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NLCM = Non-Linear Continuum Mechanics
and
DG = Differential Geometry

NLCM and DG

NLCM is an important source of inspiration for DG and DG is the
natural tool to develop a mathematical modeling of NLCM
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Hermann Weyl (1885-1955)

In these days the angel of topology and the devil of
abstract algebra fight for the soul of each individual
mathematical domain.

H. Weyl, "Invariants”, Duke Mathematical Journal 5 (3): (1939) 489-502
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» How to compare the metric and stress tensors
at corresponding points in displaced placements of a body?

» Devil's temptation:

In 3D bodies it might seem as natural to compare by
translation the traction vectors corresponding to translated
normals to cutting surfaces. This is tacitly done when
writing the stress time-rate as T but is geometrically
untenable as may be more clearly seen by considering 1D
and 2D models (wires and membranes).
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A basic question in NLCM

» How to compare the metric and stress tensors
at corresponding points in displaced placements of a body?

» Devil's temptation:

In 3D bodies it might seem as natural to compare by
translation the traction vectors corresponding to translated
normals to cutting surfaces. This is tacitly done when
writing the stress time-rate as T but is geometrically
untenable as may be more clearly seen by considering 1D
and 2D models (wires and membranes).

» Hint:

Tangent vectors to a body placement may be transformed
into tangent vectors to another body placement only by
means of the differential of the displacement map. This is
the essence of the COVARIANCE PARADIGM.
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A geometrically consistent framework should be equally

applicable to body models of any dimension.

Motivation for the COVARIANCE PARADIGM !

1G. Romano, R. Barretta, 2011. Covariant hypo-elasticity.
Eur. J. Mech. A-Solids. DOI: 10.1016/j.euromechsol.2011.05.005
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Tangent vector to a manifold: velocity of a curve
ce Cl([a,b]; M), Xe€[ab], x=c¢c(\) base point
v:i=0,-xc(p) € TM
Cotangent vector
v e L(TyM;R) € T;M
Tangent map
> A map ¢ € CHM;N) sends

a curve ¢ € C([a, b]; M) into
acurve {oc€ Cl([a,b];N).

The G-Factor Impact in
NLCM

Giovanni Romano

Tangent spaces



The G-Factor Impact in

Math1 G0

Giovanni Romano

Tangent vector to a manifold: velocity of a curve
ce Cl([a,b]; M), Xe€[ab], x=c¢c(\) base point Tangent spaces

v:i=0,-xc(p) € TM
Cotangent vector
v e L(TyM;R) € T;M

Tangent map

> A map ¢ € CHM;N) sends
a curve ¢ € C([a, b]; M) into
acurve {oc€ Cl([a,b];N).
» The tangent map Tx¢ € CO(TXM;TC(X)N)
sends a tangent vector at x € M
v € Tx(M) := 9p—x c(u)
into a tangent vector at ((x) € N
Tx¢ - v € T (N) := Op=x (¢ 0 €)(p)
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Tumu € CHT,TM ; T,M) is surjective
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Tangent bundle

» disjoint union of tangent spaces:

Tangent functor

TM := UyemTxM

» Projection: 7y € CH(TM ; M)
veTyM, 7y(v):=x base point
» Surjective submersion:

Tumu € CHT,TM ; T,M) is surjective

» Tangent functor

¢eC'(M;N) +— T¢eC%TM;TN)
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Fiber bundles
» E,M manifolds

» Fiber bundle projection:
k€ CY(E; M) surjective

base manifold

fiber bundie

submersion

Tiber
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fiber bundie

v

Fiber bundle projection:
wk € CY(E; M) surjective submersion

v

Total space: E

v

Base space: M
Fiber manifold: (7;)~!(x) based at x € M

v
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» E,M manifolds

Fiber bundles

v

Fiber bundle projection:
wk € CY(E; M) surjective submersion

v

Total space: E

v

Base space: M
Fiber manifold: (7;)~!(x) based at x € M

v

v

Tangent bundle  Txl; € CO(TE ; TM)
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Fiber bundles

» Fiber bundle projection:
wk € CY(E; M) surjective submersion

» Total space: E
» Base space: M
» Fiber manifold: (7};)~1(x) based at x € M

» Tangent bundle Ty € CO(TE; TM)
» Vertical tangent subbundle Tl € CO(VE; TM)
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Fiber bundles
» E,M manifolds

Fiber bundles

» Fiber bundle projection:
wk € CY(E; M) surjective submersion

» Total space: E
» Base space: M
» Fiber manifold: (7};)~1(x) based at x € M

» Tangent bundle Ty € CO(TE; TM)

» Vertical tangent subbundle Tl € CO(VE; TM) with:
e c VECTE = Teml;-de=0
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fiber bundles
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8 Trivial and non-trivial
fiber bundles

Listing-Mobius strip Klein Bottle



Mathb

Sections of fiber bundles

Tiber
base manifold

fiber bundie

Examples
Covariance Paradigm

Time derivatives



The G-Factor Impact in

Mathb

Giovanni Romano

Sections of fiber bundles
> Fiber bundle =k € CHE; M)

Sections



The G-Factor Impact in

Mathb

Giovanni Romano

Sections of fiber bundles
> Fiber bundle =k € CHE; M)

> Sections st e CY(M;E), =l osk =1py s

Sections



Mathb

Sections of fiber bundles

> Fiber bundle =k € CHE; M)
> Sections st e CY(M;E),

» Tangent v.f.

vg € CY(E;TE),
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E E __ fiber bundie
T o SM = IDp

TE OVE = IDg

Sections
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> Fiber bundle =k € CHE; M)

> Sections st e CY(M;E), =l osk =1py e
» Tangent v.f. vg € CY(E;TE), 7Tgovg=IDg Sections

» Vertical tangent sections Tﬂll\%;ﬂ ovg =0

Sections of tangent and bi-tangent bundles

» Tangent vector fields:
veCHM;T™M) : Ty ov=1py
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Sections of fiber bundles
> Fiber bundle =k € CHE; M)

> Sections st e CY(M;E), =l osk =1py e
» Tangent v.f. vg € CY(E;TE), 7Tgovg=IDg Sections

» Vertical tangent sections Tﬂll\%;ﬂ ovg =0

Sections of tangent and bi-tangent bundles

» Tangent vector fields:
veCHM;T™M) : Ty ov=1py

» Bi-tangent vector fields:

X € CHTM; TTM) : 7y 0 X = IDyy
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Sections of fiber bundles
> Fiber bundle =k € CHE; M)

> Sections st e CY(M;E), =l osk =1py e
» Tangent v.f. vg € CY(E;TE), 7Tgovg=IDg Sections

» Vertical tangent sections Tﬂll\%;ﬂ ovg =0

Sections of tangent and bi-tangent bundles

» Tangent vector fields:
veCHM;T™M) : Ty ov=1py

» Bi-tangent vector fields:
X € CHTM; TTM) : 7y 0 X = IDyy

» Vertical bi-tangent vectors X € Ker Ty



Math6

Tensor spaces




The G-Factor Impact in

Math6

Tensor spaces

Giovanni Romano

» Covariant
sSOV € COV4(TM) = L (TyM?; R) = L(T,M; T;M)

Tensor bundle and
sections
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» Covariant
sSOV € COV4(TM) = L (TyM?; R) = L(T,M; T;M)

» Contravariant
sCON € CONL(TM) = L(T;M?;R) = L(TiM; T,M)

» Mixed
sMIX € MIX,(TM) = L(T,M, T:M; R) = L(T,M; T,M)
Tensor bundle and
» with the alteration rules: -
cov MIX CON MIX -1
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Tensor bundles and sections
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» Contravariant
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» Mixed
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Tensor spaces
» Covariant
sSOV € COV4(TM) = L (TyM?; R) = L(T,M; T;M)

» Contravariant
sCON € CONL(TM) = L(T;M?;R) = L(TiM; T,M)

» Mixed
stIX € MIX,(TM) = L(T,M, T;M; R) = L(T«M; T, M)
» with the alteration rules: seenons
cov — g I\IIX7 s)((}ON MIX o gx :

Tensor bundles and sections
» Tensor bundle  7FNS € CY(TENS(TM); M)

» Tensor field siiNS € CY(M; TENS(TM))

> with: 7IFNS 0 gTENS — 1y
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» Pull-back of a scalar field

f:N FUN(N) — ¢lf: M— FUN(M)

defined by:
(CLF)x i= Clfex) 1= fex) € FUNL(M).

Push and pull
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Push and pull
Given a map ¢ € CY(M;N)
» Pull-back of a scalar field
f:Nw— FUN(N) — ¢|f:M— FUN(M)
defined by:
(le)x = lec(x) = fC(x) S FUNX(M)
» Push-forward of a tangent vector field

veC'(M;T™M) + ¢(Jv:N— TN

Push and pull

defined by:
(CTV)¢x) = CTvx = TxC - vx € TN
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» Covectors

<ClV2(x)’Vx> = <v2(x)7CTVX> = <TZ(X)C ° VZ(X)’Vx>

Push and pull of tensor
fields
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Push and pull of tensor fields
» Covectors
<Clvz(x)avx> = <V2(x)7CTVx> = <T¢*(X)C ° VZ(X),Vx>
» Covariant tensors

Cisg(%v =TxCo 5238)" o Tx¢ € COV(TM),

Push and pull of tensor
fields
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Push and pull of tensor fields
» Covectors
<ClV2(x)an> = <v2(x)7CTVX> = <T¢*(X)C ° VZ(x)an>
» Covariant tensors
Clsey = TiwCosey © Tu € COV(TM),
» Contravariant tensors Push and pull of tensor

fields

¢8O = Tu€ 05N 0 T{()¢ € CON(TN) ()
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Push and pull of tensor fields
» Covectors
(CIVE(: Vx) = (Vg0 S TVx) = (Te(€ © Ve(xs V)
» Covariant tensors
Clsely = TémCose(y © Tx¢ € COV(TM),
» Contravariant tensors Push and pull of tensor
fields
¢8O = Tu€ 05N 0 T{()¢ € CON(TN) ()

» Mixed tensors

¢ = To¢ o)™ 0 Te¢ ™ € MIX(TN)¢(x)
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Parallel transport along a curve ¢ € C([a, b]; M)
> Vector fields
x=c(u), vweTM r cx,fhvx€ TnyM
Cup M Vx = Vi

Ch ﬂ O Cpu,v ﬂ =C\v ﬁ

» Covector fields v} € TiM (naturality)
Parallel transport

(exu v, € k) = € I (v, Vx)

» Tensor fields (naturality)
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» Events manifold: E — four dimensional
» Observer split into space-time: S x /
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Giovanni Romano

How to play the game

Kinematics
» Events manifold: E — four dimensional
» Observer split into space-time: S x /
» time is absolute (Classical Mechanics)

» distance between simultaneous events — metric tensor

Kinematics
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» Time and space fibrations: ~: E — S x | (observer)

S<—>S§
WS,hT TS, (SxI)
- TIE = T (SxI)°Y
E—=5x — _
TTSE = TS,(Sx)°Y
WI,Ei/ \L"’/ Sx1)
IDy
| <——|

Events manifold fibrations
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» Time and space fibrations: ~: E — S x | (observer)

IDs
S<—> S8
WS,ET Tﬂ's,(sw)
- TIE = T (SxI)°Y
E——=Sx1/ — _
TTSE = TS,(Sx)°Y
WI.Ei/ T (SxI)
/

» Time-vertical subbundle: spatial vectors

veVE — Temp-v=0 Events manifold fibrations
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» Time and space fibrations: ~: E — S x | (observer)

TIE = T (SxI)°7Y
~ é (Sx1)

TTSE = TS,(Sx)°Y

» Time-vertical subbundle: spatial vectors
veVE — Temp-v=0 Events manifold fibrations

> Ve €E V. E <= ATve = (%,0:) € TS x T/
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» Trajectory: 7, C E; subbundle of the events time-bundle
ball (dim=3+1)
membrane (dim=2+1)
wire (dim=1+1)

> time fibration +— fibers: body placements €2,

> vertical tangent fibration +— material vectors v,

» Evolution operator: ¢

Trajectory and evolution
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Trajectory: 7, C I; subbundle of the events time-bundle
ball (dim=3+1)

membrane (dim=2+1)

wire (dim=1+1)

time fibration — fibers: body placements €2,

vertical tangent fibration — material vectors v,
Evolution operator: ¢

Law of determinism (CHAPMAN-KOLMOGOROV):

<p'r,s = (p‘l',t © Sot,s

Trajectory and evolution
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Trajectory: 7, C I; subbundle of the events time-bundle
ball (dim=3+1)

membrane (dim=2+1)

wire (dim=1+1)

time fibration — fibers: body placements €2,

vertical tangent fibration — material vectors v,
Evolution operator: ¢

Law of determinism (CHAPMAN-KOLMOGOROV):
<p'r,s = (p‘l',t o Sot,s

Displacements: diffeomorphisms between placements

Trajectory and evolution

0, €CHQ:;Q), T tel



Body and particles




The G-Factor Impact in

Body and particles

Giovanni Romano

NLCM and DG

Prolegomena
Cable

Tangent spaces
Tangent functor
Fiber bundles

Trivial and non-trivial
fiber bundles

Sections

Tensor bundle and
wwwshutterstock.com - 14978350 sections

Push and pull

Push and pull of tensor
fields

Parallel transport
Kinematics

Events manifold fibrations
Trajectory and evolution
Body and particles
Tensor bundles

Examples

Covariance Paradigm

Time derivatives



Body and particles

wwwshutterstock.com -

14978350

» Equivalence relation on the trajectory:

(e1,e) €T, x Ty, - €=, ,(€1).

with t; = 11'/,E(e,-) ,

i=1,2.
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NLCM and DG

Prolegomena
Cable

Tangent spaces
Tangent functor
Fiber bundles

Trivial and non-trivial
fiber bundles

Sections

Tensor bundle and

wwwshutterstock.com - 14978350 sections

Push and pull

» Equivalence relation on the trajectory:

Push and pull of tensor

fields
(el ,eg) S T‘P X T‘P C e =Ph oy (e1) . Parallel transport
Kinematics
with t; = 11'/,E(e,-) , i=12. Events manifold fibrations
Trajectory and evolutior
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Examples
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» Equivalence relation on the trajectory:
(e1,e) €T, x Ty, - €=, ,(€1).
with t; = 7T/’E(e,'), i=12.

Body = quotient manifold (foliation) Body and particles
Particles = equivalence classes (folia)

» mass conservation
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Tensor fields in NLCM
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Tensor fields in NLCM
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Tensor bundles
> spatial tensor bundles: 7PN € CH(TENS(VE); E)
» material tensor bundles: TgENS € CY(TENS(VT,); 7,)
» material-based spatial tensor bundles:
Tho® € C(TENS(VE)7, ; 7,)

Tensor fields (sections of the bundles)

> spatial tensor fields:  st®NS € C}(E; TENS(VE))
» material tensor fields: SZENS € CY(7,; TENS(VT,))
» material-based spatial tensor fields:

sk € CY(T,; TENS(VE))

Tensor bundles

such that: 7LENS 0 sTENS — 1pp |
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Fields in Continuum Mechanics and NLCM
Giovanni Romano
Thermodynamics

» spatial field: metric tensor field

» material fields: strain, stress, stretching, stressing, thermal
gradient, temperature, free energy, entropy etc.

> material-based spatial fields: velocity, acceleration, kinetic
momentum.

Examples
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Material fields at different times along a trajectory must be
compared by push along the material displacement.

Material fields on push-related trajectories must be compared by
push along the relative motion.

Push and parallel transport along the motion
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Time derivatives along the motion

Giovanni Romano

Lie time derivative - LTD
(Convective time derivative - CTD)

» Material tensor field

Sp,t = Lo tSp = Or=t (Sar,tlscp,'r)

Material time-derivative - MTD
(Parallel time-derivative - PTD)

» Material-based spatial fields

éE,Lp,t = V%t SEW = (9T=t ‘Pr,t @SE#PJ'

Time derivatives
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LTD of a material field

Sip,t(X) = (Lot Sp)x = Or=t (7 1 ISp,7)x
=Ur=t ‘Pr,tl(sap,r o <PT7t)x
=0r—tSp+(X) + Or—t @, L (Sp.t © P, 1 )x
=07t Sp,7(X) + Lot S,¢(X)

MTD of the velocity field - Acceleration
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LTD of a material field

Sip,t(X) = (Lot Sp)x = Or=t (7 1 ISp,7)x
=0r=t @r +1(Sp.r © 7 1)x =
=t S, (X) + Or=t P L(Sg, 0 1 1 )x

=0r=¢ scp,T(x) + Lyt S%t(x)

MTD of the velocity field - Acceleration

ap,,t(x) == (Veg,t Vi@ )x = Or=t (‘Pr,t VE @, )x
=0r=tPrt J(vEpro ‘Pr,t)x
=0r=t VE,p,7(X) + Or=t P, 4 (VE .t © 01 1 )x
=0r=t VEp,r(X) + Vi, VE,0,¢(X)

The latter is D’ALEMBERT-D. BERNOULLI formula, applicable only in
special problems in hydrodynamics, where it was conceived. This eventually
led to the NAVIER-STOKES-ST.VENANT differential equation of motion
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NLCM and DG

Prolegomena
Cable
Tangent spaces

Tangent functor

Fiber bundles

Trivial and non-trivia
fiber bundles

Sections

Tensor bundle and

sections
Push and pull

Push and pull of tensor

fields

Parallel transport
Kinematics

Events manifold fibrations
Trajectory and evolutior
Body and particles
Tensor bundles

Examples

Covariance Paradigm

Time derivatives
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Rivers and Cogwheels

The G-Factor Impact in

Giovanni Romano

$p,t(x) == (Lot Sp)x

= Ur=t¢ Sgp,-,—(X) + E‘Pvt S‘Pvt(x)
ag,p,t(X) = (Vg,t VB )x = Or=t VEo,7(X) + Vg, VE,t(X)

In fact LEIBNIZ rule cannot be applied unless the following special
properties of the trajectory hold true:

(x,t)eT, = (x,71)€T, VTE

(x,t) €T, = (P, .(x),t) €T,
Both conditions are not fulfilled in solid mechanics, as a rule.
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A sample of objective stress tensors

Giovanni Romano

Convective stress tensor rates in TRUESDELL & NOLL (1965):
T=T+LTT+TL

Co-rotational stress tensor rates in TRUESDELL & NOLL (1965):
T=T-WT+TwW

with T material time derivative

Both formulas rely on LEIBNIZ rule and on treating the
material stress tensor field as a spatial valued tensor field
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» Norm axioms

lenght of symplex’s edges

A
e la >0, fa|=0 = a=0
b] B llall +|Ib]| > |lc|]| triangle inequality,
a
= lovall = |of [a]

> Parallelogram rule

B—2—=C

M la+b|?+[a—b|? =2 [[a]>+]b]?]
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Math11l
The metric tensor

» Theorem (Fréchet — von Neumann — Jordan)

Examples
Covariance Paradigm

Time derivatives
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The metric tensor

» Theorem (Fréchet — von Neumann — Jordan)

1
g(a,b) := 2 [lla+b|?—[la—b|’]

g(e1 ,el) e 'g(el ,93)

o/] 2
) :det
/47 gles 1) g(es, &)

Maurice René Fréchet (1878 - 1973)
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The metric tensor

» Theorem (Fréchet — von Neumann — Jordan)

1
g(a,b) := 2 [lla+b|?—[la—b|’]

g(e1 ,el) e 'g(el 763)

o/] 2
) — det
/47 gles 1) ges )

John von Neumann (1903 - 1957)
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The metric tensor

» Theorem (Fréchet — von Neumann — Jordan)

1
g(a,b) := 2 [lla+b|?—[la—b|’]

g(e1 ,el) e 'g(el 763)

o/] 2
) — det
7'47. g(es,e1) - g(es,e3)

Pascual Jordan (1902 - 1980)
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» Metric tensor field: g € C}{(S; COV(TS))

> Spatial metric tensor field (on the events manifold)

ge(a,b) :=g(Tnsp-a,Trsg-b), abeVE
» Spatial immersion of material vectors
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Giovanni Romano

v

Metric tensor field: g € C}HS; COV(TS))

v

Spatial metric tensor field (on the events manifold)

ge(a,b) :=g(Tnsp-a,Trsg-b), abeVE

v

Spatial immersion of material vectors

iE,T¢ S Cl(TLP ) E)

v

Material metric tensor field (pull back)

g, =ip7,l8r = Trig 71,080 Tig T,
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Leonhard Euler (1707 - 1783)

Lie (convective) time derivative

> Stretching: €yt 1= 1Lyt 8p = 10r=t (pr (180, 7)
» Euler’s formula (generalized)
1L, t8p = 3ViL, Bt +sym (gep,e 0 (TORS'™ + VYT (v )
» where 8,6 0 V"™ vyt =i (g0 Vv, t)
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Leonhard Euler (1707 - 1783)

Lie (convective) time derivative

> Stretching: €yt 1= 1Lyt 8p = 10r=t (pr (180, 7)
» Euler’s formula (generalized)
1Lot8p = 1Vi,!, 8ot +5ym (gp,r 0 (TORS™ + V"T)(vg 1))

> where 8p,t 0 V' vyt =g el (g0 Vg, t)

> with 8ot 0 VM vy ¢ € CH(Qe; COV(TR:))

wit
g o Vg, € CH{Q;; COV(Tq,S))
» Mixed form of the stretching tensor (standard):

R | _ MAT
Dyt :=8,: 0 3Lep,t 8 = sym (V""ve 1)
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Stress and stressing

Lie (convective) time derivative

» Stress: o, € CY(7,; CON(VT,))
contravariant material tensor field in duality with the
stretching covariant material tensor field:

€pr =1Ly 8p € CH(T,; COV(VT,))
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Lie (convective) time derivative

» Stress: o, € CY(7,; CON(VT,))
contravariant material tensor field in duality with the
stretching covariant material tensor field:
€pr =1Ly 8p € CH(T,; COV(VT,))

> Stressing:

ot =Lyt 0p=0r=t (‘Pr,tlo'kﬁﬂ')

> Spatial contravariant tensor: sg € C(E; CON(VE))
» Leibniz rule (applicable to spatial tensor fields)
Lo,tsp = Or=t (¢; t18,r) = Or=t SB,r + Or=t P, +L(sE,t 0 P, ;)

= Or=t SE,r + EV‘PJ SE,t



The G-Factor Impact in

Stress and stressing LG

Giovanni Romano

Lie (convective) time derivative

» Stress: o, € CY(7,; CON(VT,))
contravariant material tensor field in duality with the
stretching covariant material tensor field:
ot =1Lyt 8p € C1(T5; COV(VT,))

Stressing:

v

ot =Lyt 0p=0r=t (‘Pr,tlo'kﬁﬂ')

v

Spatial contravariant tensor: sg € C1(E; CON(VE))

Leibniz rule (applicable to spatial tensor fields)

v

Lop,tsg 1= Or=t (‘PT,tiSE,T) = Or—t SE,r + Or=¢ ‘Pr,tl(sE,t o ‘Pr,t)
= Or=t SE,r + L"V‘P,t SE,t

Expression of Lie derivative in terms of parallel derivative
Ly, SE,t = Vg, SE,t — 2sym (Vvep,t 0sg,t)

v
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» Change of observer ¢ € C}(E;E), automorphism

Examples
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» Relative motion: ¢ € CY7,;7¢1y), diffeomorphism
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Change of observer Y

Giovanni Romano

» Change of observer (p € C}(E;E), automorphism
» Relative motion: ¢ € CY7,;7¢1y), diffeomorphism

E » —
™ E ™, T, ™, T, T E
% 1Dy % 1Dy \IL CT;aD/ %
» Pushed motion:
(€Te)rt
Ct(Qt) - CT(QT)
CIT ¢, = ({1¢)re = (00, 10C; "
Q— " LqQ.
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Consequences of the Covariance Paradigm

Giovanni Romano

Time independence and Invariance of material fields
» Time independence s, = ¢, TSp
» Invariance St = CTsy

» Push of Lie time derivative to reference

(Pt,REFl(‘CLP,t scp) = a‘r:t ¢T7REFlS¢7T

> Lie time derivative along pushed motions

Lcre)i (CTsp) = €T Lot Se
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» Constitutive operator H,,

A material bundle morphism whose domain and codomain are
Whitney products of material tensor bundles

» Constitutive time independence
H‘Pﬂ' = SOT,tTH‘P;t

(@r,tTHcp,t)(‘Pr,thtp,t) = LPT,tT(H‘Pft(S‘P7t))
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» Constitutive operator H,,

A material bundle morphism whose domain and codomain are
Whitney products of material tensor bundles

» Constitutive time independence
Hor = @7 1He
(‘Pr,tTHw,t)(‘Pr,thtp,t) = LPT,tT(H‘Pft(S‘P7t))
» Constitutive invariance under relative motions
Here = CTH,

(CTHL)(CTse) = CT(Hy(s))
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e, =H,"(0y) 0,
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» CAUCHY integrability
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Hypo-elasticity
» Constitutive hypo-elastic law

Ep, =€y
{ e, =H.(0y) 0y
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» Elastic constitutive operator:
hypo-elastic constitutive operator which is integrable and
time independent

» Constitutive elastic law:
€p =€,

2 x -
e, =diE;(0y) 0y

» pull-back to reference:

42
(Pt,REFleLPat - dFE;EF(QOt,REFlU%t) : a‘l':t <pT,REF~L0-4PvT

= Ur=t dFE;EF(‘PT,REFl«O-LPJ)

Prrer = Pr,t © Pt rer

* — * 1 8 ] ) ) a)
Eier = PrrorlEp time independent
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Conservativeness of hyper-elasticity

Giovanni Romano

GREEN integrability of the elastic operator He,

implies conservativeness:

?{/ <Ucp,tae¢,t> My ¢ dt =0
1 JQ,;

for any cycle in the stress time bundle,
i.e. for any stress path o, € C1(/; CON(VT,))
such that:

a‘P,tz = ‘ptz,tlTo-CP,ﬁ ) I = [tla tZ]
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» Constitutive law

€p =€p t Py

d,%—E;(ozp) Oy

€y
Po € OFFp(0y)
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Giovanni Romano

stretching additivity
hyper-elastic law

visco-plastic flow rule
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> total strain in the time interval | = s, t]:

Epits = PrslBot — Bopys

» reference total strain:

EFL;E,? =1 / Or=t Prrer 8,7 dt
I

= %Sot,REFlg%t - %¢571{Eyig<p,s
=1 l( l — ) =1 lg
ZSOS,REF <Pt,s 8op,t 8op,s 2305,REF Pp,t,s

» reference elastic and visco-plastic strain:
REF .__ REF .__
€.l '—/Qot,R,EFle%fdt? Py, '—/"Pt,REFlp%f dt
! !

» additivity of reference strains:

REF __ REF REF
€ol = Cp1 TPy
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Giovanni Romano

Principle of MFI

» Any constitutive law must conform to the principle of MFI
which requires that material fields, fulfilling the law, will still
fulfill it when evaluated by another Euclid observer

Ep = H‘P(S‘p) — ecis"Tga = HCisoT‘P(SCiSOT‘P) B

> for any isometric relative motion ¢'*° ¢ C(7,, i Teiso,,) induced by
a change of Euclid observer ¢ € C!(E;E).

Sufficient conditions

» Material fields must be frame invariant

» Constitutive operators must be frame invariant
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» Frame invariance of the hypo-elastic operator
HYPO __ 1SO HYPO
¢ore =6 THy

Pushed operator

(CISOTH:IQYPO)(CISOT0-<P) . CISOTO.'QG — CISOT(HZIQYPO(Utp) . O'Lp)

Examples:
» the simplest hypo-elastic operator is frame invariant:

v
——1

E p,t ® I(p,t?

1
HHYPO(T 71_~) = —1 ot
@,t P 2# ¥

» the visco-plastic flow rule is frame invariant



Achievements




Achievements

» theoretical: spatial, material and material based spatial fields

Covariance Paradigm

Time derivatives



Achievements

» theoretical: spatial, material and material based spatial fields

» theoretical: covariance paradigm

Examples
Covariance Paradigm

Time derivatives



The G-Factor Impact in

Achievements NLow

Giovanni Romano
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm

» theoretical: stretching and stressing are Lie time-derivatives



Achievements
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm
» theoretical: stretching and stressing are Lie time-derivatives
» theoretical: covariant formulation of constitutive laws

The G-Factor Impact in
NLCM

Giovanni Romano



Achievements
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm
» theoretical: stretching and stressing are Lie time-derivatives
» theoretical: covariant formulation of constitutive laws
» theoretical: covariant formulation of Material Frame Indifference

The G-Factor Impact in
NLCM

Giovanni Romano



Achievements
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm
» theoretical: stretching and stressing are Lie time-derivatives
» theoretical: covariant formulation of constitutive laws
» theoretical: covariant formulation of Material Frame Indifference
» theoretical: covariant theory of elasto-visco-plasticity

The G-Factor Impact in
NLCM

Giovanni Romano



The G-Factor Impact in

Achievements NLow

vVvVvYvyVvVvVvVYyy

theoretical:
theoretical:
theoretical:
theoretical:
theoretical:

theoretical:

Giovanni Romano

spatial, material and material based spatial fields
covariance paradigm

stretching and stressing are Lie time-derivatives
covariant formulation of constitutive laws

covariant formulation of Material Frame Indifference

covariant theory of elasto-visco-plasticity

computational: integrability of simplest hypo-elasticity



The G-Factor Impact in

Achievements NLow

Giovanni Romano

theoretical: spatial, material and material based spatial fields
theoretical: covariance paradigm

theoretical: stretching and stressing are Lie time-derivatives
theoretical: covariant formulation of constitutive laws
theoretical: covariant formulation of Material Frame Indifference
theoretical: covariant theory of elasto-visco-plasticity

computational: integrability of simplest hypo-elasticity

vVVvVvVvyVvVvVvYVYyYvYyy

computational: finite elastic (anelastic) strains are time integrals of
strain rates pull-back to a reference placement



The G-Factor Impact in

Achievements NLow

Giovanni Romano

theoretical: spatial, material and material based spatial fields
theoretical: covariance paradigm

theoretical: stretching and stressing are Lie time-derivatives
theoretical: covariant formulation of constitutive laws
theoretical: covariant formulation of Material Frame Indifference
theoretical: covariant theory of elasto-visco-plasticity

computational: integrability of simplest hypo-elasticity

vVVvVvVvyVvVvVvYVYyYvYyy

computational: finite elastic (anelastic) strains are time integrals of
strain rates pull-back to a reference placement

v

computational: constitutive relations in the nonlinear range are
governed by rate laws which may be got from linearized ones by
substituting Lie time-derivatives to partial time derivatives



The G-Factor Impact in

Achievements NLow

Giovanni Romano

theoretical: spatial, material and material based spatial fields
theoretical: covariance paradigm

theoretical: stretching and stressing are Lie time-derivatives
theoretical: covariant formulation of constitutive laws
theoretical: covariant formulation of Material Frame Indifference
theoretical: covariant theory of elasto-visco-plasticity

computational: integrability of simplest hypo-elasticity

vVVvVvVvyVvVvVvYVYyYvYyy

computational: finite elastic (anelastic) strains are time integrals of
strain rates pull-back to a reference placement

v

computational: constitutive relations in the nonlinear range are
governed by rate laws which may be got from linearized ones by
substituting Lie time-derivatives to partial time derivatives

Consequences



The G-Factor Impact in

Achievements
Giovanni Romano
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm
» theoretical: stretching and stressing are Lie time-derivatives
» theoretical: covariant formulation of constitutive laws
» theoretical: covariant formulation of Material Frame Indifference
» theoretical: covariant theory of elasto-visco-plasticity
» computational: integrability of simplest hypo-elasticity
» computational: finite elastic (anelastic) strains are time integrals of

strain rates pull-back to a reference placement

v

computational: constitutive relations in the nonlinear range are
governed by rate laws which may be got from linearized ones by
substituting Lie time-derivatives to partial time derivatives

Consequences

» treatments of constitutive behaviors in the nonlinear range should be
revised and reformulated



The G-Factor Impact in

Achievements
Giovanni Romano
» theoretical: spatial, material and material based spatial fields
> theoretical: covariance paradigm
» theoretical: stretching and stressing are Lie time-derivatives
» theoretical: covariant formulation of constitutive laws
» theoretical: covariant formulation of Material Frame Indifference
» theoretical: covariant theory of elasto-visco-plasticity
» computational: integrability of simplest hypo-elasticity
» computational: finite elastic (anelastic) strains are time integrals of

strain rates pull-back to a reference placement

v

computational: constitutive relations in the nonlinear range are
governed by rate laws which may be got from linearized ones by
substituting Lie time-derivatives to partial time derivatives

Consequences

» treatments of constitutive behaviors in the nonlinear range should be
revised and reformulated

» algorithms for numerical computations must be modified to comply
with the covariant theory; multiplicative decomposition of the
deformation gradient is geometrically inconsistent
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