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Abstract The First Principle of Continuum Thermodynamics is formulated as a variational condition whose
test fields are piecewise constant virtual temperatures. Lagrange multipliers theorem is applied to relax the
constraint of piecewise constancy of test fields. This provides the existence of square summable vector fields
of heat flow through the body fulfilling a virtual thermal work principle, analogous to the virtual work principle
in Mechanics. The issue of compatibility of thermal gradients is dealt with and expressed by the complemen-
tary variational condition. Primal, complementary and mixed variational inequalities leading to computational
methods in heat-conduction boundary-value problems are briefly discussed.
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1 Introduction

Duality is a basic concept in Mathematical Physics, and the master dual objects in Continuum Mechanics are
velocity fields and force systems which interplay in the axiomatic formulation of dynamical equilibrium. The
notion of a stress field in a continuous body in equilibrium was introduced in celebrated papers by Cauchy
[1–3] and, starting with the pioneering contributions in [4,5], many valuable advancements have been made to
provide the existence result under milder regularity assumptions, as outlined in the recent article [6] and refer-
ences therein. According to Truesdell and Toupin [7], it was Piola [8] who first applied Lagrange’s multiplier
method to introduce the notion of stress field in a continuous body. His brilliant intuition was however not
properly evaluated and the more easy-to-follow geometrical method by Cauchy has been reproduced almost
without exceptions in mechanics textbooks, and in research articles, although, with the improvements and
generalizations quoted above. The classical Cauchy method has been also adopted in [9] to propose a unified
format for thermomechanics based on the notion of thermal displacement. To the best of our knowledge, the
supremacy of Piola’s approach has not been fully claimed until quite recently [10,11]. The motivation for this
supremacy is twofold. On one hand, duality plays a basic role in Lagrange’s method so that the players coming
into the scene are properly defined and detected. The resulting variational scheme is most fruitful and leads
directly to basic theoretical results and to most efficient computational methods. On the other hand, Lagrange’s
method for continuous problems is now a theorem. The existence of Lagrange’s multipliers may indeed be
formally motivated by the orthogonality relation between the kernel of a linear operator and the image of the
dual operator, when the involved linear spaces are finite dimensional. In the infinite dimensional context of
Continuum Mechanics, the topological properties of the involved linear functional spaces and operators must
be properly specified and then the existence proof for the multipliers can be given by relying on standard tools
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of functional analysis [12]. More precisely, dual players must range in dual Banach spaces (or, more in general,
in dual Banach vector bundles) and the linear differential operator, providing the implicit representation of the
constraint, has to be such that the image of any closed linear subspace is closed. The existence result is then
provided by Banach’s closed range theorem. In Continuum Mechanics, the constraint dealt with by Lagrange’s
method is the requirement of infinitesimal isometry of virtual displacement fields, which according to Euler
[13], is expressed by a vanishing symmetric part of the covariant derivative of virtual velocity vector fields,
which in turn is equal to onehalf the Lie derivative of the metric tensor along the virtual flow (see e.g. [14]).
When virtual velocity vector fields are assumed to belong to a Sobolev space, the closure of the image by
Euler’s operator of any closed linear subspace is implied by Korn’s inequality [15,16], and Lagrange’s method
is called the theorem of virtual work [11]. A main task in Mathematical Physics is to pursue the recognition
of formal analogies between theories dealing with seemingly different physical contexts, in order to apply to
them the same mathematical methods and results. It is then natural to ask oneself if the powerful, modern treat-
ment of the basics of Continuum Mechanics be shared with other fields of continuum physics. The answer is
positive, even if not completely straightforward since a somewhat tricky reformulation of classical statements
of balance laws is required. The reason is that, in the standard formulation of balance laws, no constraint is
explicitly involved and Lagrange’s method seems, at a first sight, to be inapplicable. The key observation is
that balance laws are required to hold for any part of a given continuous body and this fact may be equivalently
formulated in variational terms by means of piecewise constant scalar test fields. These fields play the role of
virtual displacements in mechanics, with Euler’s operator being replaced by the gradient operator. Lagrange’s
method can be applied since the closure of the image, by the gradient operator, of any closed linear subspace
in a Sobolev space is a well-known result following from Poincaré inequality (see e.g. [12,17]). In this way
balance laws, expressing general principles for continuous bodies in Mathematical Physics are shown to be
susceptible of being treated by Lagrange’s method, and this leads directly to establish the existence and the
basic properties of the field interplaying with the implicit constraint. The topic is explicitly treated here with
reference to the balance law expressing the First Principle of Thermodynamics, which is shown to be equivalent
to a virtual thermal work theorem providing the existence and the basic properties of square integrable heat flow
vector fields in the body. A complementary formulation provides the variational condition of compatibility for
square integrable vector fields of thermal gradients. Finally, primary, complementary and mixed variational
principles, governing a general boundary-value problem of heat conduction, are derived as direct outcomes of
the variational theory.

2 The First Principle of Thermodynamics

The First Principle of Thermodynamics is a balance law prescribing an energy conservation rule to be fulfilled
by any body undergoing any thermodynamical process. The principle states that given a body B at a place-
ment � = ϕ(B) the time rate of change of the internal energy Ė(P) of any sub-body P ⊆ � is equal to the
mechanical power M(P) plus the heat power Q(P) supplied to the sub-body (see e.g. [18–20]):

Ė(P) = M(P) + Q(P).

It is convenient to define the energy-rate gap G(P) := M(P) + Q(P) − Ė(P) and to rewrite the first
principle as G(P) = 0. To formulate the First Principle of Thermodynamics as a variational principle, the
space of temperature fields and the definition of linear thermal constraints are preliminarily introduced.

2.1 Temperature fields

In the sequel Pat(�) denotes a patchwork of � that is a finite family of open connected, non-overlapping
subsets of�, say P ∈ Pat(�) called parts or elements, such that the union of their closures is a covering for�.
The set of all patchworks of� is a directed set with the partial order relation finer than; the coarsest patchwork
finer than Pat1(�) and Pat2(�) is the grid: Pat1(�) ∧ Pat2(�) whose elements are non-empty pairwise
intersections of their elements. We denote by V , the linear space of translations in the Euclidean space; and by
L (V ; V ), the space of linear operators on V . The Hilbert spaces of square integrable scalar fields (functions),
vector fields and tensor fields on P are denoted by L2(P; R), L2(P; V ) and L2(P; L (V ; V )), respectively.
Moreover, BL (H1; H2) is the space of bounded linear transformations between the Hilbert spaces H1, H2.
The linear space Temp of temperature fields is composed by Green-regular scalar fields, i.e. square integrabile
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fields θ ∈ L2(�; R) whose distributional derivatives ∇θ are piecewise square integrable in � according to a
regularity patchwork Patθ (�). Temp is a pre-Hilbert space when endowed with the inner product and norm
given by

(θ1, θ2)Temp
:=

∫

�

θ1θ2µ+
∫

Patθ12 (�)

g(∇θ1,∇θ2)µ,

‖θ‖2
Temp

:=
∫

�

θ2µ+
∫

Patθ (�)

‖∇θ‖2µ,

where Patθ12(�) := Patθ1(�) ∧ Patθ2(�) is the grid of the involved patchworks, g ∈ L (V 2; R) is the
Euclidean metric tensor and µ ∈ L (V 3; R) is the associated volume form. In each element P of the regulatity
patchwork, the distributional gradient fulfills the equivalence:

‖∇θ‖0 + ‖θ‖0 � ‖θ‖1, ∀θ ∈ H1(P; R), P ∈ Pat(�),

where ‖ · ‖k is the mean square norm on P of the field and of all its derivatives up to the order k and
H1(P; R) = W 1,2(P; R) is a Sobolev space [21]. Indeed, the trivial norm equivalence holds:

‖θ‖2
1

:= ‖∇θ‖2
0
+ ‖θ‖2

0
≤ (‖∇θ‖0 + ‖θ‖0)

2 ≤ 2(‖∇θ‖2
0
+ ‖θ‖2

0
).

Since boundary values are well defined in the Sobolev space H1(P; R), the same is true in the pre-Hilbert

space Temp. The regular part of the distributional gradient of a temperature field is the cartesian product of
the distributional gradients evaluated on the restrictions to elements of a regularity patchwork. The bounded
linear operator so defined, ∇ ∈ BL (Temp; L2(�; V )), fulfils the condition: ‖∇θ‖0 + ‖θ‖0 � ‖θ‖1, for all
θ ∈ Sob

1
θ , where Sob

1
θ is the product of the Sobolev spaces H1(P; R) for P ∈ Patθ (�). We denote by

Conf ⊂ Temp the space of conforming temperature fields, which is a closed linear subspace of temperature
fields sharing a common regularity patchwork Pat and fulfilling continuous linear constraints on the bound-
ary of the patchwork. The space Conf ⊂ Temp is a Hilbert space for the topology inherited by Temp. The
restriction ∇Conf ∈ BL (Conf; L2(�; V )) of ∇ ∈ BL (Temp; L2(�; V )) is a bounded linear operator between
the Hilbert spaces. The fulfillment of the condition ‖∇θ‖0 + ‖θ‖0 � ‖θ‖1 for all θ ∈ Conf ensures that the
range ∇(Conf) ⊂ L2(�; V ) is closed and that the kernel ker ∇Conf = ker ∇ ∩ Conf is finite dimensional
(see [22–24]). The fields θ ∈ ker ∇ ⊂ Temp are characterized by the property that the regular part ∇θ of their
distributional gradient vanishes on each element of the regularity patchwork Patθ (�). It follows that they are
piecewise constant temperature fields (see e.g. [17], Proposition II.5.3).

By relying on the Riesz-Fréchet representation theorem, the linear space L2(�; V ) is assumed, as usual,
to be a self-dual pivot space (see e.g. [25]). Then, denoting by an exponent ∗ the dual topological vector space
and by 〈, 〉 the duality pairing, the adjoint operator ∇∗ ∈ BL (L2(�; V ); Temp

∗) is defined by the identity

〈∇∗q, θ 〉 = 〈q, ∇θ 〉 =
∫

Patθ (�)

g(q, ∇θ)µ, ∀q ∈ L2(�; V ), ∀θ ∈ Temp.

and the adjoint operator ∇∗
Conf

∈ BL (L2(�; V ); Conf
∗) by the identity

〈∇∗
Conf

q, θ 〉 = 〈q, ∇θ 〉 =
∫

Pat(�)

g(q, ∇θ)µ, ∀q ∈ L2(�; V ), ∀θ ∈ Conf.

Let us denote by S◦ := {f ∈ H∗ : 〈f, v〉 = 0 ∀ v ∈ S} the annihilator of a subset S of a Hilbert space
H. The following relations are then simple consequences of the definition of adjoint operator

{
(∇∗

Conf
(L2(�; V )))◦ = ker ∇Conf,

(∇(Conf))◦ = ker ∇∗
Conf

.
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In finite dimensions we have that S◦◦ = S, but in infinite dimensions the existence result, implicit in the
converse relations

{∇∗
Conf

(L2(�; V )) = (ker ∇Conf)
◦,

∇(Conf) = (ker ∇∗
Conf

)◦,

is provided by Banach’s closed range theorem [26] under the assumption that ∇(Conf) ⊂ L2(�; V ) is closed.
Non-homogeneous constraints on temperature fields are formulated by considering a prescribed Green-regular
temperature field θ̄ ∈ Temp and temperature fields belonging to the affine manifold Adm := θ̄ + Conf are
said to be admissible. Variations of admissible temperature fields are conforming.

2.2 Variational formulation of the First Principle

We will call virtual temperatures the scalar fields δθ ∈ Temp, which play the role of test fields for the variational
conditions. For any patchwork Pat(�), we consider the characteristic function of the element P ∈ Pat(�),
given by:

1P (x) =
{

1 x ∈ P,
0 x ∈ �\P,

and define the functionals:

F Ė (1P ) := Ė(P),

FM(1P ) := M(P),

FQ(1P ) := Q(P),

which acting on the characteristic function 1P provide, respectively, the time rate of increase of the internal
energy, the mechanical power and the heat power supplied to the sub-body P . Performing an extension by
linearity, we may define the linear functionals F Ė , FM and FQ on the linear subspace ker ∇ ⊆ Temp of
piecewise constant virtual temperature fields. By Hahn’s extension theorem these bounded linear functionals
can be extended (non-univocally) to bounded linear functionals on Temp without increasing their norm (see
e.g. [26]). The First Principle of Thermodynamics can then be formulated in variational terms as:

〈F Ė , δθ 〉 = 〈FM, δθ 〉 + 〈FQ, δθ 〉, ∀δθ ∈ ker ∇.

Recalling the definition of the energy-rate gap G := M + Q − Ė , and introducing the thermal force
FG ∈ Temp

∗ as the bounded linear functional given by:

FG := FM + FQ − F Ė ,

the energy conservation law G = 0 takes the variational form

〈FG, δθ 〉 = 0, ∀δθ ∈ ker ∇ ⇐⇒ FG ∈ (ker ∇)◦.

This condition, which is analogous to the axiom of dynamical equilibrium in Mechanics [11], is called the
axiom of thermal equilibrium and can be stated by saying that the virtual thermal work of the thermal force
FG must vanish for any piecewise constant virtual temperature field.

The closed range property of ∇Conf ∈ BL (Conf; L2(�; V )) leads to the following existence result of the
cold flow vector field q ∈ L2(�; V ). Although its opposite −q ∈ L2(�; V ), the heat flow vector field, is
classically considered in Continuum Thermodynamics, considering the cold flow vector field as the alter ego
of the stress tensor field in Continuum Mechanics, avoids an unpleasant minus sign in the constitutive equation
for thermal conduction.
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Theorem 1 (Virtual thermal work) For any fixed linear subspace of conforming temperature fields Conf

⊂ Temp, the axiom of thermal equilibrium implies that:

〈FG, δθ 〉 = 0, ∀δθ ∈ ker ∇Conf,

and this is equivalent to state the existence of a (not necessarily unique) square integrable vector field q ∈
L2(�; V ), the cold flow vector field, which performs, for the regular part of the distributional gradient of a
conforming virtual temperature field, a virtual thermal work equal to the one that the thermal force performs
for the conforming virtual temperature field:

〈FG, δθ 〉 =
∫

Pat(�)

g(q,∇δθ)µ, ∀δθ ∈ Conf.

Cold flow vector fields fulfilling the condition above are said to be in thermal equilibrium with the given
FG ∈ (ker ∇)◦. The affine manifold of these fields is denoted by Equil.

Proof The property FG ∈ (ker ∇)◦ ⊂ (ker ∇Conf)
◦ = (ker ∇ ∩ Conf)◦ = ∇∗

Conf
(L2(�; V )) means that

there exists a vector field q ∈ L2(�; V ), the cold flow vector field, such that FG = ∇∗
Conf

q, i.e.

〈FG, δθ 〉 = 〈∇∗q, δθ 〉 =
∫

Pat(�)

g(q, ∇δθ)µ, ∀δθ ∈ Conf,

in variational terms. The converse implication is trivial. ��
Let us now observe that the virtual thermal work

∫

Patδθ (�)

g(q,∇δθ)µ, δθ ∈ Temp,

is well defined for any (even non-conforming) temperature field δθ ∈ Temp. Each cold flow vector field
q ∈ Equil induces then a reactive thermal force R(FG, q) ∈ Temp

∗ given by:

〈R, δθ 〉 :=
∫

Patδθ (�)

g(q,∇δθ)µ− 〈FG, δθ 〉, ∀δθ ∈ Temp,

with the characteristic property that the virtual thermal work, performed for any conforming virtual temperature
field, vanishes:

〈R, δθ 〉 = 0, ∀δθ ∈ Conf ⇐⇒ R ∈ (Conf)◦.

The statement dual to Theorem 1 provides the compatibility condition to be imposed on a square integrable
vector field of thermal gradients θ ∈ L2(�; V ), in analogy to the kinematic compatibility condition for tensor
fields of linearized strains in Continuum Mechanics. The question to be answered is the following: Given a vec-
tor field θ ∈ L2(�; V ) of thermal gradients, does it exist an admissible temperature field θ ∈ Adm = θ̄ +Conf

such that θ = ∇θ? Thermal gradients fulfilling this property are said to be thermally compatible. The property
can be equivalently expressed by requiring the existence of a θ̄ ∈ Temp such that θ − ∇ θ̄ ∈ ∇(Conf). This
issue, which seems not to have been dealt with before in Continuum Thermodynamics literature, where only
compatible thermal gradients are considered, is a by-product of the newly proposed variational approach to
the First Principle and is at the basis of complementary formulations and related computational methods [27].
Thermal compatibility, according to the general formulation above, can only be treated in variational terms,
due to the fact that differential conditions of integrability cannot take conformity to linear boundary constraints
into account.
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Theorem 2 (Thermal compatibility) The requirement that a square integrable field of thermal gradients
θ ∈ L2(�; V ) be thermally compatible is equivalent to the variational condition

∫

�

g(δq, θ)µ =
∫

�

g(δq,∇ θ̄ )µ, ∀δq ∈ Ker∇∗
Conf

,

where Ker∇∗
Conf

:= {δq ∈ L2(�; V ) :
∫

Pat(�)

g(δq,∇δθ)µ = 0, ∀δθ ∈ Conf} is the subspace of thermally

selfequilibrated cold flow fields, parallel to the affine manifold Equil of thermally equilibrated cold flow fields.

Proof The closedness of the linear subspace ∇(Conf) ⊂ L2(�; V ) is equivalent to the orthogonality property
∇(Conf) = (Ker∇∗

Conf
)◦. Then the compatibility condition writes θ − ∇ θ̄ ∈ (Ker∇∗

Conf
)◦, whose variational

expression is the condition in the statement. The converse implication is trivial. ��

3 Boundary-value problems

The basic tool in boundary-value problems (BVPs) governed by a linear partial differential operator Diff of
order n, is Green’s formula of integration by parts, which formally may be written as:

∫

Pat(�)

(•, Diff ◦)µ =
∫

Pat(�)

(AdjDiff •, ◦)µ+
∮

∂Pat(�)

(Flux •, Val◦)∂µ,

where Pat(�) is a fixed patchwork, ∂Pat(�) is its boundary, ∂µ is the volume (n − 1)-form induced on the
surfaces ∂Pat(�) and all the integrals are assumed to take a finite value. The differential operator AdjDiff of
order n is the formal adjoint of Diff. The boundary integral acts on the duality pairing between the two fields
Flux • and Val◦ with the differential operators Flux and Val being n-tuples of normal derivatives of order
from 0 to n − 1 in inverse sequence, to that the duality pairing is the sum of n terms, whose kth term is the
pairing of normal derivatives of two fields of order k and n − 1 − k.

BVPs are characterized by the property that the closed linear subspace Conf of conforming test fields
includes the whole linear subspace ker(Val) of test fields in Temp with vanishing boundary values on ∂Pat(�),
i.e. by the property that ker(Val) ⊆ Conf. Let us assume that the time rate of change of the internal energy
Ė(�) be expressed in terms of a bulk density ε̇ ∈ L2(�; R):

Ė(�) = 〈F Ė , 1� 〉 :=
∫

�

ρε̇µ,

where ρ ∈ L2(�; R) is the mass density and the heat power Q(�) supplied to the body is expressed in terms
of a bulk density q ∈ L2(�; R) and of a superficial density ∂q ∈ L2(∂Pat(�); R):

Q(�) = 〈FQ, 1� 〉 :=
∫

�

ρqµ+
∮

∂Pat(�)

∂q∂µ.

The mechanical power is expressed, in terms of the stress tensor field T ∈ L2(�; L (V ; V )) and of the
Euler operator evaluated on the velocity field v ∈ Sob

1
v of the body, by the formula:

M(�) = 〈FM, 1� 〉 :=
∫

�

(T, sym∇v)gµ,
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where Sob
1
v is the product of the Sobolev spaces H1(P; V ) with P ∈ Patv(�) and (T, sym∇v)g is the inner

product between tensors induced by the metric. The bounded linear functionals F Ė , FM and FQ may then
be univocally extended to the whole space Temp by setting:

〈F Ė , δθ 〉 :=
∫

�

ρε̇δθµ,

〈FM, δθ 〉 :=
∫

�

(T, sym∇v)gδθµ,

〈FQ, δθ 〉 :=
∫

�

ρqδθµ+
∮

∂Patθ (�)

∂qVal(δθ)∂µ

for any θ ∈ Temp. Defining the bulk energy-rate gap field as

p := (T, sym∇v)g + ρq − ρε̇,

the thermal force FG ∈ Temp
∗ is given by:

〈FG, δθ 〉 =
∫

�

pδθµ+
∮

∂Patδθ (�)

∂qVal(δθ)∂µ, ∀δθ ∈ Temp.

Due to the basic property ker(Val) ⊆ Conf of BVPs, the variational condition stated in the virtual thermal
work theorem can be localized to yield differential and jump conditions. Although the procedure is standard,
we report hereafter the statement and the proof of the basic results for the sake of completeness. Moreover
a detailed presentation of these results at this level of generality is not easily found in the literature. Let us
denote by Cold the linear subspace of Green-regular cold flow vector fields q ∈ L2(�; V ), characterized by
the property that their distributional divergence is piecewise square integrable Divq ∈ L2(Patq(�); R). Then
all the terms in the relevant Green’s formula are well defined:

∫

Patθq(�)

g(q,∇θ)µ =
∫

Patθq(�)

(−Divq)θµ+
∮

∂Patθq(�)

g(q, n)Val(θ)∂µ,

{∀ θ ∈ Temp,
∀ q ∈ Cold,

where Patθq(�) = Patθ (�) ∧ Patq(�) and Flux q = g(q, n), with n outward unit normal to the boundary
∂Patθq(�) and Val(θ) boundary value of the field θ ∈ Temp on ∂Patθq(�).

This formula may be also written in terms of jumps at the interfaces of a regularity patchwork. Indeed
a boundary ∂Pat(�) may be considered as the union of the boundary of � and of the pairs of positive and
negative faces of each interface between elements of Pat(�), i.e.: ∂Pat(�) = ∂�+Sing(Pat). Then, setting
n = n+, outward normal to the + face, and defining the jump:

[[g(q, n)]] := g(q+, n+) + g(q−, n−) = g(q+, n+) − g(q−, n+),

across the interfaces, with the boundary ∂� as a + face, Green’s formula may be written as:

∫

Patθq(�)

g(q,∇θ)µ =
∫

Patθq(�)

(−Divq)θµ+
∮

∂�

g(q, n)Val(θ)∂µ

+
∫

Sing(Patθq(�))

[[g(q, n)]]Val(θ)∂µ,

{∀ θ ∈ Temp,
∀ q ∈ Cold.

Then we have the following result.
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Theorem 3 (Localization) In a boundary value problem of heat conduction, a cold flow vector field q ∈ Equil,
i.e. fulfilling the identity

∫

Pat(�)

g(q,∇δθ)µ =
∫

�

pδθµ+
∮

∂Pat(�)

∂qVal(δθ)∂µ, ∀δθ ∈ Conf,

has a distributional divergence Divq whose restriction to each element P ∈ Pat(�) of the patchwork is
g-square integrable with −Div q = p in Pat(�) and the jump [[g(q, n)]] of the flux across the boundary of
the domain � and across the interfaces of the patchwork Pat(�) fulfills the conditions:

g(q, n) ∈ ∂q + Conf
◦, on ∂�,

[[g(q, n)]] ∈ ∂q+ + ∂q− + Conf
◦, on Sing(Pat(�)),

where the fields ∂q of superficial cold supply are taken to be zero outside their domain of definition.

Proof The statement of the virtual thermal work theorem may be written as:
∫

Pat(�)

g(q,∇δθ)µ =
∫

�

pδθµ+
∮

∂Pat(�)

∂qVal(δθ)∂µ, ∀δθ ∈ Conf.

In BVPs, the linear space C∞
0 (Pat(�)) of infinitely differentiable scalar fields with compact support in

each element of Pat(�) is included in Conf, so that
∫

Pat(�)

g(q,∇δθ)µ =
∫

�

pδθµ, ∀δθ ∈ C∞
0 (Pat(�)),

which means that −Divq = p ∈ L2(Pat(�); R) in the sense of distributions. Hence q ∈ Cold. Green’s
formula then holds and gives

∮

∂Pat(�)

(g(q, n) − ∂q)Val(δθ)∂µ = 0,

{∀ δθ ∈ Conf,
∀ q ∈ Cold,

and the result follows. ��
The reactive thermal force R(∂q, p, q) ∈ Temp

∗, associated with a vector field q ∈ Equil, in thermal
equilibrium with a bulk energy-rate gap p, and a superficial heat supply ∂q , is given by:

〈R, δθ 〉 :=
∫

Patδθ (�)

g(q,∇δθ)µ−
∫

Patδθ (�)

pδθµ−
∮

∂Patδθ (�)

∂qVal(δθ)∂µ

=
∫

Patδθ (�)

−(Divq + p) δθµ+
∮

∂Patδθ (�)

(g(q, n) − ∂q)Val(δθ)∂µ

=
∮

∂Patδθ (�)

(g(q, n) − ∂q)Val(δθ)∂µ, ∀δθ ∈ Temp.

Defining the reactive superficial heat supply as ∂r(q, ∂q) := g(q, n) − ∂q , Theorem 1 ensures that
∮

∂Pat(�)

∂r(q, ∂q)Val(δθ)∂µ = 0, ∀δθ ∈ Conf.

Hence, in particular, ∂r(q, ∂q) = 0 on any piece of boundary where virtual temperatures are not prescribed.
The bulk equation Div q = −p is known in literature as the reduced equation of conservation of the energy.
The boundary equation g(q, n) = ∂q , in absence of boundary constraints on the temperature fields, is known
as the heat flow principle of Fourier-Stokes.
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4 Variational formulations of heat conduction BVPs

The variational conditions of thermal equilibrium and compatibility, stated in Theorems 1 and 2, lead to the
following primary and complementary formulations of BVPs of heat conduction. Let us assume a generalized
form of Fourier’s law [28] of heat conduction which is pointwise expressed, in terms of a convex potential
φ: V → R, by the variational inequality g(qx, δθx) ≤ g(d+φ(θx), δθx) for all δθx ∈ V , where d+ is the
unilateral derivative [29]. The validity of this law a.e. in� is equivalent [30] to the global variational inequality

〈q, δθ 〉 ≤ 〈d+�(θ), δθ 〉, ∀δθ ∈ L2(�; V ),

involving the fields q ∈ L2(�; V ) and θ ∈ L2(�; V ) with the global convex potential given by

�(θ) :=
∫

�

φ(θ)µ.

The primary variational formulation of BVPs of heat conduction is obtained by inserting Fourier’s law
in the virtual thermal work of Theorem 1, to get the variational inequality

〈d+�(∇θ), ∇δθ 〉 ≥
∫

�

pδθµ+
∮

∂Pat(�)

∂qVal(δθ)∂µ, ∀δθ ∈ Conf,

in which the basic unknown is the admissible temperature field θ ∈ Adm. This is equivalent to the minimum
principle for the functional

∫

�

φ(∇θ)µ−
∫

�

pθµ−
∮

∂Pat(�)

∂qVal(θ)∂µ, θ ∈ Conf.

The conjugate global convex potential is given by

�(q) :=
∫

�

ψ(q)µ,

with ψ : V → R and �: L2(�; V ) → R conjugate to φ: V → R and �: L2(�; V ) → R, according to the
Fenchel–Legendre transform [14]. Substituting the converse of the global heat conduction law

〈d+�(q), δq〉 ≥ 〈θ , δq〉, ∀δq ∈ L2(�; V ),

in the thermal compatibility condition of Theorem 2, we get the complementary variational formulation

〈d+�(q), δq〉 ≥
∮

∂Pat(�)

g(δq, n)Valθ̄∂µ, ∀δq ∈ Ker∇∗
Conf

,

in which the basic unknown is the cold flow vector field q ∈ Equil. This equivalent to the minimum principle
for the functional ∫

�

ψ(q)µ−
∫

∂Pat(�)

g(q, n)Valθ̄∂µ, q ∈ Equil.

Computational issues may lead to prefer a mixed formulation in which the temperature scalar field θ ∈ Adm

and the cold flow vector field q ∈ L2(�; V ) are assumed as basic unknowns. Accordingly, the boundary value
problem of heat conduction is formulated as a mixed variational inequality⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

�

g(q, ∇δθ)µ =
∫

�

pδθµ+
∮

∂Pat(�)

〈∂q, Valδθ 〉∂µ, ∀δθ ∈ Conf,

∫

�

g(d+ψ(q), δq)µ ≥
∫

�

g(∇θ, δq),µ, ∀δq ∈ L2(�; V ),
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equivalent to a saddle point principle for the functional

F(q, θ) := −�(q) +
∫

�

g(q, ∇θ)µ−
∫

�

pθµ−
∮

∂Pat(�)

∂qVal(θ)∂µ

{
θ ∈ Conf,

q ∈ L2(�; V ).

Classical formulations of heat conduction, with the relevant potentials differentiable, or even quadratic,
are recovered by considering the usual bilateral derivative and changing the inequalities to equalities.

5 Conclusions

The First Principle of Thermodynamics has been formulated, by a straight but tricky reasoning, as a variational
condition in which the test fields are piecewise constant virtual temperature fields. Based on the theorem of
Lagrange multipliers, the virtual thermal work theorem provides the existence of a heat flow vector field in
the body. In classical treatments (e.g. [18–20,31] the existence of a heat flow is instead assumed as a separate
axiom of Continuum Thermodynamics. The primary and complementary variational formulations of the first
principle have been shown to lead in a direct way to governing principles of heat conduction and to the related
computational methods. The treatment performed in this article may be similarly applied to any balance law
in Continuum Physics. For instance, the principle of mass conservation leads to a variational formulation in
which Lagrange multipliers are vector fields describing the mass flow through a control volume [32].
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