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Abstract. A general model of phase transition phenomena in a nonlinear elastic
medium undergoing large deformations is developed on the basis of a critical revision
of the formal treatment recently contributed by M. Gurtin in discussing the role of
configurational forces in the mechanics of materials. The analysis is carried out in
the context of a metric approach to material behavior recently developed by the
authors, by considering the phase-transition evolution as a propagating shock wave
in the material. By reversing Gurtin’s interpretation of the relevant balance law,
a general expression of the dissipation induced by the evolution of phase-transition
interfaces is provided in terms of the jump of Eshelby’s stress tensor across the
interfaces. This result is a correction of the classical one due to Eshelby. The
specialization to fracture mechanics provides the basis for the introduction of James
Rice’s J-integral for the analysis of non-cohesive and cohesive crack propagation.
The analysis of cohesive crack propagation shows that the general expression of the
dissipation provides the driving force according to the Barenblatt nonlinear model
for the cohesion versus crack-opening constitutive law.
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1 Introduction

The mechanical model of a body undergoing phase transition phenomena is based
on the analysis of shock waves propagation in the medium since phase-transition
fronts evolve according to the kinematical properties of singular surfaces. We present
here a theory based on a metric description of material behavior

16
. The motion of

evolving phase-transition fronts in the material is simulated by the functional de-
pendence of the free energy on a field of piecewice constant parameters, labeling the
different material phases in the body, which meets a suitable time evolution law.
To get the relevant balance law, we premise a detailed account of the formulation
of the virtual work theorem in mechanics with a detailed description of the regu-
latity properties of the fields involved in the analysis. This presentation provides
the necessary background to deal with the discontinuous virtual velocity fields in-
volved in the balance law due to the phase-transition shock wave propagation in the
material. The equilibrium condition relevant to the phase-transition phenomena is
then derived, on the basis of the assumed expression of the free energy density. The
transport theorem provides the suitable tool to derive the espression of the singular
term in the time-rate of the free energy of the body. The Maxwell jump condition
at singular surfaces and Hadamard’s condition for shock wave fronts provide the
tools for the evaluation of the virtual power expended in the motion of the singular
phase-interfaces. In the balance law, the dissipation associated with the propa-
gation of phase transition fronts is expressed in terms of the jump of the flux of
Eshelby’s stress tensor field across the singular interfaces. The theory is applied to
fracture mechanics for the analysis of non-cohesive and cohesive crack propagation.
It provides a foundation for the introduction of the J-integral method in fracture
mechanics. The invariance property of the J-integral is discussed by providing a
general formula for the divergence of Eshelby’s stress tensor field.

2 Dynamical equilibrium

2.1 Bodies and deformations

A material body is a set of particles which can be identified with the points
m ∈ M of a differentiable submanifold, referred to as the reference placement, em-
bedded in the ambient euclidean space {S ,g} endowed with the standard (constant)
metric tensor field g(x) ∈ BL (TxS, TxS ;R) . We denote by TS the tangent bundle
to the euclidean space, made up of replicae of the tangent space TxS = R3 at each
point x ∈ S . In a mechanical theory, experimental tests are assumed to provide
metric measurements of the lenght of the linear material fibers (tangent vectors) at
the points of a placement ϕ(M) ⊂ S of the body in the ambient space, described by
a diffeomorphic configuration map ϕ ∈ C1(M ; S) . The results of metric measure-
ments can be interpreted by substituting the standard metric tensor g in M with
a configuration-induced metric tensor (ϕ∗g)(m) ∈ BL (TmM, TmM ;R) defined, at
any m ∈ M , by:

(ϕ∗g)(a,b) := g(daϕ, dbϕ) , ∀ a,b ∈ TmM .

Here the differential dϕ(m) ∈ BL (TmM ; Tϕ(m)S) of the configuration map at m ∈
M is the linear map which transforms a vector h ∈ TmM into the corresponding
vector dϕ(m)h ∈ Tϕ(m)S . In differential geometric terms the tensor field ϕ∗g is
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called the pull-back of the metric tensor field g according to the diffeomorphism
ϕ ∈ C1(M ; S) . The metric tensor induces an algebric isomorphism between tensors
a ∈ BL (TmM, TmM ;R) and linear operators A ∈ BL (TmM ; TmM) according to
the relation α = gA defined by the identity

α(a,b) = g(Aa,b) , ∀ a,b ∈ TmM .

The relation ϕ∗g = g(dϕT dϕ) defines the Piola-Green operator D(ϕ) := dϕT dϕ ∈
BL (TmM ; TmM) . The configuration map ϕ ∈ C1(M ; S) changes the volume of
the body according to the relation ϕ∗µ = det(dϕ)µ . In the sequel 〈•, •〉 is the
duality pairing between dual fields and 〈•, •〉g is the inner product between linear
operators induced by the metric g .

2.2 Virtual Work

In mechanics the axiom of dynamical equilibrium states that, at any configuration
ϕ ∈ C1(M ; S) of a body M , the system of forces acting on it, including inertial
force systems and constraint reactions, must perform a null virtual power for any
virtual motion of the body which starts as an infinitesimal isometry. A celebrated
result stated by Leonhard Euler and extended to riemannian manifolds by Wilhelm
Killing around the end of the XIX century, states that infinitesimal isometries are
velocity fields characterized by the vanishing of the symmetric part of their spatial
derivative. A formal statement of this principle, denoting by Vrig the linear space
of infinitesimal isometries from the current placement ϕ(M) , is expressed by the
variational condition

〈f ,v〉 = 0 , ∀v ∈ Vrig .

Let ψτ,t ∈ C1(ϕ(M) ; S) be a virtual spatial flow of the body M starting from
ϕ(M) at the (pseudo) time t , that is such that

(ψt,t ◦ϕ)(m) = ϕ(m) , ∀m ∈ M .

The initial velocity field v ∈ Tϕ(M)S of the virtual flow ψτ,t is defined by:

v = ψ̇ =
d

dτ

∣∣∣∣
τ=t

ψτ,t ,

and we set ϕ̇ := v ◦ϕ . An infinitesimal isometry is characterized by the vanishing
of the Lie derivative of the space metric tensor, defined by

Lvg := (ψ∗g)̇ :=
d

dτ

∣∣∣∣
τ=t

ψ∗
τ,tg .

In a riemannian manifold with Levi-Civita connection ∇ we have that

1
2
Lvg = g(sym∇v) .

In particular this formula holds in the euclidean space {S ,g} with ∇ denoting the
ordinary derivative. Since the differential operator sym∇ fulfills Korn’s inequality,
its range is closed and its kernel is finite dimensional if a suitable topology is chosen
in the kinematical space

12,15
. In essence, we need a pre-hilbertian topology which
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requires that the kinematic fields v be square integrable on the current placement
ϕ(M) and that the tangent deformation sym∇v be a piecewice square integrable
distribution on ϕ(M) on a patchwork Tv(ϕ(M)) of nonoverlapping submanifolds
covering ϕ(M) . This patchwork may vary from one kinematic field to another
one and is dubbed the regularity patchwork of the kinematic field. The pre-Hilbert
space endowed with the topology induced by the mean square norm of the kinematic
fields and of the regular part of the corresponding tangent deformation is denoted
by Vϕ(M) , or simply by V . The subspace Vrig ⊂ V of rigid kinematic fields is
characterized by the property that sym∇v vanishes on every element of the reg-
ularity patchwork Tv(ϕ(M)) . Force systems acting on the body at the placement
ϕ(M) belong to the linear topological dual space V∗ of V . The kinematic fields
v ∈ V which share a common regularity patchwork T (ϕ(M)) form a linear closed
subspace V(T (ϕ(M))) , or simply VT , dubbed the T -conformity kinematic space.
By adding homogeneous boundary conditions on ∂T (ϕ(M)) , by means of bounded
linear operators, we define a closed subspace L(T (ϕ(M))) , briefly LT , dubbed the
conformity kinematic space. Hence LT ⊂ VT is a Hilbert space for the topology
inherited by V . A load system ` ∈ L∗T acting on the body placed at ϕ(M) , is an
element of the Hilbert space L∗T topological dual of LT . If the load ` ∈ L∗T meets
the equilibrium condition

〈`,v〉 = 0 , ∀v ∈ LT ∩ Vrig ,

the Stefan Banach’s closed range theorem
17

ensures then that there exists a ( M-
square integrable) field of Lagrange multipliers T (a Cauchy stress field), whose
point-values are g-symmetric operators T(m) ∈ BL (Tϕ(m)S ; Tϕ(m)S) on ϕ(M) ,
fulfilling the virtual work identity

〈`,v〉 =

∫
T (ϕ(M))

〈T, sym∇v〉g µ , ∀v ∈ LT .

We emphasize that the assumption of g-symmetry of Cauchy stress fields is a natural
choice due to the symmetry of the tangent deformation operator sym∇v and not
a provable theorem, as claimed in most treatments of continuum mechanics. Simply
the choice of non g-symmetric Cauchy stress fields is not a convenient one, since
the ineffective skew-symmetric part of it does not perform virtual work for the
symmetric tangent deformation operator. Moreover integration by parts leads to
a representation of the force system which includes body couples per unit volume
equal to the skew-symmetric part of the stress field

13
. Let the load ` ∈ L∗T be

composed by a body force field b ∈ L2(ϕ(M) ; V ) and by a boundary traction field
t ∈ L2(∂T (ϕ(M)) ; V ) , according to the definition

〈`,v〉 :=

∫
T (ϕ(M))

g(b,v)µ+

∫
∂T (ϕ(M))

g(t,v)µ , ∀v ∈ V .

Any stress field T in equilibrium with ` has then a distributional divergence with
a (ϕ(M) -square integrable) regular part div T = −b

13
.

Since the virtual work∫
Tv(ϕ(M))

〈T, sym∇v〉g µ , v ∈ V ,
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is well-defined for any (nonconforming) kinematic field v ∈ V , by making recourse
to Green’s formula∫

Tv(ϕ(M))

〈T, sym∇v〉g µ =

∫
Tv(ϕ(M))

g(−div T,v)µ+

∫
∂Tv(ϕ(M))

g(Tn,v)µ ,

where n is the outward unit normal, we may define the reactive force system r(t,T)
by the relation

〈r,v〉 :=

∫
Tv(ϕ(M))

〈T, sym∇v〉g µ−
∫
Tv(ϕ(M))

g(b,v)µ−
∫

∂Tv(ϕ(M))

g(t,v)µ

=

∫
∂Tv(ϕ(M))

g(Tn− t,v)µ .

From the virtual work identity we infer the well-known characteristic property of
linear constraints:

〈r,v〉 =

∫
∂Tv(ϕ(M))

g(Tn− t,v)µ = 0 , ∀v ∈ LT .

2.3 Referential dynamical equilibrium

Recalling the formula 1
2
Lvg = g(sym∇v) , the pull-back of the tangent deforma-

tion operator from the actual placement ϕ(M) to the reference one M is provided
by

ϕ∗(g(sym∇v)) = ϕ∗( 1
2
Lvg) = 1

2
(ϕ∗g)̇ = 1

2
(g(dϕT dϕ))̇

= g(sym (dϕT d(v ◦ϕ))) ,

being (dϕ)̇(m) = d(v ◦ϕ)(m) .

To leave the virtual work invariant, the pull back of the Cauchy stress field must
be performed in a contravariant way. To this end we introduce the g-symmetric
Kirchhoff stress K(m) ∈ BL (Tϕ(m)S ; Tϕ(m)S) by the formula K := Jϕ T , where
Jϕ = det(dϕ) is the Jacobian of the configuration map. The Piola-Kirchhoff stress
S(m) ∈ BL (TmM ; TmM) is then defined by imposing the invariance:

〈K, sym∇v〉g ◦ϕ = 〈S, sym (dϕT d(v ◦ϕ))〉g = 〈S, dϕT sym (∇v) dϕ〉g ,

since, by the chain rule, we have that d(v ◦ϕ)(m) = ∇v(ϕ(m)) dϕ(m) .

The (g-symmetric) Piola-Kirchhoff stress is then related to the Kirchhoff stress
by the correspondence:

K ◦ϕ = dϕS dϕT ⇐⇒ S = dϕ−1 (K ◦ϕ) dϕ−T ,
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and the virtual work identity may be written as

〈f ,v〉=
∫
Tv(ϕ(M))

〈T, sym∇v〉g µ

=

∫
Tv(ϕ(M))

J−1
ϕ 〈K, sym∇v〉g µ

=

∫
T(v◦ϕ)(M)

(〈K, sym∇v〉g ◦ϕ)µ

=

∫
T(v◦ϕ)(M)

〈S, 1
2
(dϕT dϕ)̇ 〉g µ

=

∫
T(v◦ϕ)(M)

〈dϕS, (dϕ)̇ 〉g µ .

By assuming that the divergence field div (dϕS) be piecewice square integrable
according to a partition Tdiv , the Green’s formula (integration by parts) yields

〈f ,v〉=
∫
T (M)

〈dϕS, (dϕ)̇ 〉g µ

= −
∫
T (M)

〈div (dϕS), ϕ̇ 〉g µ +

∫
∂T (M)

〈(dϕS)n, ϕ̇ 〉g (µn)

where T (M) is a partition finer than both Tdiv and T(v◦ϕ) , and µn is the area-form
induced on ∂M by the volume-form µ on M according to the relation

(µn)(a,b) := µ(n, a,b) , ∀ a,b ∈ Tm∂M .

The system of referential forces may then be represented by a field of body forces
−div (dϕS) and a field of surface tractions (dϕS)n . In terms of the Piola stress
field P := dϕS they may be rewritten as −div P and Pn .

2.4 Constitutive behavior

We assume that the constitutive behavior of a single-phase material body
16

is
characterized by a natural placement M , which is a differentiable submanifold of
the euclidean space {S ,g} , a metric tensor field gM ∈ BL (TM, TM ;R) , which
describes the anelastic deformation of the body and a scalar field W ∈ C1(M ;R) ,
which provides the Helmholtz free energy per unit volume in M . At each material
point m ∈ M , the free energy density is assumed to be a differentiable function of
the configuration-induced metric and of the anelastic metric:

Wm(ϕ∗g,gM) .

Evolutive processes in which the anelastic metric tensor field gM does not change
are said to be purely elastic.
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2.4.1 Phase transition

To describe the evolution of phase transition phenomena in multi-phase material
bodies, we consider a partition of the natural placement M of the body into a
finite family T (M) of non-overlapping submanifolds. Each element of the partition
T (M) is constituted by a single-phase material whose constitutive properties are
described by a functional dependence of the free energy density on a scalar field
p ∈ R . Accordingly the free energy density of the multi-phase material is assumed
to be functionally dependent on a scalar field p : M 7→ R which is piecewise constant
on M according to the given partition. We then assume for the free energy density
the functional dependence

Wm(ϕ∗g,gM, p) ,

the separate dependence on m allowing for each single-phase to be non-homogeneous.
The global free energy of the body is then given by

E(ϕ∗g,gM, p) :=

∫
M

Wm(ϕ∗g,gM, p)µ .

The evolution of phase transition is described by a flow χτ,t ∈ C1(M ; M) which
modifies the reference partition T (M) into an evolving one χτ,t(T (M)) at time
τ ∈ I . During the evolution, the time dependent phase-labeling field pτ : M 7→ R
retains its constant value in each element of the partition, at any time:

pτ = pt ◦ χt,τ , ∀ τ ∈ I .

2.4.2 Elastic energy rate due to phase transition evolution

To provide a mathematical formulation of the dissipation phenomena due to
phase transition, we consider a virtual motion of the body in the ambient space
S described by a flow ψτ,t ∈ C1(ϕ(M) ; S) starting at the current configuration
ϕ ∈ C1(M ; S) at time t ∈ I . The time dependence of the free energy density is
expressed by

Wτ := W ((ψτ,t ◦ϕ)∗g ,gMτ , pt ◦ χt,τ ) ,

and the free energy of the body at time τ ∈ I is

Eτ :=

∫
M

Wτ µ .

Let us now evaluate the time-rate of the free energy of the body.
In this respect it is important to notice that the time derivative of the free energy

density Wτ cannot be performed in a classical way since the configuration-induced
metric (ψτ,t ◦ ϕ)∗g and the phase-describing field pt ◦ χt,τ undergo a jump at the
points m ∈ M which are crossed by the evolving interfaces at time τ ∈ I . The
corresponding Dirac’s impulses at the interfaces may be conveniently evaluated by
adopting the following procedure. By additivity, the integral over M is written as
the sum of integrals over the elements Pτ of the partition Tτ (M) = χτ,t(T (M)) at
time τ ∈ I :

Eτ =

∫
Tτ (M)

Wτ µ :=
∑ ∫

Pτ

Wτ µ .
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Then the time derivative is evaluated by making recourse to the transport formula:

∂τ=t

∫
Pτ

Wτ µ =

∫
P

Ẇµ+

∫
P
Lχ̇(Wµ) .

where Lχ̇(Wµ) is the Lie derivative of the free energy volume-form Wµ along

the phase-transition describing flow χτ,t ∈ C1(M ; M) , starting at time t ∈ I with

propagation speed χ̇ ∈ C1(M ; TM) . By the formula
14 Lχ̇(Wµ) = L(W χ̇)µ =

div (W χ̇)µ and the divergence theorem, we get the expression

Ė =

∫
T (M)

Ẇµ+

∫
T (M)

Lχ̇(Wµ) =

∫
T (M)

Ẇµ+

∫
T (M)

L(W χ̇)µ

=

∫
T (M)

Ẇµ+

∫
T (M)

div (W χ̇)µ =

∫
T (M)

Ẇµ+

∫
∂T (M)

Wg(χ̇,n) (µn) ,

where µn is the area-form induced on the surfaces ∂T (M) by the volume form µ
in M . Since the flow χτ,t ∈ C1(M ; M) leaves the boundary ∂M invariant, we have
that g(χ̇,n) = 0 on ∂M .

Then, defining the jump [[W ]] = W+−W− across the phase-transition interfaces
and setting n = n− , the outward normal to ∂P− , we get the final result:

Ė =

∫
T (M)

Ẇ µ−
∫
I
[[W ]] vχ (µn) ,

where I is the set of phase-transition interfaces traveling with normal speed vχ =
g(χ̇,n) . Since the normal speed points towards the P+ phase, the impulsive term,
provided by the integral over the interfaces, measures the rate of decrease of the free
energy due to the motion of phase-transition fronts.

2.5 Dissipation due to phase transition

Phase-transition phenomena are characterized by the continuity of the configu-
ration map with a possible finite jump of its differential across the transition fronts.
These singular surfaces are shock-waves and their propagation requires a dissipation
of energy.

2.5.1 Kinematics of shock waves

To deal with discontinuity surfaces traveling in the material body, it is com-
pelling to consider the general case in which the configuration map ϕ ∈ C0(M ; S)∩
C1(T (M) ; S) is continuous on M and continuously differentiable in each element of
the partition T (M) whose interfaces may travel in the material according to a flow
χτ,t ∈ C1(M ; M) . By continuity, the derivatives of ϕ along tangent directions on
each side of the interfaces I of T (M) are equal:

dtϕ
+(m) = dtϕ

−(m) , ∀ t ∈ TmI .

It follows that the differential dϕ(m) ∈ BL (TmM ; Tϕ(m)S) must meet at the in-
terfaces the Maxwell jump condition:

[[dϕ]] = [[dϕ]]n⊗ n .
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Then, across a shock wave front, the configuration map is continuous and its differ-
ential may undergo a finite jump. The spatial speed (ϕ ◦χ)̇ of the points traveling
on the shock wave, propagating in the material with speed χ̇ ∈ C1(M ; TM) , may
be evaluated, by the Leibniz rule, on each side of the shock wave to get:

(ϕ ◦ χ)̇ = ϕ̇+ dχ̇ϕ = v ◦ϕ+ dχ̇ϕ .

Since the l.h.s. is continuous across the interface, the following jump condition must
be met:

[[v]] ◦ϕ+ [[dϕ]] χ̇ = 0 .

From the Maxwell jump condition we then get the Hadamard condition for shock
waves:

[[v]] ◦ϕ+ vχ [[dϕ]]n = 0 .

This condition tells us that the velocity field will undergo, across the shock wave
front, a finite jump equal to the opposite of the finite jump of the normal derivative
of the configuration map times the normal speed of propagation of the shock wave.
As shown below, the Hadamard condition plays a basic role in the evaluation of the
dissipation induced by evolving phase transition interfaces.

2.5.2 Evolution problem

The equilibrium of the body at the current configuration is expressed by the
virtual work condition, which, in the reference placement, is written as

〈f ,v〉=
∫
T(v◦ϕ)(M)

〈S,D(ϕ)̇ 〉g µ , ∀ v ∈ V

where v = ψ̇ ∈ V is the initial speed along the virtual trajectory described by the
flow ψτ,t ∈ C1(ϕ(M) ; S) and D(ϕ)̇ := ∂τ=t(D(ψτ,t ◦ϕ) .

Let us now assume that the virtual speed v ∈ V be compatible with the nor-
mal speed of the phase-transition interfaces traveling according to the flow χτ,t ∈
C1(M ; M) . This means that the phase-describing partition T (M) is a regularity
patchwork for the virtual speed v ∈ C1(T (M) ; S) and that it fulfils the Hadamard
condition for shock waves:

[[v]] ◦ϕ+ vχ [[dϕ]]n = 0 ,

at the interfaces I of the partition T (M) . Let us express the free energy in terms
of operators W (D(ϕ),∆, p) , with g∆ = gM . The equilibrium condition is then
obtained by imposing the constitutive requirement S = d1W and setting SM :=
−d2W . The time derivative in each element P of T (M) is given by

(W (D(ϕ),∆, p))̇ := ∂τ=t(W (D(ψτ,t ◦ϕ),∆τ , pτ ))

= 〈d1W,D(ϕ)̇〉g + 〈d2W, ∆̇〉g

= 〈S,D(ϕ)̇〉g − 〈SM, ∆̇〉g ,

since ṗ = 0 due to the constancy of pτ in each Pτ at any time τ ∈ I .



Variational Formulations in Mechanics: Theory and Applications

The equilibrium condition may then be written as

〈f ,v〉=
∫
T (M)

〈S,D(ϕ)̇ 〉g µ

=

∫
T (M)

Ẇ µ+

∫
M
〈SM, ∆̇〉g µ

= Ė +

∫
I
[[W ]] vχ (µn) +

∫
M
〈SM, ∆̇〉g µ .

The virtual work of the force system acting on the body can be split into the sum
of two contributions. The former is the virtual work performed by the loading
` ∈ L∗T in correspondence of the virtual velocity v ◦ ϕ ∈ C1(T (M) ; S) . The latter
is the virtual work performed by the reactive forces r acting on the faces of each
phase-transition interface due to the finite jump of the virtual velocity across the
phase-transition interfaces:

〈f ,v〉 = 〈`,v〉+ 〈r,v〉 .

The boundary equilibrium condition at the interfaces implies that [[Pn]] = 0 , and
hence the reactive term is given by

〈r,v〉= −
∫
I
[[〈Pn,v ◦ϕ〉]]g (µn) = −

∫
I
〈Pn, [[v]] ◦ϕ〉g (µn) .

The minus sign above is due to the usual notation [[v]] = v+−v− with n = n−

the outward normal to ∂P− . The equilibrium condition may then be written as

〈`,v〉= Ė +

∫
I
[[W ]] vχ (µn) +

∫
I
〈Pn, [[v]] ◦ϕ〉g (µn) +

∫
M
〈SM, ∆̇〉g µ .

Imposing the fulfilment of Hadamard’s condition for shock waves at the interfaces
I of phase-transition:

[[v]] ◦ϕ+ vχ [[dϕ]]n = 0 .

we get the following formula for the virtual power balance law:

〈`,v〉= Ė +

∫
I
([[W ]]− g(Pn, [[dϕ]]n)) vχ (µn) +

∫
M
〈SM, ∆̇〉g µ ,

to hold for all spatial speed v ∈ C1(T (M) ; S) and for all phase-transition speed
χ̇ ∈ C1(M ; TM) fulfilling Hadamard’s condition.

Now, observing that W = g(Wn,n) , we introduce the Eshelby’s tensor:

Y := W I− dϕTP = W I− dϕT dϕS ,

and write the virtual power balance law as

〈`,v〉= Ė +

∫
I
g([[Y]]n,n) vχ (µn) +

∫
M
〈SM, ∆̇〉µ .
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Then from the properties

g(n, t) = 0 =⇒ g([[W ]]n, t) = [[W ]]g(n, t) = 0 ,

g(n, t) = 0 =⇒ g([[dϕT ]]Pn, t) = g(Pn, [[dϕ]] t)

=g(Pn, [[dϕ]] (n⊗ n) t) = g(Pn, [[dϕ]]n)g(n, t) = 0 ,

the latter being a consequence of Maxwell jump condition, we infer that

g(n, t) = 0 =⇒ g([[Y]]n, t) = 0 ,

that is, the flux of the jump of Eshelby’s tensor at an interface is directed along the
normal to the interface. Hence, being vχ = g(χ̇,n) , we infer the equality

g([[Y]]n,n) vχ = g([[Y]]n, χ̇) ,

and the virtual power balance law may be rewritten as

〈`,v〉 = Ė +

∫
I
g([[Y]]n, χ̇) (µn) +

∫
M
〈SM, ∆̇〉g µ .

This result may be phrased by stating that the (virtual) power performed by the
applied load is equal to the (virtual) increase in free energy plus the (virtual) dissi-
pation due to the evolution of phase transition and to the anelastic deformation rate.
In the actual motion, we get a mechanical statement of the principle of conservation
of the power expended.

Remark

Eshelby’s tensor Y = W I − dϕT dϕS is not g-symmetric, but symmetry holds
with respect to the metric (dϕTg)(m) ∈ BL (TmM, TmM ;R) defined at m ∈ M
by

(dϕTg)(a,b) := g(dϕ−Ta, dϕ−Tb) , ∀ a,b ∈ Tm(M) .

This property is a direct consequence of the g-symmetry of the Piola-Kirchhoff
stress tensor S since

(dϕTg)(dϕT dϕSa,b) = g(dϕ−T dϕT dϕSa, dϕ−Tb) = g(Sa,b) .

Eshelby’s tensor is then symmetrizable and enjoys all the useful properties of a
symmetric operator: it has a spectral representation with real eigenvalues since there
exists in TmM a principal basis of mutually orthogonal eigenvectors according to
the metric (dϕTg)(m) . Setting C = dϕT dϕ the symmetry of Eshelby’s tensor can

be written as YC = CYT , a result quoted by Epstein and Maugin
2
.

Remark

The previous expression of the virtual power balance law is based on the analysis
developed by Morton Gurtin, in discussing the role of what he calls configurational
forces (formula 1-6)

6
. Gurtin’s formula is derived under the assumption of fixed
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kinematic boundary conditions, and vanishing body forces and anelastic deformation
rate so that 〈`,v〉 = 0 and ∆̇ = 0 . In our notations, his formula reads

−Ė = −
∫
T (M)

〈S,D(ϕ)̇ 〉g µ+

∫
I
[[W ]]g(χ̇,n) (µn) ,

to hold for all v ∈ C1(T (M) ; S) and χ̇ ∈ C1(M ; TM) fulfilling Hadamard’s condi-
tion for shock waves on I . This is equivalent to

−Ė =

∫
I
g([[Y]]n, χ̇) (µn) =

∫
I
g([[Y]]n,n) vχ (µn) .

He then assumes that Ė = 0 for all vχ concluding that g([[Y]]n,n) = 0 , a con-
dition which he claims to be often referred to as the Maxwell relation (but it has
in fact no connection with the Maxwell jump condition illustrated above). From
the property g([[Y]]n, t) = 0 for all t such that g(n, t) = 0 , he then concludes
that [[Y]]n = 0 at phase-transition interfaces. We must confess to be unable to
find a physical motivation for Gurtin’s assumption that Ė = 0 for all vχ . As a
consequence, his conclusion that g([[Y]]n,n) = 0 and [[Y]]n = 0 cannot be agreed
on, since it implies that the evolution of the phase-transition interfaces requires no
power to be expended, despite of experimental evidences in solid state physics and
fracture mechanics. Reasoning in the opposite direction, we are led to conclude that
the singular term ∫

I
g([[Y]]n, χ̇) (µn) , χ̇ ∈ C1(M ; TM) ,

provides the (virtual) power dissipated in the motion of the evolving phase-transition
interfaces.

2.6 Divergence of Eshelby’s stress tensor

We provide hereafter the expression of the divergence of Eshelby’s tensor in each
phase of the multi-phase material, since the vanishing of the divergence is at the
basis of the invariance property of the J-integral in fracture mechanics.

Since in each material phase the property p is constant, we may assume the
following reduced functional dependence for the free energy density:

W (D(ϕ)(m),∆(m),m) .

Evaluating the spatial derivative in a direction h ∈ TmM , by the Leibniz rule we
have that

g(dW,h) = 〈d1W, dhD(ϕ)〉g + 〈d2W, dh∆〉g + g(d3W,h) ,

where dW is the total gradient and diW , i = 1, 2, 3 are the partial gradients. By
the formula dW = div (W I) we may write

g(d3W,h) + 〈d2W, dh∆〉g = g(div (W I),h)− 〈d1W, dhD(ϕ)〉g ,
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which is the formula prodromic to the classical Eshelby’s one. Now in terms of the
Piola tensor field P we have that

〈d1W, dhD(ϕ)〉g = 〈S, dhD(ϕ)〉g = 〈P, dh dϕ〉g .

Accordingly, the formula above becomes

g(d3W,h)− 〈SM, dh∆〉g = g(div (W I),h)− 〈P, dh dϕ〉g .

Hence, recalling that the divergence of a field A ∈ C1(M ;BL (TM ; TM)) is the
vector field div A ∈ C0(M ; TM) defined by

g(div A,v) := div (ATv)− 〈A, dv〉g , ∀v ∈ C1(M ; TM) ,

observing that dhdϕ = d(dhϕ) and setting A = P and v = dhϕ , we get

〈P, dh dϕ〉g = 〈P, d dhϕ〉g = div (PT dhϕ)− g(div P, dhϕ) .

The differential equilibrium condition, under a body force field b , and the diver-
gence formula again, with A = dϕT P and v = h , imply that

div P = −b , div (PT dhϕ) = div ((PT dϕ)h) = g(div (dϕT P),h) .

It follows that

g(d3W,h)− 〈SM, dh∆〉g = g(div (W I− dϕT P),h)− g(b, dhϕ) ,

and, in terms of the Eshelby’s tensor Y := W I− dϕT P , we may write

g(div Y,h) = g(dW,h)− 〈S, dhD(ϕ)〉g + g(b, dhϕ)

= g(d3W,h)− 〈SM, dh∆〉g + g(b, dhϕ) .

In an homogeneous elastic phase, under homogeneous anelastic metric and no body
forces, we have that div Y = 0 .

3 Small displacement formulation

Many engineering applications can be dealt with by a geometrically linearized
formulation. To specialize the previous theory to this important class of problems,
it is convenient to re-formulate the analysis in terms of the displacement field u ∈
C0(M ; TS)∩C1(T (M) ; TS) defined by u(m) := ϕ(m)−m , so that du = dϕ−I in
T (M) . For the jump across the phase-transition interfaces I we have the equality
[[du]] = [[dϕ]] and hence the Eshelby’s stress tensor can be equivalently defined in
terms of displacement field as

Yu := W I− duTP = W I− dϕTP + P = Y + P ,

with [[Yu]]n = [[Y]]n since [[Pn]] = 0 .
In the geometrically linearized theory, the reference and the actual placements

of the body are taken to be coincident so that the Piola stress P and the Cauchy
stress T may be identified. Accordingly the Eshelby stress tensor takes the form

Yu = W I− duTT ,

and its divergence is given by

g(div Yu,h) = g(d3W,h)− 〈SM, dh∆〉g + g(b, dhu) .
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3.1 Crack propagation

The evaluation of what in fracture mechanics is commonly dubbed the driving
force on traveling cracks can be based on a suitable specialization of the general
expression of the dissipation contributed above. To this end, we consider the motion
of a crack traveling in the material. Assuming that the crack-tip moves with a
translational speed χ̇(m) = χ̇d directed along its axis (labeled by the unit vector
d ), and writing the dissipation as F χ̇ , the driving force F is given by the relation

F =

∫
I
g([[Y]]n,d) (µn) =

∫
I
g([[W ]]n,d) (µn)−

∫
I
g(Pn, [[ddϕ]]) (µn) ,

where n is the outward normal oriented from the crack towards the surrounding
material. The result embodied in this formula is in contrast to the usual statement
according to which the driving force on a translating defect is provided by the
projection along the travel direction of the outward flux of Eshelby’s stress tensor
thru the boundary of a control volume surrounding the defect

3,4,5,9
.

3.1.1 J-integral for non-cohesive cracks

Let us consider the motion of a non-cohesive crack traveling in the material.
Since there is no material inside the crack, we may assume that there W− = 0 so
that [[W ]] = W+ . Moreover the interface between the non-cohesive crack and the
surrounding material is traction-free, that is Pn = 0 on I . Then [[Y]]n = Y+n =
W+n and the driving force takes the expression

F =

∫
I
g(Y+n,d) (µn) =

∫
I
g(W+n,d) (µn) ,

where the interface I is a closed surface surroundings the crack nose, that is the
terminal crack zone where g(n,d) is non-vanishing. Following James Rice

10
we

consider a surface Σ whose union with the crack-nose boundary forms a closed
surface bounding a domain C(Σ) . The J-integral associated with the surface Σ is
then defined as:

J(Σ) :=

∫
Σ

g(Yn,d) (µn) ,

so that J(Σ) = F when Σ = I , due to the assumption that Tn = 0 on I . By
the divergence theorem and the formula for div Y derived in section 2.6, we get the
following general invariance property:

F = J(Σ)−
∫

C(Σ)

g(div Y,d) (µn)

= J(Σ)−
∫

C(Σ)

g(d3W,d)µ+

∫
C(Σ)

〈SM, dd∆〉g µ−
∫

C(Σ)

g(b, ddϕ)µ .

Special instances of this formula are quoted in the recent literature
7,8

concerning the
J-integral. In an homogeneous phase, under homogeneous anelastic metric and no
body forces, the divergence of Eshelby’s tensor field vanishes, i.e. div Y = 0 , and
the driving force F is equal to the J-integral evaluated on any surface Σ . In plane
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problems of fracture mechanics, the invariance property J(Σ) = F is commonly
referred to as the path independence of the J-integral.

Remark

In the literature on fracture mechanics
11

, in the wake of Griffith’s treatment,
crack propagation criteria are discussed in terms of an augmented total potential
energy of the body which includes a so-called separation energy due to newly created
crack faces. This is a nice example of a wrong way to a right result. Not completely
right to be honest, since it is correct only if a geometrically linearized modelization is
applicable. Indeed, in the nonlinear geometrical range, a total potential energy exists
only under conservative loadings and such a requirement is completely extraneous to
the physics of the problem at hand. Fortunately what really enters in the analysis
is the (pseudo)-time derivative of the augmented total potential energy and this
amounts in evaluating a virtual dissipation rate.

3.1.2 Cohesive cracks

Cohesive cracks are characterized by a process zone, extending ahead the crack-
tip, in which cohesive ties oppose the opening of the crack, till the separation of
the crack faces reaches a characteristic value that breaks the cohesive bonds. In
the Barenblatt model for brittle fracture

1
a nonlinear relation is assumed between

the cohesive restraining action and the separation between the crack faces. The
bond-reactions are variable with the opening, first increasing from the pointed nose
of the process zone until a maximum is reached, and then decreasing to zero, in
correspondence of a threshold value of the opening, where breaking of the bonds
occurs, at the crack tip. To provide the expression of the driving force F acting on
cohesive cracks, propagating with a translational speed χ̇(m) = χ̇d , we rely again
upon the general expression of the driving force:

F =

∫
I
g([[Y]]n,d) (µn) ,

where the interface I is the closed contour of the process zone. Following Rice
10

,
we make the simplifying assumption that, due to the slit-shape of the crack, it is
g(n,d) = 0 along the crack faces. Since the flux-jump [[Y]]n of Eshelby’s tensor is
directed along the normal n at the interface, the contribution of the crack faces to
the driving force vanishes. Then the integral can be extended only to the portion
B of the interface which cuts the crack in correspondence of the end of the process
zone, where breaking of the bonds occurs. Along B we have that g(n,d) = −1 ,
Pn = 0 and W+ = 0 . Hence Y+ = 0 and the driving force is given by

F =

∫
B
g(−Y−n,d) (µn) =

∫
B

W− (µn) .

The energy W− is the one accumulated in the cohesive bonds per unit volume in
correspondence of the breaking surface B . Its integral over the surface B is equal
to the area of the Barenblatt diagram for the cohesive bond and its product by the
propagation speed provides the energy release rate due to the bond breaking.
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The driving force F is equal to the J-integral evaluated on any surface Σ which
includes the crack-nose and such that Σ ∪ B is a closed surface. Indeed, assuming
that div Y− = 0 inside the process-zone, by the divergence theorem we get∫

I
g(Y−n,d) (µn) = 0 .

Moreover W+ and Pn vanish on B , so that Y+n = 0 on B . Being g(n,d) =
0 on I\B , we also have that∫

I\B
g(W+n,d) (µn) = 0 .

If we assume that div Y+ = 0 in the material surrounding the process-zone, the
driving force acting on cohesive cracks can be written as

F =

∫
I
g(Y+n,d) (µn) =

∫
I\B

g(Y+n,d) (µn)

= −
∫
I\B

g(Pn, dϕ+d) (µn) =

∫
Σ

g(Y+n,d) (µn) = J(Σ) .

This result is in accordance with the conclusions obtained by Rice
10

on the basis of
an a priori definition of the J-integral.

3.2 Conclusions

The approach for the description of phase-transition phenomena, in which prop-
agating fronts are considered as shock waves traveling in the material, is based on
the kinematical analysis proposed by Gurtin

6
.

However Gurtin’s original point of view was strongly influenced by the attempt
to prove that configurational forces are basics concepts of continuum physics. The
intention of endowing Eshelby’s stress with properties similar to Piola’s stress, led
him to make the assumption that no free energy release rate is associated with the
evolution of phase transition fronts (see Gurtin

6
, chapter 1, section b, page 4).

By removing this assumption, we have shown that the balance law, derived from
the virtual work principle of mechanics under a suitable definition of the free energy
density for multi-phase materials, provides the basic expression of the dissipation
associated with the evolution of phase-transition fronts. The theory has been then
applied to analyze crack propagation phenomena in fracture mechanics and to show
that the J-integral, introduced a priori by Rice

10
, stems out as a special expression

of the dissipation formula for phase-transition fronts traveling in the material. The
evaluation of the driving forces relevant to cohesive and non-cohesive crack prop-
agations has been discussed in a mechanical context, under the usual assumptions
concerning crack geometry.
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