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Abstract - The theory of electromagnetic induction, developed in terms of differ-
ential forms in space-time, assesses that frame-invariance of space-time electromag-
netic fields and induction laws implies invariance of their spatial counterparts, un-
der any change of frame. Application to Voigt-Lorentz frame-transformations
reveals that relativistic scaling effects and entanglements in longitudinal compo-
nents of electromagnetic fields do occur but vanish in the non-relativistic limit.
The new transformation rules correct previous statements and deprive Lorentz
force law of theoretical support.

Riassunto - La teoria dell’induzione elettromagnetica, sviluppata in termini di
forme differenziali nello spazio-tempo, stabilisce che l’invarianza dal riferimento,
dei campi elettromagnetici e delle leggi di induzione, implica l’invarianza delle loro
controparti spaziali, per un qualsiasi cambiamento di riferimento. L’applicazione
alla trasformazione di Voigt-Lorentz rivela che effetti di scalatura relativistica
e intrecci delle componenti longitudinali dei campi electromagnetici avvengono ma
svaniscono al limite non relativistico. Le nuove regole di trasformazione correggono
precedenti affermazioni, privando la legge di forza di Lorentz di supporto teorico.
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1. EVENTS MANIFOLD AND OBSERVERS

The events manifold E is a 4-dimensional star-shaped orientable man-
ifold without boundary. The exterior derivative in the events manifold E
will be denoted by d . A framing consists in a criterion for simultaneity of
events and a field of time-arrows Z ∈ C1(E ; TE) and is described in geomet-
rical terms (Whiston, 1974; Marmo and Preziosi, 2006) by a field of rank-one
projectors R := dt⊗Z with t ∈ C1(E ;Z) time-function and Z time-line.2

Idempotency R2 = R is equivalent to tuning 〈dt,Z〉 = 1 .

Lemma 1.1 (Space-time splitting). A framing R := dt ⊗ Z induces a
univocal splitting of tangent vectors X ∈ TE into spatial and temporal com-
ponents by means of complementary projectors R,P with

P := I−R , P2 = P , PR = RP = 0 ,

so that dt ◦P = 0 , RZ = Z , Ker dt = Im P .

Proof. Being R(X) = (dt ⊗ Z) ·X = 〈dt,X〉Z all properties are verified
by a direct calculation. �

Under the action of a framing R := dt⊗Z the tangent bundle TE splits
into a Whitney bundle VE ×E HE of time-vertical and time-horizontal
tangent vectors with VE = Im P and HE = Im R . The 3-D fibers of VE
are in the kernel of dt ∈ Λ1(TE) while the 1-D fibers of HE are generated
by the time-arrow Z ∈ C1(E ; TE) . Both subbundles of TE are integrable.
Indeed Frobenius involutivity condition is trivially fulfilled by any 1D
subbundle and for the kernel subbunble of a form ω ∈ Λ1(TE) reduces to

ω ·X = 0, ω ·Y = 0 =⇒ dω ·X ·Y = 0 ,

which is also fulfilled since dω = ddt = 0 . A framing generates then in
E two transversal families of submanifolds, a 3D quotient manifold of 1D
time-lines and a 1D quotient manifold of 3D space-slices.

Definition 1.1 (Time-vertical space-time forms). A space-time form is
time-vertical if it vanishes when any of its arguments belongs to the time-
horizontal bundle HE . To any space-time form Ωk ∈ Λk(TE ;R) there
corresponds a time-vertical restriction P↓Ωk ∈ Λk(VE ;R) defined by

〈P↓Ωk,X〉 := 〈Ωk,PX〉 , ∀X ∈ C1(E ; TEk) ,

2 The symbol Z is taken from the German word Zeit for Time.
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where X = {X1, . . . ,Xk } ∈ TEk and PX = {PX1, . . . ,PXk } ∈ VEk .

The integral manifolds of the vertical distribution VE define a time-
bundle projection πZ,E ∈ C1(E ;Z) by fixing the time instant t ∈ Z corre-
sponding to any given spatial slice E(t) .

Definition 1.2 (Spatial bundle). The spatial bundle S is the fiber bundle
over Z whose fibre S(t) is a 3-D manifolds with canonical isomorphism
i(t) ∈ C1(S(t) ; E(t)) onto the 3-D submanifold E(t) of the 4-D space-time
manifold E .

For any fixed t ∈ Z , the isomorphism i(t) ∈ C1(S(t) ; E(t)) may be
acted upon by the tangent functor to provide a fibrewise defined space-time
extension, i↑ ∈ C1(VS ; VE) which is a global bundle isomorphism but not
the tangent map of a morphism.3 The inverse morphism i↓ ∈ C1(VE ; VS)
is the spatial restriction.

Vectors in VE , henceforth denoted by capital letters, have four space-
time components in a space-time frame, while vectors in VS , denoted by
small letters, have three spatial components in a space frame. In an adapted
space-time frame {X0,X1,X2,X3 } with X0 = Z , vectors in VE will have
a zero first component.

Definition 1.3 (Spatial forms). A spatial form ωk ∈ Λk(VS ;R) is a
form defined on the spatial bundle. To any space-time form Ωk ∈ Λk(TE ;R)
there corresponds a spatial form got by spatial restriction

ωk := i↓Ωk ⇐⇒ ωk(a) := Ωk(i↑a) = (i↓Ωk)(a) ,

for all a = { a1, . . . , ak } ∈ VSk .

2. TRAJECTORY AND MOTION

The trajectory T is a non-linear manifold characterized by an injective
immersion iE,T ∈ C1(T ; E) such that the immersed trajectory TE :=
iE,T (T ) ⊂ E is a submanifold of the events manifold.4

3 The push-pull notation is however still adopted for simplicity.
4 Events in the trajectory are labeled by coordinates in that manifold whose dimension-

ality may in general be lower than the one of the events manifold. Events in the immersed
trajectory are instead labeled by coordinates in the events manifold.
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Definition 2.1 (Material bundle). The material bundle M is the fiber
bundle over time-line Z generated by the time-bundle projection πZ,T =
πZ,E ◦ iE,T ∈ C1(T ;Z) . The fibres T (t) are called trajectory slices.

The motion detected in a given framing, is a one-parameter family of au-
tomorphisms 5 ϕθ ∈ C1(T ; T ) of the trajectory time-bundle over the
time shift shθ ∈ C1(Z ;Z) , defined by shθ(t) := t + θ with t ∈ R
time-instant and θ ∈ Z time-lapse, described by the commutative
diagram

T
ϕθ //

πZ,T
��

T
πZ,T

��
Z

shθ // Z
⇐⇒ πZ,T ◦ϕθ = shθ ◦ πZ,T ,

which expresses the simultaneity preservation property of motion.

Events related by the space-time motion along the trajectory, i.e.

e1, e2 ∈ E | ∃ θ ∈ R : e2 = ϕθ(e1) ,

form a class of equivalence and the equivalence relation foliates the trajectory
manifold (Romano and Barretta, 2011, 2012, 2013).

A material particle is a line (a one-dimensional manifold) whose elements
are motion-related events in the trajectory.

The body is the disjoint union of the trajectory material particles, a quo-
tient manifold induced by the foliation of the trajectory manifold.

A body placement is a fibre of simultaneous trajectory-events. The place-
ment at time t ∈ I is then the trajectory slice T (t) .

The space-time trajectory velocity V ∈ C1(T ; TT ) is the vector field
defined by V := ∂θ=0ϕθ . Since motion is time-parametrized, we have that

〈dt,V〉 = 1 , V = Z + PV , RV = Z .

Spatial velocity is related to space-time velocity by v = i↓(PV) ∈ VS . For
simplicity, we will here consider the case in which the trajectory manifold T
is four-dimensional.

5 An automorphism is an invertible morphism from a fibre-bundle onto itself.
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3. SPACE-TIME SPLITTING OF FORMS

The splitting formula provided in the next Lemma 3.1 extends the notion
first introduced by É. Cartan (1924) under the special assumption of vanish-
ing spatial velocity, and thenceforth taken as standard reference in literature
on electrodynamics, to take into account body motions. Detailed proofs of
results exposed hereafter are provided in (G. Romano, 2013).

Lemma 3.1 (Splitting of forms). A framing R := dt⊗Z induces a rep-
resentation formula for space-time forms Ωk ∈ Λk(TE ;R) in terms of time-
vertical restrictions and of the time differential

Ωk = P↓Ωk + dt ∧ (P↓(Ωk ·V)− (P↓Ωk) ·V) .

Lemma 3.2 (Spatialization of exterior derivatives). The exterior deriva-
tive d in the events manifold and the spatial exterior derivative dS in a
fibre of the time-vertical bundle VS fulfill, with the spatial restriction i↓ ,
the commutative diagram

Λk(VE ;R)
d //

i↓
��

Λk+1(VE ;R)

i↓
��

Λk(VS ;R)
dS // Λk+1(VS ;R)

⇐⇒ dS ◦ i↓ = i↓ ◦ d .

Lemma 3.3 (Spatialization of Lie derivatives). The Lie derivatives LV

along the motion and its spatial restriction LSV fulfill, with the spatial restric-
tion i↓ , the commutative diagram

Λk(TE ;R)
LV //

i↓
��

Λk(TE ;R)

i↓
��

Λk(VS ;R)
LSV // Λk(VS ;R)

⇐⇒ LSV ◦ i↓ = i↓ ◦ LV .

4. SPACE-TIME FORMULATION OF ELECTROMAGNETICS

Space-time formulation of electromagnetic induction laws, was first pro-
posed by Bateman (1910) on the basis of earlier work by Hargreaves (1908)
on invariant integral forms, as quoted in the treatise (Truesdell and Toupin,
1960, Ch. F). An early treatment in terms of differential forms was formu-
lated in (É. Cartan, 1924, p. 17-19). A detailed revisitation in the context
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of relativity theory can be found in (Misner, Thorne, Wheeler, 1973). A
brand new approach is adopted here on the basis of the space-time splitting
introduced in Lemma 3.1. Electric and magnetic induction rules take their
natural and most elegant form when expressed, in the space-time manifold
E , in terms of Faraday and Ampère electromagnetic space-time two- and
three-forms

Ω2
F,Ω

2
A ∈ Λ2(TE ;R) , Ω3

F,Ω
3
A ∈ Λ3(TE ;R) .

The treatment here developed extends the classical one introduced by
Élie Cartan, in which body motion was not taken into account.

The Gauss-Henry-Faraday induction law is expressed, in terms of
Faraday forms Ω2

F ∈ Λ2(TE ;R) and Ω3
F ∈ Λ3(TE ;R) , by the condition∮

∂C3

Ω2
F =

∫
C3

Ω3
F ⇐⇒ dΩ2

F = Ω3
F .

In the same way, the Gauss-Ampère-Maxwell induction law is expressed,
in terms of Ampère forms Ω2

A ∈ Λ2(TE ;R) and Ω3
A ∈ Λ3(TE ;R) , by the

condition ∮
∂C3

Ω2
A =

∫
C3

Ω3
A ⇐⇒ dΩ2

A = Ω3
A .

Above C3 is any 3-D control manifold with boundary and equivalences hold
by Stokes formula.

Since the events manifold E is star-shaped, Poincaré Lemma assures
that Gauss-Henry-Faraday and Gauss-Ampère-Maxwell induction
laws are equivalent to the closure properties dΩ3

F = 0 and dΩ3
A = 0

and, by Stokes formula, to the integral conditions∮
∂C4

Ω3
F = 0 ,

∮
∂C4

Ω3
A = 0 ,

respectively expressing conservation of electric and magnetic space-time charges
in an arbitrary 4-D control manifold with boundary C4 .

5. INDUCTION LAWS IN SPACE-TIME

5.1. Faraday law

In standard electromagnetic theory it is assumed that Ω3
F = 0 , a condi-

tion inferred from the experimental fact that magnetic monopoles and cur-
rents are still undiscovered. Recalling that V := ∂θ=0ϕθ ∈ C1(T ; TT ) is
the trajectory velocity, from Lemma 3.1 we infer the next statement.
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Definition 5.1 (Electric field and magnetic vortex). The magnetic vor-
tex and the electric circulation are even 6 spatial forms got from the electro-
magnetic space-time two-form Ω2

F by the spatial restrictions

ω2
B = i↓Ω2

B ∈ Λ2(VS ;R) , magnetic vortex

ω1
E = i↓Ω1

E ∈ Λ1(VS ;R) , electric field

with Ω2
B := P↓Ω2

F , −Ω1
E := P↓(Ω2

F ·V) and the representation formula

Ω2
F = Ω2

B − dt ∧ (Ω1
E + Ω2

B ·V) .

Proposition 5.1 (Gauss-Faraday law). Closedness of Faraday two-form
in the trajectory manifold is equivalent to the spatial Gauss law for the mag-
netic vortex and to the spatial Gauss-Henry-Faraday induction law, i.e.

dΩ2
F = 0 ⇐⇒

{
dS ω

2
B = 0 ,

LSV ω2
B + dS ω

1
E = 0 ,

and to the integral formulation

∂θ=0

∫
ϕSθ (Σin)

ω2
B = −

∮
∂Σin

ω1
E ,

for any inner-oriented surface Σin in a material slice.

Proof. Recalling the commutativity properties in Lemmata 3.2,3.3 and the
homotopy formula (dΩ2

F) ·V = LV Ω2
F−d (Ω2

F ·V) from Lemma 3.1 we get
i↓(dΩ2

F) = dS (i↓Ω2
F) = dS ω

2
B ,

i↓(dΩ2
F ·V) = i↓(LV Ω2

F − d (Ω2
F ·V))

= LSV(i↓Ω2
F)− dS (i↓(Ω2

F ·V)) = LSV ω2
B + dS ω

1
E .

Hence the implication =⇒ follows. The converse implication ⇐= is inferred
from the representation formula

dΩ2
F = P↓dΩ2

F + dt ∧ (P↓(dΩ2
F ·V)− (P↓dΩ2

F) ·V) ,

because i↓dΩ2
F = 0 and i↓(dΩ2

F · V) = 0 imply that P↓dΩ2
F = 0 and

P↓(dΩ2
F ·V) = 0 and hence that dΩ2

F = 0 . �

6 Inner and outer oriented manifolds and even and odd forms are treated in (Schouten,
1951; Tonti, 1995; Marmo et al., 2005). Odd forms change sign under change of orientation
while even forms do not. Even forms represent circulations and vortices, odd forms have
the meaning of sources, winding around and flux through (G. Romano, 2012).
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5.1.1. Electromagnetic potentials

The magnetic potential even one-form ω1
B ∈ Λ1(VS ;R) and to the elec-

tric potential even zero-form ω0
E ∈ Λ0(VS ;R) are related to the space-time

Faraday one-form Ω1
F ∈ Λ1(TE ;R) by the spatial restrictions

ω1
B = i↓Ω1

B , ω0
E = i↓Ω0

E ,

with Ω1
B = P↓Ω1

F and −Ω0
E = P↓(Ω1

F ·V) and the representation formula

Ω1
F = Ω1

B − dt ∧ (Ω0
E + Ω1

B ·V) .

The Gauss-Henry-Faraday law of electromagnetic induction is equivalent
to the potentiality property expressed by Poincaré Lemma

0 = dΩ2
F ⇐⇒ Ω2

F = dΩ1
F .

In terms of spatial differential forms we get the following result.

Proposition 5.2 (Electric field in terms of potentials). In terms of the
magnetic potential one-form ω1

B and of the electric potential zero-form ω0
E ,

the Gauss-Henry-Faraday induction law is expressed by

Ω2
F = dΩ1

F ⇐⇒

{
ω2

B = dS ω
1
B ,

−ω1
E = LSV ω1

B + dS ω
0
E .

Proof. Assuming Ω2
F = dΩ1

F by homotopy (dΩ1
F)·V = LV Ω1

F−d (Ω1
F ·V)

we infer that
ω2

B = i↓Ω2
F = i↓dΩ1

F = dS (i↓Ω1
F) = dS ω

1
B ,

−ω1
E = i↓(Ω2

F ·V) = i↓(dΩ1
F ·V) = i↓(LV Ω1

F − d (Ω1
F ·V))

= LSV(i↓Ω1
F)− dS (i↓(Ω1

F ·V)) = LSV ω1
B + dS ω

0
E .

Hence the implication =⇒ follows. The converse implication ⇐= is inferred
from the representation formulae

dΩ1
F = P↓dΩ1

F + dt ∧ (P↓(dΩ1
F ·V)− (P↓dΩ1

F) ·V)

= dS (P↓Ω1
F) + dt ∧ (P↓(dΩ1

F ·V)− (dS (P↓Ω1
F) ·V) ,

Ω2
F = P↓Ω2

F + dt ∧ (P↓(Ω2
F ·V)− (P↓Ω2

F) ·V)) ,

because the conditions i↓Ω2
F = i↓dΩ1

F and i↓(Ω2
F ·V) = i↓(dΩ1

F ·V) imply
that Ω2

F = dΩ1
F . �
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The differential conditions in Prop.5.2 are expressed in integral form by∫
Σin

ω2
B =

∮
∂Σin

ω1
B , −

∫
Lin

ω1
E = ∂θ=0

∫
ϕθ(Lin)

ω1
B +

∮
∂Lin

ω0
E ,

for any inner oriented material line Lin and surface Σin . The latter states
that the electromotive force along a path is given by the sum of the decrease
of the scalar electric potential from the start to the end point plus the time-
rate of decrease of the integral magnetic potential along the motion.

The treatment of Ampère law of electromagnetic induction may be car-
ried out along the same lines of approach and will here be dropped for brevity.

6. CHANGES OF FRAME

A change of frame is an automorphism ζ ∈ C1(E ; E) of the events man-
ifold. A trajectory transformation ζT ∈ C1(T ; Tζ) is a diffeomorphism be-
tween trajectory manifolds, induced by a change of frame according to the
commutative diagram

E

ζ

""
T

iE,Too
ζT // Tζ
ζ−1
T

oo
iE,Tζ // E

⇐⇒ iE,Tζ
◦ ζT = ζ ◦ iE,T ,

with iE,T ∈ C1(T ; E) and iE,Tζ
∈ C1(Tζ ; E) injective immersions.

Lemma 6.1 (Pushed framings). Under a change of frame according to
an automorphism ζ ∈ C1(E ; E) , a framing R = dt ⊕ Z is pushed to a
framing

ζ↑R = ζ↑(dt⊕ Z) = (ζ↑dt)⊕ (ζ↑Z) = dtζ ⊕ Zζ ,

with tζ := t ◦ ζ−1 and Zζ := ζ↑Z .

Proof. Setting tζ = t ◦ ζ−1 we have that d tζ = d (t ◦ ζ−1) = ζ↑(dt) .
Persistence of tuning follows from 〈dtζ,Zζ 〉 = ζ↑〈dt,Z〉 = 1 . �

Trajectories and motions ϕθ ∈ C1(T ; T ) and (ζ↑ϕ)θ ∈ C1(Tζ ; Tζ) ,
evaluated in frames inducing a trajectory transformation ζ ∈ C1(T ; Tζ) ,
are related by the commutative diagram

Tζ
(ζ↑ϕ)θ // Tζ

T
ϕθ //

ζ
OO

T
ζ

OO ⇐⇒ (ζ↑ϕ)θ ◦ ζ = ζ ◦ϕθ .
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Definition 6.1 (Space-time frame-invariance). A tensor field on the tra-
jectory manifold s ∈ C1(T ; Tens(TT )) is frame-invariant under the action
of a trajectory transformation ζT ∈ C1(T ; Tζ) if it varies by push

sζ = ζT ↑s .

A relation involving tensor fields is frame-invariant if it transforms by push,
the pushed relation being defined by the property that is it fulfilled by tensor
fields if and only if their pull-back fulfill the original relation.

Lemma 6.2 (Frame-invariance of trajectory velocity). The trajectory
velocity is frame-invariant: Vζ = ζT ↑V .

Proof. Being V := ∂θ=0ϕθ so that ϕθ = FlVθ and being Vζ := ∂θ=0 (ζ↑ϕ)θ ,
the direct computation

Vζ = ∂θ=0 (ζT ◦ FlVθ ◦ ζ−1
T ) = TζT ◦V ◦ ζ−1

T = ζT ↑V ,

gives the formula. �

Lemma 6.3 (Immersion and push of vector fields). Spatial vectors ac-
cording to a framing R are still spatial vectors in a pushed framing ζ↑R as
expressed by the commutative diagram

TE
ζ↑ // TE

VS
i↑

OO

ζS↑ // VSζ
iζ↑

OO
⇐⇒ iζ↑ ◦ ζS↑ = ζ↑ ◦ i↑ .

The spatial bundle isomorphism ζS↑ ∈ C1(VS ; VSζ) is induced by the space-
time push ζ↑ ∈ C1(TE ; TE) according to a change of frame ζ ∈ C1(E ; E) .
The inverse isomorphism is ζS↓ ∈ C1(VSζ ; VS) .7

Proof. The push of forms is defined by invariance

〈ζ↑dt, ζ↑X〉 = ζ↑〈dt,X〉 , ∀X ∈ C1(E ; TE) ,

and hence 〈dt,X〉 = 0 =⇒ 〈ζ↑dt, ζ↑X〉 = 0 . �

7 The isomorphism ζS↑ ∈ C1(VS ; VSζ) is not the tangent map to an automorphism of
the manifold E , unless restriction to a spatial slice is considered, see the proof of Lemma
6.4. The push-pull notation is however adopted for simplicity.
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Lemma 6.4 (Simultaneity preservation). Frame-changes in space-time
transform simultaneous events according to the initial framing R into simul-
taneous events according to the pushed framing Rζ = ζ↑R .

Proof. The integral manifolds of time-vertical fields ζ↑X ∈ C1(E ; VEζ)
are space-slices got as ζ-images of the integral manifolds of time-vertical
fields X ∈ C1(E ; VE) . Then frame-changes transform simultaneous events
in the initial frame into simultaneous events according to the pushed framing.
It follows that the restriction of ζS↑ to a space-slice is equal to the push
according to ζS transformation between spatial slices, induced by the ζ-
transformation. �

Lemma 6.5 (Spatialization and push of differential forms). Push of
a form according to a change of frame ζ ∈ C1(E ; E) and spatial restric-
tion according to related framings R and Rζ = ζ↑R fulfill the commutative
diagram

Λk(TE ;R)

i↓
��

ζ↑ // Λk(TEζ ;R)

iζ↓ ��

Λk(VS ;R)
ζS↑ // Λk(VSζ ;R)

⇐⇒ iζ↓ ◦ ζ↑ = ζS↑ ◦ i↓ .

Proof. Let Ωk ∈ Λk(TE ;R) be a form in the space-time manifold. Assum-
ing k = 2 and a,b ∈ C1(E ; VS) , we get

(ζS↑i↓Ωk)(a ,b) = Ωk(i↑ζS↓a , i↑ζS↓b) = Ωk(ζ↓iζ↑a , ζ↓iζ↑b)

= (iζ↑ζ↓Ωk)(a ,b) ,

where the result in Lemma 6.3 has been resorted to. �

Lemma 6.6 (Pull and spatial exterior derivative). Pull back due to a
change of frame ζ ∈ C1(E ; E) and exterior derivatives of spatial restrictions
according to related framings R and Rζ = ζ↑R fulfill the commutative
diagram

Λk+1(VS ;R)
ζS↓ // Λk+1(VSζ ;R)

Λk(VS ;R)

dS

OO

ζS↓ // Λk(VSζ ;R)

(dS)ζ

OO
⇐⇒ (dS)ζ ◦ ζS↓ = ζS↓ ◦ dS .
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Proof. The proof follows along the same lines of the one in Lemma 3.2, but
expressed in terms of the ζS transformation between spatial slices, defined
in Lemma 6.4, instead of immersions. �

7. FRAME INVARIANCE OF ELECTROMAGNETICS

Proposition 7.1 (Space-time frame-invariance of induction laws). The
space-time frame invariance of Faraday and Ampère electromagnetic two-
forms and of the current three-form

(Ω2
F)ζ = ζ↑Ω2

F , (Ω2
A)ζ = ζ↑Ω2

A , (Ω3
A)ζ = ζ↑Ω3

A ,

imply the space-time frame invariance of the laws of induction

dΩ2
F = 0 ⇐⇒ d (Ω2

F)ζ = 0 ,

dΩ2
A = Ω3

A ⇐⇒ d (Ω2
A)ζ = (Ω3

A)ζ .

Proof. The result is a direct consequence of the commutativity between
exterior derivative and push by a diffeomorphism. Indeed

d (Ω2
F)ζ = d (ζ↑Ω2

F) = ζ↑(dΩ2
F) ,

and similarly for the second equivalence. �

Electromagnetic space-time forms are assumed to be invariant under any
change of frame. This means that they change in the only possible natural
way, by push according to the transformation defining the change of frame.
Neither special relativity theory, nor Minkowski pseudo-metric, play any
role in this general treatment of frame-transformations.

To state the invariance result, we consider a frame-change ζ ∈ C1(E ; E)
and push-related framings R and Rζ = ζ↑R .

Proposition 7.2 (Frame-invariance of fields and induction laws). Frame-
invariance of Faraday and Ampère space-time electromagnetic two-forms
Ω2

F,Ω
2
A ∈ Λ2(TE ;R) and of Ampère three-form Ω3

A ∈ Λ3(TE ;R) , is
equivalent to spatial frame-invariance of the corresponding spatial forms

(Ω2
F)ζ = ζ↑Ω2

F

(Ω2
A)ζ = ζ↑Ω2

A

(Ω3
A)ζ = ζ↑Ω3

A

⇐⇒


(ω1

E)ζ = ζS↑ω1
E

(ω2
B)ζ = ζS↑ω2

B

(ω1
H)ζ = ζS↑ω1

H


(ω2

D)ζ = ζS↑ω2
D

(ω2
J)ζ = ζS↑ω2

J

(ω3
ρ)ζ = ζS↑ω3

ρ

Frame-invariance of spatial laws of electromagnetic induction also holds.
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Proof. Let us assume space-time frame-invariance of Faraday two-form
expressed by (Ω2

F)ζ = ζ↑Ω2
F . Then, by space-time frame invariance of the

trajectory speed Vζ = ζ↑V , stated in Lemma 6.2, and by commutativity
property in Lemma 6.5, we infer the spatial-frame invariance of the electric
field one-form ω1

E , since

(ω1
E)ζ = iζ↓((Ω2

F)ζ ·Vζ) = iζ↓(ζ↑Ω2
F · ζ↑V) = iζ↓ζ↑(Ω2

F ·V)

= ζS↑i↓(Ω2
F ·V) = ζS↑ω1

E .

Spatial frame-invariance of the magnetic vortex two-form ω2
B follows by a

similar evaluation

(ω2
B)Rζ

= iζ↓(Ω2
F)ζ = iζ↓ζ↑Ω2

F = ζS↑i↓Ω2
F = ζS↑ω2

B .

The same procedure leads to the conclusion that space-time frame-invariance
of Ampère two and three-forms implies spatial frame-invariance of magnetic
winding ω1

H , electric flux ω2
D , electric current flux ω2

J , and electric charge
ω3
ρ . Frame-invariance of the spatial laws of electromagnetic induction is

inferred from the push naturality property of Lie derivatives and the com-
mutativity property of Lemmata 3.3,6.3,6.5, as explicated below

LSVζ
(ω2

B)ζ = LSVζ
(iζ↓(Ω2

F)ζ) = iζ↓(LVζ
(Ω2

F)ζ) = iζ↓(L(ζ↑V) (ζ↑Ω2
F)

= iζ↓ζ↑(LV Ω2
F) = ζS↑i↓(LV Ω2

F) = ζS↑(LSV i↓Ω2
F)

= ζS↑(LSV ω2
B) .

Being moreover by Lemma 6.6 (dS)ζ (ω1
E)ζ = (dS)ζ (ζS↑ω1

E) = ζS↑(dS ω1
E) ,

we get the equality expressing frame-invariance of the spatial Faraday law
of induction

LSVζ
(ω2

B)ζ + (dS)ζ (ω1
E)ζ = ζS↑(LSV ω2

B + dS ω
1
E) .

Analogous proofs hold for all other spatial laws of induction. �

If the splitting of the pushed space-time forms is performed according to
the unpushed framing R , the result will in general depend on the special
frame-transformation considered, as exemplified in Sect.8.

Definition 7.1 (Adapted frames). A frame is a set of tangent vector fields
which gives a basis at each point. A frame is adapted to a framing if one
family of coordinate lines is envelop of the time-arrow field and the other
three families define coordinate systems in the spatial slicings.
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8. RELATIVISTIC ELECTRODYNAMICS

Let us consider a space-time frame {X0,X1,X2,X3 } adapted to a fram-
ing R = dt⊕Z with the first vector given by X0 = Z and the tangent vec-
tor fields {X1,X2,X3 } got by immersion of a frame {x1,x2,x3 } in spatial
slices. Coordinates are classically denoted by { t, x, y, z } . Running indexes
are i, j, k = 1, 2, 3 . Then Xi = i↑xi . According to relativity principle,
a change of frame for a translational motion with relative spatial velocity
w = wX1 in the x direction, is governed by a Voigt-Lorentz transfor-
mation 8 with associated Jacobi matrix

ζ :


t 7→ γ(t− x (w/c2))

x 7→ γ(x− w t)
y 7→ y

z 7→ z

, [Tζ] =


γ −γ (w/c2)
−γ w γ

1
1


where γ := (1− w2/c2)−1/2 . The inverse transformation is got by changing
w into −w . Recalling that X0 = Z , the basis vectors are changed by the
transformation into 

Tζ ·X0 = γ Z− γ wX1 ,

Tζ ·X1 = −γ (w/c2) Z + γX1 ,

Tζ ·Xα = Xα , for α = 2, 3 .

The theory developed in the previous sections and the data concerning
Voigt-Lorentz transformations allow us to deduce in a direct way the
transformation rules for all electromagnetic fields.

To perform a comparison with standard treatments in literature, the fol-
lowing representation in terms of vector and scalar fields will be adopted,
with g metric field in the spatial bundle and µ associated volume form.

ω1
E = g · E , ω2

B = µ ·B , ω1
H = g ·H , ω2

D = µ ·D ,

ω1
B = g ·A , ω2

J = µ · J , ω3
ρ = µ · ρ , ω0

E = VE .

8 According to Minkowski (1908), the transformation introduced by Lorentz (1904) and
by Einstein (1905) was first conceived by Voigt (1887).
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8.1. Electric field and magnetic vortex

Frame-transformation formulae for spatial electric field ω1
E and mag-

netic vortex ω2
B are got by pushing Faraday two-form Ω2

F and space-time
velocity V . Being Ω2

F = Ω2
B − dt ∧ (Ω1

E + Ω2
B ·V) we get

Ω2
F(V) = (Ω1

E ·V) dt−Ω1
E

Ω2
F(V,Xi) = −ω1

E(xi) ,

Ω2
F(V,X0) = ω1

E(v) ,

Ω2
F(X0)− (Ω1

E + Ω2
B ·V) ,

Ω2
F(X0,Xi) = −(ω1

E(xi) + ω2
B(v,xi)) ,

Ω2
F(Xi,Xj) = ω2

B(xi,xj) .

8.1.1. Electric field

The frame-transformation formula for the longitudinal component ω1
E(x1)

is given by

−(ζ↑Ω2
F)(ζ↑V,X1) = −Ω2

F(V, Tζ−1 ·X1)

= −γΩ2
F(V,X1)− γ (w/c2) Ω2

F(V,X0)

= γ (ω1
E(x1)− (w/c2)ω1

E(v)) ,

while for the transversal components of the electric field ω1
E along xα with

α = 2, 3 are given by

−(ζ↑Ω2
F)(ζ↑V,Xα) = −Ω2

F(V,Xα) = ω1
E(xα) .

8.1.2. Magnetic vortex

The frame-transformation formula for the component of the magnetic
vortex ω2

B in the longitudinal planes {x1,xα } , with α = 2, 3 , writes

(ζ↑Ω2
F)(X1,Xα) = Ω2

F(Tζ−1 ·X1,Xα) = Ω2
F(γ (w/c2) X0 + γX1,Xα)

= γ ((w/c2) Ω2
F(X0,Xα) + Ω2

F(X1,Xα))

= γ (ω2
B(x1,xα)− (w/c2) (ω1

E(xα) + ω2
B(v,xα))) ,

while the component of ω2
B in the transversal plane {x2,x3 } is given by

(ζ↑Ω2
F)(X2,X3) = Ω2

F(X2,X3) = ω2
B(x2,x3) .

Table 26.3 in (Feynman, 1964, 26.3) and formulae (18.42) and (18.43)
in (Panofsky and Phillips, 1962, p.330) provide the transformation rules for
electric and magnetic vector fields. The latter is in agreement with our results
(for v = 0 ) but the former is not, as explicated in Sect.8.3.
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8.2. Electric and magnetic potentials

Frame-transformation formulae for magnetic and electric potential are
got by considering the space-time Ω1

F and the spatial forms ω1
B and ω0

E .
Being Ω1

F = Ω1
B − dt ∧ (Ω0

E + Ω1
B ·V) we have that

Ω1
F(V) = −Ω0

E , Ω1
F(X0) = −(Ω0

E + Ω1
B ·V) , Ω1

F(Xi) = ω1
B(xi) .

8.2.1. Electric potential

The components of the electric potential ω0
E transform according to the

relation −(ζ↑Ω1
F)(ζ↑V) = −Ω1

F(V) = ω0
E .

8.2.2. Magnetic potential

The frame-transformation formula for longitudinal and transversal com-
ponents of the magnetic potential ω1

B gives

(ζ↑Ω1
F)(X1) = Ω1

F(Tζ−1 ·X1) = γ (w/c2) Ω1
F(X0) + γΩ1

F(X1)

= γ (ω1
B(x1)− (w/c2) (ω0

E + ω1
B · v)

(ζ↑Ω1
F)(Xα) = Ω1

F(Tζ−1 ·Xα) = Ω1
F(Xα) = ω1

B(xα) , α = 2, 3 .

In (Feynman, 1964, 25.5) formulae (25.24i) and (25.24ii) and in (Landau
and Lifshits, 1987, 24) formulae (24.1) provide transformation rules for elec-
tric and magnetic potentials. The latter agrees with our results (for v = 0 )
but the former does not, as explicated in Sect.8.3.

8.3. Synopsis

Being ω1
E = g · E the component E‖ is parallel to the longitudinal

direction X1 of the relative spatial velocity w , while being ω2
B = µ ·B the

component B‖ acts in the transversal plane (x2,x3) . The same observation
holds respectively for H‖ and D‖ . Being ω2

J = µ · J the component J‖

acts in the transversal plane (x2,x3) and being ω1
B = g ·A the component

A‖ acts in the longitudinal direction X1 .
According to the new results, relativistic effects appear only in longitu-

dinal components and entanglements vanish in the non-relativistic limit.
To grasp the motivation for the disagreement between our results and the

ones reported in literature, we assume v = o so that V = Z = X0 , as in
standard treatments.
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Then, the transformation rule for the electric field derived in Sect.8.1.1 is
modified by mistaking X0 in place of ζ↑X0 . Observing that Tζ−1 ·X0 =
γX0 + γ wX1 , we get

−(ζ↑Ω2
F)(X0,X1) = −Ω2

F(Tζ−1 ·X0, Tζ
−1 ·X1)

= −γ2 Ω2
F(X0,X1)− γ2 (w2/c2) Ω2

F(X1,X0)

= ω1
E(X1) ,

−(ζ↑Ω2
F)(X0,Xα) = −Ω2

F(Tζ−1 ·X0, Tζ
−1 ·Xα) = −Ω2

F(Tζ−1 ·X0,Xα)

= −γΩ2
F(X0,Xα)− γ wΩ2

F(X1,Xα)

= γ (ω1
E(xα) + wω2

B(x1,xα)) , α = 2, 3 .

In terms of vector fields, these relations express the incorrect transformation
rule (Lorentz, 1904; Einstein, 1905)

(E‖ ,E⊥)→ (E‖ , γ (E⊥ + w ×B)) .

All disagreements in the synoptic table are consequences of the same mistake.

9. CONCLUSIONS

Turning points outcoming from our analysis may be resumed as follows.

1. Entanglements and scaling due to frame-changes are only due to rela-
tivistic effects and accordingly vanish in the non-relativistic limit.

2. Relativistic effects acts only in longitudinal direction, similarly to the
length contraction effect.

These results correct the statement that transversal components of elec-
tric and magnetic fields are affected by scaling and entanglements surviving
at ordinary velocities.

The synoptic table provides a comparison of our results (new) with the
state of art in literature (old). To this end we restrict ourselves to the case
considered in literature, i.e. no spatial motion of test particles, so that v = o
and V = Z .

The new theory deprives the Lorentz force law of theoretical support.
The physical evidence, that an observer will measure a force acting on a
charged test particle traveling in a spatial field of magnetic potential, can be
explained on the sole ground of Faraday induction law
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Synoptic table ( v = 0 )

new old

(E‖ ,E⊥) → (γE‖ ,E⊥) versus (E‖ , γ (E⊥ + w ×B))

(B‖ ,B⊥) → (B‖ , γ (B⊥ − (w/c2)× E)) idem

(H‖ ,H⊥) → (γH‖ ,H⊥) versus (H‖ , γ (H⊥ −w ×D))

(D‖ ,D⊥) → (D‖ , γ (D⊥ + (w/c2)×H)) idem

(J‖ ,J⊥) → (J‖ , γ J⊥) versus (γ (J‖ − ρw) ,J⊥)

ρ → γ (ρ− g(w/c2 ,J)) idem

VE → VE versus γ (VE − g(w,A))

(A‖ ,A⊥) → (γ (A‖ − (w/c2)VE) ,A⊥) idem

Indeed, resorting to Prop.5.2 and to homotopy formula we get for the
electric field the expression

−ω1
E = LSV ω1

B + dS ω
0
E

= LSZω1
B + Lv ω

1
B + dS ω

0
E

= LSZω1
B + (dS ω

1
B) · v + dS (ω1

B · v) + dS ω
0
E ,

which is coincident with the one exposed in (J.J. Thomson, 1893, ch. VII, p.
534) as reproducing the theoretical result due to (Maxwell, 1861, (77) p.342).
Denoting by ∇ the Euclid connection in spatial slices and assuming that
the observer measures

- a magnetic potential independent of time, LSZω1
B = 0 ,

- a spatially constant scalar potential, dS ω
0
E = 0 ,

- a spatially constant magnetic vortex, ∇ω2
B = 0 ,

the formula may be evaluated to give (G. Romano, 2012)

−ω1
E = (dS ω

1
B) · v + dS (ω1

B · v) = ω2
B · v −

1

2
ω2

B · v =
1

2
ω2

B · v ,
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or in terms of vector fields

E =
1

2
v ×B ,

which is just one-half of what is improperly called the Lorentz force. This
last expression seems to be in accord with early theoretical and experimental
findings by J.J. Thomson (1881), see (Darrigol, 2000). An experimental veri-
fication of the formula would provide an additional and conclusive support to
the physical consistency of the new mathematical theory. The implications
of the new frame-transformation formulae on the interpretation of relativistic
Doppler effect and light aberration phenomena, as described by Einstein
(1905), will be discussed elsewhere.
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