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Abstract - Natural derivatives of a section of a fiber bundle are defined as tangent vector
fields on the image of the section. A local extension to vector fields in the tangent bundle
leads to a direct proof of the formula expressing the curvature of a connection in terms of
vertical derivatives. The result is based on the tensoriality property of the horizontal lifting
and extends to nonlinear connections on fiber bundles a well-known formula for linear
connections on vector bundles.

Riassunto - Le derivate naturali di una sezione di una varietà fibrata sono definite come
campi vettoriali tangenti all’immagine della sezione. Un’estensione locale a campi vetto-
riali nel fibrato tangente consente una dimostrazione diretta della formula che esprime la
curvatura di una connessione in termini di derivate verticali. Il risultato è basato sul ricorso
alla proprietà di tensorialità del sollevamento orizzontale ed estende a connessioni non
lineari su varietà fibrate una nota formula relativa a connessioni lineari su fibrati vettoriali.

1 INTRODUCTION

The notion of connection on a fiber bundle was introduced by Charles Ehres-
mann (1950) and investigated in (Libermann, 1969, 1973, 1982).

Standard references on the topic are the article by Kobayashi (1957) and the
text by Kobayashi and Nomizu (1963).
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The analysis developed in this paper makes a more direct reference to the treat-
ment of the matter presented in (Kolar, Michor and Slovak, 1993).

Let us recall some well-known facts. In the tangent bundle to a fiber bundle,
the vertical distribution is naturally defined as the subbubdle of vectors tangent to
the total manifold, with a null projection on the base manifold.

The vertical distribution is always integrable and the leaves of the induced fo-
liation are the fibers themselves.

The general definition of a connection as a (regular) field of projectors on the
vertical subspaces of the tangent spaces to a fiber bundle, splits each tangent space
into two complementary subspaces, the vertical and the horizontal ones. This leads
naturally to the question about integrability of the horizontal distribution.

The involutivity condition provided by FROBENIUS theorem leads to the defi-
nition of the curvature as obstruction against integrability of the horizontal distri-
bution, see e.g. (Kolar et al., 1993).

In this context a new result, stated in Theorem 4.1 below, builds a direct bridge
between the expression of the curvature in terms of horizontal lifts, which is the one
naturally stemming from FROBENIUS involutivity condition, and the expression of
the curvature in terms of covariant derivatives, more suitable for applications.

The new result extends the well-known expression of the curvature for linear
connections on vector or principal bundles, to general connections on fiber bundles.

The proof is based on the novel definition of natural derivatives, and on an
extension, of the natural derivative of a section, to a vector field in the tangent
bundle. A direct, powerful tensoriality argument leads to assess equality between
the expressions of curvature in terms of horizontal lifts and in terms of vertical
derivatives.

The analysis moves along the same line of thought as for instance the one
declared in (Mangiarotti and Modugno, 1984), by trying to avoid unnecessary re-
course to additional geometric structures.

In this respect the assumptions and the result of our Theorem 4.1 should be
compared with the ones in (Kobayashi and Nomizu, 1963) Chapter III Theorem
5.1, in (Choquet-Bruhat, DeWitt-Morette, Dillard-Bleick, 1989) Chapter V-bis Sec-
tion A.5, in (Mangiarotti and Sardanashvily, 2000) Chapter 2 Section 2.4, and in
(Michor, 2007) Corollary 19.16, dealing with the curvature of linear connections
on vector bundles.

2 CONNECTION ON A FIBER BUNDLE

The preliminary notions and definitions exposed in this section are detailedly
illustrated in (Saunders, 1989), (Lang, 1995), (Romano, G., 2007).
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A circle ◦ denotes a chain composition and a dot · (sometimes omitted) de-
notes a fiberwise ℜ -linear chain composition.

Let us consider two differentiable manifolds M ,N , with the relevant tangent
bundles with projections τM ∈ C1(T M ;M) and τN ∈ C1(T N ;N) .

The two manifolds are said to be related by a morphism φ ∈ C1(M ;N) , if the
following commutative diagram holds

T M
T φ //

τM
��

T N

τN
��

M
φ // N

⇐⇒ τN ◦T φ = φ ◦ τM , (1)

where T is the tangent functor.
A vector field X∈C1(ϕ(M) ;T N) is ϕ-related to a vector field v∈C1(M ;T M)

if
X◦ϕ = T ϕ ·u . (2)

For a diffeomorphism ϕ ∈C1(M ;N) the push and pull operations are then denoted
by X = ϕ↑u and u = ϕ↓X . The usual notation is ϕ↑= ϕ∗ and ϕ↓= ϕ∗ but then
too many stars do appear in the geometrical sky (push, duality, HODGE star).

A fiber bundle is a surjective submersion p ∈ C1(E ;M) with E the total man-
ifold and M the base manifold, i.e. im(p) = M and im(T p(e)) = Tp(e)M for all
e ∈ E . The vertical distribution is the subbundle V E := ker(T p) of the tangent
bundle T E .

A section s ∈ C1(M ;E) is a morphism such that p ◦ s ∈ C1(M ;M) is the
identity. The fiber at x ∈ M is the set Ex := p−1(x) which is assumed to be
isomorphic to a standard fiber manifold.

Definition 2.1 (Connection). A connection PV ∈Λ1(E ;T E) in a fiber bundle p∈
C1(E ;M) is an idempotent vector-valued one-form, which is pointwise a projector
on vertical subspaces:

PV ◦PV = PV , (3)

with im(PV(e)) = ker(T p(e)) . Horizontal vectors are the ones in the kernel
ker(PV(e)) of the connection. The projector on the horizontal distribution HE
is denoted by PH = idT E−PV , so that PH ◦PH = PH and PH ◦PV = PV ◦PH = 0 .

The pull-back bundle of a fiber bundle p∈C1(T E ;E) by a section s∈C1(M ;E)
is the fiber bundle s↓p ∈ C1(s↓T E ;M) whose fiber at x ∈M is the tangent space
Ts(x)E of p ∈ C1(T E ;E) .

The tangent to a section s ∈ C1(M ;E) of a fiber bundle p ∈ C1(E ;M) along
a vector field v ∈ C0(M ;T M) is a section T s ·v ∈ C1(M ;s↓T E) of the pull-back
bundle s↓p = C1(s↓T E ;M) .
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Definition 2.2 (Natural derivative). In a fiber bundle p∈C1(E ;M) , for any sec-
tion s ∈ C1(M ;E) , the natural derivative along a vector field v ∈ C0(M ;T M) is
the vector field Tv ∈ C1(s(M) ;T E) in the tangent bundle τE ∈ C1(T E ;E) defined
by

Tv · s := T s ·v ∈ C1(M ;T E) . (4)

For any x ∈M we have that Tv(sx) = Tvxs ∈ TsxE . The natural derivative Tv ∈
C1(s(M) ;T E) and the vector field v ∈ C1(M ;T M) , and the relevant flows are
p-related according to the commutative diagrams

s(M)⊂ E
FlTv

λ //

p
��

E

p
��

M
Flv

λ // T M

⇐⇒ p◦FlTv
λ
= Flv

λ
◦p , (5)

s(M)⊂ E Tv //

p
��

T E

T p
��

M v // T M

⇐⇒ T p ·Tv = v◦p . (6)

It is apparent that the natural derivative is tensorial in v ∈ C0(M ;T M) since
the differential Tvxs ∈ Ts(x)E is an ℜ-linear function of the vector vx ∈ TxM . The
next statement enunciates the well known property of naturality of the LIE bracket
with respect to relatedness, (see e.g. (Kolar et al., 1993) Lemma 3.10 or (Romano,
G., 2007) Lemma 1.3.4).

Lemma 2.1 (Morphism-related vector fields and Lie brackets). If
the vector fields X,Y ∈ C1(N ;T N) and u,v ∈ C1(M ;T M) are related by a mor-
phism ϕ ∈ C1(M ;N) , then also their LIE brackets are ϕ-related:

X◦ϕ = T ϕ ·u

Y◦ϕ = T ϕ ·v

}
=⇒ [X,Y]◦ϕ = T ϕ · [u,v] . (7)

Setting Tv◦ϕ :=T ϕ ·v for any morphism ϕ ∈C1(M ;N) , we have that T ϕ ·[u,v] =
T[u,v] ◦ϕ and the result may be stated as

[Tu,Tv] = T[u,v] . (8)

Tensoriality is a crucial property of a multilinear scalar or vector valued map,
meaning that it lives at points (Spivak, 1979), i.e. that its point-values depend only
on the values of the argument fields at that point.

4



A standard tensoriality criterion for multilinear forms on M is provided by
C∞(M ;ℜ)-linearity (see (Kolar et al., 1993) Lemma 7.3 or (Lang, 1995) Lemma
2.3 of Ch. VIII).

Although not needed in evaluating the LIE bracket [Tu,Tv] on s(M) , for the
developments illustrated in Theorem 4.1 it is essential to extend the domain of
the natural derivatives Tu,Tv ∈ C1(s(M) ;T E) outside the range s(M) ⊂ E of the
section s∈C1(M ;E) , so that they can be considered as (local) tangent vector fields
Tu,Tv ∈C1(E ;T E) with the further property of being projectable. This task can be
accomplished by the following construction.

Lemma 2.2 (Extension by foliation). The natural derivative Tv ∈ C1(s(M) ;T E)
of a section s∈C1(M ;E) in a fiber bundle p∈C1(E ;M) , along a vector field v∈
C0(M ;T M) , can be extended, in the bundle τE ∈ C1(T E ;E) , to a (local) tangent
vector field Tv ∈ C1(E ;T E) which projects on the vector field v ∈ C0(M ;T M) ,
i.e. we have that, locally in E : {

τE ◦Tv = idE ,

T p ·Tv = v◦p .
(9)

Proof. The extension may be performed by considering a (local) foliation of the
total manifold E , whose leaves are transversal to the fibers and include the folium
s(M) . The existence of at least a local foliation with these characteristics can be
inferred by acting with a local bundle chart, which maps (locally) the image of the
section into the trivial bundle image of the chart, and, subsequently, with a local
chart which maps (locally) the fibers in their linear model space.

The foliation is performed by translation in the linear image of the fibers and
the resulting leaves are mapped back to get the leaves in the total manifold. It
is thus possible to define the map σ ∈ C1(E ;C1(M ;E)) which to each e ∈ E
associates the (local) section σ e ∈ C1(M ;E) by

σ e(x) := Σe∩Ex , ∀e ∈ E , (10)

whose range is the leaf Σe through e ∈ E .
The extension of Tv is (locally) defined by Tv(e) := Tp(e)σ e ·vp(e) and gives a

vector field since τE(Tp(e)σ e ·vp(e)) = e for all e ∈ E .
Moreover this extension projects on v ∈ C0(M ;T M) since

Tp(e)p ·Tv(e)= Tp(e)p ·Tp(e)σ e ·vp(e)

= Tp(e)(p◦σ e) ·vp(e) = vp(e) .
(11)

Being σ e(p(e)) = e the extension Tv(e) := Tp(e)σ e ·vp(e) may be written as (Tv ◦
σ e)(p(e)) = (T σ e ·v)(p(e)) which, by surjectivity of p , means that (locally)

Tv ◦σ e = T σ e ·v , ∀x ∈M . (12)
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If e1,e2 ∈ E are such that Σe1 = Σe2 , then σ e1 = σ e2 . If e ∈ s(M) , the section
σ e ∈ C1(M ;E) is in fact coincident with s ∈ C1(M ;E) . �

Definition 2.3 (Horizontal lift). In a bundle p∈C1(E ;M) the horizontal lift H∈
C1(E×M T M ;T E) is a right inverse of (τE ,T p) ∈ C1(T E ;E×M T M) such that
the map Hsx ∈ C1(T M ;T E) , defined by Hsx(vx) = H(sx ,vx) for all vx ∈ TxM , is
a linear homomorphism from the tangent bundle τM ∈ C1(T M ;M) to the tangent
bundle τE ∈ C1(T E ;E) , i.e:{

(τE ,T p)◦H = idE×MT M ,

Hsx(α ux +β vx) = α Hsx(ux)+β Hsx(vx) ∈ TsxE ,
(13)

with sx ∈ Ex and ux,vx ∈ TxM and α,β ∈ℜ .

Lemma 2.3 (Horizontal lifts and horizontal projectors). A horizontal projector
PH ∈ C1(T E ;T E) , induces a horizontal lift defined by

H(sx ,vx) := PH ·Txs ·vx ∈ HsxB , ∀sx ∈ Ex, vx ∈ TxM , (14)

where s ∈ C1(M ;E) is an arbitrary section extension of sx ∈ Ex . Vice versa, a
horizontal lift H ∈ C1(E×M T M ;T E) induces a horizontal projector given by

PH := H◦ (τE ,T p) . (15)

Proof. Eq. (14) yields a horizontal lift since:

((τE ,T p)◦H)(sx ,vx) = (τE ,T p) ·PH ·Txs ·vx = (sx ,vx) . (16)

The homomorphism PH := H◦ (τE ,T p) is idempotent due to the equality

PH ◦PH = H◦ (τE ,T p)◦H◦ (τE ,T p)
= H◦ idE×MT M ◦ (τE ,T p) = PH ,

(17)

and horizontal due to the identity

((τE ,T p)◦PH)(X) = ((τE ,T p)◦H◦ (τE ,T p))(X)

= (τE(X) ,T p(X)) .
(18)

Eq. (15) yields then a horizontal projector. �
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Definition 2.4 (Vertical derivative). The vertical derivative is the vertical com-
ponent of the natural derivative:

∇vs := PV ·Tv · s ∈ C1(M ;V E) . (19)

Setting Hs = PH ◦T s and ∇s = PV ◦T s , it is T s = ∇s+Hs ∈ C1(T M ;T E) and
Tv = ∇v +Hv ∈ C1(s(M) ;T E) with ∇v = PV ◦Tv and Hv = PH ◦Tv .

Lemma 2.4 (Projectability). The horizontal lift Hv ∈C1(s(M) ;HE) is p-related
to the vector field v ∈ C1(M ;T M) according to the commutative diagram

s(M)⊂ E Hv //

p
��

T E

T p
��

M v // T M

⇐⇒ T p ·Hv = v◦p . (20)

Proof. Being, by definition T p◦∇v = 0, from the decomposition Tv = ∇v+Hv ∈
C1(E ;T E) it follows that

T p◦Tv = T p ·∇v +T p ·Hv = T p ·Hv . (21)

The p-relatedness of Hv and v is inferred from that of Tv in Eq. (8). �

Naturality of LIE brackets with respect to relatedness and Lemma 2.4 give:

T p · [Hu,Hv] = [T p ·Hu,T p ·Hv]

= [u◦p,v◦p] = [u,v]◦p ∈ C1(E ;T M) .
(22)

Lemma 2.5 (Injectivity). The horizontal lift Hs ∈ C1(T M ;HE) , along a cross
section s ∈ C1(M ;E) of a fiber bundle p ∈ C1(E ;M) , is a fiberwise injective
homomorphism, i.e. Hxs ∈ BL(TxM ;Hs(x)E) is an injective linear map at each
x ∈M .

Proof. We must prove that ker(Hxs) = {0} . We first investigate the linear differ-
ential Txs ∈ BL(TxM ;Ts(x)E) . By the characteristic property of a section, p◦ s =
idM it is: Ts(x)p · Txs · vx = Tx(p ◦ s) · vx = vx for all vx ∈ TxM . It follows that
ker(Txs) = {0} and im(Txs) ∩ ker(Ts(x)p) = {0} . The injectivity of Txs im-
plies that: dim im(Txs) = dimTxM . Being Txs = ∇xs + Hxs with im(∇xs) ⊆
ker(Ts(x)p) , we have that Ts(x)p ·Hxs ·vx = Ts(x)p ·Txs ·vx = vx for all vx ∈ TxM . It
follows that ker(Hxs)= {0} and im(Hxs)∩ker(Ts(x)p)= {0} with dim im(Hxs)=
dimTxM . �
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Theorem 2.1 (Homomorphism). The horizontal lift Hs ∈ C1(T M ;HE) along a
section s ∈ C1(M ;E) of a fiber bundle p ∈ C1(E ;M) is a vector bundle homo-
morphism between the bundle τM ∈ C1(T M ;M) and the pull-back bundle s↓τE ∈
C1(s↓HE ;M) which is fiberwise invertible and tensorial in s ∈ C1(M ;E) .

Proof. Let dimM = dimTxM = m and dimF = f where F is the typical fiber.
Then dimE = dimTs(x)E = m+ f . So that dimVs(x)E = f and dimHs(x)E = m .
By reasons of dimensions the injectivity of Hxs ∈ BL(TxM ;Hs(x)E) implies then
its surjectivity. Moreover let s ∈ C1(M ;E) be another section such that s(x) =
s(x) . Then, for any vx ∈ TxM , being Tvxs,Tvxs ∈ Ts(x)E , we have that T p · (Tvxs−
Tvxs) = 0 and hence that Hvxs = PH ·Tvxs = PH ·Tvxs = Hvxs ∈ BL(TxM ;Hs(x)E) .
To a tangent vector vx ∈ TxM there corresponds a horizontal vector Hvxs ∈Hs(x)E
which depends only on the value of s ∈ C1(M ;E) at x ∈M . �

3 CURVATURE OF A CONNECTION

The vertical distribution of a fiber bundle p ∈ C1(E ;M) is integrable and the
leaves of the induced foliation are the fibers of the bundle.

By FROBENIUS theorem, see e.g. (Kolar et al., 1993), (Lang, 1995), integrabil-
ity of a distribution is equivalent to involutivity, i.e. to closeness of the distribution
under LIE bracket operation.

Since vertical vectors are, by definition, related to null-sections, from Eq. (7)
we infer that also their LIE brackets are related to null-sections, a result in accord
with the fact that the vertical distribution is integrable, a property equivalent to
vanishing of the vector-valued lifted cocurvature form:

Rc(X,Y) :=−PH · [P̂VX, P̂VY] = 0 , (23)

for any X,Y ∈ T E . Here (P̂VX , P̂VY) ∈ C1(E ;T E) is any pair of vector fields ex-
tension of the vectors PVX,PVY∈T E , since tensoriality follows from the C∞(E ;ℜ)-
linearity of the cocurvature form.

The involutivity condition [P̂HX, P̂HY] ∈ C1(E ;HE) , to be imposed for the in-
tegrability of the horizontal distribution, is equivalently expressed by the vanishing
of the lifted curvature form defined by (Kolar et al., 1993)

R(X,Y) :=−PV · [P̂HX, P̂HY] , ∀X,Y ∈ T E . (24)

Tensoriality follows from the C∞(E ;ℜ)-linearity of the curvature form, as shown
below. Let us denote by Λk(M ;T M) the space of tangent-valued k-forms on a
manifold M .
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Proposition 3.1 (Tensoriality of the curvature). The curvature of a connection
PV ∈ Λ1(E ;T E) in a fiber bundle p ∈ C1(E ;M) is a vertical-vector valued, hori-
zontal 2-form R ∈ Λ2(E ;V E) , that is a 2-form vanishing on vertical vectors and
taking values in the vertical distribution.

Proof. A direct verification of the tensoriality, based on C∞(E ;ℜ)-linearity, yields
the result:

−R(X, f Y) :=PV · [P̂HX, P̂HY]

= f PV · [P̂HX, P̂HY]+ (LPHX f )(PV ·PH)(Y)

=− f R(X,Y) , ∀ f ∈ C1(E ;ℜ) ,

(25)

since PV ·PH = 0. Similarly R( f X,Y) = f R(X,Y) . �

Theorem 3.1. For any given section s ∈ C1(M ;E) , the curvature of a connection
PV ∈ Λ1(E ;V E) is expressed by a 2-form Rs ∈ Λ2(M ;s↓V E) with values in the
pull-back of the vertical distribution by the section s ∈ C1(M ;E) , defined in terms
of horizontal lifts by

R(s)(u,v) :=R(Hu,Hv) · s
=(H[u,v]− [Hu,Hv]) · s , ∀u,v ∈ Λ

0(M ;T M) ,
(26)

The 2-form R(s) ∈ Λ2(M ;s↓V E) is tensorial in s ∈ C1(M ;E) .

Proof. We rely on the properties of tensoriality and horizontality of the curvature
two-form R ∈ Λ2(E ;V E) stated in Proposition 3.1 and on the tensorial isomor-
phism of the horizontal lifts stated in Theorem 2.1. Accordingly, the point value of
the lifted curvature R(X,Y) = −PV ◦ [P̂HX, P̂HY] at b ∈ Ex depends only on the
vectors PHXb,PHYb ∈ TbE .

Moreover, by Theorem 2.1, given any section s ∈ C1(M ;E) such that sx = b ,
there exists a uniquely determined pair of vectors ux,vx ∈ TxM , such that

Huxs = (PHX)(sx) , Hvxs = (PHY)(sx) (27)

and the pair ux,vx ∈TxM does not depend on the choice of the section s∈C1(M ;E)
such that sx = b .

Then the curvature two-form R ∈ Λ2(E ;V E) , evaluated on pairs of horizon-
tal lifts, defines the field R(s)(u,v) := −PV ◦ [Hu,Hv] ◦ s ∈ C1(M ;V E) for any
pair of vector fields u,v ∈ C0(M ;T M) on the tangent bundle and any section
s ∈ C1(M ;E) of the fiber bundle p ∈ C1(E ;M) .
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By tensoriality, for any section s ∈ C1(M ;E) the field R(s) ∈ Λ2(M ;V E)
is a vector-valued two-form on M with values in s↓V E and for any pair u,v ∈
C0(M ;T M) the field R(u,v) ∈ Λ1(M ;s↓V E) is a vertical-valued vector field
along s ∈ C1(M ;E) .

Moreover, by Lemma 2.4, horizontal lifts are projectable and we have the rela-
tions

T p · [Hu,Hv]= [u,v]◦p

T p ·H[u,v]= [u,v]◦p

}
=⇒ T p · ([Hu,Hv]−H[u,v]) = 0 . (28)

Then H[u,v] is the horizontal component of [Hu,Hv] and we get the equality:
[Hu,Hv]−H[u,v] = PV · [Hu,Hv] ⇐⇒ H[u,v] = PH · [Hu,Hv] . �

4 VERTICAL DERIVATIVE

Lemma 4.1 (Vertical derivative as Lie derivative). In a fiber bundle p∈C1(E ;M)
with a connection, the vertical derivative is given by the generalized LIE derivative

∇vs = L(Hv ,v)s = ∂λ=0 Fl(Hv ,v)
λ

↓s = ∂λ=0 FlHv
−λ
· s◦Flv

λ
. (29)

Proof. By LEIBNIZ rule L(Hv ,v)s=T s ·v−Hvs=Tvs−Hvs . Then, being L(Hv ,v)s∈
C1(M ;V E) and Hvs ∈ C1(M ;HE) , by uniqueness of the vertical-horizontal split,
we get that ∇vs := PV ·Tvs = L(Hv ,v)s . �

Definition 4.1 (Parallel transport). Let p ∈ C1(E ;M) be a fiber bundle with a
connection. The parallel transport Flv

λ
⇑s ∈ C1(M ;E) of a section s ∈ C1(M ;E)

along the flow Flv
λ
∈ C1(M ;M) is defined by

Flv
λ
⇑s := FlHv

λ
◦ s = (Fl(Hv ,v)

λ
↑s)◦Flv

λ
, (30)

so that p◦Flv
λ
⇑s = p◦FlHv

λ
◦ s = Flv

λ
◦p◦ s = Flv

λ
.

From the definition of parallel transport and Lemma 4.1 we infer that the vertical
derivative and the horizontal lift are given by

∇vs = ∂λ=0 FlHv
−λ
· s◦Flv

λ
= ∂λ=0 Flv−λ

⇑s◦Flv
λ
,

Hvs = ∂λ=0 FlHv
λ
· s = ∂λ=0 Flv

λ
⇑s .

(31)

Since the horizontal lift Hv is defined pointwise in M , the parallel transport along
a curve in M of a section defined only on that curve is meaningful and so is for the
vertical derivative.
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Definition 4.2 (Geodesic). A curve c ∈ C1(I ;M) in a manifold with a connection
is a geodesic if the velocity field v ∈ C1(I ;T M) of the curve fulfils the condition

(∇vv)(x) := ∂µ=λ cµ,λ⇓v(x) = 0 . (32)

Here ∇ is the vertical derivative, the velocity at x = c(λ ) is given by (v◦c)(λ ) :=
∂µ=λ cµ and cµ,λ⇓ = cλ ,µ⇑ is the parallel transport from cµ to cλ along the
curve.

Geodesic curves are related to the notion of spray, introduced in (Ambrose, Palais
and Singer, 1960), see also (Dieudonne, 1969; Lang, 1995).

Definition 4.3 (Spray). A section X∈C1(T M ;T T M) of the tangent bundle τT M ∈
C1(T T M ;T M) is called a spray if it is also a section of the bundle T τM ∈
C1(T T M ;T M) , that is if

T τM ·X = τT M ◦X = idT M . (33)

Lemma 4.2 (Geodesics and sprays). Let S∈C1(T M ;T T M) be a spray and vx ∈
TxM a tangent vector. Then, for any connection compatible with the spray, i.e. such
that H(v ,v) = S(v) , the base curve below the flow line of the spray through the
vector vx ∈ TxM , is a geodesic curve through the base point x ∈M .

Proof. Let λ 7→ FlS
λ
(vx) be the flow line of the spray through the vector vx ∈ TxM .

The projected curve on the base manifold λ 7→ (τM ◦FlS
λ
)(vx) , has velocity field

vS ∈ C1(I ;T M) given by

(vS ◦ c)(λ ) :=∂µ=λ (τM ◦FlSµ)(vx)

=T τM ·S(FlS
λ
(vx)) = πT M(S(FlS

λ
(vx))) = FlS

λ
(vx) ,

(34)

Being H(v ,v) = S(v) , the formula for the time-covariant derivative yields:

∇vSvS= ∂µ=0 (Fl
HvS
−µ ◦FlS

λ+µ
)(vx) = S(vS)−H(vS ,vS) = 0 . (35)

Hence the base curve is a geodesic. �

A similar proof shows that the base curve through vx ∈ TxM below the differ-
ential of the flow line of a spray is the velocity field of a geodesic, in any connection
compatible with the spray, and that the velocity field of the base points of the line
is a JACOBI field (Michor, 1997).

The next original result is the main contribution of this paper. It provides, in
the general context of fiber bundles, the expression of the curvature in terms of
vertical derivatives.
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Theorem 4.1 (Curvature and vertical derivatives). Given a section s∈C1(M ;E)
of a fiber bundle p ∈ C1(E ;M) and any pair of vector fields u,v ∈ C1(M ;T M) ,
the following identity holds on s(M)⊂ E :

[∇u,∇v]−∇[u,v]+[Hu,Hv]−H[u,v] = 0 . (36)

Accordingly, the vertical-valued curvature two-form Rx(s)(u,v) ∈Vs(x)E is given
by

R(s)(u,v) = [∇u,∇v](s)−∇[u,v](s) . (37)

Proof. By Lemma 2.1 we know that on s(M) ⊂ E it is [Tu,Tv] = T[u,v] . By per-
forming an extension of the natural derivatives, e.g. by the foliation method envis-
aged in Lemma 2.2, the vertical derivatives of a section s ∈ C1(M ;E) are conse-
quently extended to (local) vector fields ∇u,∇v ∈ C1(E ;V E) . Then, splitting into
vertical and horizontal components

Tu = ∇u +Hu , Tv = ∇v +Hv , T[u,v] = ∇[u,v]+H[u,v] , (38)

by bilinearity of the LIE bracket we get

[∇u +Hu,∇v +Hv]= [∇u,∇v]+ [Hu,Hv]+ [∇u,Hv]+ [Hu,∇v]

= ∇[u,v]+H[u,v] ,
(39)

which, being [Hu,Hv]−H[u,v] = PV · [Hu,Hv] , can be written as

[∇u,∇v]−∇[u,v]+PV · [Hu,Hv] = [Hv,∇u]+ [∇v,Hu] . (40)

Tensoriality of the curvature PV · [Hu,Hv] , as a function of the horizontal lifts
Hu and Hv , has the following implication. Let the local vector fields F x

u ,F
x
v ∈

C1(E ;T E) be generated by dragging the vectors Hux ,Hvx ∈ TsxE along the flows
of the (local) vector fields ∇u,∇v ∈ C1(E ;T E) extensions of the vertical deriva-
tives, according to the definitions

F x
u ◦Fl∇v

λ
:= T Fl∇v

λ
◦Hux ,

F x
v ◦Fl∇u

λ
:= T Fl∇u

λ
◦Hvx .

(41)

By tensoriality, in evaluating the r.h.s. of Eq.(40) at a point s(x) ∈ E , the hori-
zontal lifts Hu,Hv ∈ C1(E ;T E) can be substituted by the vector fields F x

u ,F
x
v ∈

C1(E ;T E) . Then, by definition in Eq. (41):

[F x
v ,∇u]x = 0 , [∇v,F

x
u ]x = 0 , (42)
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so that
[Hv,∇u]x +[∇v,Hu]x = [F x

v ,∇u]x +[∇v,F
x
u ]x = 0 . (43)

The result holds for any extension of the natural derivatives and the formula
for the curvature is independent of the extension, since, by tensoriality, it depends
only on the values of the vertical derivatives at s(x) . �

5 CONNECTION ON A VECTOR BUNDLE

For the sake of completeness, let us resume the peculiar properties of linear
connections on a vector bundle p ∈ C1(E ;M) to infer the relevant special expres-
sion of the curvature form.

Definition 5.1 (Linear connection). In a vector bundle p ∈ C1(E ;M) a connec-
tion is linear if the pair made of the horizontal lift Hv ∈C1(E ;HE) and of the vec-
tor field v ∈ C1(M ;T M) is a linear vector bundle homomorphism from the vector
bundle p ∈ C1(E ;M) to the vector bundle T p ∈ C1(T E ;T M) . This means that,
given two sections s1,s2 ∈ C1(M ;E) , the following property of p-T p-linearity
holds: {

Hvx(s1 +p s2) = Hvxs1 +T p Hvxs2 ,

Hvx(α ·p s) = α ·T p Hvxs , ∀α ∈ℜ .
(44)

Since the natural derivative is p-T p-linear{
Tvx(s1 +p s2) = Tvxs1 +T p Tvxs2 ,

Tvx(α ·p s) = α ·T p Tvxs , ∀α ∈ℜ ,
(45)

the p-T p-linearity of the horizontal lift Hvx is equivalent to p-T p-linearity of the
vertical derivative ∇vx :{

∇vx(s1 +p s2) = ∇vxs1 +T p ∇vxs2 ,

∇vx(α ·p s) = α ·T p ∇vxs , ∀α ∈ℜ .
(46)

The distinguishing feature of a linear vertical bundle, with respect to a general fiber
bundle, is that by means of the linear isomorphism provided by the vertical lifting,
the vertical derivative ∇vs ∈ C1(M ;V E) can be identified with a section ∇vs ∈
C1(M ;E) of the vector bundle. The result stated below in proposition 5.1 makes
appeal to this identification and is a basic property of the covariant derivative in a
linear connection (see e.g. (Kobayashi, 1957), (Kobayashi and Nomizu, 1963)).
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Proposition 5.1 (Leibniz rule for the covariant derivative). In a vector bundle
p ∈ C1(E ;M) endowed with a linear connection, the covariant derivative ∇v ∈
C1(s(M) ;E) fulfils LEIBNIZ rule

∇v( f s) = (∇v f )s+ f (∇vs) . (47)

In a vector bundle p ∈ C1(E ;M) the iterated and the second covariant deriva-
tives according to a given connection are meaningful. Hence, for any section
s ∈ C1(M ;E) , the curvature form may be written as

R(s)(u,v)= (∇u∇v−∇v∇u−∇[u,v])s

= (∇2
uv−∇2

vu +∇T (u,v))s ,
(48)

in terms of the second covariant derivative ∇2
uv := ∇u∇v−∇∇uv and of the torsion

form T (u,v) := ∇uv−∇vu−∇[u,v] which are both tensor fields. Tensoriality may
be proven by relying on LEIBNIZ rule Eq. (47) to verify C∞(E ;ℜ)-linearity.

Remark 5.1. In the curvature formula provided by Theorem 4.1:

R(s)(u,v) = [∇u,∇v](s)−∇[u,v](s) , (49)

the term [∇u,∇v](s) cannot be written as (∇u∇v−∇v∇u)s . Indeed, since ∇u,∇v ∈
C1(E ;V E) , the compositions ∇u∇v and ∇v∇u , are not defined, unless the bun-
dle is a vector bundle so that, by relying on the vertical lifting, the identification
V E' E and the substitution ∇→ ∇ can be made.

6 CONCLUSIONS

Connections on fiber bundles and their torsion and curvature forms are of pri-
mary importance in many basic issues of mathematical physics, as witnessed by a
vast number of contributions in literature (see e.g. (Mangiarotti and Sardanashvily,
2000)). The topic has been revisited here with the aim of providing a direct proof
of the relation between the integrability condition provided by FROBENIUS theo-
rem and the expression of the curvature field in terms of vertical derivatives. This
result, in the general form provided here, appears to be new, since classical treat-
ments deal with linear connections on vector bundles. The contributed proof does
not require additional geometric structure on the fiber bundle, being based on the
notion of natural derivative of a section, on a suitable extension, by foliation, to a
vector field in the tangent bundle, and on a simple but powerful tensoriality argu-
ment.
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