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a b s t r a c t

Torsion and shear stress fields of a Saint-Venant beam and the relative location of shear and twist centres
are investigated for sections of any degree of connectedness. The sliding-torsional compliance tensor of
a Timoshenko beam is evaluated by an energy equivalence with Saint-Venant theory. Accordingly, the
mutual sliding-torsional term is shown to depend linearly on the relative position of shear and twist
centres and the standard definition of shear centre in a Timoshenko beam is found to be coincident with
Saint-Venant twist centre. Coincidence of shear and twist centres is assessed for sections with vanishing
Poisson ratio and for open, closed and multi-cell thin-walled cross sections. The eigenvalues of the shear
factors tensor and the torsion factor are shown to be greater than unity, with the principal directions of
shearing and bending compliances non necessarily coincident for non-symmetric cross sections.
Numerical examples are developed to provide evidences of the location of the centres and of the prin-
cipal shearing directions, for non-symmetric L-shaped cross sections with various thickness ratios.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

The linearly elastic isotropic beam investigated by Saint-Venant
(1856a, 1856b) is still the reference model for engineers to evaluate
strain and stress fields. An extensive list of contributions have been
given by researchers on this basic topic of elasticity theory, to deepen
both theoretical and applicative issues, among which classical treat-
ments as (Timoshenko, 1940; Southwell, 1941; Timoshenko and
Goodier, 1951; Sokolnikoff, 1956; Novozhilov, 1961; Solomon, 1968).

Nevertheless, some results concerning the model could be
usefully reconsidered and discussed, still today. This paper deals
with the notions of shear centre, twist centre, torsion and shear
compliances, as introduced in literature (Timoshenko, 1921, 1922;
Weber, 1926; Schwalbe, 1935; Trefftz, 1935; Cicala, 1935; Osgood,
1943; Goodier, 1944; Weinstein, 1947; Timoshenko and Goodier,
1951; Sokolnikoff, 1956) and investigated in (Reissner and Tsai,
1972; Reissner, 1979; Stephen and Maltbaek, 1979; Muller, 1982;
Romano et al., 1992; Stronge and Zhang, 1993; Schramm et al.,
1994; Gruttmann et al., 1999; Sapountzakis and Mokos, 2005;
Lacarbonara and Paolone, 2007). Saint-Venant beam theory is
briefly introduced with an intrinsic formulation, in the wake of the
treatment provided in (Romano, 2002b), for uniform flexure and
torsion, and in (Barretta and Barretta, 2010) for shear and torsion.
The intrinsic formulation leads to an elegant presentation with the
: þ39 0817683332.
), annalisa.barretta@unina.it

son SAS. All rights reserved.
significant advantage that invariant results and tensorial characters
are detected in a natural way. The plan of the paper is the following.

In Section 2.2 we recall basic results of Saint-Venant theory of
linearly elastic isotropic beamsubject to extension,flexure, shear and
torsion. The expression of the axial and transversal components of
the displacementfield is the startingpoint to deduce the formulae for
normal and tangential stress fields acting on the cross sections. The
theory is characterized by the assumption concerning the vanishing
of body force field and of surface loading on the lateral mantle of the
beam and the vanishing of normal interactions between longitudinal
fibres. Equilibrium requirements imply that the resultant axial and
shear forces and the resultant torque about the axis, evaluated on the
tractions acting on a cross section of the beam, are bound to be
constant along the axis. Accordingly, the resultant bending moment
is described by an affine law. The field of elongations of the beam
longitudinal fibres is an affine function of the position vector and is
thus uniquely characterized by a gradient vector and by the elon-
gation of the centroidalfibre. The normal stress is proportional to the
elongation of the longitudinal fibre through the Euler modulus E
(often called Young modulus and denoted also by Y).

The evaluation of the tangential stress field requires the deter-
mination of the following items: the gradient of longitudinal
extensions and of its derivative along the beam axis, called the
shearing; the twisting curvature; the shear warping vector field and
the twist warping scalar field. Accordingly, the shear stress field is
the split into a shear tangential stress field and a twist tangential
stress field, see Section 2.3. The resultant of the former is equal to
the shear forcewhile the latter has a null resultant. The definition of
the shear tangential stress field leads naturally to the notion of
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shear centre as the unique point in the cross section about which
the twisting moment of any shear tangential stress field vanishes.
The first conception of a shear centre is attributed by Timoshenko
(1953) to Robert Maillart (1921e22), who envisaged it to explain
the results of experimental tests on beams with C-shaped sections.
A documentation on Maillart, and on his outstanding contributions
to the design of reinforced concrete structures, in provided in
(Billington, 1998). The shear centre, defined with a coordinate-
based formalism in (Timoshenko, 1940, Goodier, 1944;
Timoshenko and Goodier, 1951; Sokolnikoff, 1956; Novozhilov,
1961; Solomon, 1968), is introduced with an intrinsic formulation
in Prop. 2. Following the original conception by Trefftz (1935) and
the treatment by Capurso (1971), the twist centre is introduced in
Prop. 4, to define torsion-orthogonal tangential stress fields as the
ones which are uncoupled in elastic energy from twist tangential
stress fields. A general formula is provided in Section 3 for the
relative position of shear and twist centres and it is shown that
shear and twist centres coincide for arbitrary cross sections with
vanishing Poisson ratio and for all thin-walled sections, whether
open or closed and even multi-cell with variable thickness. The
evaluation of the shear deformability of Timoshenko beams with
thin-walled cross sections was carried out in (Romano et al., 1992).
Numerical computations of shear deformability for beams with
arbitrary cross sections were performed in (Schramm et al., 1994)
where early contributions by Cowper (1966) and Mason and
Hermann (1968) were referenced. Initially curved and twisted
composite beams have been investigated in (Borri and Merlini,
1986; Borri et al., 1992). A Timoshenko-like model has been
recently developed in the same context in (Yu et al., 2002; Hodges,
2006) on the basis of the variational asymptotic method (VAM)
proposed in (Berdichevsky, 1976). The energy approach is here
adopted in Section 4 to formulate the expression of the symmetric,
positive definite sliding-torsional compliance operator. It is shown
that the mutual sliding-torsional compliance depends linearly on
the relative position of Saint-Venant shear and twist centres and
that Timoshenko shear centre, evaluated by Saint-Venant beam
theory, is coincident with Saint-Venant twist centre. By a direct
application of the Cauchy-Schwarz inequality, it is proved that the
principal shear factors are strictly greater than unity and that the
torsional factor is not less than unity, being unitary for circular cross
sections, whether compact or tubular. The numerical computations,
reported in Section 5, for asymmetric L-shaped cross sections,
performed according to Saint-Venant theory, confirm that the
distance between shear and twist centres is still quite small, for
a wide range of thickness ratios and that principal directions of the
bending stiffness may be quite distinct from principal directions of
the shear factors tensor, in general. The analytical determinations,
carried out in Section 6, with reference to open circular thin-walled
cross sections, reveal that small corrections due to the curvature of
the middle-line may be neglected, so that coincidence of the shear
and twist centres may be assessed in this case. Extension of the
treatment to non-isotropic and non-homogeneous elastic beams
will be developed in forthcoming contributions.

2. Saint-Venant beam theory

2.1. Notations

Let U be the cross section of a Saint-Venant linearly elastic
isotropic beam (Saint-Venant, 1856a, 1856b), vU the boundary with
outward normal versor field n, V the two-dimensional linear space
of translations in the plane of the cross section, V* its dual, k the
unit vector along the z axis of the beam and R˛C1(V;V) the
isometric linear operator which rotates by p/2 counterclockwise
the vector fields in V, so that RT ¼ R�1 ¼ �R and RR ¼ �I. The
following geometric moments of the cross section, with respect to
a pole O, are of interest in the theory:

� the area (zeroth geometric moment):

A :¼
Z
U

dA;

� the static moment (first geometric moment):

FO :¼
Z
U

pdA;

� the inertia moment (second geometric moment):

JO :¼
Z
U

p5gpdA

where p is the position vector of points in U with respect to O.
Denoting g˛SYMðVÞ ¼ LðV ;V*Þ the metric tensor in V, the

tensor product u5gv of the vectors u,v˛V is defined by the identity
ðu5gvÞ$w :¼ gðv;wÞu for any vectorw˛V. Here and throughout in
paper, the dot $ denotes linear dependence on the subsequent
argument. The centroid G of the section, is the mean point defined
by pG:¼FO/A. In the sequel: NðzÞ ¼ R

Usðr; zÞdA is the resultant
normal force, viz. the resultant of the axial component of tractions
on the cross section, SðzÞ ¼ R

Usðr; zÞdA is the resultant shear force,
viz. the resultant of the in-plane component of the tractions on the
cross section, MGðzÞ ¼ R

Usðr; zÞrdA is the bending moment, defined
as the R-rotated axial vector of the resultant bending moment (the
in-plane component of the resultant moment) of tractions on the
cross section, with respect to the centroid G of the section,MGðzÞ ¼R
Ugðsðr; zÞ;RrÞdA is the scalar resultant twisting moment (the axial
component of the resultant moment) of tractions on the cross
section, with respect to the centroid G of the section. An apex ðÞ0
denotes the derivative with respect to z, and r is the position vector
of a point of the cross section with respect to the centroid G.
2.2. Displacement and stress fields

Let 3G be the axial elongation. The bending curvature dðzÞ ¼ dð0Þ þ
d0z is the gradient with respect to r of the field of the extensions of
longitudinal fibres of the beam; the shearing d0 is the constant
derivative along z of the affine vector function d(z); the twist a is
a scalar parameter whichwill be shown to be the average of the local-
twist field over the section;4ðd0;aÞ˛C2ðU;RÞ is awarping field, which
is bilinear in their arguments d0 and a; m and n are the Lamé shear
modulus and the Poisson ratio, respectively; E¼ 2m(1þ n) is the Euler
modulus. The displacement field in the beam subject to extension,
bending, shear and torsion, is conveniently split into tangential and
normal components to the cross section and expressed as function of
the position vector with respect to the centroid. The former is a vector
field uð 3G;dð0Þ;d0;a; zÞ˛C1ðU;VÞ in the cross section and the latter is
a scalar field wð 3G;dð0Þ;d0;a; zÞ˛C1ðU;RÞ. The expression of the
tangential and normal displacement fields are convenientlywritten in
intrinsic form as (Barretta and Barretta, 2010):

uð 3G;dð0Þ;d0;a;r;zÞ ¼ n

2
�
Rr5gRr�r5gr

�
dðzÞ

�n 3Gr�
z2

2
dð0Þ�z3

6
d0 þazRr;

wð 3G;dð0Þ;d0
;a;r;zÞ ¼ 4ðd0

;a;rÞ þðgðdð0Þ;rÞþ 3GÞ zþgðd0
;rÞz

2

2
:

Remark 2.1. In Cartesian components rh{x,y} and Rrh{�y,x} so
that:
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r5grh
���� x2 xy
xy y2

����; Rr5gRrh
���� y2 �xy
�xy x2

����:
The previous intrinsic expression of the tangential component of

the displacement field, when expressed in components, is easily
checked to be equal to the one in (Sokolnikoff, 1956) where
d0hfKx;Kyg, 3G ¼ 0 and d(0)¼0. On the other hand, the warping field
4ðd0;aÞ˛C2ðU;RÞ appearing in the axial component has a different
definition, due to the choice of a different particular integral of the
compatibility equation. This different choice is suggested by the
application of Cesàro formula (Romano, 2002a, b) for the integration
of the strain field and is motivated by the difficulty in translating the
standard coordinate-form into an intrinsic expression.

To compute the strain field as symmetric part of the displace-
ment gradient, according to Euler formula, we first provide the
explicit expression of the derivative of the displacement field. To
this end, we recall the formulae:

V
��
Rr5gRr

�
dðzÞ� ¼ gðRr; dðzÞÞR þ ðRrÞ5g

�
RTdðzÞ�;

V
��
r5gr

�
dðzÞ� ¼ gðr;dðzÞÞIþ r5gdðzÞ;

where I˛L(V;V) is the identity, V ¼ Vr is the derivative in the cross
section, Vz ¼ ðÞ0 is the derivative along the beam axis and the
transposition ()T is taken with respect to the metric tensor g.

Let us denote by gv˛V* the covector associated with the vector
v˛V, so that gðv;hÞ ¼ ðgvÞ$h; ch˛V . The derivative of the
displacement is then described by the four-blocks operator defined
by the identity:���� Vru Vzu

gVrw Vzw

����
����h1
a2

����$
����gh2
a2

���� ¼ gðVru$h1;h2Þ þ gðVrw$h1;h2Þ
þgðVzu$a1;h2Þ þ gðVzw$a1;a2Þ;

for all h1,h2˛V, a1;a2˛R, with the expressions of the component
blocks given by:

Vru ¼ n

2

�
gðRr;dðzÞÞR þ ðRrÞ5g

�
RTdðzÞ

�
�gðr;dðzÞÞI� r5gdðzÞ

�
� n 3GIþ azR;

Vzu ¼ n

2
�
Rr5gRr� r5gr

�
d0 þ aRr� zdð0Þ � z2

2
d0;

Vrw ¼ V4ðd0;a; rÞ þ zdð0Þ þ z2

2
d0;

Vzw ¼ gðr;dðzÞÞ þ 3G:

Taking the symmetric part of the displacement derivative, the
axial elongation and the tangential strain fields are given by:(

3ð 3G;dðzÞ; rÞ ¼ gðr;dðzÞÞ þ 3G ;

gðd0;a; rÞ ¼ n

2
�
Rr5gRr� r5gr

�
d0 þ aRrþ V4ðd0;a; rÞ:

Moreover, for any versor h˛V (g(h,h) ¼ 1):

gðsymðVruÞ$h;hÞ ¼ n

2
ðgðRr;dðzÞÞgðRh;hÞ�gðdðzÞ;RhÞgðr;RhÞ

�gðr;dðzÞÞ�gðdðzÞ;hÞgðr;hÞ�2 3GÞ
¼ �nðgðr;dðzÞÞþ 3GÞ:

The tangential strain tensor is then circular and the transversal
principal strain is due to the Poisson effect. Accordingly, the normal
and tangential stress fields on U, solution of the elastostatic
problem, are provided by the formulae:n
sð 3G;dðzÞ;rÞ ¼ EðgðdðzÞ;rÞþ 3GÞ;

sðd0;a;rÞ ¼ mn

2
�
Rr5gRr�r5gr

�
d0 þmaRrþmV4ðd0;a;rÞ:

The field of local-rotations about the beam axis is given by:
gðskewðVruÞ$h;RhÞ ¼ n

4
ðgðRr;dÞþgðd;RhÞgðr;hÞ

�gðr;RhÞgðd;hÞþgðd;hÞgðr;RhÞ
þgðr;hÞgðd;RhÞÞþaz

¼ �ngðr;RdðzÞÞþaz:

The local-twist field is the derivative with respect to z:

g
�
skewðVruÞ0$h;Rh

� ¼ �ngðr;Rd0Þ þ a ¼ 1
2
ðcurlgðd0;a; rÞÞ

where the last equality is inferred by direct computation. SinceZ
U

ð� ngðr;Rd0Þ þ aÞdA ¼ Aa;

the twist a, which is the local-twist at the centroid (r ¼ 0), is equal
to the average of the local-twist field over the cross section
(Sokolnikoff, 1956).

The fulfilment of the bulk and boundary differential conditions
of equilibrium:

div sðd0;a; rÞ þ s0ðd0; rÞ ¼ 0 in U;

gðsðd0;a; rÞ;nðrÞÞ ¼ 0 on vU;

is equivalent to the requirement that the warping field
4ðd0;aÞ˛C2ðU;ℛÞ be solution of the Poisson-Neumann problem:(
D24ðd0;a;rÞ¼�2gðd0;rÞ; r˛U;

dn4ðd0;a;rÞ¼�n

2
g
��
Rr5gRr�r5gr

�
d0;nðrÞ�

�agðRr;nðrÞÞ; r˛vU:

Remark 2.2. A discussion concerning the existence of the warping
field 4ðd0;aÞ for any cross section U, whether simply or multiply
connected, and for any shear force S and twisting momentMG, and its
uniqueness up to a constant, may be found in (Barretta and Barretta,
2010) where the treatment in (Romano, 2002b), based on an elasto-
static analogy, is referred to.
2.3. Shear and twist

The classical Poisson-Neumann problem for the warping field is
conveniently split into a shear problem (in which a¼0) and
a torsion problem (in which d0 ¼ 0). Their solution fields will be
called the shear warping 4SHðd0Þ and the twist warping 4TWðaÞ. The
warping field depends linearly on the arguments d0 and a, so that:

4ðd0
;aÞ ¼ 4SHðd0Þ þ 4TWðaÞ:

The shear warping field 4SHðd0Þ˛C2ðU;RÞ is the solution of the
Poisson-Neumann problem:(D24

SHðd0; rÞ ¼ �2gðd0; rÞ; r˛U;

dn4SHðd0; rÞ ¼ �n

2
g
��
Rr5gRr� r5gr

�
d0;nðrÞ�; r˛vU;

and the twist warping field 4TWðaÞ˛C2ðU;RÞ is solution of the
Laplace-Neumann problem:	
D24

TWða; rÞ ¼ 0; r˛U;

dn4TWða; rÞ ¼ �agðRr;nðrÞÞ; r˛vU:

Setting:

4SHðd0; rÞ ¼ g
�
fSHðrÞ;d0�;

the shear tangential stress field on U is provided by the formula:
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sSHðd0;rÞ :¼ m
�n
2
�
Rr5gRr� r5gr

�þVfSHðrÞT
�
$d0 ¼ FSHðrÞ$d0;

which defines the tensor FSH(r) having the physical dimension of
a force. Setting 4TWða;rÞ ¼ afTWðrÞ, the twist tangential stress field
on U is provided by the formula:

sTWða; rÞ :¼ ma
�
Rrþ VfTWðrÞ

�
¼ afTWðrÞ;

which defines the vector fTW(r) having the physical dimension of
a force times the inverse of a length, fTWðrÞ is a squared length and
hence VfTWðrÞ is a length.

Lemma 2.1. The resultant shear force S may be evaluated by the
formula:

S :¼
Z
U

sðrÞdA ¼ �
Z
U

r div ðsðrÞÞdA:

Proof. By virtue of the identity: divðr5gsðrÞÞ ¼ r div sðrÞ þ sðrÞ,
the divergence theorem gives:Z
U

sðrÞdA ¼
Z
U

div
�
r5gsðrÞ

�
dA�

Z
U

r divðsðrÞÞdA

¼
I
vU

gðsðrÞ;nðrÞÞ$rds�
Z
U

r divðsðrÞÞdA;

and the first integral vanishes since gðsðrÞ;nðrÞÞ ¼ 0 on vU.
Since div(sTW(a,r))¼0, from Lemma 2.1 it follows that the

resultant of the twist tangential stress field vanishes and that the
resultant of the shear tangential stress field is equal to the shear
force.

Proposition 2.1. The shear force is given by: S ¼ E JG d
0
.

Proof. A direct computation gives:

S ¼
Z
U

sSHðd0; rÞdA ¼ �
Z
U

r div
�
sSHðd0; rÞ

�
dA

¼
Z
U

Er5gr dA$d
0 ¼ E JG$d

0;

where JG :¼ R
Ur5gr dA is the second geometric moment of Uwith

respect to the centroid.
The same conclusion may be arrived at by a direct integration of

the expression of the field sSHðd0; rÞ in terms of the warping, but at
the cost of a much more involved algebra.

The shear tangential stress field may alternatively be expressed
in terms of the shear force as:

sSHðS; rÞ ¼ TSHðrÞ$S
A
; r˛U;

with TSHðrÞ ¼ AFSHðrÞðEJGÞ�1 a non-dimensional tensor whose
mean value is equal to the identity:

1
A

Z
U

TSHðrÞdA ¼ I:
2.4. Shear centre

The global elastic constitutive relations between the kinematic
parameters { 3G, d(z)} and their dual static counterparts {N, MG (z)}
are uncoupled, due to the choice of the centroid as origin of
positions, and may be evaluated by a direct computation of the
normal force and of the bending moment:
>>>>>N ¼ sðdðzÞ; 3G; rÞdA ¼ EA 3G;
8
<
>>>>>:

Z
U

MGðzÞ ¼
Z
U

sðdðzÞ; 3G; rÞrdA ¼ E JG$dðzÞ:

Here EA is the scalar axial stiffness and E JG is the bending stiffness
tensor. Taking the derivative of the latter equation along the beam
axis we infer that M0

GðzÞ ¼ S. The constitutive relations between
the kinematic parameters fd0;ag and their dual static counterparts
fS;MCSHg may be put in uncoupled form by introducing the shear
centre CSH.

Proposition 2.2. (Shear centre). Any shear tangential stress field
has a vanishing twisting moment about a pole of the cross section U,
called the shear centre CSH whose position is given by the formula:

rCSH ¼ �1
A
R

Z
U

TSHðrÞTRrdA ¼ �RðEJGÞ�1
Z
U

FSHðrÞTRrdA:

Proof. Being sSHðd0; rÞ ¼ TSHðrÞS=A, the vanishing of the resultant
moment about the shear centre CSH is expressed by:

Z
U

g
�
Rr� RrCSH ; sSHðd0

; rÞ
�
dA ¼

Z
U

g


Rr; TSHðrÞ S

A

�
dA

�gðRrCSH ; SÞ ¼ 0:

The first equality then follows by the arbitrariness of S and the

second from the relation FSHðrÞd0 ¼ TSHðrÞ S
A
, where EJGd

0 ¼ S.

In (Sokolnikoff, 1956) the shear centre is named center of flexure.

Proposition 2.3. The twist a of the beam is proportional to the
twisting moment about shear centre CSH

MCSH ¼ m A2Ka;

with the non-dimensional factor K is given by:

K :¼ 1
mA2

Z
U

g
�
Rr; fTWðrÞ

�
dA:

Proof. By Prop. 2.2 the twisting moment about CSH is given by

MCSH¼
Z
U

g
�
Rr;sTWða;rÞ

�
dA¼

0
B@Z

U

g
�
Rr;fTWðrÞ

�
dA

1
CA$a¼mA2Ka;

because only twist tangential stress fields are involved.
The twist tangential stress field may be written as:

sTWða; rÞ ¼ afTWðrÞ ¼ MCSH

A
tTWðrÞ;

where tTW(r) is the inverse of a length. Then

fTWðrÞ ¼ mAKtTWðrÞ;
and

1
A

Z
U

g
�
Rr; tTWðrÞ

�
dA ¼ 1:

For a circular cross section, or a circular annulus, it is
fTWðrÞ ¼ mRr so that: K ¼ JP=A2, where JP :¼ R

Ugðr; rÞ dA is the
polar geometric moment of the cross section about the centroid G.
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2.5. Twist centre

To introduce the notion of twist centre, the following expression
of mutual elastic energy per unit length is preliminarily provided.

Lemma 2.2. (Shear-twist mutual elastic energy). A tangential
stress field sðd0

1;a1Þ, with a null resultant moment about a pole C,
when interacting with a twist tangential strain field gTW(a2), performs
an internal mutual work per unit length given by:

u12 :¼
Z
U

g
�
sðd0

1;a1; rÞ;gTWða2; rÞ
�
dA

¼ a2gðRrC; S1Þ þ a2

Z
U

s0ðd0
1; rÞfTWðrÞdA

¼ a2g

0
B@RrC þ J�1

G

Z
U

fTWðrÞr dA

1
CA$S1:

Proof. Recalling the formula: gTWða2; rÞ ¼ a2ðRrþ VfTWðrÞÞ, the
internal mutual work per unit length is given by:

u12 ¼ a2

Z
U

gðsðd0
1;a1; rÞ;RrÞdA

þ a2

Z
U

g
�
sðd0

1;a1; rÞ;VfTWðrÞ
�
dA:

The evaluation of the twisting moment about the centroid G
gives:Z
U

gðsðd0
1;a1; rÞ;RrÞdA ¼ gðRrC; S1Þ:

On the other hand, the differential and boundary equations of
equilibrium:(
�div sðd0

1;a1; rÞ ¼ s0ðd0
1; rÞ ¼ Egðd0

1; rÞ ¼ gðS1; J�1
G rÞ; on U;

gðsðd0
1;a1; rÞ;nðrÞÞ ¼ 0; on vU;

inserted in Green’s formula give:
Z
U

g
�
sðd0

1;a1; rÞ;VfTWðrÞ
�
dA ¼ �

Z
U

divsðd0
1;a1; rÞfTWðrÞdAþ

I
vU

gðsðd0
1;a1; rÞ;nðrÞÞfTWðrÞds ¼

Z
U

s0ðd0
1; rÞfTWðrÞ dA

¼ g J�1
G

0
B@ Z

U

fTWðrÞr dA

1
CA$S1
which is the result.

Proposition 2.4. (Twist centre). The twist centre CTW is the pole in
the plane of the cross section U, such that a tangential stress field
sðd0;aÞ with vanishing resultant moment about CTW performs no
mutual work when interacting with any twist tangential strain field
gTWða; rÞ ¼ aðRrþ VfTWðrÞÞ. The position of CTW is given by the
formula:

rCTW ¼ RJ�1
G

Z
U

fTWðrÞr dA;

where fTW: ¼ 4TWð1Þ˛C2ðU;RÞ:
Proof. The result is a direct consequence of the formula in Lemma
2.2.

This definition of twist centre was introduced in (Trefftz, 1935)
where the tangential stress fields sðd0;aÞ with vanishing resultant
moment about CTW were said to induce bending without torsion.
We will call them torsion-orthogonal tangential stress fields, as
suggested by the definition in Prop. 4. An analogous treatment in
coordinates was developed in (Capurso, 1971). Another definition
of torsion-free bending was given in (Goodier, 1944).

An alternative definition of twist centre CTW was introduced by
Cicala (1935); Trefftz (1935); Weinstein (1947). It is based on the
observation that the warping fTW due to twist is unique to within
an affine scalar function of the position vector. Following the
treatment in (Sokolnikoff, 1956), we assume the expression:

fTWðrÞ þ gðRrC; rÞ � c:

Requiring that zeroth and first moments of the twist warping
are zero:

Z
U

�
fTWðrÞ � c

�
dA ¼ 0;

Z
U

�
fTWðrÞ þ gðRrC; rÞ

�
r dA ¼ 0;

the value of c and the position of the twist centre are evaluated.
3. Shear centre vs twist centre

The next result concerns the relative position of twist and shear
centres and will be resorted to in Section 4 dealing with the mutual
sliding-torsional compliance and the notion of shear centre in
Timoshenko beam theory. The non-dimensional torsion factor cTW,
defined by:

cTW :¼ JP
A2

Z
U

g
�
tTWðrÞ; tTWðrÞ

�
dA;

and the noteworthy formula:
cTWA2

JP
K ¼ 1;

are referred to in the next proposition.

Proposition 3.1. The relative position of twist and shear centres,
CTW and CSH, is provided by the formula:

rCTW�rCSH ¼KR
Z
U

TSHðrÞTtTWðrÞdA¼ 1
mE

RJ�1
G

Z
U

FSHðrÞT fTWðrÞdA:
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Proof. By definition of twist centre (see Prop. 2.4) the integral:Z
U

g
�
sðMCSH ; S; rÞ; tTWðrÞ

�
dA;

vanishes for any tangential stress field such that:

MCSH ¼ gðRðrCTW � rCSHÞ; SÞ:
Setting sðMCSH ; S; rÞ ¼ TSHðrÞ$S

A
þ tTWðrÞMCSH

A
, a direct

computation of the integrand gives, for any S:

g
�
sðMCSH ; S; rÞ; tTWðrÞ�

¼ g


TSHðrÞ$S

A
þ tTWðrÞg



RðrCTW � rCSHÞ ; S

A

�
; tTWðrÞ

�

¼ g


S
A
; TSHðrÞTtTWðrÞ þ g

�
tTWðrÞ; tTWðrÞ

�
RðrCTW � rCSHÞ

�
:

The former equality in the statement follows from the note-
worthy formula above. The latter equality is got by the formulae

TSHðrÞ ¼ AFSHðrÞðEJGÞ�1 and mAKtTWðrÞ ¼ fTWðrÞ.
The result of Prop. 3.1 reveals that the shear and twist centres

coincide if and only if shear sSH and twist sTW tangential stress fields
are orthogonal in elastic energy. An explicit expression of the
relative position of twist and shear centres in terms of Prandtl
stress function J˛C1ðU;RÞ may be given. Preliminarily we recall
that, according to Prandtl (1903) torsion theory, in a multiply
connected cross section with n holes, see Fig. 1, being:(

div sTW ¼ curl RsTW ¼ 0; in U;

g
�
sTW;n

� ¼ g
�
RsTW; t

� ¼ 0; on vU;

the rotated field of twist tangential stresses admits a potential
J˛C1ðU;RÞ:

RsTWða; rÞ ¼ aRfTWðrÞ ¼ amVJðrÞ; r˛U;

the Prandtl stress function, solution of the Poisson-Dirichlet
problem:8>><
>>:

D2JðrÞ ¼ �2 on U;

JðrÞ ¼ 0 on vU0;

JðrÞ ¼ ki on vUi; ki˛R; i ¼ 1;2;.;n;

with vUo, exterior boundary of the cross section and vUi boundary
of the hole i ¼ 1,.,n. A linear system of n boundary integrability
Fig. 1. Multiply connected cross section.
conditions provides the values of the scalar constants ki
(Sokolnikoff, 1956).

Proposition 3.2. In terms of the Prandtl stress functionJ˛C1ðU;RÞ,
the relative position of twist and shear centres CTW and CSH is given by:

rCTW � rCSH ¼ n

1þ n
R J�1

G R

0
B@Z

U

JðrÞrdAþ
Xn
k¼1

ki

Z
Ui

rdA

1
CA:

Proof. Recalling the definition:

FSHðrÞ :¼ m
�n
2
�
Rr5gRr� r5gr

�þ VfSHðrÞT
�
;

the formula in Prop. 3.1 may be rewritten as:

rCTW � rCSH ¼ n

4ð1þ nÞRJ
�1
G m�1

Z
U

�
Rr5gRr� r5gr

�
fTWðrÞ dA

þ 1
2ð1þ nÞRJ

�1
G m�1

Z
U

VfSHðrÞfTWðrÞdA:

The former integral is evaluated as follows. Taking into account
the relations:

8><
>:

fTWðrÞ ¼ �mRVJðrÞ;
div

��
Rr5gRr

�
R
� ¼ 3Rr;

div
��
r5gr

�
R
� ¼ �Rr;

by the Leibniz rule we have the formula:�
Rr5gRr� r5gr

�
RVJðrÞ ¼ div

�
JðrÞ�Rr5gRr� r5gr

�
R
�

�JðrÞdiv ��
Rr5gRr� r5gr

�
R
�

¼ div
�
JðrÞ�Rr5gRr� r5gr

�
R
�

� 4JðrÞRr:
Recalling the boundary conditions of the Poisson-Dirichlet

problem a double application of the divergence theorem gives:

m�1
Z
U

�
Rr5gRr� r5gr

�
fTWðrÞdA

¼ �
Z
U

�
Rr5gRr� r5gr

�
RVJðrÞdA

¼ 4R
Z
U

JðrÞrdA�
Z
U

div
�
JðrÞ�Rr5gRr� r5gr

�
R
�
dA

¼ 4R
Z
U

JðrÞrdA�
I
vU
JðrÞ�Rr5gRr� r5gr

�
RnðrÞds

¼ 4R
Z
U

JðrÞrdA�
Xn
k¼1

ki

I
vUi

�
Rr5gRr� r5gr

�
RnðrÞds

¼ 4

0
B@R

Z
U

JðrÞrdAþ
Xn
k¼1

ki

Z
Ui

rdA

1
CA:

The latter integral in the expression of rCTW � rCSH vanishes.
Indeed, resorting to the divergence theorem and imposing the
differential and boundary conditions:(

div fTWðrÞ ¼ 0; r˛U;
g
�
fTWðrÞ;nðrÞ� ¼ 0; r˛vU;
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Green’s formula gives:Z Z

U

VfSHðrÞfTWðrÞdA ¼ �
U

fSHðrÞdiv fTWðrÞdA

þ
I
vU
g
�
fTWðrÞ;nðrÞ

�
fSHðrÞds ¼ 0;

and the result follows.
From Prop. 3.2 it follows that a vanishing Poisson ratio implies

coincidence of shear and twist centres.

Remark 3.1.. Stephen and Maltbaek (1979) have contributed
a formula for the relative position of twist and shear centres in terms of
Prandtl stress function, which in coordinate-free form writes:

rCTW � rCSH ¼ n

1þ n
RJ�1

G R
Z
U

JðrÞrdA:

The result in Prop. 3.2 reveals that in their formula the presence of
holes is not taken into account. Its validity is confined to simply con-
nected cross sections and to tubular sections with the hole centered at
the centroid of the cross section, since then the additional term
vanishes.

Remark 3.2. The formula in Prop. 3.1 reveals that the property of
coincidence of shear and twist centres is equivalent to the vanishing of
the mutual elastic energy between twist and shear tangential stress
fields. For open thin-walled sections of constant thickness, the van-
ishing of this mutual elastic energy follows from the fact that the shear
tangential strain field is constant through the thickness, while the twist
tangential stress field is linear through the thickness with a null mean
value (a butterfly-shaped diagram). Contrary to computations and
conclusions reported in (Andreaus and Ruta, 1998, Section 6.2), for
multi-cellular cross sections the coincidence of the two centres may be
inferred by the same argument. To see this, it is expedient to split the
flux of twist tangential stresses as the sum of Kirchhoff fluxes in
a maximal set of independent loops (Romano, 2002b). The mutual
work is then the sum of the mutual works performed, in each loop, by
the relevant Kirchhoff flux, which is constant along the loop, times the
shear tangential strain, which has a vanishing circulation due to the
kinematic compatibility requirement on the shear warping of the
section middle line.
4. Timoshenko beam compliance and shear centre

The elastic compliance of a Timoshenko beam subject to shear
and torsion is defined by the symmetric linear operator D relating
the static pair shear force and twisting moment around the shear
centre fS;MCSHg and the dual pair shear sliding, torsional curvature
fsSH; cTWg. The elastic compliance operator may be written as
a block array:���� sSHcTW

���� ¼
���� D11 D12
gD12 D22

����$
���� S
MCSH

����;
where gD12 is the covector associated with the vectorD12 according
the Euclid metric tensor g. In Timoshenko beam model a shear
centre CSHTIMO may be defined as follows.

Definition 4.1. The Timoshenko shear centre CSHTIMO is the pole such
that the vanishing of the resultant twisting moment about it implies
the vanishing of the torsional curvature cTW.

Proposition 4.1. The position vector of the Timoshenko shear centre
with respect to the Saint-Venant shear centre is given by

rCSH
TIMO

¼ rCSH þ ðD22Þ�1RD12:
Proof. The vanishing of the resultant twisting moment about
CSHTIMO:

gðRrCSH � RrCSH
TIMO

; SÞ þMCSH ¼ 0;

and the condition cTW ¼ gðD12; SÞ þ D22MCSH ¼ 0, yield the
expression gðRrCSH � RrCSH

TIMO
; SÞ ¼ ðD22Þ�1gðD12; SÞ which, holding

for any S, gives the result.
A coordinate expression of the formula above is given in (Yu

et al., 2002).
4.1. Evaluation by Saint-Venant theory

The shear sliding sSH and the torsional curvature cTW can be
evaluated by an energy equivalence relation expressed by the
identity:

g
�
S*;sSH

�
þM*

CSHcTW :¼
Z
U

g


s
�
S*;M*

CSH ;r
�
;
sðS;MCSH ;rÞ

m

�
dA;

where S*;M*
CSH are arbitrary shear force and twisting moment and

the tangential stress fields are solutions of elastostatic problems
according to Saint-Venant beam theory, so that:

sðS;MCSH ; rÞ ¼ TSHðrÞ$S
A
þ tTWðrÞ$MCSH

A
:

The shear sliding vector sSH is non-dimensional and the
torsional curvature cTW is the inverse of a length. Introducing the
non-dimensional shear factor tensor:

cSH :¼ 1
A

Z
U

TSHðrÞTTSHðrÞdA;

and recalling the formula cTWA2K ¼ JP , the sliding-torsion
compliance blocks are expressed by:8>>>>>>><
>>>>>>>:

D11 ¼ cSH

mA
;

D22 ¼ cTW

mJP
¼ 1

mA2K
;

D12 ¼ cTW

mJP
RðrCSH � rCTWÞ ¼ D22RðrCSH � rCTWÞ:

A significant new outcome of this analysis is the following.

Proposition 4.2. Timoshenko shear centre evaluated by Saint-
Venant beam theory is coincident with Saint-Venant twist centre.

Proof. The expressions of compliance blocks evaluated by
Saint-Venant theory give:

rCSH
TIMO

¼ rCSH þ ðD22Þ�1RD12 ¼ rCSHþ ðrCTW � rCSH Þ ¼ rCTW .

Recalling the formulae MCSH ¼ mA2Ka and S ¼ E JGd
0, the

expression of the pair ðsSH; cTWÞ (shear sliding, torsional curvature)
in terms of the pair ðd0;aÞ (shearing, twist) is given by:

8<
: sSH ¼ cSH

mA
EJG$d

0 þ RðrCsH � rCTWÞ$a;
cTW ¼ gRðrCSH � rCTWÞ$d0 þ a:

This linear system uncouples and the mutual sliding-torsion
compliance D12 vanishes if and only if coincidence of shear and
twist centres occurs, a result not explicitly quoted in literature.

Proposition 4.3. (Principal shear factors). The eigenvalues of the
shear factors tensor cSH are strictly greater than unity.



Fig. 2. Polygonal cross section.

Fig. 3. L-shaped cross section.
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Proof. Let e be a unit eigenvector of cSH. By the mean value
formula in Section 2.3 we infer that:

1
A

Z
U

TSHðrÞ dA ¼ I 0
1
A

Z
U

g
�
TSHðrÞe; e

�
dA ¼ gðe; eÞ ¼ 1:

Then Cauchy-Schwarz inequality:0
B@Z

U

g
�
TSHðrÞe;TSHðrÞe

�
dA

1
CA
0
B@Z

U

gðe; eÞdA

1
CA

�

0
B@Z

U

g
�
TSHðrÞe; e

�
dA

1
CA

2

;

yields the result since equality holds if and only if the shear
tangential stress field TSH(r)e is proportional to the constant field e.

The proof of Prop. 4.3 is based on the sole mean value property
of the operator TSH. The result concerning the eigenvalues of the
shear factors tensor cSH is therefore valid even if approximate shear
tangential stress fields are adopted for its evaluation, according to
the pure equilibrium theory due to Jourawski (1856); Rankine
(1858); Grashof (1878), as considered in (Romano et al., 1992).

Proposition 4.4. (Torsion factor). The torsion factor cTW is not less
than unity and is equal to unity if and only if the section is a circle or
a circular annulus.

Proof. Observing that JP :¼ R
Ugðr; rÞdA ¼ R

UgðRr;RrÞdA and
applying the Cauchy-Schwarz inequality, we get:

cTW :¼ 1
A2

0
B@ Z

U

gðRr;RrÞdA

1
CA
0
B@ Z

U

g
�
tTWðrÞ; tTWðrÞ

�
dA

1
CA

�

0
B@1
A

Z
U

g
�
Rr; tTWðrÞ

�
dA

1
CA

2

¼ 1;

where the last equality follows from the formula reported before
Prop. 2. Equality holds only under proportionality of the fields
tTW(r) and Rr and this requires that the cross section boundary is
made of a circle or of two concentric circles.

Remark 4.1. The analytical expression of the shear factors tensor cSH

for thin-walled, open and closed cross sections, was given in (Romano
et al., 1992). There the Cauchy-Schwarz inequality was applied to
prove that the eigenvalues of cSH are strictly greater than unity, a proof
reproduced also in (Romano, 2002b). This result has been reformulated
in (Favata et al., 2010)with nomention of these previous contributions,
notwithstanding a reference to (Romano, 2002b) in a footnote. The
treatment in (Favata et al., 2010) is limited to coincidence of the prin-
cipal axes of cSH and JG and adopts a needlessly involved argument to
assess the results here proven in Prop. 4.3 and 4.4.

5. Numerical computations

Let us consider a cross section U whose boundary is a closed
polyline, with vertices P1,P2,.,Pn,Pnþ1 ¼ P1 (see Fig. 2). The posi-
tion vector, with respect to a pole O, of the i-vertex is denoted by pi.
The divergence theorem provides the following formulae to eval-
uate (Romano, 2002b):

� the area:

A :¼
Z
U

dA ¼ 1
2

I
vU

gðp;nðpÞÞ ds ¼ 1
2

Xn
i¼1

gðpi;Rpiþ1Þ:
� the first geometric moment with respect to the pole O:

FO :¼
Z
U

pdA ¼ 1
3

I
vU

�
p5gp

�
nðpÞds
¼ 1
6

Xn
i¼1

gðpi;Rpiþ1Þðpi þ piþ1Þ:

� the second geometric moment with respect to the pole O:

JO :¼
Z
U

p5gpdA ¼ 1
4

I
vU

gðp;nðpÞÞp5gpds
¼ 1
12

Xn
i¼1

gðpi;Rpiþ1Þ
�
pi5gpi þ sym

�
pi5gpiþ1

�þ piþ15gpiþ1
�
:

A Cartesian coordinates system {x,y} with origin in the centroid
G will be adopted in the sequel.

5.1. L-shaped sections

Let us compute the positions of the shear and twist centres (see
Prop. 2.2 and 2.4) and the shear factors tensor of the L-shaped cross
section drawn in Fig. 3. Table 1 provides, in components, the
outward normal vector n and the parametric representation of the
sides.



Table 1
Geometric data of the boundary of the L-section.

Side jnj jrj
P1P2 {0, �1} fxP1

� x � xP2
; yP1P2

g
P2P3 {1, 0} fxP2P3

; yP2
� y � yP3 g

P3P4 {0, 1} fxP4
� x � xP3

; yP3P4 g
P4P5 {1, 0} fxP4P5

; yP4
� y � yP5

g
P5P6 {0, 1} fxP6

� x � xP5
; yP5P6

g
P6P1 {�1, 0} fxP6P1

; yP1
� y � yP6

g
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5.1.1. First computation
� Lamé shear modulus: m¼1, Poisson ratio: n¼0,3, shearing
vector: jd0j ¼ f1;0g.

Matlab helps in solving the Poisson equation:
D24

SHðx; yÞ ¼ �2x, with the Neumann conditions on the boundary
of the L-shaped cross section:

� side P1P20ðdn4SHÞðx; yP1P2
Þ ¼ �yP1P2

nx;

� side P2P30ðdn4SHÞ ðxP2P3
; yÞ ¼ �nðy2 � x2P2P3

Þ
2

;

� side P3P40ðdn4SHÞðx; yP3P4
Þ ¼ yP3P4

nx;

� side P4P50ðdn4SHÞ ðxP4P5
; yÞ ¼ �nðy2 � x2P4P5

Þ
2

;

� side P5P60ðdn4SHÞðx; yP5P6
Þ ¼ yP5P6

nx;

� side P6P10ðdn4SHÞ ðxP6P1
; yÞ ¼ nðy2 � x2P6P1

Þ
2

:

In Fig. 4 the shear tangential stress field:

8>><
>>:

sSHx ðx; yÞ ¼ FSH11 ðx; yÞ ¼ mn

2

�
y2 � x2

�
þ m

v4SH

vx
ðx; yÞ;

sSHy ðx; yÞ ¼ FSH21 ðx; yÞ ¼ �mnxyþ m
v4SH

vy
ðx; yÞ

is plotted. The colour spectrum measures the norm of the elastic
shear stress field:

���sSHðx; yÞ��� :¼
h�

sSHx
�2ðx; yÞ þ �

sSHy
�2ðx; yÞi1

2
:

Fig. 4. Shear tangential stress fiel
5.1.2. Second computation
� Lamé shear modulus: m¼1, Poisson ratio: n¼0,3, shearing
vector: jd0j ¼ f0;1g.

Matlab helps in solving the Poisson equation:

D24
SHðx; yÞ ¼ �2y;

with the Neumann conditions on the boundary of the L-cross
section:

� side P1P20ðdn4SHÞ ðx; yP1P2
Þ ¼ nðx2 � y2P1P2

Þ
2

;

� side P2P30ðdn4SHÞðxP2P3
; yÞ ¼ xP2P3

ny;

� side P3P40ðdn4SHÞ ðx; yP3P4
Þ ¼ nðy2P3P4

� x2Þ
2

;

� side P4P50ðdn4SHÞðxP4P5
; yÞ ¼ xP4P5

ny;

� side P5P60ðdn4SHÞ ðx; yP5P6
Þ ¼ nðy2P5P6

� x2Þ
2

;

� side P6P10ðdn4SHÞðxP6P1
; yÞ ¼ �xP6P1

ny:

In Fig. 5 the shear tangential stress field:

8>><
>>:

sSHx ðx; yÞ ¼ FSH12 ðx; yÞ ¼ �mnxyþ m
v4SH

vx
ðx; yÞ;

sSHy ðx; yÞ ¼ FSH22 ðx; yÞ ¼ mn

2

�
x2 � y2

�
þ m

v4SH

vy
ðx; yÞ:

is plotted. The colour spectrum measures the norm of the elastic
shear tangential stress field:

���sSHðx; yÞ��� :¼
h�

sSHx
�2ðx; yÞ þ �

sSHy
�2ðx; yÞi1

2
:

5.1.3. Third computation
� Lamé shear modulus: m¼1, Poisson ratio: n¼0,3, twist: a¼1.
Matlab helps in solving the Laplace equation:

D24
TWðx; yÞ ¼ 0;
d sSH; shearing jd0 j ¼ f1;0g.



Fig. 5. Shear tangential stress field sSH; shearing jd0 j ¼ f0;1g.
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with the Neumann conditions on the boundary of the L-cross
section:

� side P1P20ðdn4TWÞðx; yP1P2
Þ ¼ x;

� side P2P30ðdn4TWÞðxP2P3
; yÞ ¼ y;

� side P3P40ðdn4TWÞðx; yP3P4
Þ ¼ �x;

� side P4P50ðdn4TWÞðxP4P5
; yÞ ¼ y;

� side P5P60ðdn4TWÞðx; yP5P6
Þ ¼ �x;

� side P6P10ðdn4TWÞðxP6P1
; yÞ ¼ �y:

In Fig. 6 the twist tangential stress field:

8>><
>>:

sTWx ðx; yÞ ¼ f TWx ðx; yÞ ¼ m



� yþ v4TW

vx
ðx; yÞ

�
;

sTWy ðx; yÞ ¼ f TWy ðx; yÞ ¼ m



xþ v4TW

vy
ðx; yÞ

�
:

Fig. 6. Torsion tangential str
The colour spectrum measures the norm of the elastic twist
tangential stress field:

���sTWðx; yÞ
��� :¼

h�
sTWx

�2ðx; yÞ þ �
sTWy

�2ðx; yÞi1
2
:

In Figs. 7e11, the shear centre CSH, the principal directions of the
bending stiffness tensor E JG and of the shear factors tensor cSH, for
different values of the thickness ratio, defined as the ratio between
the thickness and the length of the middle-line of the L-shaped
section, are drawn. In Table 2, the coordinates of the shear and twist
centres of the L-sections, drawn in Figs. 7e11, are reported. In these
figures the twist centre CTW is not drawn since its coordinates are
substantially coincident with the ones of the shear centre CSH, in
accordance with the analytical evaluation for thin-walled sections,
reported in Section 6.
6. Discussion

� The issueof the relativepositionof twist and shear centres, dealt
with here in Section 3, was discussed by Stephen and Maltbaek
ess field sTW; twist a¼1.



Fig. 7. a: Thickness factor 1/59, b: thickness factor 2/58.
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(1979)who, following amethodology introducedbyNovozhilov
(1961), provided an expression of the relative position of twist
and shear centres in terms of Prandtl stress functionJ. Anyway
this methodology has a limited validity when applied to
multiply connected cross sections. Indeed, following the steps
which led to their formula for the relative position of twist
and shear centre, it turns out that an essential role is played
by the vanishing of the integrals

H
vUJðrÞdnj1ðrÞds andH

vUJðrÞdnj2ðrÞds with j1,j2 harmonic functions conjugate to
the harmonic functions f1;f2, respectively fulfilling the Neu-
mann boundary conditions dnf1ðrÞ ¼ ½ð1þ nÞx2 � ny2�nx and
dnf2ðrÞ ¼ ½ð1þ nÞy2 � nx2�ny with x,y inertia principal coordi-
nates. The vanishing of these integrals is in fact assured by the
constancy of the functionJ on each connected boundary, since
by conjugacy:

I
Vj1ðrÞ$nds ¼

I
Vf1ðrÞ$dsrds ¼

I
dsf1ðsÞds ¼ 0:
vU vU vU
Fig. 8. a: Thickness factor 3/57
What however remains to be checked is the existence of the
conjugate harmonic functions. For tubular sections the existence
condition for the conjugate j1 to f1 writes:I
vUhole

dnf1ðrÞds ¼
Z

Uhole

dx
h
ð1þ nÞx2 � ny2

i
dA

¼ 2ð1þ nÞ
Z

Uhole

xdA ¼ 0:

Imposing the analogous condition for j2, we see that the
centroid of the hole must coincide with the centroid of the section.
The non-trivial existence conditions for the conjugate functions
was overlooked in (Stephen andMaltbaek,1979) where an example
of application of the formula to closed thin-walled sections is
reported.

� To estimate the correction due to the curvature of the middle-
line on the evaluation of the distance between shear and twist
, b: thickness factor 4/56.



Fig. 9. a: Thickness factor 5/55, b: thickness factor 6/54
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centres, let us consider a thin-walled open circular section, as
depicted in Fig. 12. By symmetry, the vertical component of the
difference rCTW � rCSH vanishes, while the horizontal compo-
nent is given by:

gðrCTW � rCSH ;hÞ ¼ JP
cTWA2

Z
g
�
tTWðrÞ; TSHðrÞRTh

�
dA;
U

being h the horizontal versor from the centre towards the opening.
Due to the curvature of the middle-line, the length, normalized

to unity at the middle-line, assumes the value 1þ n=R, along each
chord at the point of outward positive abscissa n from the middle-
line. It may then be considered as sum of a constant unit diagram
and of a butterfly-shaped diagram with maximum value d=ð2RÞ.
Along each chord the twist tangential stress tTW(r) is normal to the
chord and has a butterfly-shaped diagram with maximum value
3=d. Then, to evaluate the factor:
Fig. 10. a: Thickness factor 7/5
JP
cTW 2 ¼ g

�
tTWðrÞ; tTWðrÞ

�
dA

�1

;

A


Z
U

�

we observe that the diagram of gðtTWðrÞ; tTWðrÞÞ on each chord is
a parabola, symmetric about the middle-line, vanishing there and
with maxima located at the extreme points and equal to 9=d2. Its
area is then equal to ð9=d2Þd=3 ¼ 3=d. The length of themiddle-line
is [ ¼ 2pR so that the integral at the r.h.s. is given by 6pR=d,
because, by symmetry, the contribution of the butterfly-shaped
length diagram n=R vanishes. On the other hand, the diagram of
TSHðrÞRTh along any chord is constant and its integral over the
section is equal to the area 2pRd of the cross section. The product of
the butterfly-shaped diagram of tTWðrÞ with maximum value 3=d
and of the butterfly-shaped length diagram with maximum value
d=ð2RÞ yields a symmetric parabola whose area is given by
ð1=3Þ3=ð2RÞ ¼ 1=ð2RÞ. The integral

R
UgðtTWðrÞ;TSHðrÞRThÞdA is

thus evaluated to be equal to ð2pRdÞ=ð2RÞ ¼ pd. At last we get that
3, b: thickness factor 8/52.



Fig. 11. a: Shape factor 9/51, b: shape factor 10/50.
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gðrCTW � rCSH ;hÞ is equal to pdd=ð6pRÞ ¼ d2=ð6RÞ. The torsion factor
may be easily computed by the knowledge of the values JP ¼ 2pR3d
and A ¼ 2pRd so that cTW ¼ 1=2pðR=dÞ6pðR=dÞ ¼ 3ðR=dÞ2. For
typical thickness to radius ratios of about 1=10, the distance
between the two centres is estimated to be as small as d=60 and the
torsion factor is cTW ¼ 300. For a circular tube the torsion factor is
unitary, cTW ¼ 1.

� The mutual work performed in a Saint-Venant beam by
a tangential stress field interacting with a torsion elastic strain
field, is evaluated by integrating along the beam axis expression
of the virtualwork per unit lengthprovided in Lemma2.2. Being:
s0ðd0; rÞfTWðrÞ ¼ ðsðd0; rÞfTWðrÞÞ0, the integration yields:

U :¼
ZL

u dz ¼ La gðRr ; S Þ þ a

0
BBZL

sðd0 ; rÞfTWðrÞdA

1
CC

0

dz
12

0

12 2 C 1 2@
0

1 A
¼ La2gðRrC; S1Þ þ a2

Z
U

ðsðd0
1; r; LÞ � sðd0

1; r;0ÞÞfTWðrÞdA;

where C is a point of the cross section where the tangential stress
field sðd0

1;a1; rÞ has vanishing twisting moment. Special cases, of
the expression for U12 have been reported in literature. For
instance, formula 5.7 in (Andreaus and Ruta, 1998):

UA�R
12 ¼ WðF; TÞ ¼ q$vT

���
y¼d

þ l
Z
D

swT ;

and formula 3.2 in (Ecsedi, 2000):
Table 2
Positions of shear and twist centres vs. thickness ratio in L-section.

Thickness ratio jrCSH j jrCTW j
1/59 {�3.23, �13.13} {�3.23, �13.19}
2/58 {�3.13, �12.84} {�3.14, �12.86}
3/57 {�3.05, �12.40} {�3.05, �12.39}
4/56 {�2.97, �11.82} {�2.98, �11.81}
5/55 {�2.90, �11.11} {�2.90, �11.09}
6/54 {�2.82, �10.30} {�2.82, �10.26}
7/53 {�2.73, �9.40} {�2.73, �9.35}
8/52 {�2.61, �8.45} {�2.62, �8.37}
9/51 {�2.46, �7.48} {�2.47, �7.38}
10/50 {�2.35, �6.07} {�2.36, �5.94}
UE ¼ qB@ðx Q � y PÞL�
Z

fðx; yÞs00ðx; y;0ÞdACA;
12

0
S S

A

z

1

when written in our notations, respectively become:

UA�R
12 ¼ La2gðS1;RrCÞ þ La2

Z
U

sðd0
1; r; LÞfTWðrÞdA;

UE
12 ¼ La2gðS1;RrCÞ � a2

Z
U

sðd0
1; r;0ÞfTWðrÞdA:

The former refers to a beam with a vanishing bending moment
at z ¼ 0, so that sðd0; r;0Þ ¼ 0 in U, with a misprinted factor L. The
latter refers instead to a beamwhose bending moment vanishes at
z ¼ L, so that sðd0; r; LÞ ¼ 0 in U.

� In a recent paper by Dong et al. (2010) it is sustained that
principal directions of the shear factors tensor and of the
bending stiffness should coincide and that “when two forces are
applied simultaneously to a cross section, it leads to an incon-
sistency. Only one force should be used at a time, and two sets of
calculations are needed to establish the shear correction factors
for a non-symmetrical cross-section”. Both claims are in contrast
with the theoretical and numerical evidences adduced in
(Romano et al.,1992) for thin-walled sections, and in (Schramm
et al., 1994) and in the present paper for arbitrary sections.
Fig. 12. Thin-walled open circular cross section.
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Moreover they are inconsistent with the assumed linearity of
the elastostatic problem.
7. Conclusions

The paper is devoted to a presentation of Saint-Venant beam
theory under shear and torsion, with special attention to the notions
of shear and twist centres and on the evaluation of the sliding-
torsional elastic compliance to be adopted in Timoshenko beam
theory. Previous contributions in literature are discussed and new
evidences and corrections are exposed. The treatment adopts an
intrinsic (coordinate-free) formalism which provides the suitable
framework for theoretical investigations and for a direct imple-
mentation of numerical computationmethods. The relative location
of shear and twist centres, and the expression in terms of Prandtl
stress function, are formulated in full generality, extending the
validity of a previous contribution by Stephen and Maltbaek (1979)
to multiply connected cross sections. The investigation of the
sliding-torsional elastic compliance of Timoshenko beam theory
and the numerical computations performed on L-shaped cross
sections of various thickness, show that principal directions of shear
and bending are in general different. The sliding-torsional coupling
term is found to be linearly dependent on the relative position of
shear and twist centres and the Timoshenko shear centre is shown
to be coincident with the Saint-Venant twist centre, when evaluated
by energy equivalence with Saint-Venant beam theory, results not
quoted before in literature. The theory exposed in the paper can be
extended to include beams whose elastic properties are orthotropic
and non-homogeneous fibre by fibre. This extension, which is
needed for in the elastic analysis of fibre reinforced beams, will be
developed in detail in a forthcoming contribution. The Timoshenko-
like modelling of initially curved and twisted composite beams
developed in (Yu et al., 2002; Hodges, 2006) and successfully tested
in numerical experiments, provides valuable benchmarks.
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