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Abstract - New basic principles of electric and magnetic induction are formulated as bal-
ance laws referring to material paths undergoing piecewise discontinuous motions. The
resulting differential rules are able to overcome difficulties of standard formulations and
to provide a direct interpretation to experimental evidence involving induction phenomena
whose description in terms of flux rules is troublesome or unfeasible. FARADAY-HENRY-
NEUMANN-FELICI and AMPÈRE-MAXWELL flux laws of electromagnetic induction are
recovered in the special case of closed material circuits undergoing regular motions. For
an electric charge translating into a uniform magnetic field due to a spatially time-invariant
magnetic potential, a term analogous to LORENTZ force is found to provide the induced
electric field, but with a correction factor of one-half.

Riassunto - Principi di bilancio che governano i fenomeni di induzione elettrica e mag-
netica sono formulati con riferimento a linee materiali in moto, anche discontinuo a pezzi.
Le conseguenti regole differenziali sono suscettibili di interpretare in modo diretto le ev-
idenze sperimentali anche quando le formulazioni standard risultano di problematica o
impossibile applicazione. Le leggi di flusso, come enunciate in letteratura, sono ritrovate
come caso particolare per circuiti materiali chiusi in moto non discontinuo. Per cariche
elettriche in moto traslatorio in un campo magnetico uniforme dovuto ad un potenziale
magnetico costante nel tempo, si ritrova la cosiddetta legge di forza di LORENTZ come
espressione del campo elettrico, ma corretta da un fattore un mezzo.
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1 PROLEGOMENA

History of electromagnetism is really fascinating. Starting from the many
brilliant experimental discoveries and interpretations by ROMAGNOSI, ØRSTED,
BIOT, SAVART, AMPÈRE in 1800-1820, and ZANTEDESCHI-HENRY-FARADAY-
NEUMANN-LENZ-WEBER-FELICI in between 1829 and 1855, early beautiful the-
oretical abstractions soon led to the formulation of GAUSS-FARADAY’s and AMPÈRE-
MAXWELL laws of electromagnetic induction.

It is however to be said that, in looking at modern treatments of the fundamen-
tals of electromagnetism, a careful reader would certainly agree with R.P. FEYN-
MAN in being disappointed by the contamination of the synthetic and powerful
original principles with ad hoc additional rules aimed at interpreting the role of
body motion in induction phenomena (Feynman et al., 1964, II.17-1).

It seems that troubles became to appear in the scientific literature as far as
the analysis conceived by Clerk-Maxwell (1861) was subjected to simplifications
proposed, around the end of the nineteenth century, in (Heaviside, 1892; Hertz,
1892; Lorentz, 1895, 1899, 1903, 1904).

These modifications were performed with an insufficient attention to the orig-
inal theoretical framework set up in (Clerk-Maxwell, 1861, 1865, 1873) and in
(Helmholtz, 1870, 1873, 1874, 1892).

The main negative feature consisted in the way motions of material particles
were taken into account. In fact they were either completely ignored, as feasible
only in getting the wave equations in vacuo, or adjusted by adding ad hoc terms in
the case of simple relative translations, with the consequence that invariance under
frame transformations was lost.

According to a prevailing opinion (Darrigol, 2000), the treatments by HEAVI-
SIDE and HERTZ improved MAXWELL analysis by taking care of particle motion.
A reading of the original papers (Clerk-Maxwell, 1861, 1865) and (J.J. Thomson,
1893) is however sufficient to completely disprove such statements and to put into
evidence the power of the original formulation.

Another peculiar occurrence was the appearance of vector calculus, introduced
by GIBBS in 1888, and soon adopted to simplify previous analyses based on the
quaternion algebra. Published in extended form in (Gibbs, 1929), it rapidly became
the standard formalism in physics and engineering of the twentieth century.

Unfortunately, with the vector symbolism, physical entities were deprived of
their proper geometrical nature and flattened on a common algebraic platform.

The advent of the relativistic era was of no advantage in revising the flaws
introduced in the theory of electromagnetics by the cited simplifications.

On the contrary, under the influence of the 1905 paper (Einsten, 1905), the at-
tempts of recovering frame invariance of MAXWELL-HERTZ laws of induction, led
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to sustain that EUCLID frame transformations ought to be substituted by LORENTZ

transformations.
This mathematically unfounded conclusion was taken for granted in the sub-

sequent literature, therefore becoming a main stoppage for an improvement of the
theory, due also to misstatements concerning the transformation of electromagnetic
fields under LORENTZ transformations (Romano G., 2013).

To answer the problem of frame invariance, it would have been sufficient to re-
vert to MAXWELL original treatment, as improved by J.J. THOMSON, and to elab-
orate on it with the invariant formalism of differential forms (Romano G., 2013).

The new theory exposed below is formulated to fulfil two basic guidelines, an
interpretation as direct as possible of experimental evidence, and a geometrically
correct mathematical modelling.

The theory develops entirely in the classical framework and consists in the
adoption of electric and magnetic induction laws formulated as balance principles
pertaining to arbitrary curvilinear paths undergoing piecewise regular motions.

The power of the theory in providing clear interpretations to experimental evi-
dence is shown by several applications in Sect. 6.

Flux rules are recovered for closed paths undergoing regular motions, but, at
difference with the current usage in literature, the LORENTZ force rule is no more
a basic law of the theory, being reduced, after a correction by a factor one-half, to
a special expression detected by special observers investigating special situations,
as shown in Sect. 6.1.

2 DIFFERENTIAL FORMS

The theory of integration over compact manifolds, whether orientable or not,
is treated in (Abraham et al., 2002) and resumed in (Romano G., 2007). We recall
here only some basic issues, for future reference.

Definition 2.1 (Multi-covectors). A k-covector ωk in a n-dimensional linear space
V (k≤ n) is an alternating k-linear real valued map on the tangent manifold TV .

This means that the exchange of two argument results in the sign change the scalar
value and we write ωk ∈ ALTk(TV ) .

A non-null n-covector on V vanishes if and only if its arguments are linearly
dependent and all n-covector are proportional one another.

A non-null n-covector ωn provides the natural way of computing an n-volume
of an n-parallelepiped.

Definition 2.2 (Differential exterior forms). A differential exterior form of order
k (or simply a k-form) is a smooth field of k-covectors defined on a n-manifold.
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Integral laws in Mathematical Physics are naturally formulated in terms of ex-
terior forms because integrals over (inner) orientable manifold of dimension k are
in fact evaluations of global k-volumes.

Therefore there is no surprise that the electromagnets theory, which is governed
by integral balance laws, is most conveniently developed in terms of exterior forms
representing electric charges and electric and magnetic fields.

Noteworthy contributions, with applications of differential geometric notions
to theoretical and computational aspects of electromagnetism were provided by
Deschamps (1970, 1981), Bossavit (1991, 2004, 2005) and Tonti (1995, 2002).

An important issue concerns orientations of manifolds (Schouten, 1951; Abra-
ham et al., 2002).

We recall here just essential ideas. In a n-manifold a continuous volume n-
form defines an (inner) orientation. The outer orientation is defined at each point
by orienting a linear complement of the tangent space to the manifold.

For an orientable 2D surface the inner orientation on the surface is either clock-
wise or counter clockwise while the outer orientation through the surface is either
from the negative face to the positive one or vice versa.

Similarly, for 1D paths an (inner) orientation is a direction of walk along it,
while an outer orientation is a choice of turning around it.

For 3D manifolds an (inner) orientation can be either left-handed or right
handed while an outer orientation is a source or a sink. The converse for a point (a
0D manifold).

The choice of an orientation in an orientable container manifold defines on its
submanifolds an outer orientation associated with a given inner orientation. An
inner (outer) orientation on a manifold induces an inner (outer) orientation on its
boundary.

Integration of (inner) forms on an orientable manifold involves the choice of
an inner orientation and the integral will change sign by changing the inner orienta-
tion. Integration on outer oriented manifolds involves outer forms that are defined
by the property that they change sign on changing the orientation in spatial slices.

Chains of manifolds are generated by formal linear combination by integers
with positive or negative coefficients depending on wheter the orientations induced
on common boundaries are compatible or not.

Adoption of the mathematical language provided by the theory of differentiable
forms is most compelling when dealing with investigations about transformations
induced by diffeomorphisms, such as space-time motions or changes of reference
frame.
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The tangent map T ζ : T Ω 7→ T M associated with an injective smooth map
ζ : Ω 7→M , transforms a tangent vector a ∈ T Ω into a pushed forward vector

ζ↑a = T ζ ·a◦ζ
−1 ∈ T M (1)

tangent at the corresponding point on ζ (Ω) ⊂M . Here and in the sequel a dot ·
means fiberwise linear dependence on subsequent arguments.

The pull-back of a differential form ω on T (ζ (Ω)) by the map ζ is the dif-
ferential form ζ↓ω on T Ω defined (assuming for simplicity a one-form) by

(ζ↓ω)(a) = ω(ζ↑a) , ∀a ∈ T Ω . (2)

A physical field on a manifold M , represented by a a differential form ω on
T M , is invariant under a smooth invertible transformation (automorphism) χ :
M 7→M if

ω = χ↓ω . (3)

A fundamental role is played by the notion of exterior derivative of a k-form
on a manifold Ω , which extends to multidimensional manifolds the fundamental
theorem of integral calculus of real functions.

Definitions and principal properties concerning exterior derivatives, recalled
below, will be referred to in the development of the new theory of electromagnetic
induction.

Definition 2.3 (Exterior derivative and Stokes’ formula). In a compact manifold
Ω od dimension (k+1), with a k-dimensional boundary ∂Ω , the exterior deriva-
tive operates on a k-form ω ∈ C1(Ω ; ALTk(T Ω)) to give the (k+ 1)-form dω ∈
C1(Ω ; ALT(k+1)(T Ω)) fulfilling STOKES’ formula∫

Ω

dω =
∮

∂Ω

i∂↓ω . (4)

where i∂ ∈C1(∂Ω ;Ω) is the embedding of the boundary manifold ∂Ω in the man-
ifold Ω . The pull-back i∂↓ by the embedding is needed to transform exterior forms
on T Ω to exterior forms on T ∂Ω . For the sake of notational simplicity, it is often
abusively omitted in STOKES’ formula.

A manifold Ω with null boundary (∂Ω = 0 ) is said to be closed. A boundary
∂Ω is a closed manifold, i.e. ∂∂ Ω = 0 for any manifold Ω .

From STOKES formula it follows that dd ω = 0 for any form ω .
Analogously a differential form ω ∈ C1(Ω ; ALTk(T Ω)) is closed if dω = o

and is exact if ω = dα for some form α ∈ C1(Ω ; ALT(k−1)(T Ω)) .
On manifolds that are contractable to a point every closed form is exact, a result

known as POINCARÉ Lemma (Abraham et al., 2002; Romano G., 2007).
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3 KINEMATICS

In the theory of electromagnetic induction the container manifold is the 4D
manifold E of physical events.

An observer performs a partition of E into disjoint spatial slices E (t) each
associated with a time instant t ∈Z (Zeit is Time in German) by means of a time-
projection tE : E 7→Z . The spatial slices E (t) are level sets of the time-projection
so that 〈dtE ,d〉= 0 for any spatial vector d ∈ TE (t) .

A congruence of time-lines provides a one-to-one correspondence between
spatial slices. The time parametrisation of time lines generates a vector field of
tangent 4-vectors Z ∈ TE such that 〈dtE ,Z〉= 1.

A smooth map i : T 7→ E between a kD manifold T , with k ≤ 3, is an im-
mersion if the tangent map T i : TT 7→ TE is pointwise nonsingular. If moreover
the co-restricted map i : T 7→ TE = i(T ) is a diffeomorphism, the map is called
an embedding and TE is a submanifold of E .

The space-time motion of a body is detected by an observer as a one-parameter
(α ∈ Z time lapse) family of smooth transformations (automorphisms) ϕα ∈
C1(TE ;TE ) , over the trajectory submanifold TE , fulfilling the commutative dia-
gram

TE
ϕα //

tE

**

TE

tE

tt

T

i
OO

ϕT
α //

tT ��

T

i
OO

tT��
Z

θ α // Z

ϕα ◦ i = i◦ϕ
T
α ,

tT ◦ϕ
T
α = θ α ◦ tT

tE ◦ϕα = θ α ◦ tE .

(5)

Here θ α : Z 7→ Z is the time-translation defined by θ α(t) = t +α , so that Eq.
(5)3 means that the motion preserves simultaneity of events.

The motion four-velocity is V = ∂α=0 ϕα with 〈dtE ,V〉= 1.
The motion ϕα ∈ C1(TE ;TE ) draws on each spatial-slice E (t) a wake W (t)

of events that are intersected by time-lines passing through the embedded trajec-
tory. The union of all wakes is denoted by W .

The space-time motion along the embedded trajectory are split by an observer
into a spatial motion and a time motion fulfilling the commutative diagram

TE

ϕα

''

ϕS
α //

ϕZ
α

��

W

ϕZ
α

��
W

ϕS
α // TE

⇐⇒ ϕα = ϕ
S
α ◦ϕ

Z
α = ϕ

Z
α ◦ϕ

S
α , (6)
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The space-time velocity V is decomposed into the sum of spatial and time
components V = Z+v with 〈dtE ,v〉= 0 and

v := ∂α=0 ϕ
S
α , Z := ∂α=0 ϕ

Z
α . (7)

A form ωk on TE is spatial if it vanishes when any of its k argument vectors,
which are tangent to E , is parallel to Z .

The integral of the pull-back of a k-form ωk over the placement ϕα(Ω) is
equal to the integral of the pull-back form over the placement Ω∫

ϕα (Ω)
ω

k =
∫

Ω

ϕα↓ωk . (8)

Taking the time-derivative of Eq. (8) gives the LEE-REYNOLDS formula

∂α=0

∫
ϕα (Ω)

ω
k =

∫
Ω

∂α=0 (ϕα↓ωk) =
∫

Ω

LV ω
k . (9)

The exterior derivative of differential forms commute with the pull-back by the
motion

d ◦ϕα↓= ϕα↓◦d , (10)

a result following from STOKES and integral transformation formulae∫
Ω

d(ϕα↓ωk)=
∮

∂Ω

ϕα↓ωk =
∮

ϕα (∂Ω)
ω

k

=
∮

∂ϕα (Ω)
ω

k =
∫

ϕα (Ω)
dω

k =
∫

Ω

ϕα↓(dω
k) .

Then also
LV (dω

k) = d (LV ω
k) . (11)

More in general, a smooth automorphic transformation ζ E : E 7→ E (a frame trans-
formation) induces a correspondence ζ : T 7→ Tζ between trajectories T and
Tζ , according to the commutative diagram

E
ζ E // E

T
ζ //

i
OO

Tζ

iζ
OO

⇐⇒ ζ E ◦ i = iζ ◦ζ , (12)

and we have the commutation rule

d ◦ζ↓= ζ↓◦dζ , (13)
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where d and dζ are the exterior derivatives acting respectively on the trajectory
T and on the transformed trajectory Tζ .

Accordingly, the motions detected in the two frames are related by the commu-
tative diagram

Tζ

(ϕT
α )ζ // Tζ

T

ζ

OO

ϕT
α // T

ζ

OO ⇐⇒ (ϕT
α )ζ ◦ζ = ζ ◦ϕ

T
α , (14)

with space-time four-velocities related by Vζ E
= ζ E ↑V .

The LIE-derivative, along the space-time motion ϕα ∈ C1(TE ;TE ) , of a k-
form ωk on the embedded trajectory TE , is the time-derivative LV ωk of the
pull-back form which is pointwise a time-dependent multicovector in the relevant
tangent linear space

LV ω
k := ∂α=0 (ϕα↓ωk) . (15)

LIE-derivative transform in a natural way by the effect of diffeomorphic transfor-
mations ζ E ∈ C1(E ;E )

ζ E ↑(LV ω
k) = L(ζ E ↑V) (ζ E ↑ωk) (16)

Under the assumption that for sufficiently small time lapse the spatial and time
motions do not bring outside the trajectory submanifold, the split (6) and LEIBNIZ

rule lead to the additive decomposition

LV ω
k :=∂α=0 (ϕα↓ωk) = ∂α=0 (ϕ

S
α ◦ϕ

Z
α )↓ωk

=∂α=0 ϕ
S
α ↓ωk +∂α=0 ϕ

Z
α ↓ωk = LZ ω

k +Lv ω
k .

(17)

Intersections of embedded trajectory TE with spatial slices, are assumed to be
compact kD submanifolds Ω called placements of the body.

3.1 HOMOTOPY FORMULA
The next result provides a generalisation of a well-known formula introduced

by HELMHOLTZ for the evaluation of the time-rate of variation of the flux of a
vector field, see Sect. 3.2.

The formula was later reformulated in modern geometrical terms by H. CAR-
TAN to deal with LIE derivatives of differential forms of any order along the flow
associated to vector fields on a manifold.

The version we present here is further extended to include the representation
of the LIE derivative along the space-time motion, of a form ωk defined on the
(k+1)D trajectory submanifold TE of the 4D event manifold E (k ≤ 3).

As will be shown, this extension is essential to get the material homotopy for-
mula, stated below in Prop. 3.1 and in Cor. 3.1, and proven in (Romano G., 2007).
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Proposition 3.1 (Homotopy formula). The LIE-derivative LV ωk of a space-time
form ωk along the motion, is expressed in terms of exterior derivatives by the ho-
motopy formula

LV ω
k = (dT ω

k) ·V+d(ωk ·V) , (18)

where dT and d are exterior derivatives respectively on the trajectory manifold
and on the placement manifold.

Corollary 3.1 (Spatial homotopy formula). Under feasibility of the split LV ωk =
LZ ωk +Lv ωk , the LIE-derivative Lv ωk of a spatial form ωk along the spatial
motion, is expressed in terms of exterior derivatives by the spatial homotopy for-
mula

Lv ω
k = (dω

k) ·v+d(ωk ·v) , (19)

where d is the exterior derivative on a placement manifold.

3.2 HELMHOLTZ FORMULA

As a direct consequence of the homotopy formula we derive here a noteworthy
formula, due to H. VON HELMHOLTZ, that provides the expression of the time rate
of variation of the flux of a spatial vector field u across an outer oriented material
surface ΣOUT , with transversal normal n , drifted by the motion.

Preliminarily we recall the definitions of vector cross product and of usual
differential operators considered in vector field theories, in terms of exterior differ-
ential.

cross product: u×v = µ ·u ·v , (dimE (t) = 2)

cross product: g · (u×v)= µ ·u ·v , (dimE (t) = 3)

gradient: d f = g ·∇ f , (dimE (t) = 2,3)

curl: d (gv) = (rotv)µ , (dimE (t) = 2)

curl: d (gv) = µ · (rotv) , (dimE (t) = 3)

divergence: d (µv) = (divv)µ . (dimE (t) = 2,3)

(20)

Setting ω2 := µ ·u = g(u ,n)µΣ with µΣ = µ ·n , we apply the split LV ωk =
LZ ωk +Lv ωk and Eq. (19) to get

∂α=0

∫
ϕα (ΣOUT)

ω
2=

∫
ΣOUT

LZ ω
2 +Lv ω

2

=
∫

ΣOUT

LZ ω
2 +d(ω2 ·v)+(dω

2) ·v .
(21)
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To translate into the language of vector analysis we recall that

µ ·u ·v = g · (u×v) ,
d(g · (u×v)) = µ · (rot(u×v)) ,

d(ω2 ·v) = d(µ ·u ·v) = d(g · (u×v)) = µ · (rot(u×v)) ,

(dω
2) ·v = d(µ ·u) ·v = (divu)µ ·v ,

(22)

and observe that from LZ µ = 0 it follows that

LZ ω
2 = LZ (µ ·u) = µ · (LZ u) . (23)

Substituting in Eq. (21) and setting u̇ := LZ u , we get HELMHOLTZ’s formula

∂α=0

∫
ϕα (ΣOUT)

g(u ,n)µΣ =
∫

ΣOUT

µ · (u̇+ rot(u×v)+(divu)v) . (24)

3.3 ELECTROMAGNETIC FIELDS

Let g be the time invariant metric tensor field in the spatial slices and µ the
associated volume form that takes a unitary value on spatial cubes with sides of
unit length.

The inner one-form electric field ω1
E , the inner one-form magnetic potential

ω1
A and the inner two-form magnetic vortex ω2

B = dω1
A are expressed in terms of

the corresponding inner electric vector field E , inner magnetic vector field A , and
outer vector field of magnetic induction B , by

ω
1
E= g ·E ,

ω
1
A= g ·A ,

ω
2
B= µ ·B ,

(25)

The outer one-form magnetic winding ω1
H , the outer two-form electric induc-

tion flux ω2
D , the outer one-form electric current winding ω1

J , the outer two-form
electric current flux ω2

J = dω1
J are expressed in terms of the corresponding outer

magnetic vector field H , inner electric induction vector field D , outer electric
current vector potential AJ , inner electric current vector field J , and of the inner
scalar electric charge ρ and the outer three-form electric charge density ω3

ρ , by

ω
1
H= g ·H ,

ω
2
D= µ ·D , dω2

D= ω3
ρ = ρ µ ,

ω
1
J= g ·AJ , ω2

J = µ ·J .
(26)
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The electromagnetic constitutive relations are then expressed by the following
relations

B = µ0(H) , D = ε0(E) , (27)

where µ0 and ε0 are suitable constitutive functions. The former relates the outer
fields B and H , while the latter relates the inner fields D and E .

From the formulae in Eq. (22) we have the following correspondences.

ω
2
B = dω

1
A ⇐⇒ B = rotA ,

dω
2
B = ddω

1
A = 0 ⇐⇒ divrotA = 0 ,

ω
2
J = dω

1
J ⇐⇒ J = rotAJ ,

dω
2
J = ddω

1
J = 0 ⇐⇒ divrotAJ = 0 .

(28)

4 ELECTRIC INDUCTION

4.1 STATE OF THE ART

FARADAY’s law of electromagnetic induction due to a variable magnetic vortex
along a space-time motion, is classically stated as a flux rule (Feynman et al., 1964,
II.17-1), as reproduced below in Eq. (36).

The validity of this rule as a general law of Physics has been however ques-
tioned since long ago, due to difficulties in providing a clear interpretation to sim-
ple induction phenomena.

In The Feynman Lectures on Physics, Feynman, Leighton and Sands (1964,
II.17-1), in illustrating FARADAY law of induction, say:

We know of no other place in physics where such a simple and accurate general
principle requires for its real understanding an analysis in terms of two different
phenomena. Usually such a beautiful generalization is found to stem from a single
deep underlying principle. Nevertheless, in this case there does not appear to be
any such profound implication. We have to understand the rule as the combined
effect of two quite separate phenomena.

Moreover in (Feynman et al., 1964, ch. II.17-2), in commenting the difficulties
emerging from applying the flux rule to FARADAY disk and to a circuit closed by
rocking contacts, envisaged for discussing the applicability of FARADAY law of
magnetic induction, they say that:

The ”flux rule” does not work in this case. It must be applied to circuits in
which the material of the circuit remains the same. When the material of the circuit
is changing, we must return to the basic laws. The correct physics is always given
by the two basic laws F = q(E+v×B) and rotE =−Ḃ . Here ( Ḃ := LZ B ).

We may see that the way out envisaged by FEYNMAN consists in the following
suggestions.
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1. To abandon the flux rule as a general foundational principle for the theory of
electromagnetic induction.

2. To accept that the force on the unit electric charge is given by the addition
of a transformer electric field E and of a LORENTZ force field v×B . The
former electric field fulfils the induction law for a fixed unit charge, while
the latter depends linearly on the spatial velocity of the unit charge.

It is clear that FEYNMAN himself was not really satisfied by the lack of ele-
gance of these ”basic” laws.

Here an unwritten principle of Physics shows its power: Beauty and effective-
ness must go together in assessing general rules.

4.2 OPEN QUESTIONS

Prior to illustrating the way out proposed here, let us make some introductory
considerations.

FEYNMAN’s point of view was shared by everyone engaged in electromagnetic
theory.

Item 1) in FEYNMAN’s suggestion was motivated by the difficulty of interpret-
ing some experimental evidence in simple induction phenomena. Moreover, it is
certainly not at all clear how to evaluate the flux of the magnetic induction and its
time variation, in many technically important applications.

A simple and important instance is provided by an inductive coil in which an
isolated conductive wire is winded in a complex way around a cylinder. What is
there the surface through which the magnetic flux is to be evaluated?

Item 2) in FEYNMAN’s suggestion is not clearly motivated and clashes against
an evident deficiency. The field providing the LORENTZ force term depends on the
observer appointed of measurements of time rate Ḃ and of spatial velocity v of the
moving charge.

What is more, the whole expression of the electric force F acting on the charge
is not independent of a GALILEI change of observer, a fact that is physically not
acceptable.

In the Sect. II.13-6 of (Feynman et al., 1964), entitled The relativity of magnetic
and electric fields, they write:

When we said that the magnetic force on a charge was proportional to its ve-
locity, you may have wondered: ”What velocity? With respect to which reference
frame?” It is, in fact, clear from the definition of B given at the beginning of this
chapter that what this vector is will depend on what we choose as a reference
frame for our specification of the velocity of charges. But we have said nothing
about which is the proper frame for specifying the magnetic field.
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FEYNMAN’s was then well aware of this difficulty and strived to find a way out
also in this case by resorting to the transformation rule of electromagnetic fields in
special relativity.

The same relativity argument was adduced later by Purcell (1965, ch.5).
It is certainly surprising that the understanding of simple induction phenom-

ena must require relativity arguments also when the involved speeds are extremely
lower than that of light.

The strangeness of this motivation has been confirmed by a revision of the
transformation rule of electromagnetic fields in special relativity (Romano G., 2013).

Anyway, the relativity arguments adduced by FEYNMAN and PURCELL deal
formally only with the LORENTZ force term and do not resolve the indeterminacy
of the time rate Ḃ (at a fixed spatial point) which remains a term dependent on the
observer.

4.3 THE NEW RULE OF ELECTRIC INDUCTION

We show here that overcoming the exposed difficulties in the theory of electro-
magnetic induction is feasible without abandoning the classical framework, which
is so useful and familiar to electrical engineers, and that this result can be achieved
by means of a physically clear modification of the governing rules.

The new rules are elegant and able to resolve all long lasting troubles. FARA-
DAY’s rule is only a special case of a more general balance rule involving integrals
along any spatial path.

No surface to evaluate the flux of the magnetic induction is needed, no closed
loop to evaluate the electromotive force (E.M.F.) is needed, and an observer inde-
pendent differential expression for the electric field is provided.

Applications to challenging induction phenomena classically exposed in liter-
ature, such as FARADAY’s disc (BARLOW’s wheel), the homopolar generator and
HERING’s experiment, see e.g. (Lehner, 2010) show that effective interpretations
can be given by the new theory.

On the other hand a correction to standard formulae, by a factor one-half, must
be made. Among induction phenomena that need this revision we quote the HALL

effect (Hall, 1879) and the railgun functioning.
Guided by the previous considerations about the difficulties involved in detect-

ing a surface for application of the flux rule, and by the evidence of BIOT-SAVART

and AMPÈRE laws concerning the magnetic field induced by a current carrying rec-
tilinear wire and the mutual forces exerted by current carrying wires, we introduce
the new Electric Induction Law (E.I.L.) and Magnetic Induction Law (M.I.L.),
which are balance laws involving arbitrary curvilinear paths undergoing motions
which are required to be only piecewise regular.

The latter will be treated in Sect. 5.
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The Electric Induction Law law is more general than FARADAY’s flux rule and
reduces to it for circuits (i.e. closed paths) undergoing regular motions.

To simplify the statement we set the following.

Definition 4.1. The electromotive force E.M.F.(LINN) along an inner oriented ma-
terial path LINN is the sum of bulk and boundary contributions

E.M.F.(LINN) :=
∫

LINN

ω
1
E +

∮
∂LINN

P , (29)

where the induced electric field ω1
E is an inner one-form and the electrostatic

scalar potential P is an inner zero-form fulfilling COULOMB’s inverse-square
force law.

Definition 4.2. The magnetic momentum along an inner oriented spatial path LINN

is the line-integral of the magnetic induction

M.M.(LINN) :=
∫

ϕα (LINN)
ω

1
A . (30)

Remark 4.1. The magnetic one-form ω1
A and the associated vector potential A

are related by ω1
A = g ·A so that

ϕα↓ω1
A = ϕα↓(g ·A) = (ϕα↓g) · (ϕα↓A) , (31)

and by LEIBNIZ rule

LV ω
1
A = ∂α=0 ϕα↓ω1

A= (LV g) ·A+g · (LV A)

= g ·EUL(v) ·A+g · (LV A) ,
(32)

where LV g = g ·EUL(v) , being EUL(v) = sym∇v the EULER stretching formula
of Continuum Mechanics, expressed in terms of the LEVI-CIVITA connection ∇ .

Principle 4.1 (Electric induction law). Along inner oriented material paths LINN

dragged by a piecewise regular space-time motion ϕα ∈ C1(TE ;TE ) , the time
rate of the magnetic momentum is opposite to of the sum of bulk and boundary
electromotive forces

E.M.F.(LINN) :=
∫

LINN

ω
1
E +

∮
∂LINN

P=−∂α=0

∫
ϕα (LINN)

ω
1
A . (33)

Applying the LIE-REYNOLDS formula (9) and localizing, from (32), recalling that
dP = g ·∇P, we get the differential law

−ω
1
E= LV ω

1
A +dP ⇐⇒

−E= LV A+EUL(v) ·A+∇P .
(34)
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Proposition 4.1 (Split of differential electric induction law). Under feasibility of
the split LV ω1

A = LZ ω1
A +Lv ω1

A , the differential law (34) may be formulated
by the alternative expression

−ω
1
E= LZ ω

1
A +ω

2
B ·v+d(ω1

A ·v)+dP ⇐⇒

−E= LZ A+B×v+∇(g(A ,v))+∇P .
(35)

Proof. The result is a direct consequence of Eq. (19) in Corol. 3.1. �

Proposition 4.2 (Faraday’s flux rule). Assuming that the path LINN = ∂ΣINN is
the boundary of an inner oriented surface ΣINN undergoing a regular motion, the
integral E.I.L. reduces to FARADAY’s flux rule:

−
∮

∂ΣINN

ω
1
E = ∂α=0

∫
ϕα (ΣINN)

ω
2
B , (36)

equivalent to the differential law

−dω
1
E= LV ω2

B ⇐⇒

− rotE= LV B+ TR(EUL(v)) ·B .
(37)

Proof. Being ∂LINN = ∂∂ΣINN = 0 and setting ω2
B := dω1

A we get∮
ϕα (∂ΣINN)

ω
1
A =

∮
∂ϕα (ΣINN)

ω
1
A =

∫
ϕα (ΣINN)

dω
1
A =

∫
ϕα (ΣINN)

ω
2
B , (38)

and the E.I.L. (33) gives Eq. (36). Independence of the choice of the surface ΣINN

such that LINN = ∂ΣINN holds provided that the chain of two such surfaces is the
boundary of a 3D manifold VINN . Then, by the assumption that dω2

B = 0 (there
are no magnetic monopoles), we get∮

ϕα (∂ VINN)
ω

2
B =

∫
ϕα (VINN)

dω
2
B = 0 . (39)

The differential Eq. (37)1 is deduced by localisation and Eq. (37)2 comes from

LV ω
2
B = LV (µ ·B) = (LV µ) ·B+µ ·LV (B) , (40)

with LV µ = TR(EUL(v))µ since the volumetric stretching is the linear invariant
of the EULER stretching tensor. �
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Remark 4.2. The standard formulation of Eq. (36) cannot be directly applied
to induction phenomena in which the material path LINN is not the boundary of
a surface ΣINN (this is a most usual situation in applications, as for instance in
evaluating the E.M.F. generated in a coil immersed in a magnetic induction field).
Moreover the usual denomination of flux rule should be changed into vorticity rule
to conform to the physically consistent assumption of an inner oriented surface,
and to MAXWELL’s point of view.

Effectiveness of the general expression of the E.I.L. provided by Eq. (33)
and Eq. (34) will be checked in Sect. 6, versus experimental evidence of FARA-
DAY unipolar motor/generator and of conductive bar sliding on rails in a field of
magnetic induction, whose interpretation on the basis of the flux rule Eq. (36) is
troublesome, as reported in recent literature (Lehner, 2010).

4.4 HISTORICAL NOTES

The expression (35) of the differential E.I.L. is coincident with the one con-
tributed in cartesian coordinates by J.J. Thomson (1893, Ch.VII, ”Electromotive
intensity in moving bodies”, p.534). This was the first (and to the author’s knowl-
edge, also the last) appearance of the terms d〈ω1

A,v〉 . This term was absent in the
previous treatments by Clerk-Maxwell (1861, 1865, 1873) because, according to
J.J. THOMSON, the scalar field 〈ω1

A,v〉 was there merged with the electrostatic
potential P into a global scalar potential Ψ .

The induction law formulated in (Clerk-Maxwell, 1861, (77) p. 342) and
(Clerk-Maxwell, 1865, (D) p. 485) writes

−ω
1
E= LZ ω

1
A +ω

2
B ·v+dΨ ⇐⇒

−E= Ȧ+B×v+∇Ψ , (Ȧ := LZ A) .
(41)

Eq. (41) shows that the force term v×B , usually named after LORENTZ, was
introduced about thirty years before by MAXWELL who formulated the expression
of the magnetically induced electric field in terms of the vector potential A . The
term is in fact also reported by Hertz (1892) as a well-known result.

In the subsequent literature the scalar potential Ψ was wrongly identified with
the electrostatic potential and hence, due to the lack of the velocity depending term
d〈ω1

A,v〉 , the expression of the electric field provided by Eq. (41) became observer
dependent.

What is more, according to simplifications introduced by Heaviside (1892) and
by Hertz (1892) about the end of the nineteenth century, the induction law was
expressed in terms of the sole magnetic induction field B = rotA .
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Accordingly, setting Ḃ := LZ B , Eq. (41) was written in terms of rotors

− rotE = Ḃ+ rot(B×v) . (42)

Since scalar potentials vanish in Eq. (42), the differences between Eq. (35) and
(41) resulted to be completely obfuscated.

This was a major drawback since the expression Eq. (35), in terms of the vector
potential A , is the one fulfilling the basic property of observer independence of the
electric field. This is readily checked by Eq. (34)1 on the basis of the naturality
properties Eq. (16) and (13).

As a consequence, the inductive E.M.F. was since then universally consid-
ered to stem from two distinct sources, see e.g. Refs. (Weyl, 1922), (Panofski
and Phillips, 1962), (Post, 1962), (Feynman et al., 1964), (Barut, 1980), (Purcell,
1965), (Landau and Lifshits, 1987), (Jackson, 1999), (Kovetz, 2000), (Wegner,
2003), (Lehner, 2010), (Sadiku, 2010).

1. The first source, due to variability of magnetic induction with time in a circuit
at rest, is the time-derivative at fixed spatial position (the transformer term).

−LZ ω
1
A =−g ·LZ B . (43)

2. The second source, due to motion of charge in presence of the magnetic
vortex, is evaluated by the one-form (the motional term)

−ω
2
B ·v = g(v×B) . (44)

The latter term is usually referred to as ”LORENTZ force”, a name still widespread
in literature on electromagnetic induction, but with a faulty motivation.

The reason why the motional term was not attributed to MAXWELL but to
LORENTZ, founds its roots in transformation rules for electromagnetic fields due
to changes of observer assumed by Lorentz (1904), Einsten (1905) and Minkowski
(1908). Space-time frame transformations, corresponding to relative translational
motions which preserve the speed c of light in vacuo were named after LORENTZ

by Poincaré (1906), but, according to Minkowski (1908), the same transformation
was conceived about two decades before by Voigt (1887).

The analysis this frame transformation performed in (Lorentz, 1904) and in
(Einsten, 1905), led to the following conclusion that the electric field is modified
in its component transversal to the relative motion, by the addition of a term w×
B , where w is the relative velocity evaluated by the observer who is performing
the measurements, and, setting w =

√
g(w ,w) , by an increase according to the

relativistic factor
γ := (1−w2/c2)−1/2 . (45)
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The transformation of parallel and transversal components of the electric field,
assumed by the treatments of special relativity exposed in (Lorentz, 1904), (Ein-
sten, 1905), (Minkowski, 1908), is given by{

E‖ 7→ E‖ ,
E⊥ 7→ γ (E⊥+w×B) .

(46)

Clearly, the additive term w×B in Eq. (46)2 does not vanish in the classical
limit γ→ 1 and would therefore also be generated by a GALILEI change of frame.
This unreliable conclusion should convince that some misstatements occurred.

Moreover, under the action of a LORENTZ frame transformation, a spatial elec-
tric field is pushed into a space-time field that is no more a spatial field, in the same
reference frame. Indeed LORENTZ transformations do not preserve simultaneity of
events.

Accordingly, in a relativistic context, a full space-time formulation of electro-
magnetics should be adopted, as first conceived in (Hargreaves, 1908; Bateman,
1910; E. Cartan, 1924), reported in (Truesdell and Toupin, 1960; Misner et al.,
1973) and revised in (Romano G., 2013).

The space-time formulation of electromagnetic induction, requires concepts
and methods of Differential Geometry, with special regard to exterior calculus of
differential forms.

As a matter of fact, the differential geometric analysis recently performed in
(Romano G., 2013), reveals that the transformation expressed by Eq. (46) is the
outcome of a wrong evaluation of the way in which the electric field transforms
under a change of frame.

According to the results exposed in (Romano G., 2013) the transversal compo-
nent of the electric field is unchanged by the LORENTZ transformation, while the
parallel component is changed, as follows{

E‖ 7→ γ (E‖−g(v/c ,E)w/c) ,

E⊥ 7→ E⊥ ,
(47)

where v is the spatial velocity of the body, a term which was assumed to vanish
in previous treatments leading to Eq. (46). The electric field results to be not
changed by LORENTZ transformations in the classical limit γ→ 1, and hence also
by GALILEI transformations, as expected on physical ground.

4.5 FRAME INVARIANCE
The troubles concerning what observer is measuring the spatial velocity v ,

clearly exposed in (Feynman et al., 1964, II.13-6), are overcome by adding to Eq.
(41) the missing term d〈ω1

A,v〉 included in the complete expression Eq. (35) .
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Observer-invariance of the E.I.L. is then proven on the basis of the natural-
ity properties Eqs. (13) and (16) of the differential dP and of the LIE derivative
LV ω1

A .
Indeed, observer-invariance of the electromagnetic fields, under (simultaneity

preserving) EUCLID change of frame ζ : T 7→Tζ , is assumed as a basic axiom of
the theory.

This means that for the one-forms ω1
E and ω1

A and for the scalar potential P
we have

(ω1
E)ζ = ζ↑ω1

E , (ω1
A)ζ = ζ↑ω1

A , (P)ζ = ζ↑P , (48)

so that the differential E.I.L. fulfils the frame invariance property

−ω
1
E= LV ω1

A +dP ⇐⇒

−ζ↑ω1
E= ζ↑(LV ω1

A)+ζ↑(dP) ⇐⇒

−ζ↑ω1
E= L(ζ↑V) (ζ↑ω1

A)+dζ (ζ↑P) ⇐⇒

−(ω1
E)ζ = LVζ

(ω1
A)ζ )+dζ Pζ .

(49)

5 MAGNETIC INDUCTION

The MAXWELL-AMPÈRE’s law of electromagnetic induction of a magnetomo-
tive force (M.M.F.), due to an electric current flux, is classically stated as a flux rule,
see Eq. (56) below.

Let us consider, a region where free electric charges are absent (i.e. ω3
ρ = 0 )

and there are no sources of electric current (i.e. dω2
J = 0 ).

We will show that, in these regions, the MAXWELL-AMPÈRE’s law can be
formulated as a balance law for a magnetic winding outer one-form ω1

H , involving
the electric induction outer one-form ω1

D and the electric current potential outer
one-form ω1

J .
This balance will be called the Magnetic Induction Law (M.I.L.).
To get the result we observe that by GAUSS law

ω
3
ρ = dω

2
D , (50)

and by assumption
ω

3
ρ = 0 , dω

2
J = 0 . (51)

Then, by POINCARÉ lemma exposed in Sect. 2, we get

ω
2
D = dω

1
D , ω

2
J = dω

1
J . (52)
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Principle 5.1 (Magnetic induction Law). Around an outer oriented spatial path
dragged by a piecewise regular space-time motion ϕα ∈C1(TE ;TE ) , the induced
magnetomotive force (M.M.F.) is equal to the sum of the time rate of the integral of
the electric winding ω1

D and of the integral of the electric current potential ω1
J

M.M.F.(LOUT) :=
∫

LOUT

ω
1
H = ∂α=0

∫
ϕα (LOUT)

ω
1
D +

∫
LOUT

ω
1
J . (53)

Applying the LIE-REYNOLDS formula Eq. (9) and localizing, we get the differen-
tial law

ω
1
H= LV ω1

D +ω1
J ⇐⇒

H= LV D+EUL(v) ·D+AJ .
(54)

Proposition 5.1 (Split of differential magnetic induction law). Under feasibility
of the split LV ω1

D = LZ ω1
D +Lv ω1

D , the integral law (53) is equivalent to the
frame invariant differential law

ω
1
H= LZ ω1

D +ω2
D ·v+d(ω1

D ·v)+ω1
J ⇐⇒

H= LZ AD +D×v+∇(g(D ,v))+AJ .
(55)

Proof. The result is a direct consequence of Eq. (19) in Corol. 3.1. �

Proposition 5.2 (Ampere’s flux rule). Assuming that the path LOUT = ∂ΣOUT is
the boundary of an outer oriented surface ΣOUT undergoing a regular motion, the
integral M.I.L. reduces to the standard MAXWELL-AMPÈRE’s flux rule:∮

∂ΣOUT

ω
1
H = ∂α=0

∫
ϕα (ΣOUT)

ω
2
D +

∫
ΣOUT

ω
2
J . (56)

equivalent to the differential law

dω
1
H = LV ω

2
D +ω

2
J ⇐⇒

rotH = LV D+EUL(v) ·D+AJ .
(57)

Proof. Being ∂LOUT = ∂∂ΣOUT = 0 and setting ω2
D := dω1

D we get∮
ϕα (∂ΣOUT)

ω
1
D =

∮
∂ϕα (ΣOUT)

ω
1
D =

∫
ϕα (ΣOUT)

dω
1
D =

∫
ϕα (ΣOUT)

ω
2
D , (58)

and the M.I.L. (53) gives Eq. (56).
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Independence of the choice of the surface ΣOUT such that LOUT = ∂ΣOUT holds
provided that the chain of two such surfaces is the boundary of a 3D manifold
VOUT . Then, indeed, the principle of electric charge conservation states that

∂α=0

∫
ϕα (VOUT)

ω
3
ρ +

∮
∂ VOUT

ω
2
J = 0 . (59)

By GAUSS law
ω

3
ρ = dω

2
D , (60)

the conservation law in Eq. (59) may be written as

∂α=0

∮
ϕα (∂ VOUT)

ω
2
D +

∮
∂ VOUT

ω
2
J = 0 , (61)

thus giving the result. �

Applying LIE-REYNOLDS formula Eq. (9) and STOKES formula Eq. (4) to
the balance laws Eq. (59) and Eq. (61), localising and recalling the commutativity
property in Eq. (11) and GAUSS law Eq. (60), we get

d(LV ω
2
D +ω

2
J) = LV dω

2
D +dω

2
J = LV ω

3
ρ +dω

2
J = 0 . (62)

When it is allowed to split the LIE derivative into space and time directions, we get

LZ ω
3
ρ +Lv ω

3
ρ +dω

2
J = 0 , (63)

which is equivalent to due to the formula by Helmholtz (1870)

LZ ρ +div(ρ v)+divJ = 0 . (64)

Eq. (57) is deduced in the same way as Eq. (34).

Remark 5.1. The standard formulation Eq. (56) cannot be directly applied to ex-
plain induction phenomena in which the material path LOUT is not the boundary of
a surface ΣOUT . This is an usual situation in applications, for instance in evaluat-
ing the M.M.F. induced by an electric current in a coil.

6 EXAMPLES OF APPLICATION

Our main interest is to show how the new electric induction law, exposed in
Eqs. (33) and (34), is capable of providing a direct interpretation of experimental
evidence not addressable, neither by the flux rule Eq. (36) nor by the LORENTZ

force Eq. (41).
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6.1 CHARGED BODY TRANSLATING IN A UNIFORM MAGNETIC VORTEX

Let a material body be in translational motion ϕα ∈C1(T ;T ) across a region
in which a magnetic vortex two-form ω2

B , is spatially constant according to the
standard EUCLID connection ∇ , so that

∇ω
2
B = 0 .

Let us first explain in discursive terms the idea leading to the result.
The inner vector potential A associated with the outer vector field B of mag-

netic induction may be assumed to have cylindrical symmetry around a longitudi-
nal axis with linear radial distribution. The body velocity field is assumed to be
orthogonal to the magnetic induction.

Accordingly, the parallel derivative of the vector potential A along the motion
velocity, is a vector field with the direction of the vector potential and intensity
given by the product of half the intensity of the rotor of A times the intensity of
the velocity.

Taking into account the usual orientations, and evaluating the parallel deriva-
tive of the magnetic vector field B , the electric field due to magnetic induction is
given by one-half the standard expression of the LORENTZ force (per unit electric
charge)

E = 1
2 v×B . (65)

To see this result expressed in formulae, we begin by providing the expression
of the LIE derivative along the spatial vector field v of a spatial covariant tensor
field αCOV , in terms of parallel derivatives ∇ (Romano G., 2007)

Lv αCOV = ∇v αCOV +αCOV ·∇v+(∇v)∗ ·αCOV , (66)

where the star ∗ denotes duality. This formula will be referred to in the following
Lemma.

Lemma 6.1 (Linear Faraday potential). A magnetic vortex field which is spa-
tially constant, according to the standard connection of EUCLID space, so that
∇ω2

B = 0 , admits a magnetic potential one-form ω1
A , such that ω2

B = dω1
A , hav-

ing the linear distribution

ω
1
A := 1

2 ω
2
B · r = 1

2 µ ·B · r . (67)

Here µ is the volume form associated with the metric tensor field g . The vector
field r ∈ C1(S ;TS ) is defined by r(p) := x ∈ TxS for all x = p−o .
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Proof. Clearly for any h ∈ TxS we have

∇h r = lim
ε→0

ε
−1(r(p+ εh)− r(p)) = lim

ε→0
ε
−1(x+ εh−x) = h , (68)

so that ∇r = I , (∇r)∗ = I∗ with I identity map on TS .
Being dω2

B = 0 and by assumption ∇ω2
B = 0, the homotopy formula and the

expression Eq. (66) of the LIE derivative in terms of parallel derivative, give

d(ω2
B · r) = Lr ω

2
B = ∇r ω

2
B +ω

2
B ·∇r+(∇r)∗ ·ω2

B = 2ω
2
B ,

which is the result to be proved. �

Proposition 6.1 (Electric field in a translating body). A body with a translational
motion, across a region of spatially uniform magnetic vortex ω2

B , according to the
standard connection ∇ of EUCLID space, experiences an electric field given by
the formula

ω1
E=−LZ ω1

A− 1
2 ω2

B ·v−dP

=−LZ ω1
A +d(ω1

A ·v)−dP ⇐⇒

E=−Ȧ+ 1
2 (v×B)−∇P

=−Ȧ+d g(A ,v)−∇P .

(69)

Proof. Let us consider an observer detecting a translational motion ϕα ∈C1(TE ;TE )
and measuring the space-time velocity V := ∂α=0 ϕα = Z+v , whose spatial com-
ponent is uniform, i.e. ∇v = 0 . From the formula for the LIE derivative in terms
of parallel derivatives, we get

Lv ω1
A= ∇v ω1

A +ω1
A ·∇v = ∇v ω1

A .

Being ∇ω2
B = 0, Lemma 6.1 gives ω1

A = 1
2 ω2

B · r and hence

Lv ω1
A= ∇v ω1

A = 1
2 ω2

B ·v .

Then, being ∇P = 0, from (34) we infer that

−ω1
E= LV ω1

A = LZ ω1
A +Lv ω1

A = LZ ω1
A + 1

2 ω2
B ·v .

Finally the computation

d(ω1
A ·v) = 1

2 d(ω2
B · r ·v) =− 1

2 d(ω2
B ·v · r) =− 1

2 ω
2
B ·v , (70)

shows that electric field admits a velocity-dependent scalar potential. �
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The one-form

− 1
2 ω

2
B ·v =− 1

2 µ ·B ·v = 1
2 g · (v×B) (71)

provides the velocity-dependent part of the electric field (force per unit electric
charge) as detected by an observer who measures a time-invariant magnetic poten-
tial ω1

A at a fixed spatial position (LZ ω1
A = 0 ) and spatially uniform magnetic

vortex ω2
B (∇ω2

B = 0) and scalar electric potential P (∇P = 0 ).

Remark 6.1. It is manifest that the so-called LORENTZ force law is contradicted
by the previous calculation leading to the formula E = 1

2 (v×B) , which instead
agrees with the 1881 findings in (J.J. Thomson, 1881), later reproposed in (J.J.
Thomson, 1893, Ch.VII, ”Electromotive intensity in moving bodies”, p.534). His
result was subsequently modified by OLIVER HEAVISIDE in 1885− 1889 and by
HEINRICH HERTZ and HENDRIK LORENTZ in 1892 , who eliminated the factor
one-half, probably giving credit to the original formula Eq. (41) by MAXWELL.
In (Hertz, 1892, XVI-2, p.248) the expression in Eq. (41) is in fact considered as
well-known.

Therein H.R. HERTZ also provided a brief discussion and a warning against
the interpretation, of the single terms there involved, as electric forces. These
historical notes, taken partly from the book (Darrigol, 2000) and complemented
by direct reading of the original sources, came to the attention of the author just
after the present theory was independently developed. The same occurred for the
original contribution by J.J. Thomson (1881) whose formula matches perfectly the
new Eq. (35), when the space-time split is feasible.

6.2 HERING’S EXPERIMENT

HERING’s experiment, discussed in (Lehner, 2010, 6.1.4. p.349), can be inter-
preted according to the new rule Eq. (33) by observing that, in opening a closed
circuit immersed transversally in a uniform magnetic field, there is no material line
moving in the magnetic field and hence no E.M.F. is induced between the sliding
contacts, as confirmed by the experimental results.

6.3 FARADAY’S DISC (BARLOW’S WHEEL)

The FARADAY disk is a classical device constructed from a brass or copper
disk that can rotate in a transversal magnetic induction field. The induction E.M.F.
between the axel of the disk and a point on its rim is measured by closing a circuit
with the aid of brush contacts.

This failure of the flux rule has been recently reported also in (Lehner, 2010,
6.1.4. p.349).
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As a consequence of the new rule Eq. (33), and according to the special result in
Eq. (65), the radially moving charges in the material are subject to a force 1

2 v×B ,
with the velocity v of the charges measured by an observer who detects a time-
invariant field of magnetic potential. This force distribution generates a torque that
pushes the rotation of the wheel.

The new theory provides thus an interpretation free of ambiguity with a torque
which is one half the one expressed by the LORENTZ force term. This is in accord
with the new statement in Prop. 4.2 which requires regularity of the motion.

Contrary to common claims, the flux rule Eq. (36) has no validity for circuits
with sliding contacts. This also clarifies the difficulties of standard treatment in
interpreting the result of HERING’s experiment 6.2.

6.4 FARADAY’S HOMOPOLAR GENERATOR

According to Feynman et al. (1964, II.17.2): as the disc rotates, the ”circuit”,
in the sense of the place in space where the currents are, is always the same. But
the part of the ”circuit” in the disc is in material which is moving. Although the
flux through the ”circuit” is constant, there is still an E.M.F., as can be observed
by the deflection of the galvanometer. Clearly, here is a case where the v×B force
in the moving disc gives rise to an E.M.F. which cannot be equated to a change of
flux.

Let us now discuss FARADAY homopolar generator by applying the new inte-
gral expression of the E.I.L. provided in Eq. (33).

If the magnetic vortex in the disk is spatially uniform and constant in time,
the magnetic potential will be distributed with polar symmetry and consequently
the magnetically induced electric field in the disk vanishes identically, because the
time derivative at the r.h.s of (33) does vanish for any radial or circumferential path
of integration.

The same conclusion may be reached by a more involved differential analysis.
The electromotive force in the circuit will be non vanishing only if the magnetic

vortex field in the disk is nonuniform. This result is in sharp contrast with the
conclusions in (Feynman et al., 1964, II.17.2) on the basis of LORENTZ force law,
and suggests a simple experiment to confirm the new theory.

An analysis of FARADAY homopolar generator based on the flow rule is re-
ported in (Lehner, 2010, 6.1.4. p. 350), with a doubtful conclusion about whether
a fixed or a spinning radius should be considered.

Let us underline the basically different prediction of the new theory concerning
FARADAY disk and FARADAY homopolar generator. If the conductive disc is im-
mersed in a uniform magnetic induction field, no electromotive force is generated
by spinning the disc, but, by applying an E.M.F. between sliding contacts at the
axel and at the rim, a rotation of the disc will be induced.
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6.5 SLIDING BAR ON RAILS UNDER A UNIFORM MAGNETIC VORTEX
Let us consider the problem concerning the electromotive force (E.M.F.) gen-

erated in a conductive bar of length l sliding on two fixed parallel rails under
the action of a magnetic vortex which is spatially uniform, time-independent and
coplanar. An observer sitting on the rails measures a time independent FARADAY

potential field and may thus evaluate the E.M.F. due to the electric field distributed
along the bar by integration

ω
1
E · l =− 1

2 ω
2
B ·v · l . (72)

On the other hand, by the integral flow rule formula, the E.M.F. should be evaluated
along a circuit and hence would depend on how the circuit is closed.

This instructive problem is discussed in (Sadiku, 2010, C. Moving Loop in
Time-Varying Field, Example 9.1, p.375), by tacitly assuming a GALILEI observer
sitting on the rails and adopting the LORENTZ force expression for the induced
electric field.

The same problem with one bar fixed and another one translating on the rails
is discussed in (Feynman et al., 1964, II.17.1, fig.17.1) both in terms of the flux
rule and in terms of the LORENTZ force (also with a tacit choice of the suitable
GALILEI observer).

Both analyses lead to the same value of the total E.M.F. in the circuit given by

ω
1
E · l =−ω

2
B ·v · l , (73)

thus evaluating an electromotive force which is just doubled with respect to the one
predicted by the new theory. As discussed above, according to the new theory the
presence of sliding contacts, and hence of discontinuous velocities, prevents any
application of the flux rule.

6.6 THE HALL EFFECT
The HALL effect consists in detecting a potential difference (HALL voltage)

on opposite sides of a thin sheet of conducting or semiconducting material through
which an electric current is flowing in presence of a coplanar magnetic vortex.

The experiments were first carried out by E.H. HALL on a thin gold sheet
mounted on a glass plate at Johns Hopkins University (Hall, 1879), under the guid-
ance of H.E. ROWLAND.

The motivation for the experiment adduced in HALL’s paper is a reasoning on
a statement in (Clerk-Maxwell, 1873, vol.II p.144).

The effect is commonly explained in terms of the LORENTZ force, but should
be properly reinterpreted on the basis of formula (69) exposed in Prop.6.1 which
differs by a factor one-half.
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6.7 MUTUAL FORCES BETWEEN PARALLEL ELECTRIC CURRENTS

Let two parallel conducting wires carry electric currents i1 and i2 . By AMPÈRE

law, the integral of the magnetic field H around circles centered at each current
carrying wire is equal to the intensity of the respective electric current. It follows
that the intensity of the magnetic field H and of the corresponding magnetic in-
duction B decrease linearly with the distance d from the wire, according to the
BIOT-SAVART law

B = µ0i1/(2πd) . (74)

The magnetic induction B due to i1 acts on i2 perpendicularly to the plane of
wires and by Eq. (65) generates an electric field 1

2 v×B , with i2 = qv , and hence
a force per unit length, acting orthogonal to the wires in their plane, proportional
to the ratio between the product of currents and their mutual distance, according to
the law

f = 1
2 µ0(i1 i2)/(2πd) , (75)

which is one-half the standard AMPÈRE force law (Jackson, 1999, (5.11) p.178).
The same for the B due to i2 and acting on i1 . The effect of the electric

fields will be mutually attractive if the currents flow in the same direction, repulsive
otherwise.

6.8 THE RAILGUN: A WEAPON APPLICATION

Let two parallel conductive rails and a sliding or rolling conductive projectile
be subject to a high intensity electric current.

The magnetic field generated by the electric current according to the law Eq.
(55)2 , gives rise to a magnetic vortex field ω2

B which acts back on the electric
charges in motion along the conductive path, according to the law (65). This last
action pushes away one from the other the two rails, which should then be properly
fixed to remain in place, and pushes forward the sliding projectile, which undergoes
a huge acceleration.

7 CONCLUSIONS

The assumption made on the basis of Eq. (42) that a magnetic induction field
B generates on a moving charge a force that depends only on the values of the field
B and of the spatial velocity field v just at the position occupied by the charge, is
certainly appealing for the electrical engineer which gets therefrom a simple rule
to apply for his computations.

The satisfaction is however bound to turn soon into embarrassment when he/she
is called to provide a rationale for evaluating the charge velocity.
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This notwithstanding the mysterious formula F = q(E+ v×B) is still sug-
gested without comments in almost every book on electromagnetics.

In the extreme case a still more mysterious argument based on space-time
LORENTZ transformations is adduced to shut up questions and comments arising
in a natural way from physically minded people. This dogmatic situation is still
going on, as a heavy theoretical heritage after more than one century of brilliant
technological evolution.

The author spent a large part of the last couple of years in collecting docu-
mentation concerning the complex state of affairs and only after taking the bold
decision of revisiting the relativistic treatment of electromagnetics he arrived at the
conclusion that the whole story did take the wrong path long ago (Romano G.,
2013).

After having rewritten the basic laws in terms of differential forms, the evalu-
ation of the derivatives of integrals over moving manifolds can be correctly eval-
uated and localized in terms of LIE derivatives of the inducting fields along the
motion.

The naturality properties of LIE derivatives and of exterior derivatives, assure
frame invariance of the rules of electromagnets induction.

On this basis it has been shown that a new, frame invariant theory of classical
electromagnetism can be formulated in terms of balance principles involving line
integrals and their time derivatives along the motion.

For simultaneity preserving frame transformations, such as the ones considered
in the classical (i.e. non-relativistic) theory, invariance of the classical laws of
electromagnetic induction is assured.

For frame transformations that do not transform simultaneous events into events
still evaluated to be simultaneous by the same observer, as occurs for LORENTZ

transformations of special relativity, an entanglement of electric and magnetic
fields is detected by an observer who tries to describe the transformed fields from
his own point of view.

This entanglement, and the amplification according to the relativistic factor,
tend however to vanish in the classical limit and are then negligible when ordi-
nary velocities are involved (Romano G., 2013), a result well expected on physical
grounds.
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