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Abstract The Lie time-derivative of the material metric tensor field along the motion is the proper
mathematical definition of the physical notion of strain rate or stretching. Its expression, as symmetric part of
the velocity gradient in Euclid space, is provided by a celebrated formula conceived by the genius of Leonhard
Euler around the middle of the eighteenth century and since then reproduced in articles, books and treatises on
continuum mechanics. We present here a formulation, in the proper geometric context of the four-dimensional
space-time manifold endowed with an arbitrary linear connection and referring to a material body of arbitrary
dimensionality. The expression involves the material time-derivative of the metric field and torsion-form and
gradient of the velocity field, according to the connection induced on the trajectory. As an application, the
expressions of the Gram matrix of the stretching in natural and in normalized (or engineering) reference
systems induced by orthogonal polar coordinates are provided.

1 Introduction

At the very core of continuum mechanics (CM), there is a formula envisaged by Leonhard Euler [1–3] in
the second middle of 1700, see [4] Sect. 82. This celebrated result provides the proper geometric description
of strain rate, or stretching (rate of stretch), defined as the symmetric part of the velocity material gradient.
Vanishing of the stretching field is a non-redundant condition which is necessary and sufficient to ensure that
the body is undergoing a rigid act of motion. An extension of this formula was performed, more than a century
later, by Wilhelm Killing [5] who considered the more general context of a Riemann manifold endowed with
the Levi-Civita connection, see for example [6,7], and infinitesimal isometries as vector fields characterized
by the vanishing of the Lie time-derivative of the metric tensor along their flow. In this more general context,
the stretching, when expressed as a mixed tensor, is given by the symmetric part of the material gradient of the
velocity taken according to the parallel derivative induced in the trajectory by the Levi-Civita connection of
the Riemann ambient space manifold [8]. The original Euler’s formula has been reproduced in all treatments of
CM dealing with three-dimensional bodies in motion in the three-dimensional Euclid space, see for example
[4,9]. The notion of stretching plays a fundamental role in CM. Indeed, when evaluated along a virtual motion,
it provides an implicit representation of the linear subspace of rigid virtual velocities, by the condition that the
stretching tensor field vanishes identically in a body placement. This representation is basic for the introduction
of the notion of a stress tensor field as a consequence of the variational condition of equilibrium [10]. On the
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other hand, when evaluated along the real motion, the stretching provides the measure of rate of change of the
material metric which enters in constitutive relations together with the stress and the stressing (rate of time
change of the stress) [8].

The formulation of a general expression for the stretching, pertaining to bodies of any dimension in motion
in a Riemann ambient space manifold endowed with an arbitrary linear connection, is certainly worthwhile both
from the theoretical and from the applications point of view. This formulation may for instance be resorted in
evaluating the stretching of a membrane moving on a curved surface or in finding the expression of the stretch-
ing of a three-dimensional body in a mobile reference system, such as the ones introduced by normalizing
reference systems naturally associated with curvilinear coordinates.

To perform a general treatment, the first step is to put the topic in a proper geometric perspective. To
this end, the kinematics is described in terms of the four-dimensional events manifold and of the immersed
trajectory manifold where the motion and the related evolution operator are defined. A space-time descrip-
tion is provided by observers, with time playing an absolute role, in conformity with classical mechanics.
A basic point is the classification of tangent vector fields and relevant tensor fields as spatial, material and
trajectory-based spatial fields, a basic discriminant first pointed out in [8]. In CM, the stretching of a body is
a material tensor field. It is the Lie time-derivative, along the motion, of the material metric tensor, provided
by pull-back of the spatial metric tensor field according to the trajectory immersion map and by subsequent
restriction to time-vertical tangent vectors. The second step in the treatment consists in providing a general
formula for the Lie derivative of a spatial tensor field in terms of parallel derivatives and in investigating about
the properties of the trajectory connection induced by a space-time connection. Since an arbitrary linear con-
nection is considered, the expression of the Lie derivative along the motion involves the parallel derivative of
the metric tensor field and the torsion of the velocity field. This general expression is a new contribution since
the standard Killing formula refers to a metric preserving and symmetric (i.e. torsion-free) linear connection.
On the basis of these results, the generalized Euler-Killing formula is got by expressing the Lie derivative
of the space-time metric tensor field, restricted to the trajectory manifold, in terms of parallel derivatives, by
performing a pull-back to the trajectory manifold and a subsequent restriction to the time-vertical tangent bun-
dle. This procedures does not apply to material tensors of general kind. The issue deserves a special attention
because difficulties faced in formulating rate constitutive relations in CM, and ensuing debates about different
proposals of time-rates for the material stress tensor field, were due to attempts to get the time-rates out of
performing parallel time-derivatives of the stress tensor field along the motion, an operation which does not
comply with the rule dictated by the covariance paradigm, asserting that material tensor fields can be compared
only by push according to a diffeomorphic transformation. Accordingly, the stress time-rate is defined as Lie
derivative of the stress tensor along the motion. This rule may be got as the conclusion of a physico-geometrical
reasoning aimed to fulfill the requirements of independence of trajectory dimensionality and of naturality of
the notion of material time-rates, thus avoiding the arbitrariness intrinsic in the concept of connection [8].
Analogous considerations lead to define the heat flow time-rate as a Lie derivative along the motion [11], a
conclusion shared by the treatments of thermal convection performed in [12–15]. The importance of assuming
Lie derivatives as time-rates of material tensors is witnessed also by recent papers on thermal convection
and wave propagation phenomena [16–20]. In this framework, the Euler-Killing formula occupies a peculiar
position in CM, both from the physical point of view and from a purely differential-geometric perspective.
As an application of the extended formula, we provide the expressions of the Gram matrix of the stretching,
relevant to the connections, respectively, induced by a natural reference system and by a mobile normalized
(or engineering) reference system associated with orthogonal curvilinear coordinates.

2 Geometric background

Basic notions of tensor bundles, push-pull transformations and Lie and parallel derivatives are recalled in the
following.

2.1 Tensor bundles

At a point x ∈ M of a manifold M, the linear space of 0th order tensors (scalars) is denoted by Funx(TM),
the dual spaces of tangent and cotangent vectors, by TxM and T

∗
xM. Covariant, contravariant and mixed

second-order tensors belong to linear spaces of scalar-valued bilinear maps (or linear operators) as listed:
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sCov
x ∈ Covx(TM) = L (TxM, TxM ; R) = L (TxM ; T

∗
xM),

sCon
x ∈ Conx(TM) = L (T∗

xM, T
∗
xM ; R) = L (T∗

xM ; TxM),

sMix
x ∈ Mixx(TM) = L (TxM, T

∗
xM ; R) = L (TxM ; TxM).

The linear spaces of covariant and contravariant tensors are in separating duality by the pairing

〈sCon
x , sCov

x 〉 := J1(sCon
x ◦ (sCov

x )A),

where J1 denotes the linear invariant, and the adjoint tensor (sCov
x )A is defined by the identity

(sCov
x )A(a, b) := sCov

x (b, a), ∀ a, b ∈ TxM.

The generic tensor space is denoted by Tensx(TM). Spaces of symmetric covariant and contravari-
ant tensors are denoted by Symx(TM), Sym∗

x(TM). Scalar-valued k-linear, alternating maps are called
k-covectors. Volumes are non-vanishing k-covectors of maximal order (k = dim M), and the correspond-
ing linear space is denoted by Volx(TM).

Definition 1 (Fibrations and Fiber Bundles) Given two manifolds N and M, a fibration is a triplet
(N, πM,N, M) where the projection map πM,N ∈ C1(N ; M) is a surjective submersion (the tangent linear
map of πM,N at each point is surjective) onto the base manifold M. The inverse images of the projection map
are called the fibers. A fiber bundle is a fibration in which the fibers are all diffeomorphic to a given one, the
typical fiber. A section sN,M ∈ C1(M ; N) is a map such that πM,N ◦ sN,M = idM [21].

Sections of tangent (tensor) bundles are called vector (tensor) fields. Sections whose values are k-covectors
are called k-forms. A volume form is a non-vanishing form of maximal order (k = dim M). A bundle morphism
f ∈ C1(N1; N2), between fiber bundles (N1, πM1,N1, M1) and (N2,πM2,N2 , M2), is a map which respects the
fibers, that is, such that, for all x, y ∈ N1:

πM1,N1(x) = πM1,N1(y) �⇒ πM2,N2(f(x)) = πM2,N2(f(y)).

A diffeomorphism is a bundle morphism which is invertible with a pointwise invertible tangent map. The
fibers of the tangent bundle πM ∈ C1(TM ; M) are tangent spaces, and the fibers of the cotangent bundle
π∗

M
∈ C1(T∗

M ; M) are the dual linear spaces. A tensor bundle, that is, a fiber bundle whose fibers are linear
tensor spaces, will be denoted by πTens

M
∈ C1(Tens(TM); M).

2.2 Push-pull transformations

The pull-back of a scalar field f : ζ (M) 
→ Fun(T(ζ (M))), along a map ζ ∈ C0(M ; N), is the scalar field
ζ↓ f : M 
→ Fun(TM) pointwise defined by the following:

(ζ↓ f )x := ζ↓ fζ (x) := fζ (x) ∈ Funx(TM).

The push-forward of a tangent vector field v : M 
→ TM, along a differentiable map ζ ∈ C1(M ; N),
is the vector field ζ↑v : ζ (M) 
→ T(ζ (M)) pointwise defined by the action of the tangent map Txζ ∈
L (TxM ; Tζ (x)N), according to the formula

(ζ↑v)ζ (x) := ζ↑vx := Txζ · vx ∈ Tζ (x)N.

The pull-back of a cotangent vector field v∗ : ζ (M) 
→ T
∗(ζ (M)), along a differentiable map ζ ∈

C1(M ; N), is the cotangent field ζ↓v∗ : M 
→ T
∗
M, with (ζ↓v∗)x = ζ↓v∗

ζ (x) defined by the invariance

〈ζ↓v∗, v〉x = ζ↓〈v∗, ζ↑v〉ζ (x).

If the restriction of the map ζ ∈ C1(M ; N) to its codomain is a diffeomorphism, pull-back and push-for-
ward are inverse operations. The pull-back of tensor fields is defined by naturality. For a twice-covariant tensor
field s : M 
→ Cov(TN), the pull is explicitly defined, for any pair of tangent vector fields u, w : M 
→ TM,
by the following:

(ζ↓s)(u, w) := ζ↓(s(ζ↑u, ζ↑w)).
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The co-tangent map

T ∗
ζ (x)ζ := (Txζ )∗ ∈ L (T∗

ζ (x)ζ (M) ; T
∗
xM),

is such that, for every wx ∈ TxM and sCovζ (x) ∈ T
∗
ζ (x)ζ (M):

〈sCovζ (x), Txζ · wx 〉 = 〈T ∗
ζ (x)ζ · sCovζ (x), wx 〉.

The inverse tangent map is defined by T −1
ζ (x)ζ := (Txζ )−1 ∈ L (Tζ (x)ζ (M) ; TxM).

The push-pull relations for covariant, contravariant and mixed tensors, along a diffeomorphism ζ ∈
C1(M ; ζ (M) ⊂ N), are given by the following:

ζ↓sCov
ζ (x) = T ∗

ζ (x)ζ ◦ sCov
ζ (x) ◦ Txζ ∈ Covx(TM),

ζ↑sCon
x = Txζ ◦ sCon

x ◦ T ∗
ζ (x)ζ ∈ Conζ (x)(TN),

ζ↑sMix
x = Txζ ◦ sMix

x ◦ T −1
ζ (x)ζ ∈ Mixζ (x)(TN).

Push-forward of contravariant tensors is well defined for any differentiable morphism ζ ∈ C1(M ;
ζ (M) ⊂ N). Pull-back of covariant tensor fields requires that the morphism is injective. Push (or pull) trans-
formations of other fields require that this map is a diffeomorphism.

2.3 Flows, Lie derivatives and parallel derivatives

Given a vector field v ∈ C1(M ; TM), the flow Flvλ ∈ C1(R ; M) is defined by the ODEs:

v(x) = ∂λ=0 Flvλ(x), x ∈ M.

The Lie-derivative of a vector field u ∈ C1(M ; TM) along the flow of the vector field v ∈ C1(M ; TM) is then
the vector field defined by the following:

Lv u := ∂λ=0 Flvλ↓
(
u ◦ Flvλ

) ∈ C1(M ; TM).

The derivation yields a vector since all vectors (Flvλ↓u)x := Flvλ↓u(Flvλ(x)) belong to the linear space TxM.
The Lie derivatives of tensor fields are analogously defined in terms of the appropriate pull-back. A simple
property of the Lie derivative is that, for any diffeomorphism ζ ∈ C1(M ; N):

ζ↓(Lv u) = ζ↓ (
∂λ=0 Flvλ↓u

) = ∂λ=0 ζ↓ (
Flvλ↓u

)
.

The vanishing of the Lie derivative Lv u ∈ C1(M ; TM) is equivalent to the commutation property of the
relevant flows: Flvλ ◦ Fluμ = Fluμ ◦ Flvλ.

A linear connection on a manifold M is expressed by a derivation ∇, which we call the parallel derivation
fulfilling the properties:

∇α1v1+α2v2 u = α1∇v1u + α2∇v2 u,

∇v(α1u1 + α2u2) = α1∇vu1 + α2∇vu2,

∇v( f u) = f ∇vu + (∇v f )u.

The parallel transport induced by a linear connection along a curve c ∈ C1(Λ ; M), with Λ a real interval
and v(λ) = ∂μ=λ c(μ) velocity of the curve at λ ∈ Λ, is a solution of the differential equation

(∇vu)(c(λ)) = ∂μ=λ cλ,μ⇑ u(c(μ)).

The linear map cλ,μ⇑ ∈ L (Tc(μ)M ; Tc(λ)M) transforms vectors based on c(μ) ∈ M into vectors based on
c(λ) ∈ M, so that cμ,μ⇑ = idTM and cλ,μ⇑ ◦cμ,ν⇑ = cλ,ν⇑ and the inverse transport is defined by cμ,λ⇓ :=
cλ,μ⇑ . The derivation yields a vector in Tc(λ)M since all vectors cλ,μ⇑ u(c(μ)) belong to the same linear
space Tc(λ)M. The parallel transport of tensor fields is defined by invariance and the Leibniz rule holds. For
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instance, given a linear connection ∇ on a manifold M, for a covariant tensor field sCov ∈ C1(M ; Cov(TM))
and any a, b ∈ C1(M ; TM), we have [7]:

∇v sCov(a, b) = ∇v(sCov(a, b)) − sCov(∇va, b) − sCov(a, ∇vb).

The Lie bracket is defined as the gap of symmetry of the iterated parallel derivative [6]: [v, u] f =
∇v∇u f − ∇u∇v f , for any scalar function f ∈ C2(M ; R). It fulfills the identity [v, u] = Lvu and the push
naturality property [ζ↑v, ζ↑u] = ζ↑[v, u] where ζ ∈ C1(M ; N). The torsion of a linear connection is the
tangent vector-valued two-form defined by the following:

Tors(v(x), u(x)) := ∇v(x)u − ∇u(x)v − [v, u](x) ∈ TxM,

where u, v ∈ C1(M ; TM) are tangent vector fields generated by arbitrary extensions of the tangent vectors
u(x), v(x) ∈ TxM. The definition is well posed because the torsion field is tensorial, that is, its value is
independent of the extensions. The tensor field Tors(v) ∈ C1(M ; Mix(M)) is defined by the identity:

Tors(v) · u = Tors(v, u), ∀ u ∈ TxM.

3 Lie derivatives in terms of parallel derivatives

Proposition 1 Let M be a manifold and ∇ a linear connection in M. The Lie derivative of a tensor field
sCov ∈ C1(M ; Cov(TM)) along the flow Flvλ ∈ C1(M ; M) of a tangent vector field v ∈ C1(M ; TM) is given
by the following:

Lv sCov = ∇v sCov + sCov ◦ ∇v + (∇v)∗ ◦ sCov

+ sCov ◦ Tors(v) + (Tors(v))∗ ◦ sCov.

If sCov ∈ C1(M ; Sym(M)), the formula specializes into the following:

1
2 (Lv sCov) = 1

2 (∇v sCov) + Sym (sCov ◦ ∇v) + Sym (sCov ◦ Tors(v)).

Proof. Applying the Leibniz rule to the Lie derivative and to the covariant derivative, we have that, for any
u, w ∈ C1(M ; TM):

(Lv sCov)(u, w) = Lv (sCov (u, w)) − sCov (Lvu, w) − sCov (u, Lvw),

(∇v sCov)(u, w) = ∇v (sCov (u, w)) − sCov (∇vu, w) − sCov (u, ∇vw).

The Lie derivative and the covariant derivative of a scalar field coincide, so that Lv (sCov (u, w)) =
∇v (sCov (u, w)) and hence:

(Lv sCov)(u, w) = (∇v sCov)(u, w) + sCov (∇vu, w) + sCov (u, ∇vw)

− sCov (Lvu, w) − sCov (u, Lvw).

Moreover, since Tors(v, u) := ∇vu − ∇uv − [v, u] we may write

(Lv sCov)(u, w) = (∇v sCov)(u, w) + sCov (Tors(v, u), w) + sCov (∇uv, w)

+ sCov (u, Tors(v, w)) + sCov (u, ∇wv),

which, by definition of the tensor field Tors(v) ∈ C1(M ; Mix(TM)), gives the result. ��
An analogous proof leads to the next formula, which provides the expression of the Lie derivative of a

volume form in terms of covariant derivatives.

Proposition 2 Let M be a manifold, and ∇, a linear connection in M. The Lie derivative of a volume form
μ ∈ C1(M ; Vol(TM)) along the flow Flvλ ∈ C1(M ; M) of a tangent vector field v ∈ C1(M ; TM) is given by
the following:

Lv μ = ∇v μ + Cycle(μ ◦ Tors(v) + μ ◦ ∇v),

where the operator Cycle evaluates the sum of the values of the volume form over cyclic permutations of the
argument vectors.
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Proof. Making explicit reference to a three-form and to a triplet of vector fields a, b, c ∈ C1(M ; TM), we
have that:

(Lv μ)(a, b, c) = (∇v μ)(a, b, c) + μ(Tors(v, a), b, c) + μ(∇av, b, c)
+ μ(a, Tors(v, b), c) + μ(∇bv, c, a)

+ μ(Tors(v, c), a, b) + μ(∇cv, a, b),

and the result follows. ��
The operator Cycle is related to the linear invariant J1 of a mixed tensor as follows:

Cycle(μ ◦ sMix) = J1(sMix)μ,

so that we can write the relations:

Cycle(μ ◦ ∇v) = J1(∇v)μ,

Cycle(μ ◦ Tors(v)) = J1(Tors(v))μ.

By tensoriality of ∇v μ, we may define the invariant Jo(v) by the identity:

∇v μ = Jo(v)μ,

and the formula may be written as follows:

Lv μ = (Jo(v) + J1((Tors + ∇)(v))) μ.

By tensoriality of Lv μ and definition of divergence Lv μ = (div v)μ,

div v = Jo(v) + J1((Tors + ∇)(v)).

In terms of the volume form μg ∈C1(M ; Vol(TM)) induced by a metric tensor field g∈C1(M ; Sym(TM))
and of the Levi-Civita connection, being ∇g = 0 and Tors = 0, the implication ∇g = 0 �⇒ ∇μg = 0 leads
to the standard formula:

Lv μg = J1(∇v) μg,

which, by definition of divergence, may be written as follows: div v = J1(∇v).

4 Kinematics

The description of continuum kinematics is conveniently performed by considering a four-dimensional affine
space-time, the events manifold E, and its representation by an observer. The space manifold is a Riemann
manifold (S, gS), that is, a manifold endowed with a smooth field of metric, viz. twice-covariant symmetric
and positive definite, tensors gS ∈ C1(S ; Cov(TS)).

Definition 2 (Events manifold; Observers) The events manifold E of classical mechanics is an affine trivial
bundle diffeomorphic to the cartesian product S × I between the affine space manifold S and the affine time
instants interval I . The point of view of an observer consists in the choice of a diffeomorphism γ ∈ C1(E ; S×I )
so that the events manifold E is fibrated by the projections:

{
π I,E = π I,(S×I ) ◦ γ ,
πS,E = πS,(S×I ) ◦ γ ,

with π I,(S×I ) ∈ C1(S × I ; I ), πS,(S×I ) ∈ C1(S × I ; S) Cartesian projections.
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An observer defines the time-fibration π I,E ∈ C1(E ; I ) and the space-fibration πS,E ∈ C1(E ; S) as affine,
surjective submersions, that is, surjective maps with surjective linear tangent map at each point. In classical
mechanics, the time-fibration π I,E ∈ C1(E ; I ) is assumed to be independent of the observer and hence defining
an absolute time. On the contrary, the space-fibration πS,E ∈ C1(E ; I ) is observer dependent.

In the events time-bundle π I,E ∈ C1(E ; I ), the manifold fiber Et , based on a time t ∈ I , collects simulta-
neous events and is diffeomorphic to the typical fiber S, the space manifold, whose elements are spatial points
x ∈ S. In the events space-bundle πS,E ∈ C1(E ; S), the manifold fiber Ex, based on a position x ∈ S, collects
localized events and is diffeomorphic to the typical fiber I, the time interval, whose elements are time instants
t ∈ I .

Tensors bundles, constructed over the vertical tangent bundle to the events time-bundle, that is, bundles
made of tensors constructed at fixed time, play a basic role in CM, and hence, we preliminarily recall the relevant
notions. Tangent vectors v ∈ TE are velocities of curves c ∈ C1(R ; E) drawn in the events manifold E.

Definition 3 (Time-vertical tangent bundle) A time-vertical tangent vector v ∈ TeE is tangent to the fiber Et
based on t = π I,E(e), that is, v ∈ TeEt , and is characterized by the property that the velocity of the base curve
vanishes:

Teπ I,E · v = 0.

Time-vertical vectors are the elements of the time-vertical subbundle VE ⊂ TE of the tangent fibration
T π I,E ∈ C0(TE ; TI ). The fiber in VE based on e ∈ E is: VeE = TeEt .

Definition 4 (Induced connection in the events manifold) A connection ∇S in the ambient space manifold
and the usual connection ∇ I in the affine time line induce naturally a connection ∇E in the events manifold E,
by defining the space and time components of the parallel derivative ∇E

vE
uE of a vector field uE ∈ C1(E ; TE),

along a vector field vE ∈ C1(E ; TE), as follows:
{

πS,E↑ (∇E
vE

uE
) := ∂λ=0

(
πS,E ◦ FlvE

λ

)⇓S (
πS,E↑ ◦ uE ◦ FlvE

λ

)
,

π I,E↑ (∇E
vE

uE
) := ∂λ=0

(
π I,E ◦ FlvE

λ

)⇓I
(
π I,E↑ ◦ uE ◦ FlvE

λ

)
.

Definition 4 is motivated by the fact that, as a rule, the push πS,E↑wE ∈ C1(S ; TS) of a vector field
wE ∈ C1(E ; TE) is not well defined on S, since the projection πS,E ∈ C1(E ; S) is not injective, while the
push of a vector wE(e) ∈ TeE is well defined by the following:

πS,E↑(wE(e)) := TeπS,E · wE(e) ∈ TπS,E(e)S.

Lemma 1 (Time-verticality of the parallel derivative) The parallel derivative ∇E
vE

uE of a vector field uE ∈
C1(E ; TE), along a vector field vE ∈ C1(E ; TE), is time-vertical if either the time component of the vector
field uE ∈ C1(E ; TE) is constant in time or the vector vE is time-vertical.

Proof. Each one of the conditions implies that π I,E↑(∇E
vE

uE) = 0. ��

4.1 Trajectory and body motion

In introducing the basic kinematic notions, we follow an approach which simulates physical experience.

Definition 5 (Trajectory) The trajectory of a body is a manifold Tϕ with injective immersion iE,Tϕ
∈ C1(Tϕ ; E)

(the tangent linear map TeiE,Tϕ
∈ C1(TeTϕ ; TiE,Tϕ (e)E) of iE,Tϕ

at each point e ∈ Tϕ is injective) in the events
manifold and such that the image iE,Tϕ

(Tϕ) ⊂ E is a submanifold.

Whenever feasible, we will write e ∈ E instead of iE,Tϕ
(e) ∈ E for e ∈ Tϕ .

Definition 6 (Trajectory fibrations) The trajectory is assumed to acquire the structure of a time-bundle π I,Tϕ
∈

C1(Tϕ ; I ), whose time-fibers are compact, connected submanifolds, by inheriting the projection of the events
time-bundle π I,E ∈ C1(E ; I ), according to the relation

π I,Tϕ
= π I,E ◦ iE,Tϕ

.
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The time-fiber Tϕ(t) := π−1
I,Tϕ

(t) at time t ∈ I is seen by an observer as γ (Tϕ(t)) = (�t , t), where �t ⊂ S
is the body placement. A space-fibration of the trajectory πS,Tϕ

∈ C1(Tϕ ; S) is induced by the projection of
the events space-bundle πS,E ∈ C1(E ; S), according to the relation:

πS,Tϕ
= πS,E ◦ iE,Tϕ

.

Lemma 2 The injective immersion iE,Tϕ
∈ C1(Tϕ ; E) is a homomorphism of vertical tangent bundles.

Proof. Indeed, being: T π I,Tϕ
= T π I,E ◦ T iE,Tϕ

, it follows that time-verticality is preserved:

T π I,E · vTϕ
= 0 �⇒ T π I,E · (T iE,Tϕ

· vTϕ
) = 0,

and similarly for space-verticality. ��
Definition 7 (Motion and evolution operator) A motion in the trajectory is a one-parameter family of auto-

morphisms of the trajectory manifold ϕ
Tϕ
s ∈ C1(Tϕ ; Tϕ) over the time shift shs ∈ C1(I ; I ) defined by

shs(t) := t + s for all s, t ∈ I , as described by the commutative diagram:

Tϕ
ϕ

Tϕ
s ��

π I,Tϕ
��

Tϕ

π I,Tϕ
��

I �� shs �� I

⇐⇒ π I,Tϕ
◦ ϕ

Tϕ
s = shs ◦ π I,Tϕ

.

The motion of a body is conveniently described by an evolution operator ϕTϕ which assigns to any pair

of time instants τ, t ∈ I , the corresponding material displacement diffeomorphism ϕ
Tϕ

τ,t ∈ C1(Tϕ(t) ; Tϕ(τ ))
defined by the following:

ϕ
Tϕ

τ,t (e) := ϕ
Tϕ

τ−t (e),

for e ∈ Tϕ(t). The evolution fulfills the Chapman–Kolmogorov law of determinism [6,7]:

ϕ
Tϕ
τ,s = ϕ

Tϕ

τ,t ◦ ϕ
Tϕ

t,s ,

for all τ, t, s ∈ I , and ϕ
Tϕ

t,τ = (ϕ
Tϕ

τ,t )
−1.

The immersed evolution in the events manifold is given by ϕE
τ,t = iE,Tϕ

◦ ϕ
Tϕ

τ,t . The displacement ϕE
τ,t is

measured by an observer at γ (e) = (x, t) ∈ S × I as a pair:

(ϕS
τ,t (e), ϕ

I
τ,t (e)) := γ (ϕE

τ,t (e)),

with ϕ I
τ,t (e) = τ − t .

Definition 8 (Body and particles) The fibers of the trajectory time-bundle, made of simultaneous events, are
called body placements. The trajectory is foliated by the evolution operator into one-dimensional submanifolds
which are equivalence classes for the relation:

(e1, e2) ∈ Tϕ × Tϕ : e2 = ϕ
Tϕ

t2,t1(e1),

with ti = π I,E(ei ), i = 1, 2.
The determinism law ensures reflexivity, symmetry and transitivity. The trajectory foliation is called the

body, and each folium, made of trajectory events related by the evolution operator, is called a material particle.

Definition 9 (Trajectory speed) The trajectory speed of a particle of the body at the event e ∈ Tϕ , with

t = π I,E(e), is the time-derivative of the motion ϕ
Tϕ

·,t (e) ∈ C1(I ; Tϕ) defined by the following:

vTϕ
(e) := ∂τ=t ϕ

Tϕ

τ,t (e) ∈ TeTϕ .
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Being π I,Tϕ
(ϕ

Tϕ

τ,t (e)) = τ for all τ ∈ I , the trajectory speeds fulfill the condition

∂τ=t π I,Tϕ
(ϕ

Tϕ

τ,t (e)) = Teπ I,Tϕ
· vTϕ

(e) = 1t ,

which defines an affine subbundle τTϕ
∈ C1(A1Tϕ ; Tϕ) of the trajectory tangent bundle τTϕ

∈ C1(TTϕ ; Tϕ).
Being A0 = V, the model linear bundle is the vertical tangent time-bundle τTϕ

∈ C1(VTϕ ; Tϕ) over the
trajectory manifold.

The immersion of the trajectory speed in the events manifold will be denoted by vE
Tϕ

:= iE,Tϕ
↑vTϕ

. An

observer measures the trajectory speed as a pair γ↑vTϕ
= (vS

ϕ , 1) which at time t ∈ I is made of a spatial

field component vS
ϕ,t ∈ C1(�t ; TS) and of a unitary time component 1t ∈ Tt I .

5 Spatial and material fields

Definition 10 (Spatial fields) A spatial tensor field is a section

sE ∈ C1(E ; Tens(VE))

of the tensor bundle πTens
E ∈ C1(Tens(VE) ; E) constructed over the vertical tangent bundle to the events

time-bundle π I,E ∈ C1(E ; I ).

The only spatial field of interest in CM is the spatial metric tensor field on the events manifold gE ∈
C1(E ; Cov(VE)), which is induced by the metric tensor field gS ∈ C1(S ; Cov(TS)) of the Riemann space
manifold by the pull-back

gE = πS,E↓gS ,

equivalent to gE(a, b) := gS(T πS,E ·a, T πS,E ·b) for all time-vertical tangent vector fields a, b ∈ C1(E ; VE).
The positive definiteness of the metric tensor field gE ∈ C1(E ; Cov(VE)) follows by the positive definiteness of
the metric field gS ∈ C1(S ; Cov(TS)) and by the injectivity of the tangent map TeπS,E ∈ L (VeE ; TπS,E(e)S).

Definition 11 (Material fields) A material tensor field is a section

sTϕ
∈ C1(Tϕ ; Tens(VTϕ))

of the tensor bundle πTens
Tϕ

∈ C1(Tens(VTϕ) ; Tϕ) constructed over the vertical tangent bundle to the trajectory

time-bundle π I,Tϕ
∈ C1(Tϕ ; I ).

The observer view of a material vector uTϕ
(e) ∈ VeTϕ , with γ (e) = (x, t) and x ∈ �t , is the pair

γ↑uTϕ
(e) = (uϕ,t (x), 0) which is identified with uϕ,t (x) ∈ Tx�t . To a material covector sTϕ

(e) ∈ V
∗
eTϕ ,

there corresponds the covector sϕ,t (x) := γ↑sTϕ
(e) ∈ T

∗
x�t such that

〈sϕ,t , uϕ,t 〉x = 〈γ↑sTϕ
, γ↑uTϕ

〉γ (e),

and similarly for any tensor field. Fields of primary interest in CM are material fields. For instance, stretch,
stretching, stress, stressing, temperature, mass, entropy and thermodynamical potentials are such.

Definition 12 (Trajectory-based space-time and spatial fields) To a space-time tensor field sE ∈ C1(iE,Tϕ
(Tϕ) ;

Tens(TE)), whose domain includes the immersed trajectory manifold, there corresponds to a trajectory-based
space-time field sE

Tϕ
∈ C1(Tϕ ; Tens(TE)) which is the section of the pull-back bundle iE,Tϕ

↓πTens
E , defined

by the following:

sE
Tϕ

(e) := (sE ◦ iE,Tϕ
)(e) ∈ Tens(TiE,Tϕ (e)E), e ∈ Tϕ .

The same procedure applies to a spatial field sE ∈ C1(iE,Tϕ
(Tϕ) ; Tens(VE)) to get a trajectory-based

spatial field sE
Tϕ

∈ C1(Tϕ ; Tens(VE)).
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The observer view of a spatial vector uE
Tϕ

∈ ViE,Tϕ (e)E, with γ (e) = (x, t) and x ∈ �t , is the pair

γ↑uE
Tϕ

(e) = (uS
ϕ,t (x), 0) which is identified with uS

ϕ,t (x) ∈ TxS. To a material covector sE
Tϕ

(e) ∈ V
∗
eE, there

corresponds to the covector sS
ϕ,t (x) := γ↑sE

Tϕ
(e) ∈ T

∗
xS such that

〈sS
ϕ,t , uS

ϕ,t 〉x = 〈γ↑sE
Tϕ

, γ↑uE
Tϕ

〉γ (e),

and similarly for any tensor field. Basic fields in continuum dynamics are trajectory-based spatial vector or
covector fields, namely virtual velocity, acceleration, force fields.

In CM, an essential role is played by pull-back of a spatial covariant tensor field to a material covariant
tensor field. This construction works only for covariant tensors because the map iE,Tϕ

∈ C1(Tϕ ; E) is injective
but not surjective, in general, and is possible because the tangent map T iE,Tϕ

∈ C1(TTϕ ; TE), being fiberwise
injective, preserves the time-vertical fibration, that is, T iE,Tϕ

(VTϕ) ⊂ VE.

Definition 13 (Trajectory metric tensor field) The space-time metric tensor field gE ∈ C1(E, Cov(TE))
induces a trajectory metric field gTϕ

∈ C1(Tϕ, Cov(TTϕ)) by pull-back to the trajectory according to the
injective immersion iE,Tϕ

∈ C1(Tϕ ; E):

gTϕ
(aTϕ

, bTϕ
) := gE(T iE,Tϕ

· aTϕ
, T iE,Tϕ

· bTϕ
),

for all aTϕ
, bTϕ

∈ C1(Tϕ ; TTϕ), which is expressed by the pull-back:

gTϕ
:= iE,Tϕ

↓gE ∈ C1(Tϕ, Cov(TTϕ)).

Material metric tensors are evidently symmetric and positive definite, due to the positive definiteness
of the metric tensor field gE ∈ C1(E, Cov(TE)) and to the injectivity of the tangent map TeiE,Tϕ

∈
L (TeTϕ, TiE,Tϕ (e)E).

The introduction of a material metric is usually improperly skipped in the literature, when dealing with
3-D bodies, by considering the spatial metric tout court as the variable appearing in constitutive relations, see
for example [22]. The role of the spatial immersion is however essential for a proper geometrical treatment
and becomes evident in analyzing lower dimensional bodies, such as membranes and wires.

6 Time-derivatives of tensor fields

6.1 Convective time-derivatives along the motion

Definition 14 (Convective time-derivative) Given a material tensor field sTϕ
∈ C1(Tϕ ; Tens(VTϕ)) and the

field of trajectory speeds vTϕ
∈ C1(Tϕ ; A1Tϕ), the material tensor field defined by the following:

ṡTϕ
:= LvTϕ

sTϕ
= ∂λ=0 Fl

vTϕ

λ ↓ (sTϕ
◦ Fl

vTϕ

λ ),

is the Lie derivative1 (or convective derivative) along the motion.

The Leibniz rule holds, as shown by the relation:

LvTϕ
〈sTϕ

, uTϕ
〉 = ∂λ=0 〈sTϕ

◦ Fl
vTϕ

λ , uTϕ
◦ Fl

vTϕ

λ 〉
= ∂λ=0

〈
Fl

vTϕ

λ ↓
(

sTϕ
◦ Fl

vTϕ

λ

)
, Fl

vTϕ

λ ↓
(

uTϕ
◦ Fl

vTϕ

λ

)〉

= 〈LvTϕ
sTϕ

, uTϕ
〉 + 〈sTϕ

, LvTϕ
uTϕ

〉.
Then, the Lie time-derivative of a material tensor field sTϕ

∈ C1(Tϕ ; Tens(VTϕ)) is well defined as a
material tensor field by the formula (hereafter, written for a covector field):

〈LvTϕ
sTϕ

, uTϕ
〉 := LvTϕ

〈sTϕ
, uTϕ

〉 − 〈sTϕ
, LvTϕ

uTϕ
〉,

since verticality of the vector field uTϕ
∈ C1(Tϕ ; VTϕ) implies verticality of the Lie derivative LvTϕ

uTϕ
.

1 It is named after the Norwegian geometer Marius Sophus Lie [23]
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6.2 Parallel time-derivatives along the motion

Vectors tangent to the ambient space manifold may be transported along a curve in a parallel way dictated
by the chosen connection, and the parallel transport of spatial tensor fields is defined by invariance. In CM,
only trajectory-based tensor fields enter into the theory, and hence, parallel derivatives only of trajectory-based
spatial fields along the motion are considered, according to the following definition.

Definition 15 (Parallel time-derivative) The parallel time-derivative of a trajectory-based space-time field,
according to a given connection ∇E, is the trajectory-based space-time field ∇E

vTϕ
sE
Tϕ

defined, for any e ∈ Tϕ

with t = π I,E(e), as parallel derivative along the trajectory speed vTϕ
(e) ∈ A1eTϕ :

∇E
vTϕ

sE
Tϕ

:= ∂λ=0 Fl
vE
Tϕ

λ ⇓E
(

sE
Tϕ

◦ Fl
vTϕ

λ

)
∈ C1(Tϕ ; Tens(VE)).

Definition 16 (Pushed connection) To a connection ∇E in the events manifold and an automorphism ζE ∈
C1(E ; E), there corresponds to a pushed connection ζE↑∇E defined by the following:

(ζE↑∇E)ζE↑vE ζE↑uE := ζE↑ (∇E
vE

uE
)
.

By naturality of Lie brackets with respect to push, the torsion of the pushed connection is the push of the
torsion.

Remark 1 This construction by push performed in Proposition 16 is not feasible to induce a connection in
the immersed trajectory manifold. The reason is that the parallel derivative (∇EuE

Tϕ
· vE

Tϕ
)(iE,Tϕ

(e)) will in
general fail to belong to the immersion T iE,Tϕ

(TeTϕ) of the tangent space TeTϕ . The right construction of the
connection induced on the trajectory by the immersion pull-back will be given in Definition 18 as an extension
of the familiar notion of Levi-Civita connection induced on a submanifold of a Riemann manifold, see for
example [24].

6.3 Coordinate induced connections

Two reference systems can be associated with a coordinate system in a Riemann manifold. The former is the
natural one whose basis vectors at any point are the velocities of coordinate lines. The latter is obtained from
the former by normalizing the basis vectors.

Correspondingly, two linear connections can be introduced by defining path-independent parallel trans-
ports in which the components of tangent vectors are left invariant. In the two reference systems, they will be,
respectively, called the natural and the normalized connection. In both connections, the parallel derivatives of
the reference vector fields vanish identically. In the natural connection, the Lie bracket of basis vector fields
vanishes identically, due to the commutation of the corresponding flows, and hence, the torsion vanishes iden-
tically too [7]. In the normalized connection, the torsion is equal to the opposite of the Lie bracket. This last
property leads to formulate the Poincaré equations as a special case of the equations of dynamics expressed in
terms of an arbitrary linear connection [25,26].

7 Stretching

The notion of material metric tensor field on the trajectory, introduced in Definition 13 as pull-back of the
spatial metric field according to the immersion map, provides the tool to make metric measurements on a body.
The Lie derivative along the motion measures the rate of variation of the body’s metric properties. We may
then give the following definition.

Definition 17 (Stretching field along the motion) The stretching field along the motion is defined by the Lie
derivative:

1
2 LvTϕ

gTϕ
∈ C1(Tϕ ; Sym(VTϕ)).

It is a section of the material bundle πSym
Tϕ

∈ C1(Sym(VTϕ) ; Tϕ) of covariant symmetric tensors over the

trajectory time-bundle π I,Tϕ
∈ C1(Tϕ ; I ). The factor 1

2 is introduced to get a convenient physical interpretation
of the dual stress tensor [7].
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Remark 2 The trajectory and the evolution considered in Definition 17 of stretching may be substituted by
any virtual trajectory and virtual evolution defined in the spatial fiber at time t ∈ I . The velocity of a virtual
evolution at time t ∈ I is a tangent vector field δvϕ,t ∈ C1(�t ; T�t S), called a virtual velocity.

The expression of the mixed form of the stretching tensor field is a celebrated result due to Euler [1,3]. An
extended version, valid for any linear connection in a Riemann ambient space manifold, and for bodies of any
dimensionality, is a new result contributed in Proposition 3 below.

In Remark 1, it was underlined that, in the events manifold, the parallel derivative of a vector field tangent
to the immersed trajectory, in the direction of a vector tangent to the immersed trajectory, does in general
fail to be still tangent to the immersed trajectory. To induce a parallel derivative on the trajectory manifold,
a projection is then needed and can be performed by the metric tensor defined on the events manifold, as
illustrated hereafter.

Definition 18 (Trajectory connection) The linear connection ∇Tϕ induced in the trajectory manifold, by a
connection ∇E in the events manifold, is introduced by considering vector fields uTϕ

, hTϕ
∈ C1(Tϕ ; TTϕ)

tangent to the trajectory and their immersions uE
Tϕ

:= iE,Tϕ
↑uTϕ

, hE
Tϕ

:= iE,Tϕ
↑hTϕ

in the events manifold

and defining the parallel derivative ∇Tϕ

hTϕ
uTϕ

by the pull-back

gTϕ
◦ ∇Tϕ

hTϕ
uTϕ

:= iE,Tϕ
↓

(
gE
Tϕ

◦ ∇E
hE

Tϕ

uE
Tϕ

)
,

equivalent to the orthogonal projection

gTϕ
(∇Tϕ

hTϕ
uTϕ

, wTϕ
) := iE,Tϕ

↓
(

gE
Tϕ

(∇E
hE

Tϕ

uE
Tϕ

, wE
Tϕ

)

)
,

for all wTϕ
∈ C1(Tϕ ; TTϕ), being gTϕ

:= iE,Tϕ
↓gE

Tϕ
and wE

Tϕ
:= iE,Tϕ

↑wTϕ
.

Lemma 3 (Minimum property) The linear connection ∇Tϕ induced in the trajectory manifold by the
connection ∇E in the events manifold, is characterized by the minimum distance property:

‖∇E
hE

Tϕ

uE
Tϕ

− iE,Tϕ
↑

(
∇Tϕ

hTϕ
uTϕ

)
‖gE

= min
wTϕ ∈TTϕ

‖
(

∇E
hE

Tϕ

uE
Tϕ

− iE,Tϕ
↑wTϕ

)
‖gE

.

Proof. The minimum distance property is expressed by the variational condition

gE
Tϕ

(∇E
hE

Tϕ

uE
Tϕ

− iE,Tϕ
↑

(
∇Tϕ

hTϕ
uTϕ

)
, wE

Tϕ
) = 0,

which is the orthogonal projection property in Definition 18 of trajectory connection. ��
The next two properties of the trajectory connection will be resorted to in the proof of Euler’s stretching

formula.

Lemma 4 (Parallel derivative of metric field) The parallel derivative of the metric, according to a linear con-
nection ∇E in the events manifold, and the parallel derivative of the induced metric in the trajectory manifold
according to the induced linear connection ∇Tϕ are related by pull-back according to the immersion map

∇Tϕ

hTϕ
gTϕ

= iE,Tϕ
↓

(
∇E

hE
Tϕ

gE
Tϕ

)
,

where gTϕ
:= iE,Tϕ

↓gE
Tϕ

and hE
Tϕ

:= iE,Tϕ
↑hTϕ

, with hTϕ
∈ C1(Tϕ ; TTϕ).

Proof. Given hTϕ
, aTϕ

, bTϕ
∈ C1(Tϕ ; TTϕ), let us set aE

Tϕ
:= iE,Tϕ

↑aTϕ
, bE

Tϕ
:= iE,Tϕ

↑bTϕ
and hE

Tϕ
:=

iE,Tϕ
↑hTϕ

. Then, the definition of pull-back, the Leibniz rule for the parallel derivative of a covariant tensor,
and the symmetry and non-degeneracy of the metric tensor, imply that

(iE,Tϕ
↓(∇E

hE
Tϕ

gE
Tϕ

))(aTϕ
, bTϕ

) = iE,Tϕ
↓
(
(∇E

hE
Tϕ

gE
Tϕ

)(aE
Tϕ

, bE
Tϕ

)
)

= iE,Tϕ
↓
(
∇E

hE
Tϕ

(gE
Tϕ

(aE
Tϕ

, bE
Tϕ

))) − gE
Tϕ

(∇E
hE

Tϕ

aE
Tϕ

, bE
Tϕ

))

−gE
Tϕ

(aE
Tϕ

, ∇E
hE

Tϕ

bE
Tϕ

))
)
.
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Pulling back each term we get:

iE,Tϕ
↓(∇E

hE
Tϕ

(gE
Tϕ

(aE
Tϕ

, bE
Tϕ

))) = ∇Tϕ

hTϕ
(iE,Tϕ

↓(gE
Tϕ

(aE
Tϕ

, bE
Tϕ

)))

= ∇Tϕ

hTϕ
(gTϕ

(aTϕ
, bTϕ

)),

iE,Tϕ
↓(gE

Tϕ
(∇E

hE
Tϕ

aE
Tϕ

, bE
Tϕ

))) = gTϕ
(∇Tϕ

hTϕ
aTϕ

, bTϕ
),

with the former equality following from the definition of parallel derivative of a scalar field and the latter
ensuing from the Definition 18 of trajectory connection. Therefore,

iE,Tϕ
↓(∇E

hE
Tϕ

gE
Tϕ

)(aTϕ
, bTϕ

) = ∇Tϕ

hTϕ
(gTϕ

(aTϕ
, bTϕ

))

− gTϕ
(∇Tϕ

hTϕ
aTϕ

, bTϕ
) − gTϕ

(∇Tϕ

hTϕ
bTϕ

, aTϕ
)

= ∇Tϕ

hTϕ
gTϕ

(aTϕ
, bTϕ

),

which is the result. ��
Lemma 5 (Torsion of the trajectory connection) The torsion of the connection in the events manifold and the
torsion of the induced trajectory connection are related by the pull-back property:

gTϕ
◦ TorsTϕ (aTϕ

) := iE,Tϕ
↓

(
gE
Tϕ

◦ TorsE(aE
Tϕ

)
)

.

Proof. With the same notations adopted in the proof of Lemma 4, the definition of torsion of a linear connection
gives

TorsE(aE
Tϕ

) · bE
Tϕ

= ∇E
aE
Tϕ

bE
Tϕ

− ∇E
bE

Tϕ

aE
Tϕ

− [aE
Tϕ

, bE
Tϕ

],

for all aTϕ
, bTϕ

∈ C1(Tϕ ; TTϕ). The pull-back property in the statement follows then from Definition 18 of
trajectory connection and from the relation

iE,Tϕ
↓(gE

Tϕ
([aE

Tϕ
, bE

Tϕ
], wE

Tϕ
) = gTϕ

(iE,Tϕ
↓[aE

Tϕ
, bE

Tϕ
], wTϕ

)

= gTϕ
([aTϕ

, bTϕ
], wTϕ

),

due to the naturality of Lie brackets with respect to push [7]. ��
Commutativity between immersion pull-back and Lie-derivative along the motion for covariant tensor

fields is shown by the next result.

Lemma 6 (Trajectory pull-back of Lie time-derivatives) The pull-back of the Lie time-derivative of a space-
time field sE

Tϕ
∈ C1(E ; Cov(TE)) on the trajectory is equal to the Lie time-derivative of its immersion pull-back

to the trajectory:

iE,Tϕ
↓

(
LvE

Tϕ
sE
Tϕ

)
= LvTϕ

(
iE,Tϕ

↓sE
Tϕ

)
.

Proof. The relation: ϕE
τ,t ◦ iE,Tϕ

= iE,Tϕ
◦ ϕ

Tϕ

τ,t implies commutativity between immersion pull-back and
pull-back along the motion of a space-time covariant tensor field over the trajectory. Indeed, setting aE

Tϕ
:=

iE,Tϕ
↑aTϕ

, bE
Tϕ

:= iE,Tϕ
↑bTϕ

, we have that

(ϕE
τ,t↓sE

Tϕ
)(aE

Tϕ
, bE

Tϕ
) = sE

Tϕ
(ϕE

τ,t↑aE
Tϕ

, ϕE
τ,t↑bE

Tϕ
)

= sE
Tϕ

(ϕE
τ,t↑iE,Tϕ

↑aTϕ
,ϕE

τ,t↑iE,Tϕ
↑aTϕ

)

= sE
Tϕ

(iE,Tϕ
↑ϕ

Tϕ

τ,t↑aTϕ
, iE,Tϕ

↑ϕ
Tϕ

τ,t↑bTϕ
)

= ϕ
Tϕ

τ,t↓
(

iE,Tϕ
↓sE

Tϕ

)
(aTϕ

, bTϕ
),

for all aTϕ
, bTϕ

∈ C1(Tϕ ; TTϕ). Taking ∂τ=t gives the result. ��
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Proposition 3 (Euler’s stretching formula) The material stretching tensor field is expressed, in terms of the
trajectory connection induced by a linear connection in the events manifold, by the formula:

1
2 LvTϕ

gTϕ
= 1

2∇Tϕ
vTϕ

gTϕ
+ Sym (gTϕ

◦ TorsTϕ )(vTϕ
) + Sym (gTϕ

◦ ∇Tϕ )(vTϕ
),

where all terms on the r.h.s. are tensorial in vTϕ
, with the exception of the third one which is a differential

operator.

Proof. By applying the formula in Proposition 1 to the metric tensor field gE
Tϕ

∈ C1(Tϕ, Cov(VE)) on the
immersed trajectory, we may write:

1
2 LvE

Tϕ
gE
Tϕ

= 1
2∇E

vE
Tϕ

gE
Tϕ

+ Sym
(

gE
Tϕ

◦ TorsE
)

(vE
Tϕ

) + Sym
(

gE
Tϕ

◦ ∇E
)

(vE
Tϕ

).

Then, pulling back from the events manifold to the trajectory manifold, taking into account the commuta-
tivity in Lemma 6 and the definition gTϕ

:= iE,Tϕ
↓gE

Tϕ
, recalling Definition 13 of material metric tensor field,

Definition 18 of trajectory connection and Lemmas 4, 5, we get the result. ��
Let us now assume that the ambient space connection ∇ in (S, g) is Levi-Civita, that is, metric preserving

and torsion-free, that is, ∇g = 0 and Tors(ax, bx) = 0 ∈ TxS for all ax, bx ∈ TxS.
This is the case for the usual Euclid connection by translation. The induced connection in the events man-

ifold is also metric and torsion-free and such is the material connection. The generalized Euler’s stretching
formula of Proposition 3 reduces then to the classical formula, extended to include lower dimensional continua:

1
2 LvTϕ

gTϕ
= Sym (gTϕ

◦ ∇Tϕ vTϕ
)

= gTϕ
◦ Sym (∇Tϕ vTϕ

) ∈ C1(Tϕ ; Sym(VTϕ)),

where Sym (∇Tϕ vTϕ
) := 1

2 (∇Tϕ vTϕ
+(∇Tϕ vTϕ

)A) ∈ C1(Tϕ ; Mix(VTϕ)), and (·)A denotes the adjoint accord-
ing to the material metric gTϕ

. The mixed form of the stretching tensor is equal to the gTϕ
-symmetric part of

the trajectory parallel derivative of the velocity field:

DTϕ
:= g−1

Tϕ
◦ 1

2 LvTϕ
gTϕ

= Sym (∇Tϕ vTϕ
).

The symbol D was first adopted by Truesdell and Noll in [27] to denote the symmetric part of the velocity
gradient for a 3D body. In our treatment, notation and results are revisited to distinguish material tensor fields
from spatial tensor fields and to extend the analysis to lower dimensional bodies.

Proposition 4 (Euler’s formula for volumetric stretching) The material volumetric stretching tensor field is
expressed, in terms of the trajectory connection induced by a linear connection in the events manifold, by the
formula

LvTϕ
μTϕ

= ∇Tϕ
vTϕ

μTϕ
+ Cycle(μTϕ

◦ TorsTϕ (vTϕ
) + μTϕ

◦ ∇Tϕ vTϕ
),

where μTϕ
is the volume form associated with the metric tensor field gTϕ

.

Proof. From the analysis developed in Sect. 3, we recall that the invariant Jo(vTϕ
) is defined by the identity

∇vTϕ
μTϕ

= Jo(vTϕ
)μTϕ

so that the following formula holds:

LvTϕ
μTϕ

= ∇Tϕ
vTϕ

μTϕ
+ J1(TorsTϕ (vTϕ

)) μTϕ
+ J1(∇Tϕ vTϕ

)μTϕ
.

��
All the terms at the r.h.s. are tensorial and such the term at the l.h.s. which is proportional to the volume

form μTϕ
with a proportionality factor defining the divergence of a tangent vector field:

div Tϕ (vTϕ
) = Jo(vTϕ

) + J1(TorsTϕ (vTϕ
)) + J1(∇Tϕ vTϕ

).

We remark that in this formula for the divergence, all terms on the r.h.s. are tensorial in vTϕ
, with the excep-

tion of the third one which is a differential operator. The previous formula provides the general expression of
the divergence of a tangent vector field in terms of a linear connection. For a metric and torsion-free connec-
tion and a volume form induced by the metric, it will be ∇vTϕ

μTϕ
= 0, and the formula for the divergence

specializes into the usual one:

div Tϕ (vTϕ
) = J1(∇Tϕ vTϕ

).



On Euler’s stretching formula in continuum mechanics 225

8 Coordinate reference systems

A so-called engineering reference system is a mobile reference system in which the basis of tangent vectors
at each point is got by normalizing the velocity vectors of a given orthogonal curvilinear coordinate system.
To evaluate the covariant derivatives as partial derivatives of coordinates, it is expedient to define the parallel
transport by declaring parallel-transported tangent vectors those with the same components in the mobile ref-
erence system. This parallel transport is path independent, and hence, a tangent vector can be extended to any
other base point in a neighborhood of the original base point by performing the parallel transport along any
path joining them. The torsion of the connection, evaluated on a pair of vectors, reads:

TorsTϕ (aTϕ
(e), bTϕ

(e)) = ∇Tϕ

aTϕ (e)bTϕ
− ∇Tϕ

bTϕ (e)aTϕ
− [aTϕ

, bTϕ
](e),

with the tangent vector fields aTϕ
, bTϕ

∈ C1(Tϕ ; TTϕ) built by path-independent parallel transport along

coordinate lines. Accordingly, ∇Tϕ aTϕ
= 0 and ∇Tϕ bTϕ

= 0 so that:

TorsTϕ (aTϕ
(e), bTϕ

(e)) = −[aTϕ
, bTϕ

](e).
For example’s sake, we consider a two-dimensional body in motion in a plane, a polar system of coordi-

nates and the two induced reference systems, the natural reference system, in which the basis vectors are the
velocities of the coordinate lines, and the engineering mobile reference system, with unitary radial and circum-
ferential basis vectors at each point. We denote by (ρ, θ) the pair of radial and circumferential coordinates. In
the following sections, the induced natural and normalized connections introduced in Sect. 6.3 will be adopted
to evaluate the Gram matrix associated with the covariant stretching tensor, viz. the matrix whose (i, j) entry
is the evaluation of the tensor on the corresponding pair of base vectors.

8.1 Natural connection

Let us now consider, in polar coordinates, a natural reference system with radial and circumferential basis
vectors ai , i = 1, 2 with a1 = aρ and a2 = aθ at each point, see Fig. 1. Adopting the natural connection, say
∇, by the vanishing of parallel derivatives and Lie brackets of basis vector fields,

∇aρ = 0, ∇aθ = 0, [aρ, aθ ] = 0,

we have:

Tors(aρ, aθ ) = ∇aρ aθ − ∇aθ aρ − [aρ, aθ ] = 0,

Fig. 1 Natural reference system
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and Euler’s formula writes:

1
2 LvTϕ

gTϕ
= 1

2∇vTϕ
gTϕ

+ Sym (gTϕ
◦ ∇vTϕ

).

To evaluate this expression, we set vTϕ
= vρ aρ + vθ aθ and observe that:

gTϕ
(aρ, aρ) = 1, gTϕ

(∇aρ vTϕ
, aρ) = ∇aρ vρ,

gTϕ
(aρ, aθ ) = 0, gTϕ

(∇aρ vTϕ
, aθ ) = ρ2 ∇aρ vθ ,

gTϕ
(aθ , aρ) = 0, gTϕ

(∇aθ vTϕ
, aρ) = ∇aθ vρ,

gTϕ
(aθ , aθ ) = ρ2, gTϕ

(∇aθ vTϕ
, aθ ) = ρ2 ∇aθ vθ .

Setting a1 = aρ and a2 = aθ , we have, for i, j = 1, 2:

∇vTϕ
gTϕ

(ai , a j ) = ∇vTϕ
(gTϕ

(ai , a j )) − gTϕ
(∇vTϕ

ai , a j ) − gTϕ
(∇vTϕ

a j , ai )

= ∇vTϕ
(gTϕ

(ai , a j )) = LvTϕ
(gTϕ

(ai , a j )).

Then,

1
2∇vTϕ

gTϕ
(aρ, aρ) = 1

2 LvTϕ
(gTϕ

(aρ, aρ)) = 0,

1
2∇vTϕ

gTϕ
(aρ, aθ ) = 1

2 LvTϕ
(gTϕ

(aρ, aθ )) = 0,

1
2∇vTϕ

gTϕ
(aθ , aρ) = 1

2 LvTϕ
(gTϕ

(aθ , aρ)) = 0,

1
2∇vTϕ

gTϕ
(aθ , aθ ) = 1

2 LvTϕ
(gTϕ

(aθ , aθ )) = 1
2 LvTϕ

ρ2 = ρ vρ.

The Gram matrix of the stretching is thus given by the following:

Gram( 1
2 LvTϕ

gTϕ
) =

[ ∇aρ vρ
1
2 (ρ

2 ∇aρ vθ + ∇aθ vρ)
1
2 (ρ

2 ∇aρ vθ + ∇aθ vρ) ρ2 ∇aθ vθ + ρ vρ

]
.

8.1.1 Examples

A constant radial velocity field vTϕ
:= (vρ aρ, 1), corresponding to vρ = α and vθ = 0, generates the

stretching:

Gram( 1
2 LvTϕ

gTϕ
) =

[
0 0
0 ρ α

]
,

which corresponds to a purely circumferential rate of elongation equal to α/ρ, vanishing at infinity and going
to infinity at the origin. A linear circumferential velocity field vS

ϕ = α aθ , corresponding to vρ = 0 and vθ = α,
generates a vanishing stretching and in fact represents an infinitesimal act of rotation about the origin.

8.2 Normalized connection

Let us now consider, in the polar system of coordinates, a mobile reference system with unitary radial and
circumferential basis vectors ai , i = 1, 2 with a1 = aρ = aρ and a2 = aθ = aθ /ρ at each point, see Fig. 2.

Preliminarily, we provide the evaluation of the Lie brackets of the basis vector fields.

Lemma 7 (Lie brackets) The Lie brackets of the basis vector fields of the mobile reference system are given
by the following:

[aθ , aρ](ρ, θ) = (1/ρ) aθ (ρ, θ).
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Fig. 2 Engineering reference system

Proof. The integral flows generated by unitary vector fields tangent to the polar coordinate lines are:

Fl
aρ

λ (ρ, θ) = (ρ + λ, θ),

Flaθ

λ (ρ, θ) = (ρ, θ + λ/ρ),

so that, in the natural polar reference system:

aρ(ρ, θ) = ∂λ=0 Fl
aρ

λ (ρ, θ) = (1, 0),

aθ (ρ, θ) = ∂λ=0 Flaθ

λ (ρ, θ) = (0, 1/ρ).

The latter vector is unitary since it has component 1/ρ on the circumferential tangent vector at (ρ, θ)
whose length is ρ. Let us now evaluate the Lie derivative:

Laθ
aρ = [aθ , aρ] = ∂λ=0 T (Flaθ

λ )−1 · (aρ ◦ Flaθ

λ ).

Being (Flaθ

λ )−1(ρ, θ) = (ρ, θ − λ/ρ), we get:

T (Flaθ

λ )−1 · (1, 0) = ∂μ=0 (Flaθ

λ )−1(ρ + μ, θ)

= ∂μ=0 (ρ + μ, θ − λ/(ρ + μ)) = (1, θ + λ/ρ2),

so that: [aθ , aρ](ρ, θ) = ∂λ=0 (1, θ + λ/ρ2) = (0, 1/ρ2) = (1/ρ) aθ (ρ, θ) and the result is proven. ��
Adopting the normalized reference system and the associated connection, say ∇, the parallel derivatives

of the normalized basis vector fields vanish:

∇aρ = 0, ∇aθ = 0.

Setting vTϕ
= vk ak , we have vρ = vρ and vθ = ρ vθ .

Then,

Tors(aρ, aθ ) = ∇aρ
aθ − ∇aθ

aρ − [aρ, aθ ] = −[aρ, aθ ].
With gTϕ

(ai , a j ) = δi j for i, j = 1, 2,

∇vTϕ
gTϕ

(ai , a j ) = ∇vTϕ
(gTϕ

(ai , a j )) = LvTϕ
(gTϕ

(ai , a j )) = 0,

and Euler’s formula writes:

1
2 LvTϕ

gTϕ
= Sym (gTϕ

◦ (Tors + ∇)vTϕ
),
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that is:

LvTϕ
gTϕ

(ai , a j ) = gTϕ
(Tors(vTϕ

, ai ), a j ) + gTϕ
(Tors(vTϕ

, a j ), ai )

+gTϕ
(∇vTϕ

· ai , a j ) + gTϕ
(∇vTϕ

· a j , ai ).

Taking into account the vanishing of parallel derivatives of basis vector fields and the formula for the
torsion, we have:

Tors(vTϕ
, ai ) = vk Tors(ak, ai ) = vk (∇ak ai − ∇ai ak − [ak, ai ])

= vk [ai , ak],
gTϕ

(Tors(vTϕ
, ai ), a j ) = vk gTϕ

(Tors(ak, ai ), a j )

= vk gTϕ
([ai , ak], a j ),

gTϕ
(∇vTϕ

· ai , a j ) = ∇ai vk gTϕ
(ak, a j ) = ∇ai v j .

Alternatively, the expression for the stretching may be obtained by the following direct computation:

LvTϕ
gTϕ

(ai , a j ) = LvTϕ
(gTϕ

(ai , a j )) − gTϕ
(LvTϕ

ai , a j ) − gTϕ
(LvTϕ

a j , ai )

= +(La j vk) gTϕ
(ak, ai ) + (Lai vk) gTϕ

(ak, a j )

− vk gTϕ
(Lak ai , a j ) − vk gTϕ

(Lak a j , ai )

= (La j vi ) + (Lai v j )

+ vk gTϕ
([ai , ak], a j ) + vk gTϕ

([a j , ak], ai ).

The Gram matrix of the stretching is then given by the following:

Gram( 1
2 LvTϕ

gTϕ
) =

[ ∇aρ
vρ

1
2 (∇aρ

vθ + ∇aθ
vρ)

1
2 (∇aρ

vθ + ∇aθ
vρ) ∇aθ

vθ

]

+
[

0 − 1
2 (vθ/ρ)

− 1
2 (vθ/ρ) vρ/ρ

]
.

This formula shows that, in this orthonormal reference system, the Gram matrix of the stretching is the
sum of a familiar term, which is the symmetric part of the Jacobi matrix of the components of the velocity
field and of a corrective term which takes into account the curvilinear nature of the coordinates.

The equivalence of the expressions of the stretching, in terms of the connections induced by the natural
and by the normalized reference system, may be deduced by taking account of the relations:

vρ = vρ, aρ = aρ

vθ = ρ vθ , aθ = ρ aθ

∇aρ
vθ = ∇aρ (ρ vθ ) = vθ + ρ ∇aρ vθ ,

∇aθ
vρ = (1/ρ)∇aθ vρ,

and of the consequent equalities:

1
2 LvTϕ

gTϕ
(aρ, aρ) = 1

2 LvTϕ
gTϕ

(aρ, aρ),

1
2 LvTϕ

gTϕ
(aρ, aθ ) = ρ 1

2 LvTϕ
gTϕ

(aρ, aθ ),

1
2 LvTϕ

gTϕ
(aθ , aρ) = ρ 1

2 LvTϕ
gTϕ

(aθ , aρ),

1
2 LvTϕ

gTϕ
(aθ , aθ ) = ρ2 1

2 LvTϕ
gTϕ

(aθ , aθ ).
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9 Conclusions

Continuum mechanics is primarily concerned with time changes of metric properties due to an evolution
process along a trajectory. This is the very realm of Kinematics, and investigating on the convective time-rate
of change of metric properties is fundamental for the statement of basic principles of CM. So, according to
Johann Bernoulli (letter on 26 February 1715 to Pierre Varignon), equilibrium has to be tested by ascertaining
the vanishing of the virtual power performed by the force system, acting on the body at a given time, against
any virtual velocity field which is an infinitesimal isometry, characterized by the vanishing of the associate
stretching. The notion of stretching is of central importance in CM and such is then Euler’s formula for its
computation as the symmetric part of the parallel derivative of the velocity field, since it provides the implicit
representation of the subspace of infinitesimal isometries (rigidity virtual velocities). The Lagrange multipliers
corresponding to the constraint of rigidity are stress fields in the body [7]. Euler’s original statement of the
formula was performed according to Euclid connection, corresponding to the path-independent parallel trans-
port by translation. The formula for the stretching has here been revisited in the context of Riemann manifolds
endowed with an arbitrary linear connection. This treatment extends also the one by Killing who considered the
metric and torsion-free Levi-Civita connection. In the extended formula, the torsion of the connection and the
parallel derivative of the metric field are thus involved. An analogous extended formula has been provided for
the volumetric stretching. The results have been applied to the evaluation of the Gram matrix of the stretching,
either in a natural system of polar coordinates or in the corresponding engineering normalized mobile reference
system in which the induced connection is not torsion-free. The geometric approach adopted in this paper is
in line with a geometrization program of CM carried out in [28,29,25,26,30,31] based on mathematical tools
collected in [7].
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