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a b s t r a c t

The theory of constitutive behavior, with explicit reference to hypo-elastic materials, is addressed with
a geometric approach which, following physical arguments, leads to a covariant formulation. The
essential role played by a careful distinction between spatial vectors, material-based spatial vectors and
material vectors is emphasized. Definite answers to debated issues, such as the proper definition of stress
rate, the formulation of integrability conditions, the fulfilment of material frame-indifference, and the
task of evaluating the stress state evolution, are given. Simple shear and extension of a specimen of
a hypo-elastic material are investigated as applications of the theory. Improper statements and unsound
physical responses of hypo-elastic materials are overcome by the covariant theory, thus restoring the
proper role to this constitutive model, for both theoretical and computational purposes.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The notion of hypo-elastic material was introduced by Truesdell
(1955) and subsequently thoroughly investigated by himself and
other renowned researchers, as quoted in Truesdell and Noll (1965).
The definition of stress rate originarily proposed by Truesdell
(1955) takes into account the rate of volume variation by a modi-
fication of the convective rate introduced earlier by Oldroyd
(1950a,b) and investigated, in connection with plasticity, by A.E.
Green (1956). Notably, Prager (1951), Noll (1955) and Thomas
(1955) proposed instead for the stress tensor the adoption of the
co-rotational rate (Zaremba, 1903; Jaumann, 1911). Several stress
rates were investigated by Sedov (1960) and a further objective rate
was proposed a little later by Green and Naghdi (1965). The ques-
tion concerning the choice of a suitable rate for the stress tensor
was in fact the overwhelming feature of subsequent contributions
to hypo-elasticity. In the presentation given by Truesdell and Noll
(1965), co-rotational and convective rates were considered as
suitable and equally scored candidates. As a consequence the
constitutive law resulted to be determinate only to within an
additive isotropic bilinear term in T (Cauchy mixed stress) and D
(mixed stretching). This indeterminacy was imputed to be
responsible of entailing implications in the analytical formulation
of the hypo-elastic constitutive law.

The issue was further investigated by Casey and Naghdi (1988)
in the context of finite rigid plasticity. Many other proposal of
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stress rates have been set forth in subsequent years and in recent
papers by Bruhns et al. (1999) and Liu (2004) on finite strain
elasticeplastic models, as many as ten proposals of objective stress
rates have been listed.

The problematics concerning the formulation of a hypo-elastic
material behavior are addressed here in a general framework
designed to provide a rational formulation of constitutive relations
in continuum mechanics.

The turning point is that the question about the choice of an
objective stress rate is replaced by the more basic one concerning
the criterion to be adopted in comparing tangent vector fields at
two configurations of the body in space. A physicalegeometrical
reasoning, based on a careful distinction between spatial vectors,
material-based spatial vectors andmaterial vectors, leads in Section
2 to the statement of the covariance paradigm according to which
material tangent vectors are transformed and compared by push
along the material displacement. The statement of the covariance
paradigm extends naturally to material tensors at displaced
configurations, the push of tensors being defined by invariance as
detailed in Section 3. It follows that the unique, natural definition of
material tensor rate is the convective time-derivative (or Lie time-
derivative (Lie and Engel, 1888)) along the motion. As a conse-
quence, any indeterminacy about the stress-rate formulation is
overcome. The convective time-derivative of the stress is here
called the stressing.

An issue deserving a careful treatment concerns the spatial
description of a material tensor field, which is a material-valued
tensor field defined on the body’s trajectory in space. When
a consistent geometric framework is set up, it comes out that, as
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stated by the covariance paradigm, the spatial description cannot be
acted upon by a covariant time-differentiation along the trajectory.
Moreover, even if this inherent difficulty is ignored, covariant time-
derivatives cannot be expressed as sum of partial time and spatial
derivatives because the regularity required by partial time-
differentiation, at a fixed point in space, is in general lacking. The
needed regularity properties are conceivable in special problems of
hydrodynamics, to which Euler’s original treatment was devoted,
but are usually not fulfilled in solid mechanics. The issue will be
discussed in Section 6.1 with reference to hypo-elasticity where it
plays a decisive role. Most improper statements in the formulation
of constitutive relations have been induced from treating the
spatial description of a material tensor field as it were a time-
dependent spatial tensor field. This confusion is made possible by
the shadowing coincidence of dimensionality of material and
spatial tangent spaces for three-dimensional bodies.

The covariance paradigm provides a general framework for the
discussion of time-independence, invariance and frame-indifference
of material tensors, as illustrated in Section 5. Time-independence
is defined as variance by push under material displacements,
invariance is defined as variance by push under relative motions, and
frame-indifference is invariance under isometric relative motions.
The covariance paradigm, and the physical assumption that the
stress is frame-indifferent, assure that hypo-elastic constitutive
relations fulfillmaterial frame indifference (M.F.I.), if the constitutive
operators, as seen by two Euclid observers, are related by push
along the isometric relative motion, a result assessed in Section 6.
This is a methodological change with respect to the statement of
form-invariance found in literature, according to which equality
between constitutive operators, with different domains and codo-
mains, should be involved.

The integrability conditions to be imposed on a hypo-elastic
constitutive operator to ensure the existence of strain-valued or
scalar-valued stress potentials, are investigated in Section 7. The
issue was first addressed by Bernstein (1960) and quoted by
Truesdell and Noll (1965), with an analysis which has been
a guideline for subsequent investigations. The formulation of the
hypo-elastic law there adopted did not take however properly into
account the geometry of the problem, as discussed in Section 6.1.
The topic is here investigated ex novo by relying on standard results
of potential theory in linear spaces. A two-steps procedure is
envisaged to show that two symmetry conditions, on the derivative
of the hypo-elastic operator and on the operator itself, ensure
respectively Cauchy and Green integrability of the hypo-elastic
constitutive operator. Explicit integral formulas for the relevant
potentials are provided. The integrability conditions and the proper
definition of time-independence of the constitutive operator, allow
to recover an elastic or hyper-elastic behavior in a fixed natural
reference configuration. The integrability property is shown to be
independent of the choice of a reference configuration and of
alterations of the involved dual tensors, thus leading to a consistent
theory of material behavior. The simplest hypo-elastic law, which
has beenwidely adopted for computational purposes, is analyzed in
Section 8 and found to be integrable to a hyper-elastic law, contrary
to opposite conclusions drawn in literature on the basis of incorrect
integrability conditions. The theory is illustrated by benchmark
examples of a hypo-elastic specimen subject to simple shear and
extension.
2. Physical-geometrical premise

The physical reasoning, which leads to the formulation of
a geometrically covariant theory of material behavior in continuum
mechanics, is carried out by a careful investigation of the
implications consequent to the basic distinction between material
particles and spatial points, as detailed hereafter.

The ambient space of classical continuum mechanics is the
Euclid 3-D space S in which motions of bodies take place. The
theory developed in this paper is however applicable without
changes to bodies whose placements are manifolds immersed in
a Riemann ambient space, endowed with the Levi-Civita connec-
tion. Illustrations of the relevant geometrical issues may be found
in Abraham et al. (1988), Romano (2007). In the sequel, when
needed, maps with co-domain in the ambient space and spatial-
valued tensor fields will be denoted by the apex SP, whose drop-
ping specifies that the spatial-valued map is co-restricted to its
image.

The material body B is a set of labels, the particles p ˛ B, which
become available to physical experience in their motion
4SP : B � I1S through the ambient space during an open obser-
vation time interval I.

1. Spatial vectors are tangent to parametrized lines drawn in the
ambient space. The comparison between spatial vectors based
at different points along a curve is made by a parallel transport
along that curve. The resulting differentiation leads to the
notion of parallel (or covariant) parametric derivative along
a curve, which depends linearly on the parametrization
velocity at the relevant point, as described in Section 3. In the
Euclid space, the translation defines a parallel transport which
depends only upon the start and end points and not on the
particular curve joining them. The corresponding derivative is
the usual directional derivative.

2. Material-based spatial vectors are tangent to time-parametrized
curves tracked by material particles in motion in the ambient
space. The comparison between material-based spatial vectors
at different times is made by parallel transport along the
motion. The resulting time-differentiation leads to the notion
of parallel (or covariant) time derivative along the motion,
which depends linearly on the motion velocity at the relevant
time, as described in Section 3. The velocity of a particle in
motion in the ambient space provides a paradigmatic example
of a material-based spatial vector and its parallel time-
derivative is the acceleration.

3. Material vectors are tangent to lines drawn in the placement of
a body in a given material configuration 4t : B1Ut , with
Ut :¼ 4t(B). A material line in a source placement Ut is trans-
formed to a material line in the target placement Ut by the
relative material displacement 4s;t :¼ 4s+4

�1
t ˛C1ðUt ;UsÞ,

which is a diffeomorphism, i.e. an invertible map continuously
differentiable with the inverse. Accordingly, material tangent
vectors at the positions of the samematerial particle in the two
material configurations are linearly related by means of the
tangent displacement, called transplacement gradient in
Truesdell (1991). In differential geometry this is named
a transformation by push and extends to any material tensor, as
illustrated in Section 3. Accordingly, the time-rate of variation
of a material vector field is described by the time-derivative of
its pull-back, along the motion, to the actual configuration. This
is indeed the definition of convective time-derivative.

Material tangent vectors can be merged into the ambient space,
but still cannot be acted upon by parallel transport along the
motion. This observation assumes a clear evidence if reference is
made to lower dimensional continua, such as wires or membranes
moving in the three-dimensional Euclid space, as exemplified in
Figs. 1 and 2 where the red arrows are material tangent vectors
while the black ones denote parallel transported vectors that may
not be tangent to the body’s placement. Indeed parallel transported



Fig. 1. Push of a 1D material vector and parallel transport of its spatial immersion.
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vectors will not retain in general their original nature of spatial
immersions of material vectors.

Once notions and reasonings developed above have been firmly
established, the criterion for the comparison between material
tangent vectors at displaced configurations of a body, can be stated
as follows.

Proposition 2.1 (Covariance paradigm). Material tangent
vectors, based at positions of the same material particle in dis-
placed configurations, are compared by push along the material
displacement.

Basic geometric objects in continuum mechanics are second-
order spatial tensors and material tensors which are bilinear real-
valued maps, the former on pairs of spatial tangent vectors, the
latter on pairs of material tangent vectors or covectors.

According to the covariance paradigm, Proposition 2.1, material
tensors at different locations of the same particle can be compared
only after they have been brought to have the same domain. This is
accomplished by pushing the material vectors, tangent at the
location of one of them, to the location of the other, along the
displacement. The resulting transformation is the definition of pull-
back of a material tensor, as formalized in Section 3 and its time
derivative is the convective time-derivative of the material tensor.

A tensor field assigns to each point in its domain a tensor based
at that point.

The basic spatial tensor field in continuum mechanics is the
metric tensor field g which endows the spatial points xSP˛S with
symmetric positive definite tensors gxSP˛C1ðTxSPS;TxSPS;RÞ ¼
C1ðTxSPS;T*

xSPSÞ, where TxSPS is the tangent space at xSP˛S and
T*
xSPS the dual cotangent space. The definition of a metric tensor

field makes the ambient space a Riemann manifold.
A material tensor field assigns to the position of each particle, at

an instant along the motion, a material tensor based at that
position.

The material metric tensor is defined at each configuration of
a body by applying the spatial metric tensor to the spatial immer-
sion of material tangent vectors, as detailed in Section 3. Material
metric tensor fields at a two time instants along the motion are
compared by pull-back, according to the material displacement
map. Their difference (in fact one half of) provides the most natural
definition of the relevant stretch or Cauchy-Green strain tensor
field. This is a material field which measures the variation in the
metric properties of the body when displaced along the motion.
Fig. 2. Push of a 2D material vector and parallel transport of its spatial immersion.
A referential configuration endowed with the pull-back of the
material metric tensor at a given time, provides a paradigmatic
example of Riemann manifold in continuum mechanics.

Material tensors are the ones entering in constitutive relations
describing the material behavior, such being stretch, stress,
temperature, internal energy and so on. The convective time-
derivatives of the material metric tensor and of the material
stress tensor are respectively called stretching and stressing, as
defined in Section 4.

According to the covariance paradigm, the comparison, between
constitutive laws of a material body at any pair of time instants
along a motion, or between the constitutive laws of a body, as
detected by two observers in relative motion, must be performed
by push, respectively according to the material displacement map
or according to the relative motion between the observers.

A pushed constitutive law is defined by requiring that material
fields, fulfilling the constitutive relation in a source configuration,
must be still related, by the pushed law, when they are transformed
by push to the target configuration, as described in Section 6 with
reference to hypo-elasticity. Theoretical notions and properties,
required to develop a treatment of the hypo-elastic model in the
physicalegeometrical framework illustrated above, are provided in
the next sections.
3. Push and time-derivatives

At a point x ˛ Ut, the linear space of 0th order material tensors
(scalars) is denoted by FUNx(Ut), the dual spaces of tangent and
cotangent material vectors by TxUt and T*

xUt .
Covariant, contravariant and mixed second-order material

tensors belong to linear spaces of scalar-valued bilinear maps (or
linear operators):

COVxðUtÞ ¼ LðTxUt ;TxUt ;RÞ ¼ LðTxUt ;T
*
xUtÞ;

CONxðUtÞ ¼ LðT*
xUt ;T

*
xUt ;RÞ ¼ LðT*

xUt ;TxUtÞ;

MIXxðUtÞ ¼ LðTxUt ;T
*
xUt ;RÞ ¼ LðTxUt ;TxUtÞ:

A generic material tensor space is denoted by TENSx(Ut).
At a given fixed time t ˛ I, a map zSPt ˛C1ðUt ;SÞ, with the co-

restriction zt˛C
1ðUt ; z

SP
t ðUtÞÞ a diffeomorphism, will be called

a geometric displacement to contrast its physical interpretation, of
displacement at fixed time, in comparison with the one of a mate-
rial displacement 4s;t :¼ 4s+4

�1
t ˛C1ðUt ;UsÞ along the motion. This

distinction will become significant in the discussion about time-
independence and invariance in Section 5.

The push of a material scalar f4,t(x)˛FUNx(Ut), along a geometric
displacement zSPt ˛C1ðUt ;SÞ, is a change of its base point:

ðzt[f4;tÞðztðxÞÞ ¼ f4;tðxÞ:

The push of a tangent material vector v4;tðxÞ˛TxUt is the
evaluation of the tangent geometric displacement
Txzt ˛ LðTxUt ;TztðxÞztðUtÞÞ, by the formula:

zt[
�
v4;tðxÞ

�
:¼ Txzt$v4;tðxÞ;

and the push of a material cotangent vector v*4;tðxÞ˛T*
xUt is defined

by invariance:

�
zt[v

*
4;t ; zt[v4;t

�
¼ zt[

�
v*4;t ;v4;t

�
:

The push of a tensor is also defined by invariance. For a twice-
covariant material tensor field s4;t˛C1ðUt ;COVðUtÞÞ, the push is
explicitly defined, for any pair of material tangent vector fields
u4;t ;w4;t˛C1ðUt ;TUtÞ, by:
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�
zt[s4;t

��
zt[u4;t ; zt[w4;t

�
:¼ zt[

�
s4;t

�
u4;t ;w4;t

��
:

Introducing the cotangent map T*
ztðxÞ

zt ˛ LðT*
ztðxÞ

ztðUtÞ;T*
xUtÞ

such that:

huztðxÞ; Txzt$wxi ¼ hT*ztðxÞzt$uztðxÞ;wxi;

for every wx˛TxUt and uztðxÞ˛T
*
ztðxÞ

ztðUtÞ. With the abridged
notation sx :¼ s4;tðxÞ, the pushes of covariant, contravariant and
mixed material tensors are given by:

zt[sCOVx ¼ T*xz
�1
t +sCOVx +TztðxÞz

�1
t ;

zt[sCONx ¼ Txzt+sCONx +T*ztðxÞzt ;

zt[sMIX
x ¼ Txzt+sMIX

x +TztðxÞz
�1
t :

The material metric field g4;t˛C
1ðUt ;COVðUtÞÞ at time t ˛ I is

induced in the configuration 4t : B1Ut by the spatial metric field
g˛C1ðS;COVðSÞÞ according to the definition:

g4;t
�
u4;t ;w4;t

�
:¼ i4;tY

�
g
�
i4;t[u4;t ; i4;t[w4;t

��
;

where i4;t˛C1ðUt ;SÞ, is the inclusion mapwhich places the image of
the body onto the submanifold USP

t ¼ i4;tðUtÞ3S of the ambient
space. The spatial tangent vector i4;t[ðv4;tðxÞÞ¼Txi4;t$v4;tðxÞ˛TxSPS
is the spatial immersion of the material tangent vector v4;tðxÞ˛TxUt.
Alteration of tensors is defined by the relations:

sMIX
x ¼ g�1

x +sCOVx ¼ sCONx +gx;

which, in components form, correspond to lowering and rising of
indexes.

The adjoint TA
ztðxÞ

zt˛LðTztðxÞztðUtÞ;TxUtÞ of the tangent map is

defined by TA
ztðxÞ

zt :¼ g�1
x +T*

ztðxÞ
zt+gztðxÞ. Then:

ðztYgztðxÞÞ
MIX
x

¼ TAztðxÞzt+Txzt ;

a formula that will be referred to in evaluating the mixed form of
the stretch. The pull is the push along the inverse diffeomorphism:
ztY ¼ z�1

t [. All these definitions extend directly to the push along
a material displacement.

The convective time-derivative at time t ˛ I of a material tensor
field s4;t˛C1ðUt ; TENSðUtÞÞ, along 4SP : B � I1S, is defined by:

L4;ts4 :¼ vs¼t 4s;tYs4;s:

The pulled-back tensors ð4s;tYs4;sÞðxÞ belong, for all s ˛ I, to the
same linear tensor space TENSx(Ut) so that the derivative vs¼t

makes sense. A simple but quite important property is that the pull-
back of a convective time-derivative is equal to the time-derivative
of the pull-back:

4t;sY
�
L4;t s4

�
¼ vs¼t 4s;sYs4;s:

The parallel transport of a spatial tensor along a curve
cSP˛C1ðR;SÞ in space is deduced, from the definition of parallel
transport of a tangent spatial vector, by invariance, for a twice-
covariant tensor sSP˛C1ðS;COVðSÞÞ, according to the formula:

ðcSPl \sSPÞðcSPl \u;cSPl \wÞ :¼ sSPðu;wÞ+cSPl ; l˛R; u;w ˛TS;

and similarly for other spatial tensors.
The parallel (or covariant) derivative along a curve cSP˛C1ðR;SÞ

of a spatial tensorfield sSP˛C1ðS;TENSðSÞÞ, is accordinglydefinedby:

V _cSPl
sSP :¼ vl¼0 cSPl ZðsSP+cSPl Þ;
where _cSPl :¼ vl¼0cSPl is the parametrization velocity of the curve at
l ¼ 0 and clSP Z denotes the parallel transport from cSP(l) to cSP(0).
If the curve is time-parametrized the definition of parallel time-
derivative is got.

The parallel time-derivative along the motion

V4;tsSP4 :¼ vs¼t 4
SP
s;tZs

SP
4;s;

of a material-based spatial tensor field sSP4;t ˛ C1ðUt ; TENSðSÞÞ is
called the material time-derivative. The paradigmatic example is
the acceleration of the motion: aSP4;t :¼ vs¼t 4SP

s;tZv
SP
4;s ˛ C1ðUt ;TSÞ

which is the material time-derivative of the motion velocity field
vSP4;t :¼ vs¼t 4SP

s;t ˛ C1ðUt ;TSÞ.

Remark 3.1. The spatial description of a material-based spatial
tensor field is defined on the body’s trajectory:

T ðB;4Þ :¼ fðxSP; tÞjxSP ¼ 4SPðp; tÞ; p ˛ B; t ˛ Ig;

by:

sSPT ðB;4Þðx
SP; tÞ :¼ sSP4 ðp; tÞ; xSP ¼ 4ðp; tÞ:

As a rule, neither the convective time-derivative nor the
parallel time-derivative along the motion may be evaluated by
resorting to Leibniz rule to get a split into the sum of partial time
and space derivatives. This is due to the possible highly irregular
time dependence of a material tensor field, at a fixed point
of space, as a function of time. In this respect, we quote that,
although often misguidedly considered of general validity and
also taken as the definition of acceleration (see (Marsden and
Hughes, 1983), Prop. 1.10, p. 32 and (Truesdell, 1991), II. 6.4, p.
104), the celebrated d’Alembert-Euler split formula for the
acceleration:

aSPT ðB;4Þ;t ¼ vs¼t vSPT ðB;4Þ;s þ VvSP
T ðB;4Þ;t

vSPT ðB;4Þ;t ;

is in fact applicable only in investigations about continuous flows of
a fluid in a region of space, as in problems of hydrodynamics, where
it was originarily conceived. With reference to hypo-elasticity the
issue will be discussed in detail in Section 6.1.
4. Stretch, stretching, stress and stressing

To a pair of material configurations 4t : B1Ut and 4s : B1Us
there corresponds a Cauchy-Green strain (stretch) material tensor
field:

e4s;t
:¼ 1

2
ð4s;tYg4;s � g4;tÞ ˛ C1ðUt ;COVðUtÞÞ;

which is a symmetric covariant tensor field. The mixed form is
denoted by E4s;t

:¼ g�1
4;t+e4s;t

¼ 1=2ðC4s;t
� I4;tÞ ˛ C1ðUt ;MIXðUtÞÞ

where I4,t is the identity tensor field and:

C4s;t
:¼ TA4s;t+T4s;t ;

is the right Cauchy-Green tensor field, extending to lower dimen-
sional bodies the one defined in Truesdell and Noll (1965).

The time-derivative vs¼t 4s;tYg4;s is a tensor field too because,
for any s ˛ I, the tensors ð4s;tYg4;sÞðxÞ are all based at the same
point x ˛ Ut. We may then give the following definition.

Definition 4.1 (Stretching field). The material stretching at time
t ˛ I is the covariant symmetric tensor field _e4;t˛C1ðUt ;COVðUtÞÞ
defined as one-half the convective time-derivative of the material
metric tensor field:

_e4;t :¼ vs¼t e4s;t
¼ vs¼t

1
2
ð4s;tYg4s

� g4;tÞ ¼ 1
2
L4;t g4 :
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The expression of the stretching in terms of the velocity field of
the body in motion, is provided by a celebrated formula due to
Euler for 3D bodies. Our treatment extends the result to lower
dimensional bodies.

Preliminarily we observe that the parallel derivative of the
material-based spatial velocity field vSP4;t˛C

1ðUt ;TSÞ, along
amaterial tangent vector field u4;t˛C1ðUt ;TUtÞ, is a material-based
spatial vector field VvSP4;t$u4;t˛C1ðUt ;TSÞ. To get a material vector
field, the spatial vectors are projected over the material tangent
spaces. The result yields the material parallel derivative
VMATvSP4;t˛C

1ðUt ;MIXðUtÞÞ defined at x ˛ Ut by:

g4;tðVMAT
x vSP4;t $u4;t ; w4;tÞ :¼ g

�
VxvSP4;t $u4;t ; Txi4;t$w4;t

�
;

where u4;t ;w4;t˛C1ðUt ;TUtÞ arematerial tangent vector fields. The
generalized expression of Euler’s formula then reads (Romano,
2007):

1
2
L4;t g4 ¼ g4;t+sym

�
VMATvSP4;t

�
:

The mixed form of the stretching tensor is accordingly provided
by the symmetric part of the material parallel derivative of the
velocity field:

D4;t :¼ vs¼t E4s;t
¼ g�1

4;t+
1
2
L4;t g4 ¼ sym

�
VMATvSP4;t

�
:

The symbol D was adopted by Truesdell and Noll (1965) to
denote the symmetric part of the velocity gradient for a 3D body. In
our treatment the result and the notation are extended to lower
dimensional bodies. The stress field is introduced by duality:

Definition 4.2 (Stress field). The stress field at time t ˛ I is a con-
travariant symmetric material tensor field s4;t˛C1ðUt ;CONðUtÞÞ.

Definition 4.3 (Duality pairing). The duality pairing between the
stretching _e4;t˛C1ðUt ;COVðUtÞÞ and the stress s4;t˛C1ðUt ;CONðUtÞÞ
fields is the scalar material field hs4;t ; _e4;ti:¼J1ðs4;t+_e4;tÞ
˛C1ðUt ;FUNðUtÞÞ of linear invariants of the mixed tensor field
s4;t+_e4;t˛C1ðUt ;MIXðUtÞÞ.

In continuum mechanics, contravariant Cauchy stress fields
are material fields whose duality pairing with the covariant
stretching provides the stress power per unit volume in the actual
configuration. The mixed tensor field, called the Cauchy true stress
because its boundary flux provides the boundary tractions field,
is expressed by:

T4;t ¼ s4;t+g4;t˛C
1ðUt ;MIXðUtÞÞ:

The previous formula may be written in components as
Ti::j ¼ sikgkj with i, j, k¼ 1,.,n for a bodyof dimensionalityn¼ 1, 2, 3.

Definition 4.4 (Stressing field). The stressing field is the convective
time-derivative, along the motion 4SP : B � I1S, of the material
stress field, i.e.:

L4;t s4 :¼ vs¼t 4s;tYs4;s˛C1ðUt ;CONðUtÞÞ:
5. Time-independence, invariance and frame-indifference

As a consequence of the covariance paradigm, Proposition 2.1, we
give the following definitions of time-independence and invariance.

Definition 5.1 (Time-independence of material tensor fields).
Time-independence of a material tensor field s4;t˛C1ðUt ; TENS ðUtÞÞ
under the action of a material displacement 4s;t˛C

1ðUt ;UsÞ means
that the material tensor field transforms by push along the motion:

s4;s ¼ 4s;t[s4;t ; cs; t˛I:
A relative motion, with respect to the motion 4SP : B � I1S, is
a family of geometric displacements zSPt ˛C1ðUt ;SÞ with a smooth
dependence on time t ˛ I.

Definition 5.2 (Invariance of material tensor fields). Invariance
of a material tensor field s4;t˛C1ðUt ; TENSðUtÞÞ under the action of
a geometric displacement zSPt ˛C1ðUt ;SÞ means that the material
tensor field transforms by push along the relative motion, at fixed time:

sz[4;t ¼ zt[s4;t ; c t ˛ I:

The material displacement in the pushed motion z[4 is defined
by the commutative diagram:

Accordingly, the push along the material displacement in the
pushed motion is expressible by the chain composition:

ðz[4Þs;t[ ¼ zs[+4s;t[+z
�1
t [:

The next Lemma yields a basic result for the assessment of
invariance of convective time-derivatives.

Lemma 5.1 (Covariance of convective time-derivatives). The
convective time-derivative of a material tensor field

s4;t˛C1ðUt ; TENSðUtÞÞ and the convective time-derivative of its push

by a relative motion zSPt ˛C1ðUt ;SÞ are related by the covariance rule:

Lðz[4Þ;t
�
z[s4

�
¼ zt[L4;t s4:

Proof. By definition of material displacement from time t ˛ I to
time s ˛ I along the pushed motion, we have that:

ðz[4Þs;tY
�
zs[s4;s

�
¼

�
zs+4s;t+z

�1
t

�
Y
�
zs[s4;s

�
¼ zt[

��
4s;tY+zsY

��
zs[s4;s

��
¼ zt[

�
4s;tYs4;s

�
:

The result follows by definition of convective time-derivative:

L4;t s4 :¼ vs¼t 4s;tYs4;s;

Lðz[4Þ;t
�
z[s4

�
:¼ vs¼t ðz[4Þs;tY

�
z[s4

�
s;

and by the linearity of the map zt[˛C
0ðTUt ;TSÞ at each x ˛ Ut,

which provides the commutativity property vs¼tzt[ ¼ zt[vs¼t.
In Marsden and Hughes (1983, Th. 6.19, p. 101) a statement

resembling the one in Lemma 1 is formulated and proved with
reference to time-dependent spatial tensor fields. Both the state-
ment and the proof are however different and that result, per-
taining to spatial fields, cannot be applied to material tensor fields
involved in constitutive relations.

A result concerning invariance, which will be resorted to in the
analysis of hypo-elastic materials, is explicitly stated hereafter.

Proposition 5.1 (Convective time-derivatives of invariant ten-
sors). Invariance of a material tensor field s4;t˛C1ðUt ; TENSðUtÞÞ
with respect to a relative motion zSPt ˛C1ðUt ;SÞ implies invariance of
its convective time-derivative:

sz[4;t ¼ zt[s4;t 0 Lðz[4Þ;t sz[4;t ¼ zt[L4;t s4:

Proof. The result follows directly from Lemma 1 and the
Definition 6 of invariance.
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A change of observer is a time-dependent family of diffeomor-
phic maps zOBSt ˛C1ðS;SÞ of the ambient space onto itself. It induces
a relative motion from any given motion.

A change of Euclid observer requires that the change of observer

zOBSt ˛C1ðS;SÞ be an isometry: g
z
ISO
t [4;t ¼ zISOt [g4;t . Invariance

under change of Euclid observer is called frame-indifference. The
material metric tensor is frame-indifferent by definition.

Remark 5.1. A basic physical assumption is that the stress tensor is
frame-indifferent, i.e. invariant under a change of Euclid observer. Of
course, in general, the stress tensor will not be time-independent, that
is invariant under a material displacement of the body along the
motion, even if the material displacement 4s;t :¼ 4s+4

�1
t ˛C1ðUt ;UsÞ

is isometric, i.e. even if the material metric tensor is time-independent:
g4;s ¼ 4s;t[g4;t . Time-independence of the stress tensor under
isometric material displacements holds however for elastic materials,
as will be discussed in Remark 4.
6. Hypo-elasticity

A hypo-elastic response of a body B in motion 4SP : B � I1S is
expressed, at each time t ˛ I, by assuming that the stretching at the
configuration 4t : B1Ut is a function of stress and stressing.

Definition 6.1 (Hypo-elastic law). The hypo-elastic response at
time t ˛ I is governed by a stress-dependent constitutive linear oper-
ator H4,t which provides the stretching 1=2 L4;t g4 corresponding to
the stressing L4;t s4:

_e4;t :¼ 1
2
L4;t g4 ¼ H4;t

�
s4;t

�
$L4;t s4:

The operator H4,t is defined on the linear space CON(Ut) and takes
values in the linear space L (CON(Ut); COV(Ut)) whose elements are
linear operators between the domain space CON(Ut) and its dual
COV(Ut). At each s4;t ˛ CONðUtÞ the tangent compliance H4;tðs4;tÞ is
assumed to be an invertible linear operator.

In Truesdell and Noll (1965) the symbol T
D
has been proposed for

the mixed form of the stressing, there called convected stress rate. In
their notation, the hypo-elastic law is written in components as:

Di,
,j ¼ Hi,,s

,jr,

�
TP,,q

�
T
D

r,
,s

Definition 6.2 (Time-independent hypo-elasticity). A hypo-
elastic constitutive operator is time-independent in a time-interval I
if the instantaneous operators at any pair of time instants s, t ˛ I are
related by push along the material displacement:

H4;s ¼ 4s;t[H4;t ;

the pushed operator, being defined by:

4s;t[
�
H4;t

�
s4;t

�
$L4;ts4

�
¼

�
4s;t[H4;t

��
4s;t[s4;t

�
$4s;t[

�
L4;t s4

�
:

This means that time-invariant material tensor fields, fulfilling the
constitutive relation at time t ˛ I, are still related by the law at time
s ˛ I.

To endow the mathematical definition of hypo-elastic law with
a physical meaning apt to describe a material behavior, it is
compelling to show independence of the change of Euclid observer
of the motion, which is the meaning of material frame-indifference
(M.F.I.).

The physical assumption, quoted in Remark 5.1, is that the stress
is frame-indifferent, i.e.: s

z
ISO
t [4;t ¼ zISOt [s4;t for any change of
Euclid observer. Frame-indifference of the material metric tensor
and Preposition 5.1 assure that stressing and stretching are frame-
indifferent too, i.e.

L
z
ISO

[4;t
s
z
ISO

[4
¼ zISOt [L4;t s4;

L
z
ISO

[4;t gzISO[4 ¼ zISOt [L4;t g4;

so that:

zISOt [
1
2
L4;t g4 ¼ 1

2
L

z
ISO

[4;t gzISO[4

¼ H
z
ISO

[4;t

�
s
z
ISO

[4;t

�
$L

z
ISO

[4;t
s
z
ISO

[4

¼ H
z
ISO

[4;t

�
zISOt [s4;t

�
$zISOt [L4;t s4:

Hence M.F.I. is expressed by the following condition of invari-
ance under change of Euclid observer on the hypo-elastic consti-
tutive operator:

H
z
ISO

[4;t ¼ zISOt [H4;t :

6.1. Non-covariant stress rates

In literature the following expression is exposed for the con-
vected stress rate (Truesdell and Noll, 1965, formula 36.20, p. 97):

T
D
¼ _T þ LTT þ TL:

According to our notation, when written for the contravariant
stress field s4;t˛C1ðUt ;CONðUtÞÞ, this definition reads:

s
D
4;t ¼ _s4;t � 2sym

�
VvSP4;t+s4;t

�
;

where VvSP4;t is the covariant derivative of the velocity field, for
instance the one induced by a co-ordinate system, and _s4;t should
be the material time-derivative, defined by:

_s4;t :¼ vs¼t 4
SP
s;tZ

�
s4;s+4

SP
s;t
�
˛C1ðUt ;CONðUtÞÞ:

However, in evaluating this formula, the particle is held fixed
and the comparison of material stress tensors at two instants along
the motion is performed by parallel transport, an operation which
is in contrast with the prescription of the covariance paradigm,
Proposition 2.1. Most often, by considering the spatial description of
the stress field, defined on the body’s trajectory T ðB;4Þ by:
sT ðB;4ÞðxSP; tÞ :¼ s4ðp; tÞ; xSP ¼ 4ðp; tÞ; the time-derivative
along the motion is split into the sum of partial time and spatial
derivatives:

_sT ðB;4Þ;t ¼ vs¼t sT ðB;4Þ;s þ VvT ðB;4Þ;tsT ðB;4Þ;t :

Expressions like these ones have been adopted, in components,
in Oldroyd (1950a,b), Truesdell (1955), Bernstein (1960), Sedov
(1960), Truesdell and Noll (1965) and in subsequent treatments,
reproductions or variants, e.g. (Dienes, 1979; Gurtin, 1981; Marsden
and Hughes, 1983; Pinsky et al., 1983; Atluri, 1984; Simó and Pister,
1984; Johnson and Bammann, 1984; Moss, 1984; Sowerby and Chu,
1984; Lo, 1988; Sansour and Bednarczyk, 1993; Xiao et al., 1997;
Bruhns et al., 2006; Yavari et al., 2006) and references therein.
Essential difficulties are involved in the evaluation of the formulas
above. In fact, the covariant differentiation VvT ðB;4Þ;t is an operation
not allowed on the material-valued tensor field sT ðB;4Þ;t . Moreover,
the partial time-derivative vs¼t sT ðB;4Þ;T , evaluated at a fixed
point in space, is not feasible in general, because the domain of
the spatial description of a material field is the trajectory, so that
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time-dependence, at a fixed point in space, will be quite irregular, in
general. This is witnessed by the example of a spinning cogwheel in
which material particles will cross the peripheral spatial points at
isolate instants of time. The same difficulty holds formaterial-based
spatial tensor fields.

The source of confusion is that material-based spatial tensor
fields, whose spatial description is defined on the trajectory, are
treated as they were time-dependent spatial tensor fields, defined
over the whole ambient space.

Indeed, a formula, similar to the incorrect one for the convective
stress-rate reported above, holds true for the Lie time-derivative,
along the motion, of a time-dependent spatial tensor field
sSPt ˛C1ðS; TENSðSÞÞ with t ˛ I. For a twice contravariant spatial
tensor field, in our intrinsic notation, it writes (Marsden and
Hughes, 1983; Romano, 2007):

L4;tsSP :¼ vs¼t 4
SP
s;tYðsSPs +4SP

s;tÞ ¼ _sSPt � 2symðVvSP4;t+sSPt Þ;

with the parallel time-derivative along the motion, of the time-
dependent spatial tensor field given by:

_sSPt :¼ vs¼t 4
SP
s;tZðsSPs +4SP

s;tÞ ¼ vs¼t sSPs þ Vv4;t s
SP
t :

6.2. Expression in terms of mixed tensors

As stated in Marsden and Hughes (1983), alterations performed
with the spatial metric tensor field and push according to
a displacement map do not commute. This lack of commutativity is
at the root of the list of expressions, of convective time-derivatives
evaluated in terms various alterations of the stress tensor field,
exposed there on page 100, box 6.1. As a consequence, the adoption
of different representations by altered tensors, would lead to
different constitutive laws. This unpleasant feature may be over-
come if a fully covariant approach is taken, by requiring that
alterations of the material tensors, pushed from a natural config-
uration, should be carried out according to the pushed material
metric tensor. Then push and alteration will commute, as illus-
trated, with reference to contravariant and mixed stress tensors, in
the next statement.

Proposition 6.1 (Push and alteration). Push of a mixed stress
tensor is equal to the mixed stress tensor stemming from the alteration
of the pushed contravariant stress according to the pushed material
metric:

4s;t[ðs4;t+g4;tÞ ¼ ð4s;t[s4;tÞ+ð4s;t[g4;tÞ:

Proof. The result, which is a special expression of the naturality
of push transformations with respect to tensor composition,
follows from the formulas:

4s;t[s4;t ¼ T4s;t+s4;t+T*4s;t ;

4s;t[g4;t ¼ T*4�1
s;t +g4;t+T4

�1
s;t ;

4s;t[ðs4;t+g4;tÞ ¼ T4s;t+s4;t+g4;t+T4�1
s;t ;

provided in Section 3.
Once the hypo-elastic law has been formulated in terms of dual

covariant metric and contravariant stress tensors in a natural
reference configuration, its expression in terms of mixed tensors in
the actual configuration may then be got in two equivalent ways:
either by altering with the referential material metric tensor and
then pushing forward the result, or by pushing forward, the stress
tensor and the referential material metric tensor, and then per-
forming the alteration in the actual configuration with this pushed
material metric tensor.
6.3. Evaluation of the stress field

In most computational algorithms, a basic issue concerns the
evaluation of the stress field along the motion in terms of the hypo-
elastic tangent stiffness at a time t ˛ I:

L4;ts4 ¼
�
H4;t

�
s4;t

���1
$
1
2
L4;tg4:

The computation is conveniently carried out in terms of
a reference configuration co : B1Uo. A schematic view of the
relations between the body, a reference configuration and the
material configurations along the motion, is provided by the
diagram below:

By pulling back to a reference configuration co : B1Uo the
hypo-elastic law writes:

vs¼t
1
2
4REF
s Y

1
2
g4;s ¼

�
4REF
t YH4;t

��
4REF
t Ys4;t

�
$vs¼t 4

REF
s Ys4;s:

Its inverse is given by:

vs¼t 4
REF
s Ys4;s¼

��
4REF
t YH4;t

��
4REF
t Ys4;t

���1
$vs¼t

1
2
4REF
s Y

1
2
g4;s;

so that:

4REF
t Y

�
H4;t

�
s4;t

���1 ¼
��
4REF
t YH4;t

��
4REF
t Ys4;t

���1
:

To evaluate the referential stress increment in a time interval
[s,t], the following integral equation should be solved:

4REF
t Ys4;t � 4REF

s Ys4;s

¼
Zt

s

��
4REF
q YH4;q

��
4REF
q Ys4;q

���1
$

�
1
2
vT ¼q 4

REF
s Yg4;s

	
dq:

The strategy adopted by Pinsky et al. (1983), for the numerical
integration of the rate constitutive equation, should be mentioned
as an iterative algorithm for the solution of the discretized integral
equation.

The converse problem of evaluating the strain field along the
motion is readily solved by integrating the direct hypo-elastic law
pulled back to a reference configuration:

1
2
4REF
t Yg4;t �

1
2
4REF
s Yg4;s

¼
Zt

s

ð4REF
q YH4;qÞ

�
4REF
q Ys4;q

�
$vs¼q 4

REF
s Ys4;s dq:

7. Integration of the hypo-elastic law

Let us now deal with the question about the integrability of
a time-independent hypo-elastic constitutive operator, so that:
H4;s ¼ 4s;t[H4;t for any s, t ˛ I. Reference will be made to the
tangent linear space TxU to a generic configuration 4 : B1S with
4ðBÞ ¼ U. In the sequel the subscript in dF and CF refers to deriva-
tives taken by holding the base point x ˛ U, of the involved tensor
fields, fixed.
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The standard potential theory deals with operators defined in
a normed linear space and taking values into the dual linear space.
The mathematical tool to be invoked is the symmetry lemma
concerning the differential of the operator (Volterra, 1913;
Vainberg, 1964). It is a special case of Poincar lemma about exact-
ness of closed forms on differentiable manifolds (Abraham et al.,
1988; Marsden and Hughes, 1983; Romano, 2007).

Integrability in hypo-elasticity is a more involved issue since the
constitutive operator H is defined on the linear space CONx(U) and
takes values in the linear space L (CONx(U); COVx(U)).

Definition 7.1 (Integrability). The constitutive operator H of
a hypo-elastic material is Cauchy-integrable if there exists a strain-
valued stress-potential F such that H ¼ dFF and Green-integrable if
there exists a scalar-valued stress-potential E* such that F ¼ dFE* and
hence H ¼ d2F E*.

Let us illustrate in detail the two-steps procedure to be followed
in applying the standard symmetry lemma to the assessment of the
integrability conditions on the hypo-elastic constitutive operator.

Proposition 7.1 (Integrability conditions). The constitutive oper-
atorH of a hypo-elastic material is Cauchy-integrable if and only if the
following symmetry condition holds:

hdFHðsxÞ$dsx$d1sx; d2sxi ¼ hdFHðsxÞ$dsx$d2sx; d1sxi;

for all dsx; d1sx; d2sx˛CONxðUÞ. The further symmetry condition:

hHðsxÞ$d1sx; d2sxi ¼ hHðsxÞ$d2sx; d1sxi;

ensures Green-integrability
Proof. In the linear tensor space CONx(U) the symmetry

condition for the derivative:

hdFHðsxÞ$dsx$d1sx; d2sxi ¼ hdFHðsxÞ$dsx$d2sx; d1sxi;

for any fixed dsx˛CONxðUÞ and for all d1sx; d2sx˛CONxðUÞ, is
equivalent to the vanishing, along any loop in the space CONx(U), of
the integral (Vainberg, 1964):
I

HðsxÞ$dsx ¼ 0:

In coordinates, setting ðHðsxÞ$dsxÞij ¼ Hijklds
kl, the symmetry

condition writes: dpqHijklds
kl,d1s

pq,d2s
ij ¼ dijHpqklds

kl,d2s
ij,d1s

pq,
that is:

dpqHijkl ¼ dijHpqkl

The vanishing of loop integrals implies that, for any fixed
dsx˛CONxðUÞ, there exists a scalar potential defined, up to an
additive constant, by the integral:

Fdsx
ðsxÞ ¼

Z1

0

D
ðH+c*xÞðlÞ$dsx; _c

*
xðlÞ

E
dl;

where cx* ˛ C1(I; CONx(U)) with I ¼ [0, 1] is any path between the
points cx*(0) ¼ ox and cx*(1) ¼ sx. Hence:

dFFdsx
ðsxÞ ¼ HðsxÞ$dsx:

The dual operators HðsxÞ˛L ðCONxðUÞ;COVxðUÞÞ and
H*ðsxÞ ˛ L ðCONxðUÞ;COVxðUÞÞ are related by the identity:

�
H*ðsxÞ$d2sx; d1sx

�
¼

�
HðsxÞ$d1sx; d2sx

�
;

and hence we have that:

F ðs Þ ¼
Z1D

ðH*+c*ÞðlÞ$ _c*ðlÞ; ds
E
dl ¼ Fðs Þ$ds ;
dsx x

0

x x x x x

with the strain-valued stress-potential F, defined on each tensor
space CONx(U) by:

FðsxÞ :¼
Z1

0

ðH*+c*xÞðlÞ$ _c
*
xðlÞ dl:

Being dFFdsx
ðsxÞ ¼ HðsxÞ$dsx , for any fixed dsx˛CONxðUÞ, we

infer that:

dFF ¼ H:

The fulfillment of the symmetry property
H*ðsxÞ ¼ HðsxÞ ¼ dFFðsxÞ, implies the vanishing, in the tensor
space CONx(U), of any loop integral:

I
FðsxÞ ¼ 0:

This ensures existence of a scalar-valued stress-potential E*

whose values on the tensor space CONx(U) are given by:

E*ðsxÞ ¼
Z1

0

ðF+c*xÞðlÞ$ _c
*
xðlÞ dl ¼

Z1

0

dl
Zl

0

ðH+c*xÞðxÞ$ _c
*
xðxÞ dx;

so that F ¼ dFE* and H ¼ dFF ¼ dF
2E*.

Remark 7.1. The symmetry condition dpqHijkl ¼ dijHpqkl differs from
the one reported, with reference to finite elasticity, in Simó and Pister
(1984, formula 3.4) which, in our notations, would read
dpqHklij ¼ dijHklpq.

Proposition 7.2 (Integrability and time-independence). Integr-
ability of a time-independent hypo-elastic constitutive operator, at
a given time, implies integrability at every time. By pushing the
potentials at a fixed reference configuration, time-independent
potentials are got and potentials at displaced reference configura-
tions are related by push.

Proof. Let 4s;t˛C
1ðUt ;UsÞ be a material displacement. Time-

independence and the integral transformation formula imply
that, at x ˛ Ut, for any given ds4;t˛CONxðUtÞ and for any cycle in
c* 3 CONxðUtÞ:
I
4s;tðc*Þ

H4;s
�
4s;t[s4;t

�
$4s;t[ds4;t ¼

I
4s;tðc*Þ

4s;t[
�
H4;t

�
s4;t

�
$ds4;t

�

¼
I
c*
H4;t

�
s4;t

�
$ds4;t ;

I
4s;tðc*Þ

F4;s
�
4s;t[s4;t

�
¼

I
4s;tðc*Þ

4s;t[
�
F4;t

�
s4;t

��

¼
I
c*
F4;t

�
s4;t

�
:

The first part of the statement follows. The last part is a simple
consequence of the chain composition of pushes according to
composite maps.

Taking into account that the pull-back of a convective time-
derivative is equal to the time-derivative of the pull-back, the
hypo-elastic law of a Green-integrable hypo-elastic material in
a reference configuration co : B1Uo, setting 4REF

t ¼ 4t+c
�1
o , is

given by:
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vs¼t
1
2

4REF
s Yg4;s ¼ d2FE

*
�
4REF
t Ys4;t

�
$vs¼t 4

REF
s Ys4;s
� �

¼ vs¼t dFE
*
�
4REF
s Ys4;s

�
;

andmay be readily integrated along themotion, in the interval [s, t],
to yield the referential hyper-elastic law:

1
2

�
4REF
t Yg4;t �4REF

s Yg4;s
�
¼ dFE

*
�
4REF
t Ys4;t

�
�dFE

*
�
4REF
s Ys4;s

�
:

If 4REF
s :B1Us is a natural configuration, where the stress is

assumed to vanish, the referential hyper-elastic law, being
4REF
t ¼ 4t;s+4

REF
s , takes the form:

1
2

�
4REF
t Yg4;t � 4REF

s Yg4;s
�

¼ 4REF
s Y

1
2

�
4t;sYg4;t � g4;s

�

¼ dFE
*
�
4REF
t Ys4;t

�
:

The integrability condition in Proposition 7.1, concerning the
symmetry of the derivative of the hypo-elastic operator, is trivially
verified if the operator is independent of the stress state. Moreover,
time-independence of the hypo-elastic constitutive operator
assures that independence of the stress state, once verified at
a given time, holds at any other one. The following chain of inclu-
sions holds true:

time-independent hypo-elasticity

I elasticity

I hyper-elasticity:

It can be shown that integrability is also independent of the
alteration of the tensors chosen to formalize the hypo-elastic
response and that integrability to a hyper-elastic law is equiva-
lent to conservation of mechanical energy. In this respect we quote
the interesting discussion, in a thermodynamical context, by Casey
(2005).

Remark 7.2. A Cauchy-elastic constitutive model is well defined as
a time-independent, integrable hypo-elastic model whose strain-
valued stress potential is strictly monotone. An isometric material
displacement of an elastic body along the motion, leaves the stress
tensor unchanged in time, that is changed by push. To see this, we
observe that an isometric material displacement of a Cauchy-elastic
body along the motion, does not change the Cauchy-Green stretch in
a reference configuration where the elastic law is expressed by an
invertible smooth relation between pulled-back stress and metric
material tensors. The stress tensors at the isometrically displaced
configurations along the motion, are obtained by pushing forward the
same corresponding referential elastic stress and will therefore be
related by push along the isometric material displacement. In accord
with the covariance paradigm and Definition 5.1, the conclusion is
that the elastic stress is time-independent.
8. The simplest hypo-elastic model

The simplest hypo-elastic model, corresponding to the rate form
of the standard linear isotropic elasticity model adopted in the
small displacements range, has been most widely adopted in
computational mechanics, (see e.g. Key and Krieg, 1982). The model
was investigated in Simó and Pister (1984), Sansour and
Bednarczyk (1993) who, by adopting the incorrect integrability
conditions provided in Bernstein (1960), found that this hypo-
elastic material is not hyper-elastic. On the contrary, on the basis
of the covariant theory and of the correct integrability conditions
provided above, it will be shown that the simplest hypo-elastic
model is indeed hyper-elastic. Denoting the mixed forms of
stretching and stressing at time t ˛ I by:

D4;t :¼ g�1
4;t+

1
2

�
L4;t g4

�
; T

D

4;t :¼ 1
2

�
L4;t s4

�
+g4;t ;

the simplest hypo-elastic model is described by the linear, isotropic
rate law:

D4;t ¼ 1
2m

T
D

4;t �
n

E
J1
�
T
D

4;t

�
I4;t ¼ HMIX

4;t
�
T4;t

�
$T
D

4;t ;

so that the hypo-elastic constitutive operator is given by:

HMIX
4;t

�
T4;t

�
:¼ 1

2 m
I4;t �

n

E
I4;t5I4;t ;

with E Euler (or Young) modulus, n Poisson ratio and m¼ E/(2(1þ n))
Lam shear modulus. Here I4;tðxÞ˛MIXxðUtÞ is the identity tensor, 5
is the tensor product in the inner product tensor space MIXx(Ut) and
I4;tðxÞ˛LðMIXxðUtÞ;MIXxðUtÞÞ is the identity operator.

The simplest hypo-elastic constitutive operator is evidently
stress independent and symmetric. The integrability conditions of
Proposition 7.1 are then fulfilled and we may conclude that the
simplest model is Green-hypo-elastic. Integrating along a ray from
the origin of the tensor space MIXx(Ut) to a stress value T4,t , the
strain-valued stress-potential FMIX

4;t ¼ dFE*MIX
4;t at the material

configuration 4t : B1Ut is readily computed:

FMIX
4;t

�
T4;t

�
¼

Z1

0

HMIX
4;t

�
l T4;t

�
$T4;t dl ¼ 1

2m
T4;t �

n

E
J1
�
T4;t

�
I4;t :

Time-independency of the simplest hypo-elastic constitutive
operator, is expressed, according to Definition 6.2, by the equality:

1
2m

I4;s �
n

E
I4;s5I4;s ¼ 4s;t[

�
1
2m

I4;t �
n

E
I4;t5I4;t

	
;

which is inferred from the formulas: 4s;t[I4;t ¼ I4;s,
4s;t[I4;t ¼ I4;s and:

4s;t[
�
I4;t5I4;t

�
¼

�
4s;t[I4;t

�
5

�
4s;t[I4;t

�
:

Let us now assume that 4t : B1Ut is a natural, stress-free
reference configuration. The hyper-elastic law may then be
written in terms of the mixed Green’s strain tensor, as:

E4s;t
¼ FMIX

4;t
�
4s;tYT4;s

�
¼ 1

2m
4s;tYT4;s �

n

E
J1
�
4s;tYT4;s

�
I4;t ;

or, in inverse form:

1
2m

4s;tYT4;s ¼ E4s;t
þ n

1� 2n
J1
�
E4s;t

�
I4;t :

The Cauchy true stress T4;s ˛ C1ðUs;MIXðUsÞÞ is recovered from
the reference one 4s;tYT4;s ˛ C1ðUt ;MIXfUtgÞ by push forward:

T4;s ¼ T4s;t+
�
4s;tYT4;s

�
+T4�1

s;t :

8.1. Simple shear

Let us consider a unit cube as a natural stress-free configuration
of a body and a Cartesian reference system. A simple shear, see
Fig. 3, is described by a material displacement whose expression in
the reference system, setting gs,t :¼ g (s e t), is given by:
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4s;tðx; y; zÞ ¼ xþ gs;t y e1 þ y e2 þ z e3:

� �

The matrices of the relevant tangent map and of its inverse are
given by:



T4s;t

�
¼

2
41 gs;t 0
0 1 0
0 0 1

3
5; ½T4�1

s;t � ¼

2
41 �gs;t 0
0 1 0
0 0 1

3
5;

The matrix of the mixed Green’s strain E4s;t
writes:

h
E4s;t

i
¼ 1

2

2
4 0 gs;t 0
gs;t g2s;t 0
0 0 0

3
5:

Consequently, the matrix of the referential Cauchy true stress
will be:

1
m



4s;tYT4;s

�
¼

2
4 0 gs;t 0
gs;t g2s;t 0
0 0 0

3
5 þ n

1� 2n
g2
s;t

2
41 0 0
0 1 0
0 0 1

3
5:

The initial, linearized law is expressed by the usual relation
between shearing stressing and stretching, i.e.

T
D

4;t ¼ vs¼t


4s;tYT4;s

�
¼ mg

2
40 1 0
1 0 0
0 0 0

3
5 ¼ 2m vs¼t E4s;t

¼ 2m D4;t :

Being:

2
41 gs;t 0
0 1 0
0 0 1

3
5+

2
4 0 gs;t 0
gs;t g2s;t 0
0 0 0

3
5+

2
41 �gs;t 0
0 1 0
0 0 1

3
5

¼

2
4g2s;t gs;t 0
gs;t 0 0
0 0 0

3
5;

the matrix of the Cauchy true stress is given by

1
m



T4;s

�
¼

2
4g2s;t gs;t 0
gs;t 0 0
0 0 0

3
5 þ n

1� 2n
g2
s;t

2
41 0 0
0 1 0
0 0 1

3
5:
8.2. Homogeneous extension

A homogeneous extension, see Fig. 4, is described by a material
displacement, of a unitary cube given, in a cartesian reference
system, setting as,t :¼ a (s e t) and bs,t :¼ b (s e t), by:

4s;tðx; y; zÞ ¼ as;t x ex þ bs;t y ey þ z ez:
Fig. 3. Simple shear.
The matrix of the tangent map T4s,t and the matrix of the mixed
Green strain are:



T4s;t

�
¼

2
4as;t 0 0

0 bs;t 0
0 0 1

3
5;



E4s;t

�
¼ 1

2

2
64
a2s;t � 1 0 0

0 b2s;t � 1 0
0 0 0

3
75:

According to the simplest rate law, the matrix of the referential
Cauchy true stress, setting ks;t ¼ n ðða2s;t þ b2s;tÞ � 2Þ=ð1� 2nÞ, is
given by

1
m



4s;tYT4;s

�
¼

2
64
a2s;t � 1 0 0

0 b2s;t � 1 0
0 0 0

3
75� ks;t

2
41 0 0
0 1 0
0 0 1

3
5;

so that for the Cauchy true stress we get:

1
m



T4;s

�
¼

2
64
a2s;t � 1 0 0

0 b2s;t � 1 0
0 0 0

3
75� ks;t

2
41 0 0
0 1 0
0 0 1

3
5:

Assuming n ¼ 0 and bs,t ¼ (as,t)�1, which corresponds to a van-
ishing Poisson effect and to an isochoric displacement, the normal
stress T11(s) and the resultant axial force N(s) ¼ A(s) T11(s) ¼ m

(as,t e 1/(as,t)), where A(s) ¼ 1/(as,t) is the transversal area, are
plotted in Fig. 4.

8.3. Comparison with other treatments

The two examples presented in Sections 8.1 and 8.2 were
treated, with a non-covariant definition of the simplest hypo-
elastic law, in Pinsky et al. (1983, examples 6.1 and 6.2) where
spatial expressions for the stress rate, according to Oldroyd,
Truesdell and Jaumann proposals, have been considered. The
former example (simple shear) was also discussed in Sansour and
Bednarczyk (1993). Explicit calculations of the same non-
covariant examples were exposed in Lo (1988, Appendix) by per-
forming a time integration of the spatial form of the constitutive
law, at a fixed point of the ambient space. The analysis for the
simple shear led to a Cauchy true stress depending only of Lam
shear modulus. For the axial elongation the true stress was evalu-
ated to have an exponential expression. Spurious oscillating
responses under monotone shearing were detected in Dienes
(1979) by adopting the Jaumann stress rate. The attainment of
a limit value of the shear stress (the hypo-elastic yield of Truesdell
(1955), see also (Truesdell and Noll, 1965, p. 420) was displayed also
by the logarithmic model proposed in Xiao et al. (1997).
Amaximum load effect was reported in Pinsky et al. (1983, example
6.2) for homogeneous monotone extension of a square block
modeled in terms of Jaumann stress rate. All these physically
Fig. 4. Homogeneous extension.



Fig. 5. Normal stress and axial force vs elongation.
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unsound effects are absent in the constitutive model formulated
according to the covariance paradigm (Fig. 5).

9. Conclusions

Although many partial contributions may be found here and
there in literature, an explicit conversion to a fully covariant theory
of material behavior was never accomplished. A clear hint towards
a covariant theory, with a declared computational bias, was
provided by the treatment of finite strain visco-elasto-plasticity
developed in Pinsky et al. (1983), Simó and Ortiz (1985), in the
wake of the treatment of elasticity theory exposed in Marsden and
Hughes (1983).

The covariance paradigm, introduced in the present paper on the
basis of a punctual distinction between spatial vectors, material-
based spatial vectors and material vectors, is an innovative
contribution which provides the comparison criterion between
material tensor fields in displaced configurations of a body. The
involved geometric tool is the push along the relevant displace-
ment. This is in contrast with the requirement of form-invariance in
which an incorrect equality between constitutive maps, with
different domains, is involved, see e.g. (Svendsen and Bertram,
1999). The basic role of the covariance paradigm, in developing
the theory of constitutive relations in the geometrically nonlinear
range, is especially manifest when applied to continua of lower
dimensionality, such as wires and membranes. In the covariant
theory, elastic materials are characterized as integrable time-
independent hypo-elastic materials. The usual definition is recov-
ered, by pull-back to a reference configuration and integration in
time, which leads to a time-independent elastic relation between
the pull-back of the stress tensor and the pull-back of the material
metric tensor. The result is independent of the choice of a reference
configuration. The geometric approach to nonlinear continuum
mechanics developed in this paper, with explicit application to the
theory of hypo-elastic constitutive models, is a major step in
a geometrization program started with the formulation of material
inhomogeneities, shell models, and continuum dynamics in
Romano et al. (2006, 2007, 2009a,b,c). Background mathematical
tools are collected in Romano (2007).
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