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Abstract - General principles of classical dynamics are usually developed in the frame-
work of phase spaces, that is tangent or cotangent bundles over the control manifold. A
more effective approach is proposed here by applying POINCARÉ-CARTAN theory of dif-
ferential forms directly to the control manifold, so that lifting operations are completely
avoided. The basic distinction between action principles and stationarity of functionals is
pointed out. The EULER-LAGRANGE-HAMILTON variational theory is formulated with-
out end constraints on the trajectory variations. A careful treatment of natural and essential
conditions for the variational problem leads to a proper formulation of MAUPERTUIS ac-
tion principle and to assess its equivalence to HAMILTON principle. POINCARÉ-CARTAN
and HAMILTON-PONTRYAGIN hybrid principles, involving vertical variations of vector
and covector fields, are addressed with an appropriate geometric approach.

Riassunto - I principi della dinamica classica sono usualmente sviluppati nel contesto di
spazi delle fasi e cioè di fibrati tangenti o cotangenti sulla varietà di controllo. Si propone
qui una impostazione più efficace la quale, applicando la teoria di POINCARÉ-CARTAN
delle forme differenziali direttamente alla varietà di controllo, consente di evitare il solleva-
mento a spazi delle fasi. Una basica distinzione tra principi d’azione e stazionarietà di fun-
zionali è posta in luce. La teoria variazionale di EULER-LAGRANGE-HAMILTON è svilup-
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pata senza imporre condizioni sui punti estremi della traiettoria. Una attenta trattazione
delle condizioni naturali ed essenziali per il problema variazionale conduce ad una corretta
formulazione del principio di azione di MAUPERTUIS e ad asserirne l’equivalenza al princi-
pio di HAMILTON. I principi ibridi di POINCARÉ-CARTAN ed HAMILTON-PONTRYAGIN,
con variazioni verticali di campi vettoriali e covettoriali, sono discussi in un appropriato
contesto geometrico.

1 INTRODUCTION

Classical dynamics may be conventionally considered to be born about 1687
with NEWTON’s Principia and grew up to a well-developed theory in the funda-
mental works by D’ALEMBERT, EULER, LAGRANGE, POISSON, HAMILTON, JA-
COBI, BERTRAND, during the XVIII century and the first half of the XIX century
(d’Alembert, 1743; Euler, 1744, 1761; Lagrange, 1788; Poisson, 1811; Hamilton,
1834, 1940; Jacobi, 1837a,b, 1884; Bertrand, 1852).

The differential geometric point of view, with the introduction of the notions
of nonlinear configuration manifolds, convective derivatives along a motion and
derivatives according to a parallel transport, is based on notions and methods mainly
due to SOPHUS LIE, HENRI POINCARÉ, ÉLIE CARTAN (Lie and Engel, 1888-
1890-1893; Poincaré, 1892-1893-1899; Cartan É., 1922) and accounted, for in-
stance, in (Klein, 1962; Godbillon, 1969; Souriau, 1970; Choquet-Bruhat, 1970;
Deschamps, 1970; Spivak, 1970; Choquet-DeWitt-Dillard, 1982; Romano G., 2007).

Classical analytical mechanics deals with particle dynamics or rigid body mo-
tions. Extensions to continuous systems were treated in (Arnold, 1974; Abraham
and Marsden, 1988; Marsden and Hughes, 1983; Abraham et al., 2002), by con-
sidering manifolds modeled on BANACH spaces. In these treatments the formal
structure of the dynamics of finite dimensional systems is however still reproduced
and most results are still proposed in coordinates notation.

Our presentation makes no essential use of coordinates, with all notions and
results defined and expressed in intrinsic geometrical terms. For finite dimensional
control manifolds, the translation into coordinate notation is however straightfor-
ward and is explicitly reported to provide a direct comparison with existing treat-
ments. The advantages of a geometric formulation are conceptual, since mechan-
ical objects are properly described and retain their respective roles and rules of
mutually interacting entities, and also operational, since a general formulation per-
mits to choose the representation more suitable for the problem at hand.

We follow the common choice of taking HAMILTON principle, inspired by ear-
lier ideas by FERMAT and HUYGENS in optics, as the basic axiom of dynamics
since it has the pleasant flavour of an extremality property and, much more than
this, because it leads in a natural and direct way to a general formulation of LA-
GRANGE dynamics.
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In this respect we do not share the opinion in (Abraham and Marsden, 1988,
Part II), Analytical Dynamics, section 3.8 Variational Principles in Mechanics,
where variational principles are placed on the same ground of differential equa-
tions, with a preference for the latter in operative tasks. However, the leading posi-
tion of action principles has been subsequently acknowledged in (Marsden, Patrick
and Shkoller, 1998).

In fact, while it is certainly true that differential formulations are the ones more
suitable for specific analytical tasks, on the other hand variational formulations, in
the form of action principles, are more basic. The main motivation is that action
principles just require the notions of LAGRANGE function, mass form and motion
in the metric space-time.

According to the principle of geometric naturality, exposed in (Romano and
Barretta, 2011, 2013; Romano et al., 2014a,b,c), the formulation of laws of dynam-
ics must involve, as geometric objects, only the space metric in the event manifold
and the motion along the trajectory. This requirement gives to integral variational
principles of dynamics, a leading position in the theory. On the contrary opera-
tive differential formulations are based on the choice of a connection in the events
manifold. Moreover, basic issues such as invariance under change of observer, are
most readily and properly discussed in terms of action principles formulated with
intrinsic treatments.

Last but not least, effective computational strategies make direct reference to
variational formulations (Bailey, 1975; Riff and Baruch, 1984; Borri et al., 1985;
Peters and Izadpanah, 1988; Borri et al., 1992; Borri and Bottasso, 1993). Com-
putational issues will however not be explicitly dealt with in this contribution but a
detailed geometric investigation is in progress.

Fine mathematical issues concerning calculus of variations, such as the ones
discussed in (Ambrosio et al., 2000; Fonseca and Leoni, 2007), are outside the
range of this presentation.

In section 2 we provide the abstract definition of an action principle as a varia-
tional condition for the integral of a differential form along a path which is dragged
by virtual motions. No fixed end point conditions are imposed and the effect of dy-
namical forces is included in the formulation. A special attention is devoted to the
required extension of the domain of definition of the governing differential form,
an issue usually not considered in treatments akin to classical analytical mechanics.

Even in most appreciable formulations, such as (Cartan H., 1967), variations
are intended to be evaluated on a functional, expressed as the integral of a differ-
ential form, along a class of curves. This interpretation leads to difficult and also
critical statements concerning the topological properties of the functional space in
which stationarity is to be imposed, especially if the fixed ends condition is retained
(Oliva, 1798; Terra and Kobayashi, 2004a,b).
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In continuum dynamics, the differential forms to be integrated on the trajectory
depend on the velocity field and on the mass form, and these fields are defined
only on the trajectory. In performing the variations, an extension by push along
each virtual flow must then be assumed. Therefore, variational formulations in
dynamics do not involve functionals to be evaluated on a class of curves.

A synthesis of notions, definitions and results of differential geometry, strictly
needed in the paper, is provided in the appendix for reference and readers’ conve-
nience.

Sect. 3 presents a brief introduction to space-time kinematics and a summary of
relevant definitions of mechanical objects. Sect. 4 and 5 are dedicated to the formal
construction of the control manifold by means of a correspondence which is an
injective immersion in the configuration manifold. Fields based in body placements
are then translated into geometrico-dynamical objects in the control manifold.

HAMILTON principle and LAGRANGE action principle are enunciated and dis-
cussed in detail in Sects.6 and 7 and NOETHER theorem is deduced as a special
case. MAUPERTUIS action principle is revisited in Sect.8 in the general form of
a constrained action principle, in which the constraint of mechanical power bal-
ance is imposed on virtual velocities, and its equivalence to all other action princi-
ples is assessed. POINCARÉ-CARTAN action principle is introduced in Sect.9 and
DONKIN theorem provides the relations to transform the canonical equation of dy-
namics in terms of the momentum field. Extensions to hybrid POINCARÉ-CARTAN

and HAMILTON-PONTRYAGIN action principles, by the inclusion of vertical virtual
variations of tangent and cotangent fields, are discussed in Sect.10.

Sect. 11 is dedicated to the formulation of action principles in terms of time
integrals, and to amendment of non geometric treatments. Formulations in terms
of a linear connection provide powerful theoretical and computational tools, when
translated from the control manifold to the event manifold.

Comments and remarks are exposed in the final Sect.12, with a synoptic table
collecting main issues and results.

2 ABSTRACT ACTION PRINCIPLE AND EULER CONDITIONS

A status of the system is described by a point in M , the state space.

Definition 2.1 (Action integral). The action integral associated with a path Γ in
the state-space M is the signed-length of the 1D oriented compact submanifold
Γ , evaluated according to the action 1-form ω1 on Γ :∫

Γ

ω
1 . (1)
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A proper statement of the action principle requires a definition of the virtual
displacements along which the trajectory is assumed to be varied and a definite cri-
terion to extend the domain of definition of the action 1-form on the sheet spanned
by the trajectory dragged by the virtual flow.

In formulating an action principle, virtual velocities at Γ are assumed to belong
to a suitable set HM of sections of the tangent bundle TΓM . Source terms are
represented by differential forms α1,α2 on TΓM .

The source 2-form α2 is potential if it is defined on a neighbourhood U(Γ)⊂
M of the path and is exact. This means that there exists a differential 1-form
β

1 : U(Γ) 7→ T ∗M such that α2 = dβ
1 , with d exterior differentiation on M .

Definition 2.2 (Abstract action principle). An action principle, governed by dif-
ferential 1-form ω1 on M , is a variational condition involving the rate of geo-
metric variation of the integral of the action form along a path Γ ⊂M , due to a
virtual flow, and source terms, distributed along the path (source 2-form α2 ) and
concentrated at singular points SING(Γ) (source 1-form α1 ), evaluated on the
virtual velocity δv = ∂λ=0 Flv

λ
∈HM of virtual flows Flv

λ
: Γ 7→M

∂λ=0

∫
Flv

λ
(Γ)

ω
1−

∮
∂Γ

ω
1 ·δv =

∫
Γ

α
2 ·δv+

∮
ΓSING

α
1 ·δv . (2)

A path Γ fulfilling the action principle is called a trajectory for the action form
ω1 , under the effect of the sources α1 and α2 .

Eq. (2) may be stated by saying that the rate of variation along the virtual
displacement of the ω1-integral on the oriented trajectory Γ , minus the outward
boundary flux of the ω1-virtual power (formule de JOSEPH BERTRAND (Cartan
H., 1967, p. 132)), is equal to the virtual power performed by the source form.

Denoting by x1 and x2 the initial and final end points of Γ , it is ∂Γ = x2−x1
(a 0-chain) and the boundary integral may be written as∮

∂Γ

ω
1 ·δv = (ω1 ·δv)(x2)− (ω1 ·δv)(x1) . (3)

M ,,

Flv
λ
(Γ) //

AA OO

Γ

00

@@

(4)
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Definition 2.3 (Extremality principle). The variational condition in the geomet-
ric action principle, in absence of source terms, takes the expression of an ex-
tremality condition

∂λ=0

∫
Flv

λ
(Γ)

ω
1−

∮
∂Γ

ω
1 ·δv = 0 . (5)

Eq. (5) has a simple motivation when interpreting ω1 as a measure of length. In
changing the position of a geodesic by a virtual flow, the length tends to be in-
variant when boundary virtual velocity vectors fulfill the equiprojectivity property
(vanishing of Eq. (3)). A familiar special instance is a straight line in EUCLID

space.

When the differential form to be integrated is independent of the parame-
trization of the integration path Γ , also the action principle, as enunciated in Eq.
(2), is purely geometrical, in the sense that the variational condition results to be
independent of the parametrization. This is indeed the case for FERMAT principle
of least time in geometrical optics.

Time parametrization plays instead a basic role in dynamics and so the govern-
ing action principle must depend on the trajectory parametrization.

The issue is enlightened by the treatment provided in the sequel by observ-
ing explicitly that the 1-form involved in the stationarity action principle is in fact
expressed by the composition of the LAGRANGE scalar-valued map with the ve-
locity field. The governing 1-form depends then on the velocity and hence the time
parametrization of the trajectory takes a central position in the theory.

The new approach to geometric dynamics reveals also that an intrinsic treat-
ment is feasible by considering only fields in the control manifold.

Lifting to the tangent bundle can thus be bypassed, with the advantage of sim-
plicity and reconciliation with (but also amendments to) standard treatments in
coordinates. A full discussion in provided in the sequel.

The necessary and sufficient differential condition for a path to be a trajectory,
a result due to Euler (1744), is provided by the next theorem.

The classical result deals with regular paths and fixed end points. The new
statement considers displaceable end points and piecewise regular paths, so that
extremality is expressed in terms of differential and jump conditions.

It is to be remarked that, as already evidenced in Sect. 1, the explicit appearance
of the final point of the trajectory in the expression of the action principle, plays a
basic role in computational implementation of dynamical problems.
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Theorem 2.1 (Euler’s condition). A path Γ⊂M is a trajectory if and only if the
tangent vector field vΓ : Γ 7→ T Γ meets, at regular points, the differential condition

(dω
1−α

2) ·δv ·vΓ = 0 , ∀δv ∈HM , (6)

and, at singularity interfaces, the jump conditions

[[ω1 ·δv]] = α
1 , ∀δv ∈HM . (7)

Proof. Applying the integral extrusion formula:

∂λ=0

∫
Flv

λ
(Γ)

ω
1−

∮
∂Γ

ω
1 ·δv =

∫
Γ

dω
1 ·δv , (8)

the result follows upon localization. �

Remark 2.1 (Faithful and hybrid principles). A special nomenclature is adopted
in the present paper. Variational statements conforming to the definition in Eq. (2)
will be labeled as (faithful) action principles. In these action principles a single ac-
tion 1-form is involved both in the line integral and in the boundary integral. Other
variational statements in which two distinct 1-forms appear in the line integral and
in the boundary integral, will be instead labeled as hybrid action principles. The
distinction is significant because only faithful action principles are associated with
an EULER condition expressed in terms of the exterior derivative of a 1-form, as
shown by the abstract treatment leading to Eq. (6) of Th. 2.1.

Remark 2.2 (Action principles vs stationarity of functionals). As evidenced by
Def. 2.2, the variational condition enunciated in the statement of an action princi-
ple, is not the stationarity condition for a functional. The basic distinction is that in
an action principle the involved 1-form is defined only on the 1D trajectory mani-
fold and is declaratively extended along each virtual flow in a natural manner. So,
there is in fact no functional to be differentiated along virtual directions. Rather,
in an action principle, the extensions of the 1-form, to be integrated on dragged
trajectories, are performed according to each dragging virtual flow. The distinc-
tion is further put into evidence by the formulation expressed by Eq. (2), with the
elimination of the fixed-ends condition, usually included into the statement of ac-
tion principles, as depicted in frame (4), and with the inclusion of the boundary
integral and of the effects of distributed and singular sources.
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3 KINEMATICS IN THE EVENT MANIFOLD

In the 4D manifold of events e ∈ E each observer defines a time-projection
tE : E 7→ Z , that is a surjective submersion on the real line Z of time instants1

and a vector field Z : E 7→ TE of time-arrows in the tangent bundle τE : TE 7→ E ,
fulfilling tuning tE ↑Z := 1, as described by the commutative diagram

Z
1 // TZ

E

tE

OO

Z // TE

dtE

OO
⇐⇒ 〈dtE ,Z〉= 1◦ tE . (9)

A double foliation of the 4D events manifold E into complementary 3D space-
slices S of isochronous events (with a same corresponding time instant) and 1D
time-lines of isotopic events (with a same corresponding space location) is thus
introduced according to FROBENIUS theorem.

The projector dtE ⊗Z : TE 7→ TE splits the tangent bundle into complemen-
tary time-vertical VE and time-horizontal HE sub-bundles, with time-vertical
vectors in the kernel of dtE : TE 7→ TZ .

These sub-bundles are respectively called space bundle and time bundle.
In the familiar EUCLID setting of classical Mechanics, the time projection is

the same for all observers (universality of time).
A reference frame {di ; i = 0,1,2,3} for the event manifold is adapted if d0 =

Z and di ∈VE , i = 1,2,3.

Definition 3.1 (Trajectory). The trajectory manifold is the geometric object inves-
tigated in Mechanics, characterized by an embedding2 i : T 7→ E into the event
manifold E such that the image TE := i(T ) is a submanifold.

Definition 3.2 (Motion). The motion along the trajectory

{ϕ
T
α : T 7→T , α ∈Z } , (10)

is a simultaneity preserving one-parameter family of maps fulfilling the composi-
tion rule

ϕ
T
α ◦ϕ

T
β

= ϕ
T
(α+β ) , (11)

for any pair of time-lapses α,β ∈Z . Each ϕT
α : T 7→T is a displacement.

1 A submersion has a surjective differential at each point. Zeit is the German word for Time.
2 An immersion has an injective differential at each point. An embedding is an injective immer-

sion whose co-restriction is continuous with the inverse.
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The trajectory will alternatively be considered as a (1+ n)D manifold T by
itself or as a submanifold TE = i(T )⊂ E of the event manifold.

Then, a coordinate system is adopted on T while an adapted 4D space-time
coordinate system in E is adopted on TE .

The trajectory inherits from the events manifold the time projection tT := tE ◦
i : T 7→Z which defines a time-bundle denoted by VT and called the material
bundle. A fiber of simultaneous events is a body placement, denoted by Ω⊂T .

The space-time displacement ϕα : TE 7→ TE and the trajectory displacement
ϕT

α : T 7→T are related by the commutative diagram

TE

tE

$$

ϕα // TE

tE

zz

T

i

OO

tT
��

ϕT
α // T

i

OO

tT
��

Z
tα // Z

⇐⇒ tE ◦ϕα = tα ◦ tE , (12)

where the time translation tα : Z 7→Z is defined by

tα(t) := t +α , t,α ∈Z . (13)

Definition 3.3 (Material particles and body manifold). The physical notion of ma-
terial particle corresponds in the geometric view to a time-parametrized curve of
events in the trajectory, related by the motion as follows

e1,e2 ∈T : e2 = ϕ
T
α (e1) . (14)

Accordingly, we will say that a geometrical object is defined along (not at) a ma-
terial particle. Events belonging to a material particle form a class of equivalence
and the quotient manifold so induced in the trajectory is the body manifold.

The space-time velocity of the motion is defined by the derivative

vE := ∂α=0 ϕα ∈ TTE . (15)

Taking the time derivative of (12) we have

∂α=0 (tE ◦ϕα) = 〈dtE ,vE 〉= (∂α=0 tα)◦ tE = 1◦ tE , (16)

and comparing with Eq. (9) we get the decomposition into space and time compo-
nents

vE = vS +Z , (17)

with 〈dtE ,vS 〉 = 0. The motions of a body is characterised by the conservation
property concerning the mass, represented by a volume form m : T 7→ VOL(VT )
on the material bundle over the trajectory.
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Definition 3.4 (Mass conservation). Mass conservation along the motion is ex-
pressed by the pull-back and LIE-derivative conditions

ϕα↓m = m ⇐⇒ LvE m = 0 , (18)

or by the equivalent integral condition for all placements Ω∫
ϕα (Ω)

m =
∫

Ω

ϕα↓m =
∫

Ω

m . (19)

Let us set forth some basic definitions where gSPA denotes the metric tensor in
the space bundle VE .

The local LAGRANGE function per unit mass LE : VE 7→ FUN(VE ) is defined
for any time-vertical tangent vector vS ∈VE , by

LE (vS ) := 1
2 gSPA(vS ,vS )−Π(τE (vS )) , (20)

and is therefore the sum of two contributions:

• the local kinetic energy per unit mass KE :VE 7→ FUN(VE ) , a scalar quadratic
field over the space bundle, given by

KE (vS ) := 1
2 gSPA(vS ,vS ) (21)

• and a convex scalar potential Π : E 7→ FUN(VE ) defined in the whole event
manifold.

Definition 3.5 (Fiber derivative of Lagrange function). The fiber derivative of the
function LE : VE 7→ FUN(VE ) is the covariant tensor dFLE : VE 7→ (VE )∗ point-
wise defined, for any pair (vS ,δvS ) ∈ VE ×E VE of space vectors vS ,δvS ∈
VE having the same base point in E , by

〈dFLE (vS ),δvS 〉 :=∂λ=0 LE (vS +λδvS )

=T LE (vS ) ·VLIFT(vS ,δvS ) ,
(22)

where the vertical lifting is given by VLIFT(vS ,δvS ) := ∂λ=0 (vS +λ δvS ) . In
standard terms, taking the fiber derivative means that the derivative is taken while
keeping fixed the base point of the argument vector.

The fiber derivative of the LAGRANGE function is given by

dFLE = dFKE = gSPA , (23)

and provides a linear isomorphism between the dual space bundles VE and (VE )∗ .
Thus a means, to transform back and forth in a biunivocal and fiberwise linear man-
ner between these bundles, is available.
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Definition 3.6 (Parallel derivative of Lagrange function). The parallel derivative
of the function LE : VE 7→ FUN(VE ) is the covariant tensor field ∇LE : VE 7→
(VE )∗ defined by

〈∇LE (vS ),δvS 〉 := ∂λ=0 LE (δϕ
C
λ
)⇑vS , (24)

where (vS ,δvS )∈VE ×E VE and δϕC
λ
⇑ is the parallel transport along the flow

δϕC
λ

associated with the vector field δvS .

In standard terms, the parallel derivative is enunciated by saying that the deriva-
tive is taken while keeping the argument vector constant, which means parallel
transported along the curve chosen to change its base point. The parallel deriva-
tive depends therefore on the adoption of a linear connection, see Sect. A.

Definition 3.7 (Euler-Legendre transform). The convex local LAGRANGE func-
tion LE : VE 7→ FUN(VE ) and the convex conjugate local HAMILTON function
HE : (VE )∗ 7→ FUN((VE )∗) on the dual bundle are related by the transform3

v∗S = dFLE (vS ) ,

HE (v∗S ) := 〈v∗S ,vS 〉−LE (vS ) ,

vS = dFHE (v∗S ) ,

(25)

where vS ∈ VE and v∗S ∈ (VE )∗ . When expressed in terms of velocities, the
HAMILTON function yields the energy function EE : VE 7→ FUN(VE ) , defined by
the composition

EE = HE ◦dFLE . (26)

The action function AE : VE 7→ FUN(VE ) is defined by the transform Eq. (25) as

AE (vS ) := 〈dFLE (vS ),vS 〉= LE (vS )+EE (vS ) . (27)

Definition 3.8 (Time invariance). Invariance along the motion of a material mor-
phism φT : TENS(VT ) 7→ TENS(VT ) and of a space morphism φE : TENS(VE ) 7→
TENS(VE ) are respectively defined by the conditions

φT (ϕα↑s) = ϕα↑(φT (s)) ⇐⇒ (LvT φT )(s) = 0 ,

φE (ϕα⇑sE ) = ϕα⇑(φE (sE )) ⇐⇒ (∇vE φE )(sE ) = 0 .
(28)

The invariance conditions in Eq. (28) should not be confused with the condition of
time independence that will be introduced in Eq. (82).

3 The LEGENDRE transform was first introduced by EULER, see (Arnold et al., 1988, p. 23).
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4 CONFIGURATION AND CONTROL MANIFOLDS

The geometric picture of continuum dynamics takes advantage from the intro-
duction of a possibly infinite dimensional manifold of configurations, which is a
natural extension of the simplest case considered in NEWTON point-particle dy-
namics, where the configuration manifold is just the EUCLID space time.

Mathematical aspect of the matter are treated in (Eliasson, 1967, Th. 5.2, p.
186), and (Palais, 1968, Th. 13.6 p. 51), as discussed in (Romano et al., 2009b).

Definition 4.1 (Configuration manifold). A placement manifold is a submanifold
of the event manifold E , made of isochronous events, diffeomorphic to the body
placements along the trajectory. The collection of all placement manifolds is the
infinite dimensional configuration manifold P(E ) .

Definition 4.2 (Connection in the configuration manifold). A linear connection
∇E , with parallel transport ⇑E , in the event manifold E induces a linear connec-
tion and a parallel transport in the configuration manifold P(E ) , still denoted
by the same symbols. Considering a parametrized path c : ℜ 7→P(E ) and the
corresponding congruence of paths in E , the parallel transport in P(E ) is per-
formed by acting with the parallel transport along each path of the corresponding
congruence in E .

Definition 4.3 (Control manifold). The control manifold C is the domain of a
representation map 4

ξ : C 7→P(E ) , (29)

which is an injective immersion into the configuration manifold P(E ) . We will
consider two kinds of controls.

1. A perfect control in which the manifold C is infinite dimensional modeled on
a suitable BANACH space and the representation map is a diffeomorphism
between the control and the configuration manifolds. 5

2. A discrete control in which the manifold C is finite dimensional and the
representation map is just a (non surjective) injective immersion. Discrete
controls are adopted in computational procedures. Placements in the range
of the representation map are then said to be controllable.

4 The notion of representation map ξ : C 7→P(E ) extends to possibly infinite dimensional man-
ifolds the map adopted for description of finite dimensional dynamical systems or for discretization
of continua, in computational procedures.

5 Perfect control of dynamical systems was investigated in (Romano et al., 2009b).
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To each point x∈C there corresponds a compact placement submanifold Ω =
ξ (x) ⊂ E and hence a time instant tE (e) ∈ Z evaluated at any e ∈ Ω . On the
control manifold, a time projection tC : C 7→Z is then defined by the composition

C
ξ //

tC

""

P(E )

tE

zz
Z

⇐⇒ tC := tE ◦ξ . (30)

In the manifold C the control trajectory is a 1D path Γ⊂ C whose image by
ξ : C 7→P(E ) is a trajectory of controllable placements.

A motion ϕC
α : Γ 7→ Γ along the control trajectory Γ generates a space-time

motion along the corresponding a trajectory TE := ξ (Γ) ⊂ E in the event mani-
fold, as described by the commutative diagram

Γ

ξ

��

ϕC
α // Γ

ξ

��
P(TE )

tE
��

ϕα //P(TE )

tE
��

Z

γ

??

tα // Z

γ

__

=⇒

{
tE ◦ξ ◦ γ = IDZ ,

ϕα ◦ξ := ξ ◦ϕ
C
α .

(31)

The injective immersion γ : Z 7→ C , with γ(Z ) = Γ⊂ C , provides the time-
parametrization of the control trajectory.

Defining the control velocity V := ∂α=0 ϕC
α , from Eqs. (30) and (31) we infer

that the time-component of the space-time velocity in an adaptted frame is unitary:

〈dtC ,V〉= 〈ξ↓dtE ,V〉= ξ↓〈dtE ,ξ↑V〉

= 〈dtE ,vE 〉 ◦ξ = 1◦ tC .
(32)

Definition 4.4 (Lagrange bundle). The LAGRANGE bundle is the time-vertical
subbundle of the tangent bundle VC ⊂ TC over the control manifold, that is the
collection of time-vertical subspaces of tangent linear spaces attached at all points
of the control manifold.

Definition 4.5 (Hamilton bundle). The HAMILTON bundle (VC )∗ is the dual sub-
bundle of the LAGRANGE bundle, identifiable with the quotient bundle

(TC )∗/(VC )◦ . (33)

of the cotangent bundle (TC )∗ over the subbundle (VC )◦ of covectors vanishing
on the LAGRANGE bundle.
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The projection maps τC : TC 7→ C and τ∗C : (TC )∗ 7→ C bring the information
about base points of tangent and cotangent vectors.

Definition 4.6 (Pontryagin bundle). The PONTRYAGIN bundle VC ×C (VC )∗ is
the WHITNEY product of the bundles VC and (VC )∗ , that is the collection of
pairs, of time-vertical tangent subspaces and their duals, attached at the same
points in the control manifold.

The bundles VC , (VC )∗ and VC ×C (VC )∗ are geometric pictures of the
phase spaces of analytical dynamics.

Definition 4.7 (Tangent mapping). To the injective representation map ξ : C 7→
P(E ) there corresponds a tangent map T ξ : TC 7→ T (P(E )) which provides
an injective correspondence between vectors V ∈ TC tangent to the control man-
ifold, and space-time tangent vector fields vE : Ω 7→ TE based at a placement
submanifold Ω⊂ E and tangent to the event manifold E , as expressed by

vE = ξ↑V def⇐⇒ vE ◦ξ = T ξ ·V . (34)

To time-vertical control vectors v ∈ VC , fulfilling condition 〈dtC ,v〉 = 0 , there
correspond space vector fields vS : Ω 7→VE , fulfilling condition 〈dtE ,vS 〉= 0 ,
according to the relation

vS = ξ↑v . (35)

Definition 4.8 (Controllable fields). Vector fields in the image of the tangent mor-
phism T ξ : VC 7→ T (P(E )) are said to be controllable.

Definition 4.9 (Adapted parallel transport). A parallel transport ⇑S in the space
bundle VE , such that the transport of a controllable field along a path of control-
lable placements is still a controllable field, is said to be adapted to the subbundle
T ξ (VC ) and the induced parallel transport will be denoted by ⇑ .

Definition 4.10 (Connection in the control manifold). A linear connection ∇S

in the space bundle VE , with adapted parallel transport ⇑S , induces a linear
connection ∇ , with parallel transport ⇑ , in the control manifold C , as described
by the commutative diagram

VC

T ξ
��

⇑ // VC

T ξ
��

T ξ (VC )
⇑S

// T ξ (VC )

⇐⇒ T ξ ◦⇑= ⇑S ◦T ξ . (36)
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By fiberwise injectivity of the tangent map T ξ : VC 7→ T (P(E )) , the parallel
transport ⇑ is uniquely defined by the diagram Eq. (36) and the associated con-
nection ∇ is well-defined by the relation

ξ↑(∇δvv) = ∇
S
ξ↑δv(ξ↑v) . (37)

It is readily verified that symmetry of the connection ∇S implies symmetry of
the connection ∇ .

Indeed, being ξ↑[v ,δv] = [ξ↑v ,(ξ↑δv)] by push naturality of LIE-brackets
Eq. (??), the torsion forms of the two connections are related by

ξ↑(T(v ,δv))= ξ↑(∇vδv−∇δvv− [v ,δv])

= ∇S
ξ↑v(ξ↑δv)−∇S

ξ↑δvξ↑v− [ξ↑v ,(ξ↑δv)]

= TS (vS ,δvS )) .

(38)

The torsion operator T(v) is defined by the identity T(v) ·δv = T(v ,δv) .

Remark 4.1 (A noteworthy example). The control manifold adopted in the im-
plementation of the F.E.M. (Finite Element Method) in structural analysis is natu-
rally endowed with a connection induced by the spatial connection in the EUCLID

space. The adapted connection is defined by performing the parallel transport of
the space vectors based at the nodes of the discretizing space mesh and then inter-
polating by the shape functions to get the transported space vector fields.

5 DYNAMICS IN THE CONTROL MANIFOLD

As we have seen, the trajectory manifold TE is naturally sliced into a family
of non intersecting body placements, transversal to material lines. Integration of a
material volume form µ , over a compact trajectory segment TE corresponding to
a compact time interval I , can thus be performed by a space-time split based on
FUBINI’s theorem. Setting

µ I(α) :=
∫

ϕα (Ω)
µ ∈ Λ

1(I) , µC = γ↑µ I ∈ Λ
1(Ω) , (39)

with γ trajectory path defined by Eq. (31), we have that∫
TE

dtE ∧µ =
∫

I
dα

∫
ϕα (Ω)

µ =
∫

I
µ I(α)dα =

∫
Γ

γ↑µ I =
∫

Γ

µC , (40)

where Ω is a compact placement manifold.
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Definition 5.1 (Lagrange functional). In the LAGRANGE bundle (VC )Γ restricted
to the control trajectory, the convex LAGRANGE functional L : (VC )Γ 7→ FUN((VC )Γ)
is defined in terms of the convex local function LE : (VE )TE

7→ FUN((VE )TE
) in

the space bundle (VE )TE
, by setting

L(v) :=
∫

Ω

LE (ξ↑v)m . (41)

The definition is well-posed since the mass m is a material property of any
placement in the trajectory. Variational principles require however to evaluate the
LAGRANGE functional outside the trajectory, on placement submanifolds gener-
ated by virtual flows as images of trajectory placements. This evaluation is per-
formed by natural extension of mass, by push along virtual flows, see Remark 6.2.

Definition 5.2 (Kinetic energy). The Kinetic energy K : (VC )Γ 7→ FUN((VC )Γ)
is the quadratic functional defined in the LAGRANGE bundle (VC )Γ by

K(v) :=
∫

Ω

KE (ξ↑v)m . (42)

Definition 5.3 (Action functional). The Action functional A : (VC )Γ 7→ FUN((VC )Γ)
is defined by

A(v) :=
∫

Ω

AE (ξ↑v)m . (43)

Definition 5.4 (Energy functional). The Energy functional E : (VC )Γ 7→ FUN((VC )Γ)
is defined, in accord with Eq. (27), by

E(v) :=
∫

Ω

EE (ξ↑v)m = A(v)−L(v) . (44)

Definition 5.5 (Duality pairing). A duality pairing between space vector fields
δvS : Ω 7→VE and covector fields pS : Ω 7→ (VE )∗ is given by

〈pS,δvS 〉Ω :=
∫

Ω

〈pS,δvS 〉m . (45)

A direct evaluation shows that the fiber derivative dFL : (VC )Γ 7→ (VC )∗
Γ

of
the LAGRANGE functional L : (VC )Γ 7→ FUN((VC )Γ) , and its counterpart in the
event manifold defined by Eq. (22), are related by

〈dFL(v),δv〉=
∫

Ω

〈dFLE (ξ↑v),ξ↑δv〉m , (46)
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which, in terms of the duality pairing Eq.(45), can be rewritten as
p = dFL(v) ,
vS = ξ↑v ,
pS = dFLE (vS )

δvS = ξ↑δv ,

=⇒ 〈p,δv〉= 〈pS,δvS 〉Ω . (47)

Proposition 5.1 (Euler-Legendre isomorphism in control manifold). The posi-
tive definiteness of the fiber derivative dFLE = gSPA : (VE )TE

7→ (VE )∗ implies
positive definiteness of the fiber derivative dFL : (VC )Γ 7→ (VC )∗

Γ
, that is

〈dFLE (vS ),vS 〉> 0 , ∀vS ∈VE −{0} , (48)

implies that
〈dFL(v),v〉> 0 , ∀v ∈VC −{0} . (49)

Proof. Positivity of the mass measure and Eq. (48) imply Eq. (49). Invertibility
follows from injectivity, for finite dimensional control manifolds. �

The result in Prop. 5.1 assures that the EULER-LEGENDRE transform based
on the LAGRANGE functional L : (VC )Γ 7→ FUN((VC )Γ) results in a smooth one-
to-one correspondence, between the LAGRANGE bundle τC : (VC )Γ 7→ C and the
HAMILTON bundle τ∗C : (VC )∗

Γ
7→ C .

Definition 5.6 (Hamilton functional). The conjugate to the convex LAGRANGE

functional L : (VC )Γ 7→ FUN((VC )Γ) , according to EULER-LEGENDRE trans-
form, is the convex HAMILTON functional H : (VC )∗

Γ
7→ FUN((VC )∗

Γ
) defined by

p = dFL(v) ,
H(p) := 〈p,v〉−L(v) ,
v = dFH(p) .

(50)

Let us now introduce the injective map F : (VC )∗
Γ
7→ T ∗(P(E )) which, due to

invertibility of the fiber derivative dFL : (VC )Γ 7→ (VC )∗
Γ

, is well-defined by the
commutative diagram

(VC )∗
Γ

F // T ∗(P(E ))

(VC )Γ

dF L
OO

ξ↑ // T (P(E ))

dF LE

OO
⇐⇒ F◦dFL = dFLE ◦ξ↑ . (51)
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Proposition 5.2. The HAMILTON functional H : (VC )∗
Γ
7→ FUN((VC )∗

Γ
) , defined

according to the EULER-LEGENDRE transform Eq. (50), is related to the local
HAMILTON function HE : (VE )∗TE

7→ FUN((VE )∗TE
) by the integral

H(p) =
∫

Ω

HE (F(p))m . (52)

Proof. Setting p = dFL(v) in Eq. (52), and vS := ξ↑v , being

F(p) = dFLE (vS ) , (53)

from Eq. (47) and Eq. (51) we infer that

〈p,v〉= 〈F(p),vS 〉Ω . (54)

Then the evaluation

H(p)=
∫

Ω

HE (F(p))m =
∫

Ω

(
〈F(p),vS 〉−LE (vS )

)
m

= 〈p,v〉−L(v) ,
(55)

yields Eq. (50). �

Definition 5.7 (Vector and covector fields). We will denote by HC a space of
smooth time-vertical vector fields tangent to the control manifold C and by H ∗

C
the dual space.

The correspondence in Eq. (50) induces a diffeomorphism θ L : HC 7→H ∗
C

between the corresponding manifold of sections, with inverse θ H : H ∗
C 7→HC .

The EULER-LEGENDRE transform between the fields in HC and in H ∗
C is

then expressed by 
p = θ L(v) ,
H(p)+L(v) = 〈p,v〉 ,
v = θ H(p) .

(56)

The action and coaction functionals are given by

A(v) := 〈θ L(v),v〉 ,
B(p) := 〈θ H(p),p〉 .

(57)

To avoid overburden of notations we write θ L(v) = (dFL) ◦ v also as θ L ◦ v ,
the meaning being clear from the context, and similarly for other fields.
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Definition 5.8 (Kinetic momentum). The kinetic momentum associated with a
control velocity field v ∈HC is the 1-form θ L(v) ∈H ∗

C .

Definition 5.9 (External force). 6 The 1-form fEXT(b , t) ∈ H ∗
C , describing the

external force acting on a controllable body placement Ω , is the representation
of the contributing surficial and volumetric space forces forms, according to the
formula

〈fEXT(b , t),δv〉 :=
∫

Ω

〈b,ξ↑δv〉µ +
∫

∂Ω

〈t,ξ↑δv〉∂ µ . (58)

Definition 5.10 (Internal force). The 1-form fINT(σ) ∈H ∗
C is the representation

of the internal force acting on a controllable body placement Ω , by the formula

〈fINT(σ),δv〉 :=
∫

Ω

〈σ ,ε(ξ↑δv)〉m . (59)

Clearly 〈fINT(σ),δv〉= 0 for all ξ↑δv ∈ Ker(ε) .

Definition 5.11 (Dynamical force). The 1-form fDYN ∈H ∗
C , is the representation

of the dynamical force acting on a controllable body placement Ω . It is defined by
the difference between external and internal forces, as expressed, at regular points,
by the formula

fDYN := fEXT(b , t)− fINT(σ) . (60)

Impulsive forces at singular points, collectively denoted by ΓSING , are represented
by 1-forms fSING ∈H ∗

C .

6 HAMILTON PRINCIPLE

Let us now provide a geometrical formulation of classical action principles of
dynamics. In so doing, we drop the standard, but needlessly restrictive, assumption
that variations of a trajectory segment must leave the end points fixed. By this more
general approach jump conditions at singular interfaces are directly provided by the
variational condition. Moreover, a satisfactory formulation is thus given from the
epistemological viewpoint, as explicated in Remark 6.3. On the other hand, we add
the explicit statement about the way extensions of the involved geometrical objects
are performed along virtual flows. Usual treatments are substantially silent in this
respect.

6 Force systems are often ignored in variational treatments of dynamics and sometimes improp-
erly defined as morphisms fEXT : VC 7→ (VC )∗ from the LAGRANGE to the HAMILTON bundle, see
e.g. (Terra and Kobayashi, 2004a; Yoshimura and Marsden, 2006), a definition that violates GALILEI

principle of relativity.
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Definition 6.1 (Synchronous virtual variations). Synchronous virtual variations
are performed when the virtual flow δϕC

λ
: Γ 7→ C preserves the time projection

tC : C 7→Z , that is

tC = δϕ
C
λ
↓tC = tC ◦δϕ

C
λ
, (61)

as depicted in frame (70). Virtual velocities are then time vertical, since

〈dtC ,δv〉= 〈dtC ,∂λ=0 δϕ
C
λ
〉= ∂λ=0 (tC ◦δϕ

C
λ
) = 0 . (62)

Consequently, due to commutativity, time differentials fulfil the conditions

dtC = d(δϕ
C
λ
↓tC ) = δϕ

C
λ
↓dtC ⇐⇒ LδvdtC = d(LδvtC ) = 0 , (63)

so that

〈dtC ,δϕ
C
λ
↑V〉= 〈δϕ

C
λ
↑dtC ,δϕ

C
λ
↑V〉= δϕ

C
λ
↑〈dtC ,V〉= 1◦δϕ

C
λ
. (64)

Remark 6.1 (Natural extension of the velocity field). The space-time velocity field
V : Γ 7→ TC along the control trajectory is extended, in a natural way, along a vir-
tual flow by considering the velocity of the pushed motion

∂α=0 (δϕ
C
λ
◦ϕ

C
α ) = T δϕ

C
λ
·V = (δϕ

C
λ
↑V)◦δϕ

C
λ
. (65)

The extended velocity is thus pushed along the virtual flow

V = δϕ
C
λ
↑V def⇐⇒ V◦δϕ

C
λ
= T δϕ

C
λ
·V , (66)

so that [V ,δv] = LδvV = 0 .

Remark 6.2 (Natural extension by virtual mass conservation). In evaluating the
LAGRANGE functional by Eq. (41) over body a placement transformed by a vir-
tual flow, the mass m , which is defined only on the trajectory, is also assumed to
be extended, in a natural way, by push along the virtual flow. This procedure has
the physical interpretation of virtual mass conservation and is tacitly assumed in
analytical dynamics.
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Proposition 6.1 (Hamilton action principle). The motion along the trajectory Γ

in the control manifold C , is characterized by the variational condition7

∂λ=0

∫
δϕC

λ
(Γ)

L(v)dtC −
∮

∂Γ

〈θ L(v),δv〉

=
∫

Γ

(dtC ∧ fDYN) ·δv−
∮

ΓSING

〈fSING,δv〉 ,
(67)

for all synchronous virtual flows with velocity δv ∈HC . At regular points, the
variational condition Eq. (67), expressed in terms of a linear connection ∇ , is
equivalent to EULER-LAGRANGE-POINCARÉ differential equation

〈∇V(θ L ◦v)−∇L(v)+θ L(v) ·T(V),δv〉= 〈fDYN,δv〉 , (68)

which is tensorial in the synchronous virtual velocity δv∈HC . At singular points
the motion is governed by the jump conditions

[[〈θ L(v),δv〉]] = 〈fSING,δv〉 . (69)

C --

δϕC
λ
(Γ) //

OO OO

tC

��

Γ

00

OO

t //

(70)

Proof. Equivalence between Eqs. (67) and (68) will be proven in Prop. 7.1. �

7 As reported in (Arnold et al., 1988, 2.1, p.10), FELIX KLEIN (1926) observed that: It is as-
tonishing that in Lagrange’s work this statement may be read only between the lines. This explains
the strange situation that this relation - mainly through Jacobi’s influence - is generally known in
Germany, and therefore also in France, as Hamilton’s principle. In England no one understands this
expression; there this equation is known under the correct if intuitive name of principle of stationary
action.
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Remark 6.3. The boundary integral appearing in the expression of the action
principle Eq. (67) is usually eliminated by imposing that virtual velocities must
vanish at trajectory endpoints, see e.g. (Abraham and Marsden, 1988, Sect. 3.8).
This needless constraint on test fields, depicted in frame (71), has however un-
pleasant consequences and is therefore advisable that it be eliminated. A trouble
concerns the qualification of the action principle as characteristic property of the
dynamical trajectory. In this respect, a natural requirement is that two subsequent
trajectory segments should be chained into a resultant trajectory segment. This
chain property is not fulfilled by the constrained formulation, while it is clearly
met by the unconstrained formulation. Another significant advantage is that jump
conditions at singular points are directly provided by the action principle. The
same procedure, applied to FERMAT principle of least time in optics, leads the
differential equation of optical geodesic and to SNELL interface jump conditions
(Romano G., 2007).

C OO

tC

��

Γ

00-- ))

δϕC
λ
(Γ)

&& "" �� ��

t //

(71)

Remark 6.4 (Coordinates and natural frames). In a finite dimensional control
manifold, with dimC = m+1 , let us consider a coordinate system in the slices of
isochronous placements

φ = {qi , i = 1, . . . m} : ℜ
m 7→ C , (72)

Denoting by ai and ak , with i,k = 1, . . . m, the usual frame and the dual coframe in
ℜm , the natural frame (repère naturel) and coframe associated with the coordinate
system are given by 

∂i := φ↑ai ,

dqk := φ↑ak ,

〈dqk,∂i 〉= φ↑〈ak,ai 〉= δ
k
.i .

(73)
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Remark 6.5. The differential law of motion Eq. (68) may be expressed in coor-
dinates and in terms of the connection induced by the natural frame associated
with the coordinate system. The relevant torsion form vanishes identically. Indeed,
being ∇∂i∂ j = 0 by assumption and [∂i ,∂ j] = 0 by commutativity of coordinate
flows, we have that

T(∂i ,∂ j) = ∇∂i∂ j−∇∂ j ∂i− [∂i ,∂ j] = 0 . (74)

The EULER-LAGRANGE law then writes

〈∇V(θ L ◦v)−∇L(v),δv〉= 〈fDYN,δv〉 , (75)

which in coordinates takes the familiar expression

d
dt

(dL
dq̇

)
− dL

dq
= Q , (76)

where q̇ , dL/dq̇ , dL/dq and Q are the numerical vectors of components respec-
tively of v , dFL(v) = θ L ◦v , ∇L(v) and fDYN .

Remark 6.6. A special case of the differential law of motion Eq. (68) is described
in coordinates in (Arnold et al., 1988, 2.4, p. 13), reproducing the original treat-
ment in (Poincaré, 1901). There, the term quasi-velocities is adopted for the com-
ponents of the space velocity in a repère mobile (Cartan É., 1937) {d1, . . . ,dm } ,
that is a set of m smooth fields which form a basis at each point. If the parallel
transport of a vector is defined by the property that its components in the repère
mobile are constant, then the parallel derivatives of the basis vector fields, ac-
cording to the path independent induced connection ∇ , vanish identically. By
tensoriality of the torsion form T(v ,δv) the arguments can be extended by par-
allel transport. Consequently the torsion form can be computed at each point as
coincident with the negative of the LIE-bracket of the vector fields generated by
the extension. The components c..ki j of the brackets of basis vectors in the repère
mobile, are the structure constants defined by

[di ,d j] = c..ki j dk . (77)

The POINCARÉ law takes then the expression

〈∇V(θ L ◦v)−∇L(v),δv〉+θ L(v) · [v ,δv] = 〈fDYN,δv〉 , (78)

and in coordinates

d
dt

(dL
dq̇

)
k
−
(dL

dq

)
k
+ c.. jik q̇i

(dL
dq̇

)
j
= Qk . (79)
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In a repère naturel all structure constants vanish and the law of motion in the
control manifold takes the standard form in coordinates Eqs. (75), (76), as given
in (Lagrange, 1788).

Singular forces fSING and jump conditions will be neglected in the sequel, to
simplify the presentation. In classical mechanics a direct consequence of EULER-
LAGRANGE-POINCARÉ condition, Eq. (68) in Prop. 6.1, is known as EMMY

NOETHER theorem, see (Noether, 1918; Arnold, 1974, Sect. 20, p. 88).

Corollary 6.1 (E. Noether). For synchronous virtual flows with δv ∈ HC , the
following implication holds

∇δvL(v) = 0 =⇒

〈∇V(θ L ◦v)−∇L(v)+θ L(v) ·T(V),δv〉= 〈fDYN,δv〉 .
(80)

Statements in literature refer to the special case in which the connection is symmet-
ric (T = 0 ) and dynamical forces vanish ( fDYN = 0 ), so that NOETHER theorem
writes

∇δvL(v) = 0 =⇒ 〈∇V(θ L ◦v),δv〉= 0 . (81)

Proposition 6.2 (Balance of mechanical power). Under the assumption that the
LAGRANGE functional is time independent, that is

∇ZL(v) = 0 ⇐⇒ ∇VL(v) = ∇vL(v) , (82)

the motion fulfills the mechanical power balance

∇V(E ◦v) = 〈fDYN,v〉 , (83)

stating that the time rate of the energy functional along the motion is equal to the
power expended by dynamical forces.

Proof. Setting δv = v in Eq. (68) and noting that T(V ,v) = T(v ,v) = 0 , the
proof follows by the relations

〈∇V(θ L ◦v),v〉−∇vL(v)

=〈∇V(θ L ◦v),v〉−∇VL(v)+∇ZL(v)

=∇V〈θ L ◦v,v〉−〈θ L ◦v,∇Vv〉−∇VL(v)+∇ZL(v)

=∇V〈θ L ◦v,v〉−∇V(L◦v)+∇ZL(v)

=∇V(E ◦v)+∇ZL(v) = 〈fDYN,v〉 ,

(84)

where splitting Eq. (A.5) and definition Eq. (44) have been resorted to. �
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7 LAGRANGE PRINCIPLE

The formal structure of an action principle, as defined by Eq. (2), is not re-
spected in HAMILTON principle Eq. (67), since a pair of 1-forms on C are there
involved:

• the 1-form (L◦v)dtC in the integral over the trajectory,

• the 1-form θ L ◦v in the integral over the trajectory boundary.

According to the nomenclature in Rem. 2.1, HAMILTON principle is then an hybrid
action principle. An equivalent faithful action principle will however be enunciated
in Prop. 7.1 by introducing of the following item.8

Definition 7.1 (Lagrange action form). The LAGRANGE action 1-form on the tra-
jectory manifold ω1

L◦v : Γ 7→ (TC )∗
Γ

, is induced by the map ω1
L : (TC )Γ 7→ (TC )∗

Γ

defined by

ω
1
L(v) := θ L(v)−E(v)dtC . (85)

Lemma 7.1 (Equality between path integrals). On a time parameterised path Γ

we have the equalities ∫
Γ

L(v)dtC =
∫

Γ

ω
1
L(v) . (86)∮

∂Γ

〈θ L(v),δv〉=
∮

∂Γ

〈ω1
L(v),δv〉 . (87)

Moreover, by synchronicity of virtual flows, Eq. (86) holds also on dragged paths∫
δϕC

λ
(Γ)

L(v)dtC =
∫

δϕC
λ
(Γ)

ω
1
L(v) . (88)

Proof. By EULER-LEGENDRE transform, the evaluation 〈dtC ,V〉= 1 gives

〈ω1
L(v),V〉= 〈θ L(v),V〉− (E(v))〈dtC ,V〉= L(v) = 〈L(v)dtC ,V〉 , (89)

and the evaluation 〈dtC ,δv〉= 0 yields

〈ω1
L(v),δv〉= 〈θ L(v),δv〉− (E(v))〈dtC ,δv〉= 〈θ L(v),δv〉 . (90)

This proves Eq. (86) and Eq. (87). Eq. (88) holds since 〈dtC ,δϕC
λ
↑V〉= 1 due to

synchronicity Eq. (64). �

8 In (Arnold, 1974)) is said: the form θ L seems here to appear out of thin air. In the following
paragraph we will see how the idea of using this form arose form optics. A formal motivation is
suggested by Lemma 7.1.
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Proposition 7.1 (Lagrange action principle). The motion along the trajectory Γ

in the control manifold C , is characterized by the extremality condition

∂λ=0

∫
δϕC

λ
(Γ)

ω
1
L(v)−

∮
∂Γ

〈ω1
L(v),δv〉=

∫
Γ

(dtC ∧ fDYN) ·δv , (91)

for all synchronous virtual flows with velocity δv = ∂λ=0 δϕC
λ
∈HC . The corre-

sponding EULER differential condition writes

〈d(θ L ◦v) ·V+d(E ◦v),δv〉= 〈fDYN,δv〉 , (92)

which, in terms of a linear connection ∇ , is expressed by

〈∇V(θ L ◦v)−∇L(v)+θ L(v) ·T(V),δv〉= 〈fDYN,δv〉 . (93)

The whole expression at the l.h.s. of LAGRANGE law of dynamics Eq. (93) is
independent of the choice of a linear connection.

Proof. Equivalence between action principles in Eq. (91) and Eq. (67) follows
directly from the equalities Eq. (88) and (87). The proof of Eq. (93) is carried out
as follows. The extrusion formula Eq. (8), applied to Eq. (91), gives∫

Γ

d(ω1
L ◦v) ·δv =

∫
Γ

(dtC ∧ fDYN) ·δv . (94)

and hence, by Eq. (96), the EULER differential condition

d(ω1
L ◦v) ·δv ·V = d

(
(θ L ◦v)− (E ◦v)dtC

)
·δv ·V =−〈fDYN,δv〉 , (95)

Being 〈dtC ,V〉= 1 and 〈dtC ,δv〉= 0, we have that

d
(
(E ◦v)dtC

)
·δv ·V=

(
d(E ◦v)∧dtC

)
·δv ·V = d(E ◦v) ·δv ,

(dtC ∧ fDYN) ·δv ·V= (dtC ·δv)(fDYN ·V)− (dtC ·V)(fDYN ·δv)

=−〈fDYN,δv〉 .

(96)

Moreover, from Lemma A.1 and the formula in Eq. (A.1), being

〈θ L(v),V〉= 〈θ L(v),v〉 ,

〈θ L(v),∇δvV〉= 〈θ L(v),∇δvv〉 ,
(97)
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we get 

d(θ L ◦v) ·V ·δv= 2skew (∇(θ L ◦v) ·V ·δv)

+〈θ L(v),T(V ,δv)〉

= 〈∇V(θ L ◦v),δv〉−〈∇δv(θ L ◦v),V〉

+〈θ L(v),T(V ,δv)〉 ,

〈∇δv(θ L ◦v),V〉= ∇δv〈θ L ◦v,V〉−〈θ L(v),∇δvV〉

= ∇δv(A◦v)−〈θ L(v),∇δvV〉 ,

∇δv(A◦v)= ∇δvA(v)+ 〈dFA(v),∇δvv〉 ,

d(E ◦v) ·δv= ∇δv(E ◦v) = ∇δvE(v)+ 〈dFE(v),∇δvv〉 .

(98)

The EULER-LEGENDRE transform gives

θ L(v) = dFA(v)−dFE(v) , ∇δvA−∇δvE = ∇δvL , (99)

and Eq. (93) follows. �

8 MAUPERTUIS PRINCIPLE

Attribution of the least action principle to MAUPERTUIS was at the centre of
an ugly dispute with KÖNIG, who sustained that the principle was first enunciated
by LEIBNIZ in a letter to HERMANN in 1707, some 37 years before. The original
of the letter was however never found and its existence was even questioned by
supporters of MAUPERTUIS.

The principle enunciated in (Maupertuis, 1744) was also formulated in more
precise terms and in the same year in (Euler, 1744). An undiscussed parental at-
tribution is still lacking. Therefore the principle could also be properly named
LEIBNIZ-EULER-MAUPERTUIS least action principle, although the names of LA-
GRANGE and JACOBI should be added with full credit to the list. Following the
tradition we will simply refer to it as the MAUPERTUIS least action principle.

The least action principle is also referred to in literature as stationarity principle
for the reduced action, to underline that the 1-form θ L ◦v is got from the 1-form
ω1

L ◦v := θ L ◦v− (E ◦v)dtC appearing in LAGRANGE action principle Prop. 7.1,
by dropping the term (E ◦v)dtC involving the energy (Arnold, 1974).

A proper formulation of the principle has always been reported as a challenging
task in literature.
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Difficulties in providing a clear statement were reported in (Jacobi, 1837a,b,
1884) and thence repeated in literature till recently, see (Goldstein, 1950; Godbil-
lon, 1971; Arnold, 1974; Landau and Lifšits, 1976; Abraham and Marsden, 1988).
In (Arnold, 1974, p. 246), it is said:

”In almost all textbooks, even the best, this principle is presented so that it is
impossible to understand” (C. JACOBI, Lectures on Dynamics). I do not choose
to break with tradition. A very interesting ”proof” of MAUPERTUIS principle is
in Section 44 of the mechanics textbook of LANDAU and LIFŠITS (Mechanics,
Oxford, Pergamon 1960).

In (Abraham and Marsden, 1988, footnote on p. 249), it is written: We thank
M. SPIVAK for helping us to formulate this theorem correctly. The authors, like
many others (we were happy to learn), were confused by the standard textbook
statements. For instance the misterious variation ”∆” in GOLDSTEIN [1950, p.
228] corresponds to our enlargement of the variables by c→ (τ,c) .

We provide here a quite general formulation in which the power balance con-
straint is imposed only on test fields, as shown in the diagram Eq. (100).

Standard statements in literature are affected by an misformulation which re-
sults in the variational crime9 described below:

• The natural condition, concerning balance of mechanical power along the
motion, is imposed as an essential condition on admissible paths and on
virtual velocities. On the contrary, balance of virtual mechanical power is
an essential condition to be imposed on virtual velocities, while balance of
mechanical power along the motion is a natural outcome of the variational
principle and holds only under the special assumption of time independence
of the LAGRANGE functional.

C --

δϕC
λ
(Γ) //〈d(E◦v)),δv 〉=〈 fDYN,δv 〉

OO OO

tC

��

Γ

00

OO

t //

(100)

9 We imitate here the title of an interesting chapter in a nice book on the finite element method
(Strang and Fix, 1988).
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Generality is achieved by the new formulation in Prop. 8.1 under two respects:

1. The end point of the trajectory segment are left free to vary, according to the
assumed virtual flow in the control manifold.

2. The original constraint of energy conservation, in which both motions and
virtual flows are imposed to evolve while leaving the energy functional con-
stant, is replaced by the sole constraint that virtual velocities must fulfils
balance of virtual power, with no constraints concerning the motion.

The new form of MAUPERTUIS least action principle, enunciated in Prop. 8.1 and
sketched in diagram Eq. (100), is named MAUPERTUIS extremality principle in
agreement with Def. 2.3, and is shown to be equivalent to HAMILTON action prin-
ciple of Prop. 6.1, by performing a comparison of the ensuing EULER differential
conditions.

Proposition 8.1 (Maupertuis extremality principle). The trajectory Γ is char-
acterized by an extremality condition for the path integral of the kinetic momentum

∂λ=0

∫
δϕC

λ
(Γ)

θ L(v) =
∮

∂Γ

〈θ L(v),δv〉 , (101)

in the class of synchronous virtual flows whose velocity δv ∈HC fulfils the con-
straint of virtual power balance

〈d(E ◦v),δv〉= 〈fDYN,δv〉 . (102)

By extrusion formula Eq. (8), the variational condition Eq. (101) is equivalent to
the differential condition

d(θ L ◦v) ·V ·δv = 0 , (103)

for all time-vertical virtual velocity fields δv : Γ 7→VC fulfilling the virtual power
balance Eq. (102).

Proof. For notational convenience, we introduce the covector fEQ : (TC )Γ 7→ ℜ

defined by fEQ := fDYN− d(E ◦ v) , with dual f∗EQ : ℜ 7→ (TC )∗
Γ

. The differential
law Eq. (103), with the linear constraint Eq. (102) on the virtual velocities, may
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then be expressed by the conditions

d(θ L ◦v) ·V ∈ (Ker fEQ)
◦

⇐⇒ d(θ L ◦v) ·V ∈ Im f∗EQ

⇐⇒ d(θ L ◦v) ·V = f∗EQ(λ )

⇐⇒ d(θ L ◦v) ·V ·δv = 〈f∗EQ(λ ),δv〉= λ 〈fEQ,δv〉 .

(104)

For a given space velocity v ∈ VE , the solutions of Eq. (103) describe a 1D
manifold with the space-time velocity parameterized by

V = v+(p/p0)Z , (105)

with p0 normalizing value to be fixed so that the time component of the space-time
velocity is unitary. The function p̂ : ℜ 7→ℜ is defined by imposing equality in last
of Eqs. (104):

d(θ L ◦v) · (v+(p̂(λ )/p0)Z) ·δv = λ 〈fDYN−d(E ◦v),δv〉 . (106)

Setting p0 = p̂(1) , the solution of the least action principle Prop. 8.1, correspond-
ing to λ = 1, is then

V = v+(p̂(1)/p0)Z = v+Z . (107)

Hence the space-time velocity in Eq. (107) is also the solution of EULER-LAGRANGE

Eq. (93). The converse statement, that the solution of Eq. (93)

d(θ L ◦v) ·V ·δv = (fDYN−d(E ◦v)) ·δv , (108)

is also solution of Eqs. Eq. (102), (103), is trivial. �

Remark 8.1. The solution of the stationarity principle Eq. (91) is also solution of
the action principle characterized by the extremality condition in Eq. (101) under
the integral constraint∫

Γ

〈d(E ◦v),δv〉dtC =
∫

Γ

〈fDYN,δv〉dtC . (109)

In turn the solution the extremality condition with the integral constraint Eq. (109)
is also solution of the least action principle Eq. (101) with the pointwise constraint
Eq. (102). The equivalence proved in Prop. 8.1 closes the path of implications so
that all these formulations are in fact equivalent one another.

MAUPERTUIS principle was discussed in (Romano et al., 2009a) where a geo-
metric treatment based on the lifting to the LAGRANGE bundle VC was provided.
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9 POINCARÉ-CARTAN PRINCIPLE

The next lemma yields the basic relations for the formulation of HAMILTON

canonical law of dynamics in terms of a linear connection ∇ . In (Gantmacher,
1970) the analogous result in coordinates is referred to as DONKIN’s theorem
(Donkin, 1854).

Lemma 9.1 (Donkin theorem). For any linear connection ∇ and associated par-
allel transport ⇑ , parallel derivatives of LAGRANGE and HAMILTON functionals
fulfil the relations {

∇δvH+∇δvL◦θ H = 0 ,

∇δvL+∇δvH ◦θ L = 0 .
(110)

Proof. Recalling that, by definition, the parallel transport of a covector fulfils the
invariance property

〈δϕ
C
λ
⇑p,δϕ

C
λ
⇑v〉= 〈p,v〉 , (111)

we infer that

∇δvH(p) := ∂λ=0 H(δϕ
C
λ
⇑p) ,

∇δvL(v) := ∂λ=0 L(δϕ
C
λ
⇑v) ,

∇δv〈p,v〉= ∂λ=0 〈δϕ
C
λ
⇑p,δϕ

C
λ
⇑v〉= ∂λ=0 〈p,v〉= 0 ,

(112)

and the result follows from EULER-LEGENDRE transform Eq. (56). �

Proposition 9.1 (Hamilton law of dynamics). The EULER-LAGRANGE-POINCARÉ

law of motion is equivalent to HAMILTON law expressed, in terms of kinetic mo-
mentum, by

{
p = θ L(v) ,

〈∇Vp+∇H(p)+p ·T(V),δv〉= 〈fDYN,δv〉 ,
(113)

for all synchronous δv ∈HC , with the jump condition [[〈p,δv〉]] = 〈fSING,δv〉
at singular points.

Proof. Applying EULER-LEGENDRE transform Eq. (56) and DONKIN relation
Eq. (110) to LAGRANGE law Eq. (93), we get HAMILTON law Eq. (113). �
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Proposition 9.2 (Time rate of Hamilton functional). Let us assume that the HAMIL-
TON functional is time independent that is

∇ZH(p) = 0 ⇐⇒ ∇VH(p) = ∇vH(p) . (114)

Then its rate along the motion is equal to the power expended by dynamical forces

∇V(H ◦p) = 〈fDYN,v〉 . (115)

Proof. Setting δv = v in Eq. (113), noting that

T(V ,v) = T(v ,v) = 0 (116)

and recalling that v = dFH(p) , the result follows from the relations

〈∇Vp,v〉+ 〈∇H(p),v〉= dFH(p) ·∇Vp+∇VH(p)−∇ZH(p)

= ∇V(H ◦p)−∇ZH(p) = 〈fDYN,v〉 ,
(117)

where Eqs. (A.5) and (56) have been resorted to. �

HAMILTON differential law of dynamics Eq. (113) can be derived from EULER

condition of an action principle governed by a 1-form. Proof is omitted for brevity.

Definition 9.1 (Poincaré-Cartan action form). The POINCARÉ-CARTAN action
1-form ω1

H ◦p : C 7→ (VC )∗
Γ

on the control manifold is induced by the map ω1
H :

(VC )∗
Γ
7→ (VC )∗

Γ
defined by

ω
1
H(p) := p−H(p)dtC . (118)

The LAGRANGE map ω1
L : (VC )Γ 7→ (VC )∗

Γ
is related to the POINCARÉ-

CARTAN map ω1
H : (VC )∗

Γ
7→ (VC )∗

Γ
by the LEGENDRE diffeomorphism θ L :

(VC )Γ 7→ (VC )∗
Γ

with inverse θ H : (VC )∗
Γ
7→ (VC )Γ .

Indeed, being E = H ◦θ L , we have the commutative diagram

(TC )∗

TC

ω1
L
99

θ L // (TC )∗
θ H

oo

ω1
H

ff

⇐⇒

{
ω

1
L = ω

1
H ◦θ L ,

ω
1
H = ω

1
L ◦θ H .

(119)
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Proposition 9.3 (Poincaré-Cartan action principle). The motion along the tra-
jectory Γ in the control manifold C , is characterized by the action principle gov-
erned by the POINCARÉ-CARTAN action form

∂λ=0

∫
δϕC

λ
(Γ)

ω
1
H ◦p−

∮
∂Γ

〈ω1
H ◦p,δv〉=

∫
Γ

(dtC ∧ fDYN) ·δv , (120)

where p = θ L(v) ∈H ∗
C is the momentum field and the variational condition holds

for all synchronous δv ∈HC . The localization of Eq. (120), resorting to Eq.
(118), yields the differential condition

〈d(ω1
H ◦p) ·V,δv〉= 〈dp ·V−d(H ◦p),δv〉= 〈fDYN,δv〉 , (121)

that will be referred to as the EULER-HAMILTON law. Expressed in terms of a
linear connection, Eq. (121) gives HAMILTON law Eq. (113) since from Eq. (A.1)
and Eq. (A.5)2 we infer that

d(ω1
H ◦p) ·V ·δv= 〈∇Vp,δv〉+ ∇δvH(p)+ 〈p,T(V ,δv)〉

+ 〈θ H(p)−v,∇δvp〉 ,
(122)

with the last term vanishing due to the assumption that v = θ H(p) .

According to the nomenclature introduced in Rem. 2.1, both the LAGRANGE

action principle of Prop. 7.1 and POINCARÉ-CARTAN action principle of Prop. 9.3,
are faithful action principles, and such is also MAUPERTUIS least action principle
Eq. (101). The HAMILTON principle enunciated by Eq. (67) is instead a hybrid
variational principle.

In a finite dimensional control manifold, with dimC = m+1, let us consider a
coordinate system φ : Z ×ℜm 7→C adapted to the time-fibration, composed by the
time parameterization map γ : Z 7→ C of the control trajectory line Γ⊂ C (0-th
coordinate) and by a system of coordinates in the slices of isochronous placements

φ = {qi , i = 1, . . . m} : ℜ
m 7→ C . (123)

We may then set the definitions
q̇ =

d p
dt

:=φ↓v , δq := φ↓δv , p := φ↓p ,

δ p :=φ↓(∇δv p) ,

δ q̇ :=φ↓(∇δv v) , (δq)̇ := φ↓(∇V δv) .

(124)
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By extension Eq. (66) we have that [V ,δv] = 0 and hence

T(V ,δv) = ∇δvV−∇Vδv− [V ,δv] = ∇δvV−∇Vδv . (125)

Adopting a symmetric connection (T = 0 ), δ q̇ will be equal to (δq)˙ since

δ q̇ = φ↓(∇δvv) = φ↓(∇δvV) = φ↓(∇Vδv) = (δq) .̇ (126)

The time-vertical 1-form p ∈ (VC )∗
Γ

is then expressed, in the coordinates in-
troduced in Remark 6.4, as a linear combination of the covectors of the dual frame:

p = pdq := ∑
k=1,n

pk dqk , (127)

and its exterior derivative is given by 10

dp = d p∧dq := ∑
k=1,n

d pk∧dqk . (128)

The POINCARÉ-CARTAN action 1-form of Eq. (118) is then written as

ω
1
H ◦p := p−H(p)dtC = pdq−H(q , p)dtC , (129)

and HAMILTON law Eq. (113) takes the standard expression
dq
dt

=
dH
d p

⇐⇒ v= dFH(p) ,

−d p
dt

=
dH
dq
−Q ⇐⇒ −∇Vp= ∇H(p)− fDYN .

(130)

10 VARIATIONAL PRINCIPLES WITH VERTICAL VARIATIONS

The present status of proposed formulations is the following.

1. In (Gantmacher, 1970, 3.17, p. 96) a second form of HAMILTON principle
in phase space is enunciated without proof. Analogous statements are the
principle of least action in phase space in (Arnold, 1974, 9.45 C, p. 244)
and the HAMILTON principle in phase space in (Marsden and Ratiu, 1998,
8.1.6, p. 224) and (Yoshimura and Marsden, 2006, 3.9). In these statements,
the POINCARÉ-CARTAN action principle Eq. (120) of the present paper, is
modified by dropping the fiberwise relation v = dFH(p) so that the covector
p ∈ (VC )∗

Γ
is free to vary in the relevant time-vertical cotangent fiber, that

is with the base point kept fixed.

10 In literature the expressions in components Eq. (127) and Eq. (128) are improperly attributed
to the canonical 1-form on the cotangent bundle and to its exterior derivative.
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2. In (Yoshimura and Marsden, 2006, 3.1) a HAMILTON-PONTRYAGIN prin-
ciple in phase space is also enunciated by introducing a pair of tangent-
cotangent vectors (u ,p) ∈ VC ×Γ (VC )∗ with u ∈ (VC )Γ related to the
time-vertical velocity field v∈ (VC )Γ by a fiberwise LAGRANGE constraint
in which the covector field p ∈ (VC )∗

Γ
plays the role of controller.

In Prop. 10.1 it will be shown that POINCARÉ-CARTAN action principle of
Prop. 9.3 can be extended, by changing the 1-form to be integrated, to an equiva-
lent hybrid principle. Therein the covector field p∈H ∗

C is left free to vary in each
cotangent fiber (that is at fixed base points) and the momentum relation p = θ L ◦v
is recovered as a natural condition stemming from the variational principle. In
Prop. 10.2 the geometric formulation of the HAMILTON-PONTRYAGIN principle
considered in (Yoshimura and Marsden, 2006) is provided.

To design the modifications to be brought to POINCARÉ-CARTAN action 1-
form, let us preliminarily derive two integral equalities along the trajectory. The
property 〈dtC ,V〉= 1 leads, for any p ∈ (VC )∗

Γ
, to the equalities

〈p,V〉= 〈p,v〉= 〈p,v〉〈dtC ,V〉= 〈〈p,v〉dtC ,V〉 . (131)

Being 〈dtC ,δv〉= 0, the definition ω1
H ◦p := p−H(p)dtC gives (ω1

H ◦p) ·V= 〈p,v〉− H(p) =
(
〈p,v〉− H(p)

)
dtC ·V ,

(ω1
H ◦p) ·δv= 〈p,δv〉 .

(132)

From Eq. (131) and Eq. (132)1 the following equalities are inferred∫
Γ

p =
∫

Γ

〈p,v〉dtC , (133)

and ∫
Γ

ω
1
H ◦p =

∫
Γ

(
〈p,v〉− H(p)

)
dtC . (134)

The 1-forms ω1
PC and ω1

HP that will be adopted in POINCARÉ-CARTAN and
HAMILTON-PONTRYAGIN hybrid principles, with (u ,p) ∈ (VC )Γ×Γ (VC )∗

Γ
, are

given by

1) ω
1
PC ◦ (p ,v) :=

(
〈p,v〉−H(p)

)
dtC , ∀p ∈ (VC )∗

Γ
,

2) ω
1
HP ◦ (u,p,v) :=

(
〈p,v−u〉+(L(u))

)
dtC .

(135)

Setting u = v , Eq. (135)2 yields the 1-form (L ◦v)dtC of HAMILTON principle,
Prop. 6.1. Let us illustrate in detail the geometric treatment of the variational prin-
ciples corresponding to the 1-forms ω1

PC and ω1
HP , omitting proofs for brevity.
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The former principle is well-known but the standard formulation provided in
literature does not comply with the geometric features of the variational problem
whose essential ingredient is the variation of the trajectory, according to dragging
virtual flows in the control manifold. The issue will be accurately commented in
Sect. 11. Two distinct kinds of virtual flows are considered.

1. Virtual flows in the control manifold C , that drag the trajectory Γ ⊂ C ,
and hence the feet of all tensor fields based on it. These flows are gener-
ated by vector fields of synchronous virtual velocities δv ∈ (VC )Γ in the
LAGRANGE bundle over the control manifold.

2. Virtual flows in the HAMILTON bundle (VC )∗
Γ

, that drag the covectors p ∈
(VC )∗

Γ
, while keeping the base points fixed. These flows are generated by

vector fields δX ∈ Tp(VC )∗
Γ

tangent to HAMILTON bundle and vertical ac-
cording to the cotangent bundle projection, i.e. such that

T τ
∗
C ·δX = 0 ∈ TC . (136)

Vectors fulfilling Eq. (136) are said to be vertical and are univocally obtain-
able as vertical liftings11 of covector fields, so that we may set

δX = VLIFT(p ,δp) , p,δp ∈ (VC )∗Γ , (137)

where VLIFT(p ,δp) = ∂λ=0 (p+λδp) = ∂λ=0 (λδp) = δp .

Adopting the usual identification between parallel vectors tangent to a linear
space at distinct points, we will set δX = VLIFT(p ,δp)≡ δp .

The statement of Prop. 10.1 puts into evidence the manner how an intrinsic for-
mulation is feasible without performing the lifting of the trajectory to the cotangent
phase space, and how boundary terms are to be taken into account.

Proposition 10.1 (Poincaré-Cartan hybrid principle). The motion along the tra-
jectory Γ in the control manifold C , is characterized by the hybrid action principle

∂µ=0 ∂λ=0

∫
δϕC

λ
(Γ)

ω
1
PC ◦ (Flδp

µ (p) ,v)−
∮

∂Γ

〈ω1
H ◦p,δv〉

=
∫

Γ

(dtC ∧ fDYN) ·δv ,
(138)

for all synchronous virtual velocity fields δv∈HC and dual virtual covector fields
δp ∈H ∗

C .

11 The meaning here is that the relevant virtual variations are performed while keeping fixed the
base point on the trajectory.
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The latter principle was considered in (Yoshimura and Marsden, 2006, 3.1),
but without the boundary term.

In our treatment, the variations induced in the tangent and cotangent fields by
the virtual displacement of the trajectory are properly taken into account and no
boundary (end points) condition is assumed. The local conditions are coincident
with the ones in (Yoshimura and Marsden, 2006) because the additional terms ap-
pearing in our result are killed by the auxiliary conditions generated by vertical
variations. As usual, the identification VLIFT(u ,δu)≡ δu is made.

Proposition 10.2 (Hamilton-Pontryagin hybrid principle). The motion along the
trajectory Γ in the control manifold C , is characterized by the hybrid action prin-
ciple

∂θ=0 ∂µ=0 ∂λ=0

∫
δϕC

λ
(Γ)

ω
1
HP ◦ (Flδu

θ (u),Flδp
µ (p),v)

−
∮

∂Γ

〈θ L ◦v,δv〉=
∫

Γ

(dtC ∧ fDYN) ·δv ,
(139)

for all synchronous virtual velocities δv ∈HC , and vector fields δu ∈HC and
covector fields δp ∈H ∗

C .

11 STANDARD FORMULATIONS

It is instructive to reproduce explicitly the standard treatment of POINCARÉ-
CARTAN variational principle, in order to perform a direct comparison with the
intrinsic formulation provided in Eq. (138) of Prop. 10.1.

The standard expression of the principle, as reported in (Arnold, 1974, 9.45 C,
p. 244), but with the addition of the boundary integral, is the following

δ

∫ t2

t1
(pq̇−H)dt−

∮ t2

t1
(pδq) = δ

∫ t2

t1
(pq̇−H)dt−

∫ t2

t1
(pδq)̇dt

=
∫ t2

t1

(
q̇δ p− ṗδq− ∂H

∂ p
δ p− ∂H

∂q
δq
)

dt

=
∫ t2

t1

(
(q̇− ∂H

∂ p
)δ p− (ṗ+

∂H
∂q

)δq
)

dt = 0 ,

(140)

where resort was made to the commutation property δ q̇ = (δq)̇ and to the product
rule (pδq)̇ = pδ q̇+ ṗδq , with the variations δ p and δq assumed to be indepen-
dent of one another, with δq vanishing at the end points t1, t2 .
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The EULER conditions of the variational principle Eq. (140) provide HAMIL-
TON laws of dynamics, in the form corresponding to a standard connection by
translation

q̇ =
∂H
∂ p

, −ṗ =
∂H
∂q

. (141)

Simple as it is, the previous argument leads in fact to the correct equations
of the motion. But this is really an interesting example of how a geometrically
incorrect analysis may lead to correct results.

The issue is delicate and the difficulty is subtle and deserves a careful exam-
ination. The basic difference, with respect to our treatment in Prop. 9.3, is that
the geometric formulation takes naturally into account the rate of variation of the
covector field p ∈H ∗

C due to a virtual velocity of the trajectory.
The rate of variation of a covector field p ∈H ∗

C is composed of a vertical
variation (a free variation in each fiber at fixed base point in C ) and of a non-
vertical variation ∇δvp linearly dependent on the virtual velocity δv ∈HC , as
observed in Sect. 10. Only the former vertical rate of variation is considered in
standard treatments, see e.g. (Gantmacher, 1970; Arnold, 1974; Yoshimura and
Marsden, 2006).

The subtle point is that evaluation of the latter, non-vertical, variation is in fact
not essential for correctness of the result, since the relevant term in EULER con-
dition vanishes by imposing that the covector field is equal to kinetic momentum.
This equality is either assumed as an essential condition (in Prop. 9.3) or derived as
a natural condition (in Prop. 10.1). Consequently, although the non-vertical varia-
tion ∇δvp and the virtual velocity δv ∈HC are not independent, since the former
depends linearly on the latter, the result arrived at by ignoring this dependence is,
after all, the correct one.

The improper procedure of ignoring non-vertical variation was, as a matter of
fact, adopted in all treatments of variational dynamics, probably due to the adoption
in Eq. (140) of the δ as a variation operator acting in an unspecified manner on
the time integral, with the trajectory not appearing explicitly.

Ambiguity of the variation symbol δ helps in forgetting that the trajectory,
which is the manifold on which the involved dynamical objects (velocity and ki-
netic momentum) are based, is dragged by the virtual flow and therefore the com-
mon foot of these objects has to follow the moving ground (trajectory) where they
are based on. Anyway, also in purportedly geometrical treatments, the possibly
misleading δ notation is still adopted, together with formulations in coordinates.

Remark 11.1. We emphasise that no operational meaning was given in the present
treatment to the symbol δ which is here adopted just as a prefix apt to denote
test fields in variational statements. This is a distinction from the common but
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inadvisable usage of attributing to δ the meaning of an often not explicitly defined
variation operator.

The schematic diagram Eq. (142) reproduces classical pictures such as (Gant-
macher, 1970, 3.17, p. 96, fig. 32), and (Arnold, 1974, 9.44 C, p. 236, fig. 182;
9.44 D, p. 238, fig. 183).

These representations are geometrically unsuitable, because the fibered struc-
ture of phase space is not taken into proper account.

��

00

&&

c2
ff

c1

aa

,,

tC //

q

OO

p

xx

(142)

The resulting scheme, widely diffused in treatments of analytical mechanics,
is eventually misleading since the variables tC ,q, p are depicted as they were
just cartesian coordinates and not coordinates in a frame adapted to the nonlinear
HAMILTON bundle.

In a consistent geometric analysis, coordinate variations cannot be considered
as mutually independent. In the picture Eq. (142) the cotangent fibers based at
distinct points of the control space are merged into a unique representative linear
subspace, an identification which is not admissible since the corresponding covec-
tor fields refer to distinct placements of the body.

12 CONCLUSIONS AND RESULTS

Application of geometry to dynamics is a classical subject of investigations and
has a quite long history with many brilliant contributions, well-known to scholars
involved in the matter. We do not even try to provide a necessarily incomplete
list of valuable contributions, but the references in the citations could help in the
task. This notwithstanding, the topic is still out of the target of most scholars, even
mathematically trained ones, mainly due to a discouraging complexity of notions
and notations. The present contribution was focused on the task of illustrating fea-
sibility of a proper geometric treatment of dynamics in the control manifold by
resorting to simple but powerful notions and methods. The recurse to more sophis-
ticated geometric constructions involving the second tangent bundle or the tangent
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to the cotangent bundle is avoided. The theory is thus freed from unneeded com-
plications, rendering the treatment readily addressable to a larger audience of non
specialists in differential geometry. Variational principles are under the spotlight
and classical treatments are revisited by basic tools of modern differential geom-
etry, with the aim of dropping unnecessary special assumptions, while retaining
or also recovering hypotheses which are basic for a proper geometrical analysis.
The outcome is a new formulation of basic results, with an innovative analysis of
the connections between various variational statements, and with a special care in
elucidating hidden difficulties.

Main results achieved by the investigation are listed below and main topics
are summarized in the synoptic table, with the hybrid labelling explicated in Rem.
2.1. The exterior forms included in curly braces are respectively the bulk and the
boundary forms of the relevant hybrid action principle.

Synoptic table

Tangent bundle TC action forms

HAMILTON
hybrid
principle

{
(L◦v)dtC ,

θ L ◦v .

LAGRANGE action principle ω1
L ◦v = θ L ◦v− (E ◦v)dtC

MAUPERTUIS least action principle
θ L ◦v , with the constraint
〈d(E ◦v)),δv〉= 〈fDYN,δv〉 .

Cotangent bundle (TC )∗ action forms / loop integrals

POINCARÉ-CARTAN action principle ω
1
H ◦p= p− (H ◦p)dtC ,

with p= θ L ◦v .

POINCARÉ-CARTAN
hybrid
principle

{
(〈p,v〉− (H ◦p))dtC ,

p− (H ◦p)dtC .

Whitney bundle TC ×C (TC )∗ action form

HAMILTON-PONTRYAGIN
hybrid
principle

{
(〈p,v−u〉+(L◦u))dtC ,

θ L ◦v .
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All variational principles listed therein are shown, after suitable and even dras-
tic revisitation, to be equivalent statements of the law of dynamics.

• The primary target is to show that a geometric treatment of dynamics can be
performed in the natural context of control manifold. This result avoids the
recourse to more sophisticated geometric constructions based on consider-
ing tangent or cotangent manifolds over the control manifold and the rele-
vant (bi-)tangent bundles. A substantial step towards popularizing geometric
methods in dynamics, presently still confined to small nuclei of specialists,
is thus made.

• A first issue is an appropriate presentation of what an action principle is de-
fined to be. There are basic differences with variational statements dealing
with stationarity of a functional. Action principles consider variations of the
integral of an exterior form over a manifold dragged by a virtual flow, the
stationarity manifold being called the trajectory. The involved exterior form
is well-defined only on the trajectory and, to perform the variations, exten-
sions along virtual flows must be explicitly declared. There is no functional
for a stationarity condition to be imposed.

• Another issue is the elimination of needlessly restrictive, and even epistemo-
logically incorrect, constraints on the variations, classically assumed to have
null velocities at the trajectory end points. The adoption of unconstrained
variations leads to deduce both differential and jump conditions from the
action principle and plays a significant role in computational schemes.

• It is emphasised that two main procedures are available to perform com-
parisons and derivatives. The former procedure is naturally induced by the
motion, or by the virtual flow, and consists in a pull-back operation and in the
related LIE-differentiation. The latter is induced by the choice of a connec-
tion and of the related parallel transport and derivative. The specific problem
at hand may suggest the convenient choice of a connection. The usual one
in EUCLID spaces is parallel transport by translation, but even in EUCLID

spaces other connections may be more suitable. An important instance is
given by the adapted connection generated by the control.

• A general formula is contributed to evaluate exterior derivatives of differen-
tial forms in terms of parallel derivatives. The formula is a convenient tool
to provide an operative expression of EULER differential condition. Arbi-
trary linear connections are considered and the role of the torsion form is
underlined.
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• HAMILTON action principle is shown to be equivalent to a constrained ac-
tion principle in which virtual velocities fulfil a virtual mechanical power
balance. This action principle extends and corrects standard but inappropri-
ate definitions of MAUPERTUIS least action principle.

• POINCARÉ-CARTAN action principle for kinetic momentum is formulated
in the control manifold and is shown to be equivalent to HAMILTON law of
dynamics.

• A discussion, about variational principles in phase spaces as formulated in
literature, witnesses the role played by geometrical notions in dynamics.
These hybrid principles are reformulated in the natural context of the control
manifold, with the introduction of vertical variations (i.e. variations at fixed
base point) as appropriate geometric notions.

In conclusion the hope is that this innovative presentation of the geometric
approach to dynamics will result into a wider acceptance of the powerful and con-
ceptually clear framework provided by basic differential geometry.

A AUXILIARY RESULTS

The next results, contributed in (Romano G., 2007), provides the expression
of the exterior derivative of a 1-form in terms of a linear connection and two split
formulae that have been resorted to in the treatment of action principles.

Proposition A.1 (Exterior derivative in terms of a connection). The exterior deriva-
tive d ω1 of a 1-form ω1 ∈ Λ1(T M) is expressed in terms of a linear connection
∇ by the formula

dω
1 = ∇ω

1− (∇ω
1)A +ω

1 ·T , (A.1)

where the 2-forms at the r.h.s. are defined by

(∇ω
1) ·a ·b= (∇a ω

1) ·b ,

(∇ω
1)A ·a ·b= (∇b ω

1) ·a ,

(ω1 ·T) ·a ·b= ω
1 ·T(a ,b) , ∀a,b ∈ T M .

(A.2)

Let (φ , IDM) be a smooth non-linear morphism, between the tensor bundles
TENS1(T M) and TENS2(T M) , described by the commutative diagram

TENS1(T M)
φ //

πTENS1
��

TENS2(T M)

πTENS2
��

M IDM //M

⇐⇒ πTENS2 ◦φ = πTENS1 . (A.3)
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Lemma A.1 (Differential split formulae). Let the tensor field

φ ◦ s : M 7→ TENS2(T M) , (A.4)

be the composition of the morphism φ : TENS1(T M) 7→ TENS2(T M) with a tensor
field s : M 7→ TENS1(T M) . The LIE and parallel derivatives along the flow ϕα :=
Flvα of a vector field v : M 7→ T M , may then be expressed by the split formulae

Lv(φ ◦ s)= (Lvφ)(s)+dFφ(s) ·Lvs ,

∇v(φ ◦ s)= (∇vφ)(s)+dFφ(s) ·∇vs .
(A.5)
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tions et a la Théorie des Courbes et des Surfaces. Hermann, Paris.
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d’Alembert, J-B., 1743. Traité de dynamique. J-B. Coignard, Paris.

43



Donkin, W.F., 1854. On a Class of Differential Equations, Including Those Which Oc-
cur in Dynamical Problems. Part I. Phil. Trans. R. Soc. Lond. 144, 71-113. doi:
10.1098/rstl.1854. 0006

Deschamps, G.A., 1970. Exterior differential forms. In: Mathematics Applied to Physics,
Roubine É. (Ed.) Springer-Verlag, Berlin.
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