradigm

Material fields at different times along the trajectory must be compared
by push along the material displacement.
Material fields on push-related trajectories must be compared by push
along the relative motion.

Push and parallel transport along the motion

Parallel transport does not preserve time-verticality
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Time derivatives =
derivatives along the motion (flow of 4-velocity)

Lie Time Derivative - LTD

Marius Sophus Lie (1842 - 1899)

I Trajectory and material tensor field

ṡ := LV s = ∂λ=0 FlVλ↓ (s ◦ FlVλ) ,

Parallel Time Derivative - PTD (instead of Material Time Derivative)

I Trajectory-based space-time and spatial fields

ṡE := ∇V sE = ∂λ=0 FlVλ ⇓
E (sE ◦ FlVλ) ,

with V := i↑VT .
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Rivers and Cogwheels

LV s := ∂α=0ϕα↓(s ◦ϕα) = LZ s + Lv s = ṡ + Lv s

∇V sE := ∂α=0ϕ
E
α ⇓ (sE ◦ϕEα) = ∇Z sE +∇v sE = ṡE +∇v sE

Gottfried Wilhelm von Leibniz (1646 - 1716)
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∇V sE := ∂α=0ϕ
E
α ⇓ (sE ◦ϕEα) = ∇Z sE +∇v sE = ṡE +∇v sE
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Acceleration

Time derivative of the velocity field: V = Z + v

a := ∇V V := ∂α=0ϕα ⇓ (V ◦ϕα)

=∇ZV +∇vV

= v̇ +∇vv

This is the celebrated Euler split formula, applicable only in special problems of
hydrodynamics, where it was originally conceived.
It eventually leads to the Navier-Stokes-St.Venant differential equation of motion
in fluid-dynamics.

Notwithstanding its limitations, in most treatments of mechanics Euler split formula
is improperly adopted to provide the very definition of acceleration.1

The result is usually named material time derivative but this is improper because the
outcome is a space vector field.

1 See e.g.
1) C. Truesdell, A first Course in Rational Continuum Mechanics
Second Ed. Academic Press, New-York (1991). First Ed. (1977)
2) M.E. Gurtin, An Introduction to Continuum Mechanics
Academic Press, San Diego (1981)
3) J.E. Marsden & T.J.R. Hughes, Mathematical Foundations of Elasticity
Prentice-Hall, Redwood City, Cal. (1983)
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Stretching = Lie time derivative
of material metric

Leonhard Euler (1707 - 1783)

I Stretching:
ε(v) := 1

2LV gmat = 1
2∂α=0 (ϕα↓gmat)

I Πe : TeS 7→ TeΩ projection
Π∗e : T ∗e Ω 7→ T ∗e S immersion

I Euler’s formula (generalized)

1
2LV gmat = Π∗ ·

(
1
2∇V gspa + sym (gspa ◦ (Tors +∇)v)

)
·Π

Mixed form of the stretching tensor (standard Levi-Civita
connection):

D := g−1
spa ◦ 1

2LV gspa = sym (∇v)

since Tors = 0 and ∇V gspa = 0
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Stress and stressing

I Stress: σ : T 7→ Con(VT ) in duality with

I Stretching: ε(v) : T 7→ Cov(VT )

ε(v) := 1
2 ġmat = 1

2 LV gmat

Kirchhoff stress

I Power per unit mass: 〈σ, ε(v)〉 : T 7→ Fun(VT )

I Stressing: Lie time derivative of the stress field

σ̇ := LV σ = ∂α=0 (ϕα↓σ)

Expression in terms of Lie derivative of the immersed stress field:

LVσ = Π ·
(

1
2 LV (i↑σ)

)
·Π∗
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”Objective” stress rates

Stressing in terms of parallel derivative:

LVσ = Π ·
(
∇v(i↑σ)− sym (∇V · (i↑σ))

)
·Π∗

I Not performable on the time-vertical subbundle of material tensor fields
because the parallel derivative ∇V on the immersed trajectory
does not preserve time-verticality.

I Treatments which do not adopt a full geometric approach,
do not perceive the difficulties revealed by the previous investigation.

Co-rotational stress rate tensor,
Zaremba (1903), Jaumann (1906,1911), Prager (1960):

◦
T= Ṫ−WT + TW

with Ṫ material time derivative.

Convective stress tensor rate,
Oldroyd (1950), Truesdell (1955), Noll (1958), Sedov (1960), Truesdell &
Noll (1965):

M
T= Ṫ + LT T + TL
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with Ṫ material time derivative.

Convective stress tensor rate,
Oldroyd (1950), Truesdell (1955), Noll (1958), Sedov (1960), Truesdell &
Noll (1965):

M
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Deformation gradient

The equivalence class of all material displacements whose tangent map have the
common value:

Txϕτ,t : TxΩt 7→ Tϕτ,t (x)Ωτ

I is called the first jet of ϕτ,t at x ∈ Ωt , in differential geometry,

I and the relative deformation gradient in continuum mechanics.

The chain rule between tangent maps:

Tϕτ,s (x)ϕτ,s = Tϕt,s (x)ϕτ,t ◦ Txϕt,s ,

implies the corresponding one between material deformation gradients:

Fτ,s = Fτ,t ◦ Ft,s .

Time rate of the deformation gradient
Standard treatment Truesdell & Noll (1965)

Ḟt,s = Lt Ft,s

with Ḟt,s := ∂τ=t Fτ,s and Lt := ∂τ=t Fτ,t time derivatives ?.

Lt (x) · hx := ∂τ=t Fτ,t (x) · hx ∈ TxΩt , ∀ hx ∈ TxΩt

with Fτ,t (x) · hx ∈ TxΩτ .



Time derivatives of the deformation gradient

I The Lie time derivative gives:

∂α=0 (Tϕα)−1 · (Tϕα · h) = ∂α=0 h = 0

I The parallel time derivative gives:

L(v) := ∂α=0 (ϕα ⇓Tϕα) = ∇v + Tors(v)



Time derivatives of the deformation gradient

I The Lie time derivative gives:

∂α=0 (Tϕα)−1 · (Tϕα · h) = ∂α=0 h = 0

I The parallel time derivative gives:

L(v) := ∂α=0 (ϕα ⇓Tϕα) = ∇v + Tors(v)



Change of observer

I Change of observer ζE : E 7→ E ,
time-bundle automorphism

I Relative motion ζ : T 7→ Tζ := ζ(T ) ,
time-bundle diffeomorphism

E
ζE //

tE

&&

E

tE

xx

T
ζ=ζT //

i

OO

tT

��

Tζ
tT

��

iζ

OO

Z oo id // Z
I Pushed motion

Tζ
ζ↑ϕT

α // Tζ

T
ϕT
α //

ζ

OO

T

ζ

OO ⇐⇒ (ζ↑ϕTα ) ◦ ζ = ζ ◦ϕTα .
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Consequences of the Covariance Paradigm

Time Invariance and Frame Invariance
of material fields

I Time Invariance s = ϕα↑s , ϕα : E 7→ E

I Frame Invariance sζ = ζ↑s , ζ : T 7→ Tζ

I Lie time derivative along pushed motions
Naturality of Lie derivative under diffeomorphisms

Lζ↑V (ζ↑s) = ζ↑(LV s)

Frame invariance of a material tensor implies frame invariance of its
time-rate.
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Push of 4-velocity

Transformation rule

VTζ := ∂α=0 (ζ↑ϕTα ) = ζ↑VT .

The 4-velocity is natural with respect to frame transformations

ζE :

{
x 7→ Q(t) · x + c(t)

t 7→ t

[TζE ] · [V] =

Q (Q̇x + ċ)

0 1

 ·
v

1

 =

Qv + Q̇x + ċ

1





Straightened trajectory

Construction diffeomorphism ξ : Ωref × I 7→ TE
Straightened trajectory: Ωref × I
Straightening map ξ−1 : TE 7→ Ωref × I

ξ

Figure : Straightening of the trajectory.

I The Lie time derivative is a partial time derivative in a straightened
trajectory

ξ↓(LV s) = LZ (ξ↓s) = ∂α=0 (ξ↓s) ◦ trα
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Constitutive laws

I Constitutive operator C

A material bundle morphism whose domain and codomain are Whitney
products of material tensor bundles

I Constitutive time invariance

C = ϕα↑C

where
(ϕα↑C)(ϕα↑s) := ϕα↑(C(s))

I Constitutive frame invariance

Cζ = ζ↑C

where
(ζ↑C)(ζ↑s) := ζ↑(C(s))
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Constitutive Frame Invariance (CFI)

Ansatz: Material fields are frame invariant

Principle of MFI (Walter Noll 1958)

I The principle of Material Frame Indifference requires that, if a set of
material fields fulfills a constitutive law, then the transformed fields,
when evaluated by another Euclid observer, must fulfill the same law

C(ζ iso↑s) = ζ iso↑(C(s))

Principle of CFI (Giovanni Romano 2013)

I Any constitutive law must conform to the principle of Constitutive
Frame Invariance which requires that, if a set of material fields fulfills
a constitutive law, then the transformed fields must fulfill the
transformed law, when evaluated by another Euclid observer

Cζiso (ζiso↑s) = ζiso↑(C(s))

for any isometric relative motion ζiso : T 7→ Tζiso induced by a change of

Euclid observer ζiso
E : E 7→ E
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Pure Elasticity

I Pure elasticity
εel elastic stretching {

ε(v) = εel

εel = H(σ) · σ̇

I Cauchy integrability

〈dF H(σ) · δσ · δ1σ, δ2σ 〉 = symmetric

=⇒ H(σ) = dF Φ(σ)

I Green integrability

〈H(σ) · δ1σ, δ2σ 〉 = symmetric

=⇒ Φ(σ) = dFE
∗(σ)
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Rate Elasticity

I Elastic constitutive operator:
rate-elastic constitutive operator, integrable and time invariant

I Constitutive elastic law:
εel elastic stretching {

ε(v) = εel

εel = d2
FE
∗(σ) · σ̇

I pull-back to a local reference manifold:

ξ↓εel = d2
FE
∗
ref(σref) · ∂α=0 (σref ◦ trα)

= ∂α=0 dFE
∗
ref(σref)

I where σref = ξ↓σ and trα(x , t) = (x , t + α) , x ∈ Ωref .

E∗ref := ξ↓E∗ time independent
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Conservativeness of hyper-elasticity

Green integrability of the elastic operator H = d2
FE
∗

as a function of the Kirchhoff stress tensor field

implies conservativeness:∮
I

∫
Ωt

〈σ, εel 〉m dt = 0

for any cycle in the stress time-bundle,

i.e. for any stress path such that:

σt2 = ϕt2,t1
↑σt1 , I = [t1, t2]
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Elasto-visco-plasticity

I Constitutive law

εel elastic stretching
εpl visco-plastic stretching

ε(v) = εel + εpl stretching additivity

εel = d2
FE
∗(σ) · σ̇ hyper-elastic law

εpl ∈ ∂FF(σ) visco-plastic flow rule
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CFI in elasto-visco-plasticity

I Frame invariance of the rate-elastic operator

Hζiso = ζiso↑H

Pushed operator

(ζiso↑H)(ζiso↑σ) · (ζiso↑σ̇) = ζiso↑(H(σ) · σ̇)

Examples:

I The simplest rate-elastic operator is Green integrable and frame invariant:

H(T) :=
1

2µ
I−

ν

E
I⊗ I

I The visco-plastic flow rule is frame invariant

These results provide answers to unsolved questions posed in:

J.C. Simó & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.
Meth. Appl. Mech. Eng. 46 (1984) 201–215.
J. C. Simó & M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive
equations, Comp. Meth. Appl. Mech. Eng. 49 (1985) 221–245.
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J.C. Simó & K.S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Comp.
Meth. Appl. Mech. Eng. 46 (1984) 201–215.
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Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent



Achievements

I Notion of spatial and material fields

I Material time derivative and Euler split formula

I Covariance and Geometric Paradigm

I Stretching and stressing: Lie time-derivatives

I Euler stretching formula generalized

I Rate formulation of constitutive laws

I Notion of time and frame invariance

I Theory of (rate)-elasticity

I Integrability of simplest rate-elasticity

I Theory of elasto-visco-plasticity

I From Lie time-derivatives to partial time derivatives
by pull-back to a fixed configuration

I From Material Frame Indifference to Constitutive Frame Invariance

I Notions and treatments of constitutive models in the nonlinear range are revised
and reformulated

I Algorithms for numerical computations are modified to comply with the
geometric theory; multiplicative decomposition of the deformation gradient is
deemed geometrically inconsistent


	Geometric Approach to NLCM
	Tangent spaces
	Tangent functor
	Fiber bundles
	Trivial and non-trivial fiber bundles
	Sections
	Tensor bundle and sections
	Push and pull
	Push and pull of tensor fields
	Parallel transport
	Derivatives
	Metric measurements
	Metric theory
	Metric manifolds
	Key contributions
	A basic question
	Basic
	Kinematics
	Event manifold foliation
	Space-time decomposition
	Trajectory
	Evolution
	Body and particles
	Tensor bundles
	Covariance Paradigm
	Time derivatives along the motion
	Rivers and Cogwheels
	Euler split
	Stretching tensor
	Stress and stressing
	Objective tensors
	Deformation Gradient
	Time derivative of the deformation gradient
	Change of observer
	Time independence and Invariance
	Push of 4-velocity
	ST
	Constitutive laws
	Constitutive Frame Invariance
	Pure Elasticity
	Rate Elasticity
	Conservativeness
	Elasto-visco-plasticity
	Frame Invariance EVP
	Conclusions

