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Abstract

The theory of electro-magnetic induction is formulated by expressing
Faraday and-Ampère-Maxwell laws in terms of pair and impair dif-
ferential forms to be integrated respectively over inner and outer oriented
surfaces with boundaries. It is shown that frame-invariance of basic electro-
magnetic fields and invariance of Lie derivatives with respect to relative mo-
tions, imply frame-invariance of the induction laws. From the formulation in
the space-time manifold it is deduced that frame-invariance of Faraday and
Ampère two forms is equivalent to frame-invariance of all spatial electro-
magnetic forms, under any transformation (Galilei or Lorentz). A note-
worthy outcome of the theory is that the so called Lorentz force term on a
charged particle is not a law of electromagnetic induction. As a consequence
most applications of electromagnetism, such as homopolar induction, Hall
effect and railgun functioning, are to be suitably reinterpreted.

Key words: Electromagnetism, Ampère law, Faraday law, Lorentz force,
Homopolar induction, Hall effect, Railgun.

1. Introduction

A geometric approach to the laws of electromagnetism reveals the need
for considering, in integral formulations, arbitrarily moving material circuits,
so that every-day engineering applications can be investigated by the the-
ory and well-posedness and frame-invariance properties can be correctly de-
duced. This revisitation shows that the laws of electromagnetic induction,
when correctly formulated, are in fact Galilei invariant, if the basic fields
are assumed to be such. In the light of the proposed formulation, it is fur-
ther shown that the so called Lorentz force acting a charged particle is
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rather an expression of the electric field evaluated, according to Faraday
law of induction, by an observer which tests a body in translational motion
across a region of spatially-invariant magnetic vortex (an alternative name
for the magnetic induction which underlines that it is a pair two-form, or
equivalently a impair vector field) and of time-invariant magnetic potential
one-form.

A critical discussion of previous treatments is performed and some im-
portant issues of classical electromagnetism are reconsidered in the new per-
spective. In particular Galilei invariance provides a simple direct answer
to the troubles concerning the induction effects due to the relative motion
of a magnet and a conductor loop, as expressed long ago by Einstein (1905)
and still lasting in literature, see e.g. (Griffiths, 1999, p. 477). Moreover the
elimination of the not Galilei invariant Lorentz force restores to classical
electrodynamics the scientific flavor of a well-conceived theory, in fulfillment
of the auspices expressed by Richard Phillips Feynman in remarking
the unpleasant situation faced in dealing with the laws of electromagnetic
induction (Feynman et al., 1964, II.17-1).

Some basic issues of integration on manifolds and of exterior differential
calculus are preliminarily summarized for the reader’s convenience. Inte-
gration of forms on inner oriented submanifolds and of odd forms on outer
oriented submanifolds in an oriented ambient manifold are illustrated in de-
tail as basic tools for the development of the theory.

The connection between the exterior calculus and the more usual vector
calculus is recalled and the basics of classical electromagnetism are reformu-
lated according to both formats. This treatment is propaedeutic to the main
sections dealing with Galilei invariance and with the electromagnetics of
moving bodies, where the exterior differential calculus format is adopted, be-
ing basic for a treatment of induction laws independent of metric properties
of the ambient space.

A careful attention to the roles played by inner and outer orientations in
the integration over surfaces and along their boundary cycles leads naturally
to propose a new terminology. The electric field one-form and the magnetic
vortex two-form are involved in Faraday law of induction, where an inner
orientation of the involved surface and of its boundary circuit is considered.
The electric displacement flux and electric current impair two-form, and the
magnetic winding impair one-form, are involved in Ampère law of induction,
where an outer orientation of the involved surface and of its boundary circuit
is adopted. The former choice provides a clear physical interpretation of the
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emf as circulation. The latter provides a better physical description, as a flux
rule, of the induction law and of the equivalent condition of charge balance.

The formulation of electromagnetism in classical space-time, an affine
four-dimensional manifold, provides an impressively simple expression of bal-
ance laws for electric and magnetic charges as closedness conditions of three-
forms in space-time. Induction laws are expressed as exactness conditions
of the same forms. Charge balance and induction laws are thus simply ex-
pressed, in an equivalent format, as integrability conditions for exterior forms
and exactness conditions in terms of potential forms, according to Poincaré
Lemma. The observer-dependent splitting into space and time components
of two and three-forms over space-time, which is well-known in literature,
is here extended to consider motion along the trajectory. This extension
shows that the electric and magnetic spatial fields involved in the theory are
spatially frame-invariant if and only if the space-time forms are space-time
frame-invariant. According to this general property, the common affirma-
tion, see e.g. (Stratton, 1941, 1.22, p.77), that the electromagnetic fields are
not invariant according to Galilei changes of observer but are invariant
according to Lorentz changes of observer, looses any significance. Indeed
Galilei invariance will holds according to the classical point of view while
Lorentz invariance will holds in the relativistic context. Which one of
these two theoretical assumptions should be deemed as the best suitable to
describe physical reality being just a task for experimental verification.

A final discussion points out the merits of the present approach in pro-
viding a firm basis to the laws of electromagnetic induction, in the context
of classical electrodynamics.

2. Tensors and push-pull operations

At a point x ∈ M of a manifold M the linear space of 0th order ten-
sors (scalars) is denoted by Fun(TxM) , the linear space of tangent vectors
(velocity of curves on M ) is denoted by TxM and the dual linear space of
cotangent vectors (real valued linear maps on the tangent space) by T∗xM .
By reflexivity, the duality operation is involutive, so that T∗∗x M = TxM .

Covariant, contravariant and mixed second order tensors, henceforth sim-
ply called tensors, are scalar-valued bilinear maps over the product of two
tangent or cotangent spaces. Second order tensors can be equivalently char-
acterized as linear operators between tangent or cotangent spaces, so that
suitable compositions are meaningful. We will consider the following tensors
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and relevant linear tensors spaces

sCov
x ∈ Cov(TxM) = BL (TxM ,TxM ;R) = BL (TxM ; T∗xM) ,

sCon
x ∈ Con(TxM) = BL (T∗xM ,T∗xM ;R) = BL (T∗xM ; TxM) ,

sMix
x ∈Mix(TxM) = BL (TxM ,T∗xM ;R) = BL (TxM ; TxM) .

A covariant tensor γCov
x ∈ Covx(TM) is non-degenerate if

γCov
x (a ,b) = 0 ∀b ∈ TxM =⇒ a = o.

Then γCov
x ∈ BL (TxM ; T∗xM) is an isomorphism (linear and invertible)

with a contravariant inverse (γCov
x )−1 ∈ Con(TxM) = BL (T∗xM ; TxM) .

These tensors can be composed with covariant and contravariant tensors to
transform (alterate) them into mixed tensors

(γCov
x )−1 · sCov

x ∈Mix(TxM) , sCon
x · γCov

x ∈Mix(TxM) .

The generic tensor fiber is denoted by Tens(TxM) . Linear spaces of sym-
metric covariant and contravariant tensors at x ∈M are denoted Sym(TxM) ,
Sym∗(TxM) and positive definite symmetric covariant tensors by Pos(TxM) .
A metric tensor gx ∈ Pos(TxM) is the natural candidate to be adopted for
alteration of tensors.

The pull-back of a scalar fζ(x) ∈ R along a map ζ ∈ C0(M ; N) between
differentiable manifolds M and N , is the scalar (ζ↓f)x ∈ R defined by the
equality

(ζ↓f)x := fζ(x) .

Given a differentiable curve c ∈ C1(R ; M) , with x = c(0) , and a differen-
tiable map ζ ∈ C1(M ; N) , the associated tangent map at x ∈ M , denoted
by Txζ ∈ BL (TxM ; Tζ(x)N) is defined by the linear corresponcence

vx = ∂λ=0 c(λ) 7→ Txζ · vx = ∂λ=0 (ζ ◦ c)(λ) .

If the map ζ ∈ C1(M ; N) is invertible, the co-tangent map

T ∗ζ(x)ζ := (Txζ)∗ ∈ BL (T∗ζ(x)ζ(M) ; T∗xM) ,

is defined, for every wx ∈ TxM and v∗ζ(x) ∈ T∗ζ(x)ζ(M) , by

〈v∗ζ(x), Txζ ·wx 〉 = 〈T ∗ζ(x)ζ · v∗ζ(x),wx 〉 ,
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and the inverse tangent map is denoted by

T−1
ζ(x)ζ := (Txζ)−1 ∈ BL (Tζ(x)ζ(M) ; TxM) .

The push-forward of a tangent vector vx ∈ TxM is defined by the formula

(ζ↑v)ζ(x) := Txζ · vx ∈ Tζ(x)N .

The pull-back of a cotangent vector v∗ζ(x) , along an invertible differentiable

map ζ ∈ C1(M ; N) , is the cotangent vector (ζ↓v∗)x defined by invariance

〈(ζ↓v∗)x,vx 〉 = 〈v∗ζ(x), (ζ↑v)ζ(x) 〉 ,

so that
(ζ↓v∗)x := T ∗ζ(x)ζ · v∗ζ(x) .

Pull-back and push forward, if both defined, are inverse operations. Push-
pull operations for tensors are defined by invariance.

For instance, the pull-back of a twice-covariant tensor sζ(x) ∈ Cov(Tζ(x)N)
is the a twice-covariant tensor ζ↓sζ(x) ∈ Cov(TxM) explicitly defined, for
any pair of tangent vectors ux,wx ∈ TxM , by

ζ↓sCov
ζ(x)(ux,wx) := sCov

ζ(x)(Txζ · ux, Txζ ·wx)

= 〈sCov
ζ(x) · Txζ · ux, Txζ ·wx 〉

= 〈T ∗ζ(x)ζ · sCov
ζ(x) · Txζ · ux,wx 〉 .

Push-pull relations for covariant, contravariant and mixed tensors, along a
map ζ ∈ C1(M ; N) , are then given by

ζ↓sCov
ζ(x) = T ∗ζ(x)ζ · sCov

ζ(x) · Txζ ∈ Cov(TxM) ,

ζ↑sCon
x = Txζ · sCon

x · T ∗ζ(x)ζ ∈ Con(Tζ(x)N) ,

ζ↑sMix
x = Txζ · sMix

x · T−1
ζ(x)ζ ∈Mix(Tζ(x)N) .

The linear spaces of covariant and contravariant tensors are in separating
duality1 by the pairing

〈sCon
x , sCov

x 〉 := J1
x(sCon

x · (sCov
x )A) ,

1 A separating duality pairing between linear spaces is a bilinear form such that van-
ishing for any value of one of its arguments implies vanishing of the other argument.
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where J1
x denotes the linear invariant and the adjoint tensor (sCov

x )A is
defined by the identity

(sCov
x )A(a ,b) := sCov

x (b , a) , ∀ a,b ∈ TxM .

Scalar-valued k-linear, alternating maps on TxM are called k-covectors
at x ∈M with linear span Altk(TxM) , where k ≤ m = dim M . Maximal-
covectors are m-covectors spanning a one-dimensional linear space denoted
by Mxf(TxM) . Covectors of order greater than m vanish identically. Forms
of order k are sections ωk ∈ Λk(TM ;R) := C1(M ; Altk(TM)) .

3. Stokes’ formula

The modern way to integral transformations is to consider maximal-forms
as geometric objects to be integrated over a (orientable) manifold. For any
given manifold with boundary, the notion of exterior differential of a form
is conceived to transform the integral of a form over the boundary into an
integral over the manifold (G. Romano, 2007). The resulting formula is the
generalization of the fundamental formula of integral calculus to manifolds
of finite dimension higher than one.

As quoted by de Rham (1955), according to Segre (1951), this general
integral transformation was considered by Volterra (1889); Poincaré (1895);
Brouwer (1906). It includes as special cases the classical formulae due to
Gauss2, Green3, Ostrogradski4 and to Ampère5, Kelvin6, Hamel.7

The formula for surfaces in 3D space was communicated by Kelvin to
Stokes8 and was taught by him at Cambridge. In its modern general formu-
lation Stokes formula could rather be renamed Volterra9-Poincaré10

-Brouwer11 (Stokes) formula.

2 Carl Friedrich Gauss (1789-1857) German mathematician.
3 George Green (1793-1841) British mathematical physicist.
4 Mikhail Vasilevich Ostrogradski (1801-1862) Russian mathematician.
5 André-Marie Ampère (1775-1836) French mathematical physicist.
6 William Thomson, Lord Kelvin (1824-1907) Scottish mathematical physicist.
7 Georg Karl Wilhelm Hamel (1877-1954) German mathematician.
8 George Gabriel Stokes (1819-1903) British mathematical physicist.
9 Vito Volterra (1860-1940) Italian mathematical physicist.

10 Jules Henri Poincaré (1854-1912) French mathematician and theoretical physicist.
11 Luitzen Egbertus Jan Brouwer (1881-1966) Dutch mathematician.
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Definition 3.1 (Stokes formula for the exterior derivative). In a m-
dimensional manifold M , let Ω be any n-dimensional submanifold (m ≥ n )
with (n − 1)-dimensional boundary manifold ∂Ω . The exterior derivative
dω ∈ C1(M ; Alt(n+1)(TM)) of a n-form ω ∈ C1(M ; Altn(TM)) is the
(n+ 1)-form such that ∫

Ω

dω =

∫
∂Ω

ω .

To underline duality between the boundary operator and the exterior differ-
entiation, Stokes formula may be rewritten as

〈dω,Ω〉 = 〈ω, ∂Ω〉 .

Being ∂∂Ω = 0 for any chain of manifolds Ω it follows that also ddω = 0
for any form ω .

Proposition 3.1 (Geometric homotopy formula). The boundary chain
of the extrusion of a manifold may be evaluated by the following geometric
homotopy formula

∂(Jζ(Ω, λ)) = ζλ(Ω)−Ω− Jζ(∂Ω, λ) .

Proof. As depicted in figg.1,2, the signs in the formula are due to the fol-
lowing choice. The orientation of the (n+2)-dimensional flow tube Jζ(Ω, λ)
induces an orientation on its boundary ∂(Jζ(Ω, λ)) . Assuming on ζλ(Ω)
this orientation, it follows that ζ0(Ω) = Ω has the opposite orientation and
the same holds for Jζ(∂Ω, λ) . �

−1

−1

Jφ(∂Ω, λ)
33

	 Jφ(Ω, λ) +1

Jφ(∂Ω, λ)
}}

φλ(Ω)
jj

+1

Ω

jj

Figure 1: Geometric homotopy formula (n=1)
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Figure 2: Geometric homotopy formula (n=2)

Proposition 3.2 (Extrusion formula). Let ζ ∈ C1(Ω × R ; M × R) be
an extrusion-map defined by

Ω×R
ζλ //

πR,Ω×R
��

M×R
πR,M×R

��
R

shλ //R
⇐⇒ πR,M×R ◦ ζλ = shλ ◦ πR,Ω×R ,

with λ ∈ R extrusion-time and vζ := ∂λ=0 ζλ relevant velocity field. Then
the following extrusion formula holds

∂λ=0

∫
ζλ(Ω)

ω =

∫
Ω

(dω) · vζ +

∮
∂Ω

ω · vζ .

Proof. The first item is the geometric homotopy formula depicted in figg.1,2
relating the chain generated by the extrusion of a manifold and its boundary
chain

∂(Jζ(Ω, λ)) = ζλ(Ω)−Ω− Jζ(∂Ω, λ) ,

The signs in the formula are due to the following choice. The orientation
of the (n+ 2)-dimensional flow tube Jζ(Ω, λ) induces an orientation on its
boundary ∂(Jζ(Ω, λ)) . Assuming on ζλ(Ω) this orientation, it follows that
ζ0(Ω) = Ω has the opposite orientation and the same holds for Jζ(∂Ω, λ) .

Let us consider a (n − 1)-form ω defined in the manifold spanned by
extrusion of the manifold Ω , so that the geometric homotopy formula gives∫

ζλ(Ω)

ω =

∫
∂(Jζ(Ω,λ))

ω +

∫
Jζ(∂Ω,λ)

ω +

∫
Ω

ω ,
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Differentiation with respect to the extrusion-time yields

∂λ=0

∫
ζλ(Ω)

ω = ∂λ=0

∫
∂(Jζ(Ω,λ))

ω + ∂λ=0

∫
Jζ(∂Ω,λ)

ω .

Then, denoting by vζ := ∂λ=0 ζλ the velocity field of the extrusion, applying
Stokes formula and taking into account that by Fubini12 theorem

∂λ=0

∫
Jζ(Ω,λ)

dω =

∫
Ω

(dω) · vζ , ∂λ=0

∫
Jζ(∂Ω,λ)

ω =

∮
∂Ω

ω · vζ ,

we get the result. �

Proposition 3.3 (Differential homotopy formula). The differential ho-
motopy formula, also named H. Cartan13 magic formula, reveals that Lie14

derivative L and exterior derivative d are related by

Lv ω = d(ω · v) + (dω) · v .

Proof. Applying Stokes formula to the last term in the extrusion formula
we get

∂λ=0

∫
ζλ(Ω)

ω =

∫
Ω

(dω) · vζ +

∫
Ω

d(ω · vζ) .

On the other hand, the time-rate of the integral pull-back transformation
leads to Reynolds15 formula

∂λ=0

∫
ζλ(Ω)

ω =

∫
Ω

∂λ=0 (ζλ↓ω) =

∫
Ω

Lvζ ω .

Equating r.h.s. of both formulas, setting v = vζ , gives the result. �

12 Guido Fubini (1879-1943) Italian mathematician.
13 Henri Cartan (1904-2008) French mathematician.
14 Marius Sophus Lie (1842-1899) Norwegian mathematician.
15 Osborne Reynolds (1842-1913) English physicist.
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This recursive formula for the exterior derivative of a n-form ω in terms
of Lie derivative of forms of decreasing order, associated with the recursive
Leibniz formula

Lv ω ·w := Lv(ω ·w)− ω · Lvw ,

yields a recursive formula for the exterior derivative of a n-form ω in terms
of Lie brackets between vector fields (G. Romano, 2007)

dω · v ·w = Lv(ω ·w)− d(ω · v) ·w − ω · [v ,w] .

The recursion from the (n + 1)-form dω · v · w1 . . . · wn till the 0-form
d(ω ·w1 . . . ·wn) · v = Lv(ω ·w1 . . . ·wn) yields Palais16 formula (Palais,
1954) which for n = 1 writes

dω1 · v ·w = (Lv ω
1) ·w − d(ω1 · v) ·w

= dv (ω1 ·w)− ω1 · [v,w]− dw (ω1 · v) .

The exterior derivative of a differential 1-form is a two-form which is well-
defined by Palais formula because the expression at the r.h.s. fulfills the
tensoriality criterion. The value of the exterior derivative at a point is in-
dependent of the extension of argument vectors to vector fields, extension
needed to compute the involved directional and Lie derivatives. Boundary-
less surfaces are said to be closed, and hence differential n-forms such that
dω = 0 are called closed forms.

An m-dimensional manifold M is a star-shaped manifold if there exists
a point x0 ∈ M and a homotopy hλ ∈ C1(M ; M) , continuous in λ ∈ [0, 1] ,
such that h1 is the identity map, i.e. h1(x) = x for all x ∈ M , and h0

is the constant map h0(x) = x0 for all x ∈ M . This homotopy is called a
contraction to x0 ∈ M . The proof of the following result may be found in
(G. Romano, 2007).

Lemma 3.1 (Poincaré formula). Let ωk be a form and hλ ∈ C1(M ; M)
an homotopy on M with velocity vµ = ∂µ=λ hµ ◦ h−1

λ ∈ C1(M ; TM) . Then
we have the formula

ωk = dα(k−1) + βk ,

16 Richard Sheldon Palais (1931-) American mathematician.
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α(k−1) =

∫ 1

0

hλ↓(ωk · v) dλ , βk =

∫ 1

0

hλ↓(dωk · v) dλ .

If dωk = 0 the form ωk is exact being ωk = dα(k−1) . This is known as
Poincaré Lemma: in a star-shaped manifold any closed form is exact.

Lemma 3.2 (Commutation of exterior derivatives and pushes). The
pull back of a form by an injective immersion ϕ ∈ C1(M ; N) and the exterior
derivative of differential forms commute

dM ◦ϕ↓ = ϕ↓ ◦ dN .

Proof. For any k-form ωk ∈ Λk(N ;R) we have that ϕ↓ωk ∈ Λk(M ;R)
and the image of any (k + 1)-dimensional chain Σk+1 ⊂M by the injective
immersion ϕ ∈ C1(M ; N) is still a (k+1)-dimensional chain ϕ(Σk+1) ⊂ N .
Then, by Stokes and integral pull-back formulas, the equality∫

Σk+1

dM(ϕ↓ωk) =

∮
∂Σk+1

ϕ↓ωk =

∮
ϕ(∂Σk+1)

ωk

=

∮
∂ϕ(Σk+1)

ωk =

∫
ϕ(Σk+1)

dNω
k =

∫
Σk+1

ϕ↓(dNω
k) ,

following from the property ϕ(∂Σk+1) = ∂ϕ(Σk+1) , yields the result. �

4. Homologies and cohomologies

The exterior differentiation dn operates on the linear space of forms
C1(M ; Altn(TM)) and the boundary operator ∂(n+1) , operates on (n+ 1)-
chains. It is then convenient to write Stokes formula as follows:

〈Ωn+1, dnωn 〉 = 〈∂n+1Ωn+1,ωn 〉 .

In general, Ωn is a chain and ∂n is a boundary operator. Hence ωn is called
a co-chain and dn is the co-boundary operator. The relevant theory, first
outlined by de Rham17 in his famous 1931 thesis, is exposed in (de Rham,
1931, 1955). The basic results are expressed by the following annihilation

17 Georges de Rham (1903-1990) Swiss mathematician.
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relations which extend to chain and co-chains well-known formulae for dual
operators in linear algebra:{

Ker∂k = (Imdk−1)0 ,

Kerdk = (Im∂k+1)0 ,

{
Im∂k+1 = (Kerdk)0 ,

Imdk−1 = (Ker∂k)0 ,

where the annihilators are defined as exemplified by:

(Im∂k)0 := {ωk−1 ∈ C1(M ; Altk−1(TM)) : 〈ωk−1, ∂kΩk 〉 = 0 ∀Ωk } .

Homologies and cohomologies of degree k are the quotient spaces:

Hk(M) := Ker∂k/Im∂k+1 and Hk(M) := Kerdk/Imdk−1 ,

Duality between Homologies and cohomologies is expressed by the period,
the integral of a cocycle (closed cochain) over a cycle (closed chain). The
Stokes formula provides the invariance property:∮

ck
ωk =

∮
ck+lk

ωk +αk ,

with ck ∈ Ker∂k and ωk ∈ Kerdk , for all lk ∈ Im∂k+1 and αk ∈ Imdk−1 .
The de Rham annihilations reveal that duality provided by the period

is separating and this ensures the existence of an isomorphism between the
spaces of homologies and cohomologies of degree k . Accordingly these will
have the same finite dimension, the k-dimensional Betti18 number of M .

Currents introduced by de Rham are the k-dimensional extension of
scalar distributions of Schwartz.19 Currents are linear functionals on the
linear space of smooth exterior forms with compact support on a mani-
fold. These topological notions are gaining a rapidly increasing attention in
theoretical and computational aspects of electromagnetics (Bossavit, 1991,
2004, 2005), (Tonti, 1995, 2002), (Gross and Kotiuga, 2004), (Auchmann
and Kurz, 2007a), (Auchmann and Kurz, 2007b), (Kurz, Auchmann and
Flemisch, 2009).

18 Enrico Betti (1823-1892) Italian mathematician.
19 Laurent-Möıse Schwartz (1915-2002) French mathematician.
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5. Classical integral transformations

Let (Mm ,µm) be a n-dimensional volume manifold. The divergence of
a vector field v ∈ C1(M ; TM) is defined as the constant of proportionality
between the Lie derivative of the volume form along the flow of the vector
field and the volume form itself:

Lvµ = (div v)µ .

The divergence may be equivalently defined in terms of the exterior derivative
by the relation

d(µv) = (div v)µ .

Indeed, dµ = 0 identically as dµ is an (m + 1)-form in an n-dimensional
manifold, so that by the homotopy formula:

Lv µ = (dµ)v + d(µv) = d(µv) .

From the Stokes formula, introduced in section 3, we may derive all classical
integral transformation formulas, as special cases. Indeed being:

gradient: d f = g · ∇f , dim M = m

curl: d(gv) = (rot v)µ , dim M = 2

curl: d(gv) = µ · (rot v) , dim M = 3

divergence: d(µv) = (div v)µ , dim M = m

we get the following statements:

• Σ1 ⊂Mm : the gradient formula:∫
Σ1

df =

∫
Σ1

g∇f =

∫
Σ1

g(∇f, t) (g t) =

∫
∂Σ1

f = f(B)− f(A) ,

with A , B end points of the curve Σ1 oriented from A to B and g t
volume form (the signed-length) induced along the curve Σ .

• Σ2 ⊂M3 : the curl formula:
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∫
Σ

d(gv) =

∫
Σ

µ(rot v) =

∫
Σ

g(rot v,n) (µn) =

∫
∂Σ

gv =

∫
∂Σ

g(v, t) (g t) ,

with n piecewise smooth field of unit normals to the surface Σ and t unit
tangent to the boundary of the surface. For dim M = 3 , dim Σ = 2 the
curl theorem writes:∫

Σ

µ · (rot v) =

∫
Σ

d(g · v) =

∫
∂Σ

g · v .

It is evident that the curl vector or scalar fields in the formulas above are
orientation dependent.

• dim M = m, dim Σ = k ≤ m the divergence formula:∫
Σ

(div v)µ =

∫
Σ

d(µ · v) =

∫
∂Σ

µ · v =

∫
∂Σ

g(v,n) (µ · n) ,

with n unit normal to the boundary ∂Σ .

Remark 5.1. The definition of gradient, curl and divergence in R3 given
above are based on the following algebraic results (G. Romano, 2007).

• To any one-form df on Rn there correspond a unique vector ∇f in
Rn such that df = g · ∇f .

• To any two-form ω2 on R3 there correspond a unique vector w in
R3 such that ω2 = µ ·w , with µ a given volume form.

• All volume forms µ on Rn are proportional one another.

A noteworthy formula, due to Helmholtz,20 is also a direct consequence
of the homotopy formula, see (Deschamps, 1970, 1981). To see this, given a
time-dependent tangent vector field u ∈ C2(M×Z ; TM) , we set ω2 = µ ·u .
To evaluate the flux of the field u ∈ C2(M ; TM) through a surface Σ2

drifted by a flow ϕα ∈ C2(M ; M) , we set ω̇2 := ∂α=0ω
2
α, and apply the

homotopy formula to get:

∂α=0

∫
ϕα(Σ2)

ω2
α =

∫
Σ2

ω̇2 + Lvϕ ω
2 =

∫
Σ2

ω̇2 + d(ω2 · v) + (dω2) · v .

20 Hermann von Helmholtz (1821-1894) German physician and physicist.

14



Translating into the language of vector analysis, recalling that

µ · u · v = g · (u× v) ,

d(g · (u× v)) = µ · (rot (u× v)) ,

we have:
d(ω2 · v) = d(µ · u · v) = µ · (rot (u× v)) ,

(dω2) · v = d(µ · u) · v = (div u)µ · v .
Substituting into the first expression, we get Helmholtz’s formula

∂α=0

∫
ϕα(Σ2)

ω2
α =

∫
Σ2

µ · (u̇ + rot (u× v)) + (div u)µ · v .

6. Inner and outer orientations, odd forms

The reader interested in the issues of orientation of manifolds and integra-
tion over compact manifolds, whether orientable or not, is addressed to the
mathematical treatment given in (Abraham et al., 2002). A presentation of
basic aspects and a discussion with applications to electromagnetism is pro-
vided in (Bossavit, 1991, 2004), (Tonti, 1995, 2002) and references therein.

A treatment of pair (or plain, even) and impair (or twisted, odd) forms in
oriented affine manifolds, with emphasis on formulation of Clerk-Maxwell21

equations in the 4D space-time and in Minkowski22 relativistic space-time,
has been provided in (Hehl and Obukhov, 2003) and revisited with a punctual
analysis in (Marmo et al., 2005; Marmo and Tulczyjew, 2006).

Due to orientability of space-time, the relevance of odd forms in physics
has been questioned in a recent article by da Rocha and Rodrigues (2010),
with an ongoing controversy (Itin et al., 2010; da Rocha and Rodrigues,
2010).

In fact, the notion of even and odd k-covectors and of even and odd k-
forms, introduced in (de Rham, 1931, 1955; Schouten, 1951), is required not
only to perform integration over non-orientable manifolds, but also to define
the flux of a field across a surface or the winding of a field around a cycle,
in such a way that the result depends only on the outer orientation of the

21 James Clerk-Maxwell (1831-1879) Scottish mathematical physicist.
22 Hermann Minkowski (1864-1909) Russian mathematician.
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integration manifold, but neither on the inner orientation of the manifold nor
on the orientation of the ambient manifold.

In the context of electromagnetic induction theory, integration over non-
orientable manifold is required, for instance, to evaluate the global electric
charge on a Möbius23 strip or on a Klein24 bottle. On the other hand,
integration over outer oriented manifold and on its boundary is required to
properly formulate the Ampère law of induction, see Section 19.1.

Let us preliminarily provide the definition of immersed manifold.

Definition 6.1 (Immersion). A smooth map u ∈ C1(Σk ; Mn) is called an
immersion, of the k-manifold Σk into the n-manifold Mn with k ≤ n , if
for any x ∈ Σk the tangent map Txu ∈ C1(TxΣk ; Tu(x)Mn) is injective.

The range of an injective immersion u ∈ C1(Σk ; Mn) , of a compact and
connected k-dimensional manifold Σk with boundary into an n-dimensional
manifold Mn without boundary, is a connected k-dimensional submanifold
u(Σk) of Mn . Denoting by { ∂1, . . . , ∂k } the standard basis of Rk , let us
consider a tesselation of Σk whose simplicial map s ∈ C1(Simpk ; M) at
x = s(0k) ∈ Σk has domain is the reference simplex

Simpk = {x ∈ Rn : xi ≥ 0 ∀ i ,
∑
i=1,k

xi ≤ 1 } ,

and maps the basis of Rk in the basis { e1, . . . , ek }x of TxΣk with: ei =
s(∂i) .

Definition 6.2 (Volumes and point-orientations). In a n-dimensional
manifold Mn , a volume µn(x) ∈ Altn(TxMn) is a non-null n-covector at
x ∈Mn . Being the linear space of n-covectors at x ∈Mn one dimensional,
the equivalence relation of positive proportionality defines, at x ∈ Mn , two
disjoint classes of volumes {Or+

x ,Or−x } , named point-orientations.

Definition 6.3 (Inner orientation, volume manifolds). A manifold Mn

endowed with a smooth volume form, viz. with a nowhere vanishing section
µn ∈ C1(Mn ; Vol(TMn)) of the bundle (Vol(TMn),πVol,Mn) is said to
be inner oriented. The pair (Mn ,µn) is called a smooth volume manifold.

Let us adopt the redundant terminology of pair (or plain) form, to contrast
impair (or twisted) form.

23 August Ferdinand Möbius (1790-1868) German mathematician.
24 Christian Felix Klein (1849-1925) German mathematician.
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Figure 3: inner-oriented surface and boundary

Definition 6.4 (Pair and impair covectors). In a n-dimensional mani-
fold Mn , k-covectors ωk(x) ∈ Altk(TxMn) , with k ≤ n are assumed to
be function of the orientation of the manifold. Pair covectors are invariant
with respect to the orientation, while impair covectors change sign as the
orientation changes.

Definition 6.5 (Integral over inner oriented submanifolds). Given a
even k-form ωk : Mn 7→ Altk(TMn) in an n-manifold Mn , the inte-
gral, over an inner oriented k-manifold (Σk

in ,µ
k
in) with immersion u ∈

C1(Σk ; Mn) , of the pull-back k-form u↓ωk : Σk 7→ Altk(TΣk) , is denoted
by: ∫

Σk
in

u↓ωk

and is defined, à la Riemann25 , as inductive limit, along a family of sim-
plicial tesselations directed by refinement, of finite sums of scalar terms:

sign(µkin(e1, . . . , ek)x) (k!)−1ωk(u↑e1, . . . , u↑ek)u(x) , x ∈ Σk .

The sign of integral, as defined above, is independent of permutations of the
basis { e1, . . . , ek }x in TxΣk , the significant property being the following:

• Changing the inner orientation results in changing the integral of a
form into its opposite.

This definition is suitable to compare the value of a global vortex on an inner
oriented surface in the Euclid26 3-space, with the corresponding value of
the global circulation around its inner oriented boundary circuit, see fig. 3.

25 Bernhard Riemann (1826-1866) German mathematician.
26 Euclid of Alexandria (325-265) BC.
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Definition 6.6 (Volume manifolds, induced measures and densities).
A volume form in a n-manifold Mn is a field of volumes µn ∈ Λn(TMn ;R) .
The pair (Mn ,µn) is called a volume manifold. The induced measure is de-
fined by the map:

meas(µn) := sign(µn)µn .

The density associated with a scalar field ρ : Mn 7→ R and a volume form
µn ∈ Λn(TMn ;R) is the product ρmeas(µn)

Definition 6.7 (Integral of a density). Let us consider in a compact n-
manifold Mn a density ρmeas(µn) ∈ Λn(TMn ;R) . Then, its integral over
a manifold Σk with immersion u ∈ C1(Σk ; Mn) :∫

Σk

u↓(ρmeas(µk))

is defined, à la Riemann, as the inductive limit of finite sums of scalar terms:

(n!)−1 ρ(u(x)) meas(µk) · (u↑e1, . . . , u↑ek)u(x) , x ∈ Σk ,

along a family of simplicial tesselations directed by refinement. The integral
is then independent of permutations of the basis vectors u↑ei, i = 1, . . . , k .

Densities can be integrated over non-orientable manifolds, since arbitrary
changes of point-orientations do not affect the integral. The next notion
provides a generalization of densities to exterior forms of lower order.

Definition 6.8 (Impair forms). In a volume manifold (Mn ,µn) , a map
assigning, to a point x ∈M and to a point-orientation Orx ∈ {Or+

x ,Or−x }
of the tangent space TxM , a k-covector ωkx ∈ Altk(TxMn) , k ≤ n , or its
opposite depending on whether Orx = Or+

x or Or = Or−x , is called an
impair k-form, and is written as:

ωkodd := sign(µn)ωk .

Accordingly, densities are impair volume forms. In an analogous way, the
notion of impair vector fields may be introduced as follows.

Definition 6.9 (Impair vector fields). An impair vector field on a n-
manifold Mn is a map which assigns to a point x ∈ M and to a point-
orientation Orx ∈ {Or+

x ,Or−x } of the tangent space TxM a vector vx ∈
TxMn or its opposite depending on whether Orx = Or+

x or Or = Or−x ,
and may then be written as: sign(µn) v .
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Definition 6.10 (Outer orientability). In a volume manifold (Mn ,µn) ,
a k-manifold Σk with immersion u ∈ C1(Σk ; Mn) is outer orientable if
there exists a (n− k)-tuple of linearly independent smooth vector fields ni ∈
C1(Σk ; Tu(Σk)Mn) along u ∈ C1(Σk ; Mn) , that is vector fields fulfilling the
commutative diagram:

TM
πTan

��
Σk

ni
<<zzzzzzzz

u // Mn

⇐⇒ πTan ◦ ni = u ,

whose values ni(x) ∈ T(u(x))Mn , at each point x ∈ Σk , are transversal to
Tu(x)u(Σk) = u↑(TxΣk) , i.e. are such that T(u(x))Mn = Tu(x)u(Σk) ⊕Nx ,
where Nx is the linear span of the vectors ni(x) .

Definition 6.11 (Global, inner and outer volume forms). Let (Mn ,µn)
be a smooth volume manifold and Σk , k ≤ n , an outer orientable immersed
manifold with immersion u ∈ C1(Σk ; Mn) . A smooth pair of related outer
volume form:

µn−kout ∈ C1(Σk ; Altn−k(Tu(Σk)Mn)) ,

and inner volume form µkin ∈ C1(Σk ; Vol(TΣk)) may be defined by setting,
at each x ∈ Σk :

µkin (e1, . . . , ek)x µ
n−k
out (n1, . . . ,n(n−k))u(x)

= µn (n1 . . . ,n(n−k), u↑e1, . . . , u↑ek)u(x) ,

for any basis { e1, . . . , ek }x of TxΣk and for any list {nk+1 . . . ,nn }u(x) of
n− k vector fields fulfilling the requirement of Definition 6.10.

Definition 6.12 (Integral over outer oriented submanifolds). Let a vo-
lume n-manifold (Mn ,µn) and an impair k-form ωkodd : Mn 7→ Altk(Mn)
be given. The integral, over a connected outer oriented k-manifold (Σk

out ,µ
k
out)

with immersion u ∈ C1(Σk ; Mn) , of the k-form u↓ωk : Σk 7→ Altk(TΣk)
is denoted by: ∫

Σk
out

u↓ωkodd ,

and is defined, à la Riemann, as the inductive limit, along a family of sim-
plicial tesselations directed by refinement, of finite sums of scalar terms:

sign(µkin(e1, . . . , ek)x) (k!)−1ωkodd(u↑e1, . . . , u↑ek)u(x) , x ∈ Σk
out ,
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the volume form µkin ∈ C1(Σk ; Vol(TΣk)) being the one induced by the
forms:

µn−kout ∈ C1(Σk ; Altn−k(Tu(Σk)Mn)) ,

µn ∈ C1(Σk ; Voln(Tu(Σk)Mn)) ,

according to Definition 6.10.

Figure 4: outer-oriented surface and boundary

• Changing the orientation of the ambient manifold results in changing
the induced inner orientation of the integration manifold but not the
value of the integral, because the integrand is an impair form which
also changes sign.

• Changing the outer orientation of the integration manifold results in
changing the inner orientation induced by the ambient orientation. The
integral is then changed into its opposite.

This definition is suitable to define the global flux across an outer ori-
ented surface in the Euclid 3-space, and, likewise, to define the global wind-
ing around its outer oriented boundary circuit, see fig. 4. In inner oriented
volume manifolds, the integral of an impair form over an outer oriented hy-
persurface as the physical meaning of a flux across the hypersurface, because
its sign depends only upon the surface outer orientation, and the integral
over the outer oriented boundary cycle has the meaning of winding around
the circuit, see fig. 4.

Let us now consider an orientable compact and connected k-manifold Σk

and the canonical immersion ∂u ∈ C1(∂Σk ; Σk) of its (k − 1)-dimensional
boundary manifold ∂Σk into the k-manifold Σk .
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For an inner oriented surface Σk
in , see fig. 3, the Stokes formula of

Sect.3 for an pair k-form ωk writes:∫
Σk

in

d(u↓ωk) =

∮
∂u(∂Σk

in)

u↓ωk =

∮
∂Σk

in

∂u↓(u↓ωk) .

• Changing the inner orientation of the surface Σin , all integrals in the
equality will change sign, so that the equality is still valid.

By definition 6.12, the Stokes formula holds also for the integrals of impair
forms over outer oriented manifolds. In fact, let an outer orientation across
a k-manifold Σk

out , see fig. 4, (a crossing direction for the flux) and the
induced outer orientation around the boundary circuit (a turning sense for
the winding) be given. The Stokes formula writes:∫

Σk
out

d(u↓ωkodd) =

∮
∂u(∂Σk

out)

u↓ωkodd =

∮
∂Σk

out

∂u↓(u↓ωkodd) .

• Changing the orientation of the ambient manifold results in changing
the induced inner orientations of the integration manifolds but not the
value of the integrals due to the sign change of the impair integrand
form.

• Changing the outer orientation of the surface, and the associated outer
orientation on the boundary circuit, all integrals will change sign and
the equality still holds.

7. Calculus on manifolds

An immersion (submersion) is a map with injective (surjective) associ-
ated tangent map.

A fibration of a manifold M is a projection (surjective submersion) π ∈
C1(M ; B) on a base manifold B .

A fiber M(x) is the inverse image of a point x ∈ B by the projection.
A section of a fibration π ∈ C1(M ; B) is a map s ∈ C1(B ; M) that is a

right inverse of the projection, i.e. such that π ◦ s = idB .
A fiber-bundle is a fibration with diffeomorphic fibers.
A vector-bundle has linear fibers.
A morphism is a fiber preserving map between fiber-bundles.
An endomorphism is a morphism between a fiber-bundle and itself.
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A homomorphism is a fiberwise linear morphism between vector-bundles
and an isomorphism is an invertible homomorphism.

A pull-back bundle πN,M = fB,N↓πB,M of a fiber-bundle πB,M by an in-
vertible map fB,N : N 7→ B is defined by the commutative diagram

M
πB,M

��

πN,M

zzuuuuuuuuuu

N
fB,N // B

⇐⇒ fB,N ◦ πN,M = πB,M .

The tangent bundle TM is the disjoint union of tangent spaces (linear
fibers) TxM . Vector fields are sections of a tangent bundle.

A tensor bundle Tens(TM) is the disjoint union of tensor spaces (linear
fibers) Tens(TxM) . Tensor fields are sections of a tensor bundle.

Fields of k-covectors are called differential k-forms, or simply k-forms.
Push-forward of contravariant tensor fields is well defined for any differen-

tiable morphism ζ ∈ C1(M ; N) . Pull-back of covariant tensor fields requires
that the morphism is injective. Push (or pull) transformations of other fields
require that this map is a diffeomorphism.

From chain rule of calculus it follows that push-pull operations by diffeo-
morphisms enjoy the following commutativity property with composition

ζ↑(sCon ◦ sCov) = (ζ↑sCon) ◦ (ζ↑sCov) .

The tangent functor T , when applied to a differentiable map ζ ∈ C1(M ; N) ,
defines a homomorphism between the relevant tangent bundles, according to
the commutative diagram

TM
Tζ //

πM,TM
��

TN
πN,TN

��
M

ζ // N
⇐⇒ πN,TN ◦ Tζ = ζ ◦ πM,TM .

7.1. Lie derivatives

The Lie27 derivative of a vector field w ∈ C1(M ; TM) according to a
vector field u ∈ C1(M ; TM) is defined by considering the flow Fluλ generated

27 Marius Sophus Lie (1842-1899) Norwegian mathematician ?.
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by solutions of the differential equation u = ∂λ=0 Fluλ and by differentiating
the pull-back along the flow

Luw := ∂λ=0 (Fluλ↓w) = ∂λ=0 Fluλ↓(w ◦ Fluλ) .

Let us recall that push forward along the flow Fluλ is defined in terms of the
tangent functor T as

(Fluλ↑w) ◦ Fluλ := TFluλ ·w ,

and that the pull back is defined by Fluλ↓ := Flu−λ↑ . Push-pull of scalar
fields are just change of base points and hence the Lie derivative of scalar
fields coincides with the directional derivative.

The commutator of tangent vector fields u,w ∈ C1(M ; TM) is the skew-
symmetric tangent-vector valued operator defined by

[u ,w]f := (LuLw − LwLu)f ,

with f ∈ C1(M ;R) a scalar field. A basic theorem concerning Lie deriva-
tives states that Luw = [u ,w] and hence the commutator of tangent vector
fields is called the Lie bracket. For any injective morphism ζ ∈ C1(M ; N)
the Lie bracket enjoys the following push-naturality property (G. Romano,
2007)

ζ↑(Lu w) = ζ↑[u ,w] = [ζ↑u , ζ↑w] = Lζ↑u ζ↑w .

For a tensor field s ∈ C1(M ; Tens(TM)) with Lie derivative

Lu s := ∂λ=0 (Fluλ↓s) = ∂λ=0 Fluλ↓(s ◦ Fluλ) ,

the push-naturality property extends to

ζ↑(Lu s) = Lζ↑u ζ↑s .

By the commutativity property between push and composition, Leibniz28

rule for the ∂λ=0 derivative yields the analogous Leibniz rule for Lie deriva-
tives of tensor fields

Lu (sCon ◦ sCov) = (Lu sCon) ◦ sCov + sCon ◦ (Lu sCov) .

28 Gottfried Wilhelm von Leibniz (1646-1716) German scientist.
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7.2. Connection and parallel derivatives

A linear connection ∇ in a manifold M fulfills the characteristic prop-
erties of a point derivation (Dieudonne, 1969, vol. III, XVII-18)

∇w(u1 + u2) = ∇wu1 +∇wu2 ,

∇(w1+w2)u = ∇w1u +∇w2u ,

∇w(fu) = f ∇wu + (∇wf)u ,

∇(f w)u = f ∇wu ,

where f ∈ C1(M ;R) and u,u1,u2,w1,w2 ∈ C1(M ; TM) and ∇wf is the
standard derivative of scalar fields. In terms of parallel transport along a
curve c ∈ C1(R ; M) , with u = ∂λ=0 c(λ) , the derivative according to a
connection is defined by

∇uw := ∂λ=0 c(λ)⇓ (w ◦ c)(λ) .

Parallel transported vector fields (w ◦ c)(λ) = c(λ)⇑w0 have a null parallel
derivative, because

∇uw := ∂λ=0 c(λ)⇓ (w ◦ c)(λ) = ∂λ=0 c(λ)⇓ c(λ)⇑w0 = ∂λ=0 w0 = 0 .

The curvature of the connection is the tensorial29 map curv , which acting
on a vector field s ∈ C1(M ; TM) gives a tangent-vector valued two-form
curv(s) defined by30

curv(s)(u ,w) := ([∇u ,∇w]−∇[u ,w])(s) ,

and the torsion tors is the tangent-vector valued two-form defined by

tors(u ,w) := ∇uw −∇wu− [u ,w] .

Mixed tensor fields Tors(u) and Curv(s ,u) are defined by the identities

Tors(u) ·w := tors(u ,w) = −tors(w ,u) ,

Curv(s ,u) ·w := curv(s)(u ,w) = −curv(s)(w ,u) .

29 Tensoriality of a multilinear map, acting on vector fields and generating a vector field,
means that point values of the image field depends only on the values of the source fields
at the same point. A form is then a vector-valued, tensorial, alternating multilinear map.

30 The curvature form for connection on a fiber bundle and the relevant expression in
terms of parallel derivatives are treated in G. Romano (2007).
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A connection with vanishing torsion is named torsion-free or symmetric, and
a connection with vanishing curvature is said to be curvature-free or flat.

A Riemann manifold (M ,g) is endowed with a field of metric ten-
sors g ∈ C1(M ; Pos(TM)) . The associated Levi-Civita31 connection is
uniquely defined by the properties ∇g = 0 and tors = 0 .

A linear connection in a Riemann manifold induces a linear connection
in each submanifold by means of pre-composition by the immersion map and
post-composition by the orthogonal projection map.

7.3. Lie derivatives in terms of parallel derivatives

Noteworthy formulae provide the Lie derivatives of tensor fields in terms
of parallel derivatives. For convenience we set Y(v) := ∇(v) + Tors(v) .

Proposition 7.1. Let M be a manifold and ∇ a linear connection in M .
The Lie derivative of a covariant tensor field sCov ∈ C1(M ; Cov(TM))
along the flow Flvλ ∈ C1(M ; M) of a tangent vector field v ∈ C1(M ; TM) is
given by

Lv sCov = ∇v sCov + sCov ·Y(v) + Y(v)∗ · sCov .

If sCov ∈ C1(M ; Sym(TM)) , the formula specializes into

Lv sCov = ∇v sCov + 2 sym (sCov ·Y(v)) .

Proof. Applying Leibniz rule to the Lie derivative and to the parallel
derivative, we have that, for any u,w ∈ C1(M ; TM)

(Lv sCov)(u,w) = Lv (sCov (u,w))− sCov (Lvu,w)− sCov (u,Lvw) ,

(∇v sCov)(u,w) = ∇v (sCov (u,w))− sCov (∇vu,w)− sCov (u,∇vw) .

Lie derivative and parallel derivative of scalar fields coincide, so that

Lv (sCov (u,w)) = ∇v (sCov (u,w)) .

Hence

(Lv sCov)(u,w) = (∇v sCov)(u,w) + sCov (∇vu,w) + sCov (u,∇vw)

− sCov (Lvu,w)− sCov (u,Lvw) .

31 Tullio Levi-Civita (1873-1941) Italian mathematician.
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Moreover, since tors(v,u) := ∇vu−∇uv − [v ,u] we may write

(Lv sCov)(u,w) = (∇v sCov)(u,w) + sCov (tors(v,u),w) + sCov (∇uv,w)

+ sCov (u,tors(v,w)) + sCov (u,∇wv) ,

which, by definition of the torsion field Tors(v) ∈ C1(M ; Mix(TM)) , gives
the result. �

Analogous proofs, explicitly reported in (G. Romano, 2007), lead to the
expressions for u∗ ∈ C1(M ; T∗M) , sCon ∈ C1(M ; Con(TM)) and sMix ∈
C1(M ; Mix(TM)) listed hereafter

Lv u∗= ∇v u∗ + u∗ ·Y(v) ,

Lv sCon = ∇v sCon −Y(v) · sCon − sCon ·Y(v)∗ ,

Lv sMix = ∇v sMix + sMix ·Y(v)−Y(v) · sMix .

The next result provides the Lie derivative of a form in terms of parallel
derivatives.

Proposition 7.2. Let M be a manifold and ∇ a linear connection in M .
The Lie derivative of a k-form ω ∈ C1(M ; Altk(TM)) along the flow Flvλ ∈
C1(M ; M) of a tangent vector field v ∈ C1(M ; TM) is given by

Lv ω = ∇v ω + Cycle (ω ◦Y(v)) ,

where the operator Cycle evaluates the sum of the values of a k -form
over cyclic permutations of the argument vectors and the form ω ◦Y(v) ∈
C1(M ; Altk(TM)) is defined by

(ω ◦Y(v))(a,b, c) = ω(Y(v) · a,b, c)

Proof. Making explicit reference to a 3-form and to a triplet of vector fields
a,b, c ∈ C1(M ; TM) , a proof analogous to the one in Prop.7.1 gives

(Lv ω)(a,b, c) = (∇v ω)(a,b, c) +ω(tors(v, a),b, c) + ω(∇av,b, c)

+ω(a,tors(v,b), c) + ω(∇bv, c, a)

+ω(tors(v, c), a,b) + ω(∇cv, a,b) ,

and the result follows. �
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In terms of the maximal-form µg ∈ C1(M ; Mxf(TM)) induced by the
metric tensor field g ∈ C1(M ; Pos(TM)) , the linear invariant J1 of a mixed
tensor sMix ∈ C1(M ; Mix(TM)) is defined by

J1(sMix)µg := Cycle (µg ◦ sMix) .

Defining the 0-th order invariant Jo(v) as the proportionality factor in the
equality ∇v µg = Jo(v)µg , the formula of Prop.7.2 may be rewritten as

Lv µg =
(
Jo(v) + J1(Y(v))

)
µg .

By definition of divergence Lv µg = (div v)µg we get

div v = Jo(v) + J1(Y(v)) .

Adopting Levi-Civita connection, the implication ∇g = 0 =⇒ ∇µg = 0 ,
leads to the standard formula

Lv µg = J1(∇v)µg ,

which, by definition of divergence, is equivalent to div v = J1(∇v) .

8. Continuum Kinematics

Continuum Kinematics (CK) investigates about geometric properties of
motions. The natural theoretical framework is provided by a four-dimensional
affine events manifold M and by its representations according to observers.
In this way, the theory is best developed on the basis of informations avail-
able from physical experience and formalized with the mathematical tools
offered by differential geometry.

8.1. Events manifolds and observers

The affine structure of the events manifold M permits to choose in the
associated linear space of translations V a constant vector field of time
arrows constructed by translation of a non-null vector of V .

The events manifold M is then fibrated into a family of disjoint time-
lines generated by the field of time arrows. A time-lines is an oriented one-
dimensional affine manifold isomorphic to a model one-dimensional scalar
time-line Z .
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To the time-fibration there corresponds a complementary space-fibration
into a family of spatial-slices which are disjoint hyperplanes transversal to
the time-arrows and parallel one another. Transversality means that, at
any event, the spatial-slice does not contain the time-arrow. The spatial-
slices are three-dimensional affine submanifolds isomorphic to a model three-
dimensional affine manifold, the ambient space S .

Two Euclid observers measure time along two proportional fields of time
arrows and their spatial-slices are parallel one another, so that they give the
same judgement of simultaneity.

Two Euclid observers are said to be synchronized if they adopt the same
field of time-arrows and if events in the same spatial-slice are assigned the
same time-coordinate by the two observers.

The point of view of an observer amounts in the choice of the field of time-
arrows and of the spatial-slices. Each observer γ ∈ C1(M,S × Z) detects a
diffeomorphism between the events manifold and a space-time manifold, the
product between the affine space manifold S and the affine time-line Z .

The events manifold is thus fibrated by complementary projections πS,M ∈
C1(M ;S) and πZ,M ∈ C1(M ;Z) , the latter being independent of the ob-
server, since in classical mechanics time is absolute, i.e. the field of time-
arrows is the same for all synchronized Euclid observers.

The assumption of an absolute time and the adoption of a positive definite
metric tensor are main distinctive issues between classical and relativistic
mechanics.

The fibers M(t) ≡ (S , t) of simultaneous events, with t ∈ Z , are all
isomorphic to the ambient space S and the fibers M(x) ≡ (x ,Z) of isotopic
events, with x ∈ S , are isomorphic to the time line Z .

Both S and Z are Riemann manifolds endowed with metric fields gS ∈
C1(S ; Pos(TS)) and gZ ∈ C1(Z ; Pos(TZ)) , where Pos(•) is the bundle
of twice-covariant, symmetric and positive definite tensors. Space and time
manifolds are assumed to be endowed with linear connections ∇S and ∇I .
The associated parallel transports are denoted by ⇑S and ⇑I .

The ambient space S considered in CK is the 3D affine Euclid32 space
endowed with a metric field invariant under translation. The metric field in
the affine time-line Z is also invariant under translation.

32 Euclid of Alexandria (325-265) BC.
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8.2. Trajectory and motion

The trajectory T is a non-linear manifold characterized by an injective
immersion iM,T ∈ C1(T ; M) which is such that the immersed trajec-
tory T M := iM,T (T ) ⊂M is a submanifold of the events manifold.33

Each observer γ ∈ C1(M,S ×Z) induces space and time projections on the
trajectory manifold, defined by

πS,T := πS,M ◦ iM,T , πZ,T := πZ,M ◦ iM,T .

The time projection πZ,T ∈ C1(T ;Z) generates a fibration of the trajectory
manifold T over the base Z and the placement at time t ∈ Z is the fiber
of simultaneous events in the trajectory

T (t) = { e ∈ T | πZ,T (e) = t } .

The spatial placement is the projection Ω = πS,T (T (t)) ⊂ S , assumed to be
a compact connected submanifold. The time fibration makes the trajectory
manifold T a fiber-bundle.

The space projection πS,T ∈ C1(T ;S) generates a fibration of the trajec-
tory manifold whose base manifold is the (non-disjoint) union of the spatial
placements ∪t∈ZΩ ⊂ S , the wake of the trajectory. The fiber based at
x ∈ S is a set of isotopic events in the trajectory

T (x) = { e ∈ T | πS,T (e) = x } ,

which in general is not a manifold.
It follows that the space fibration fails in general to make the trajectory

manifold T a fiber-bundle.34 The time-projection πZ,T (T (x)) ⊂ Z is the
set of time instants at which there is a body particle crossing the spatial
point x ∈ S , possibly a singleton.

Fibre regularity in space fibration is assured if the trajectory manifold
has the same dimensionality of the space-time manifold, and we will call this
the Maximal Dimensionality Property (MDP).

33 Events in the immersed trajectory are represented by coordinates in the events man-
ifold, whose dimensionality may be higher than the one of the trajectory manifold.

34 Fibre regularity in spatial fibration of the trajectory does not hold in general, for
lower dimensional trajectories, see Rem.15.1.
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The motion is a one-parameter family of automorphisms35 ϕα ∈ C1(T ; T )
of the trajectory time-bundle over the time shift shα ∈ C1(Z ;Z) ,
defined by shα(t) := t + α with t ∈ Z time-instant and α ∈ R
time-lapse, as described by the commutative diagrams

T M
ϕM
α //

πZ,M

++

T M

T
iM,T

OO

ϕα //

πZ,T
��

T
iM,T

OO

πZ,T
��

Z shα // Z

⇐⇒
ϕM
α ◦ iM,T = iM,T ◦ϕα ,

πZ,T ◦ϕα = shα ◦ πZ,T .

which provides a formal expression of the property of conservation of
simultaneity, that is: the motion sends simultaneous events into time-
shifted simultaneous events. The map ϕM

α ∈ C1(T M ; T M) is called the
immersed motion.

The trajectory velocity vT ∈ C1(T ; TT ) and its immersion in the events
manifold, the space-time velocity vM

T = iM,T ↑vT ∈ C1(T M ; TT M) are defined
by

vT := ∂α=0ϕα , vM
T := ∂α=0ϕ

M
α .

Since the motion is parametrized by time, velocities have a unit time-projection

TπZ,T · vT = ∂α=0 shα ◦ πZ,T = 1 ,

TπZ,M · vM
T = ∂α=0 shα ◦ πZ,M = 1 .

All informations concerning the trajectory velocity are conveyed by its spatial-
projection. However, in performing time-differentiations of tensor fields along
the motion, the whole trajectory velocity must be considered. Indeed, the
evaluation of time-derivatives along temporal and spatial directions could
in general bring the base point outside the trajectory, at events where the
relevant field is undefined.

8.3. Body and particles

According to our point of view, the standard notions of body and material
particles are not primary, as in most standard presentations of the matter,

35 An automorphism is an invertible morphism from a fiber-bundle onto itself.
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but are rather deduced as secondary to that of trajectory and motion. To
this end, we observe that events related by the space-time motion along the
trajectory, i.e.

e1, e2 ∈M | ∃α ∈ R : e2 = ϕα(e1) ,

form a class of equivalence and that the equivalence relation foliates the
trajectory manifold. We may then give the following definitions.

A material particle is a line (a one-dimensional manifold) whose elements
are motion-related events in the trajectory.

The body is the disjoint union of the trajectory material particles, a quo-
tient manifold induced by the foliation of the trajectory manifold.

Remarkably, the geometric approach to CK does not require, the introduc-
tion of a fixed reference configuration, an observer dependent notion. All
kinematic operations are in fact defined on the trajectory time-bundle im-
mersed in space-time. This is a distinctive feature of the new approach
which, as we will see, entails significant conceptual and methodological con-
sequences. The issue of referential formulations will be introduced in proper
geometric terms in Sect.8.5, as a mathematical trick useful to perform linear
operations on a straightened out trajectory in which the motion is a simple
time-translation.

8.4. Conservation law

The trajectory time-bundle is characterized by a conservation law con-
cerning a maximal form defined on the time-vertical tangent bundle V(T ) ⊂
T(T ) , that is the subbundle of vectors tangent to placements. The conser-
vation law states that the integral of the maximal form over any placement
is left invariant by the motion.

The conservation law of interest in electromagnetics is concerns the elec-
tric charge form ρ3 ∈ C1(T ; Mxf(TT )) , whose time-invariance along
the motion is expressed by the condition∫

Ωt1

ρ3 =

∫
Ωt2

ρ3 ,

which, by the integral transformation formula∫
Ωt2

ρ3 =

∫
Ωt1

ϕ(t2−t1)↓ρ3 ,
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is equivalent to pull-back condition ρ3 = ϕα↓ρ3 and to Lie differential
condition LvT ρ

3 := ∂α=0ϕα↓ρ3 = 0 (G. Romano, 2007).

8.5. Trajectory straightening

According to the geometric viewpoint, the standard referential formula-
tion is translated in the following straightening out statement concerning the
trajectory. This is an observer dependent notion.

A straight trajectory is a product manifold Ω×Z , with Ω ⊂ S . It is a
time-bundle under the cartesian projection πZ,Ω×Z ∈ C1(Ω × Z ;Z) . In a
straight trajectory we may introduce a special motion, the time-translation
shiftα ∈ C1(Ω×Z ; Ω×Z) , defined by shiftα(x , t) := (x , t+ α) .

Lemma 8.1 (Trajectory straightening). Any nonlinear trajectory may
be straightened by means of a time-bundle isomorphism ζ ∈ C1(T ; Ω×Z) ,
according to the commutative diagram

T
ζ //

πZ,T
��

Ω×Z
πZ,Ω×Z

��
Z

idZ // Z
⇐⇒ πZ,Ω×Z ◦ ζ = πZ,T .

in such a way that the motion is transformed into the time-translation shiftα ∈
C1(Ω×Z ; Ω×Z) , as depicted in the commutative diagram

T
ϕα //

ζ
��

πZ,T

**

T
ζ

��
Ω×Z

ζ↑ϕα //

πZ,Ω×Z
��

Ω×Z
πZ,Ω×Z

��
Z shα // Z

⇐⇒

ζ↑ϕα ◦ ζ = ζ ◦ϕα ,

πZ,Ω×Z ◦ ζ↑ϕα = shα ◦ πZ,Ω×Z ,

with (ζ↑ϕα) = shiftα .

Proof. A placement Ω ∈ T (t) is mapped isomorphically by the motion
ϕα ∈ C1(T ; T ) to another placement (Ω(t+α) , t + α) = ϕα(Ω , t) in the
trajectory. Choosing a map ζ ∈ C1((Ω , t) ; M(t)) with image ζ(Ω , t) =
(Ω , t) , the isomorphism is defined on each time-fiber by

ζ := shiftα ◦ ζ ◦ϕ−α ,

which sends (Ω(t+α) , t+ α) onto (Ω , t+ α) . �

32



In the standard terminology the time-translation over a straight trajectory
is referred to as a fixed reference placement.

Lie time-derivatives along the motion are transformed by push according
to the straightening isomorphism into parallel time-derivative according to
the time-translation transport, i.e. in classical partial time derivatives, taken
at fixed spatial point.

Indeed, for any u ∈ C1(T ; VT ) and s ∈ C1(T ; Tens(VT )) , with push
forward to the straightened trajectory uref = ζ↑u ∈ C1(Ω × Z ; TΩ) and
sref = ζ↑s ∈ C1(Ω×Z ; Tens(TΩ)) , we have

(ζ↑ϕα)↓(sref ◦ (ζ↑ϕα)) = (ζ↑ϕα)⇓ (sref ◦ (ζ↑ϕα)) = sref ◦ shiftα ,

and hence, by the push-naturality property of Lie derivatives, it follows that

ζ↑(Lu s) = Luref sref = ∂α=0 (sref ◦ shiftα) .

Referential formulations provide the key tool to perform linear operations
in a nonlinear geometric context. The time-rate of a material tensor field
along the motion may be conveniently evaluated by pushing the tensor field
to a straight trajectory by means of a straightening out isomorphism, by per-
forming on the pushed tensor field the partial time-derivative and eventually
pulling the result back to the actual trajectory.

9. Spatial and material fields

Let us now introduce a nomenclature motivated by the importance of
making a carefully distinction between different kinds of tensor fields in CK
which have peculiar physical meanings and are to be treated by different
geometric tools. All the fields of interest in CK are based on the trajectory,
with the only exception of the space-time metric field, see Sect.10.

Space-time bundle TMT M is the tangent bundle TM to the space-time
manifold, with the fibration induced by the time-projection πZ,M ∈
C1(M ;Z) , and the base restricted to the immersed trajectory T M .

Spatial bundle VMT M ⊂ TMT M is the sub-bundle of time-vertical space-
time vectors uM

T ∈ VeM ⊂ TeM , having a null time-projection, i.e.
TeπZ,M · uM

T = 0 .
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Trajectory bundle TT is the tangent bundle TT to the trajectory, with
the fibration induced by the time-projection πZ,T ∈ C1(T ;Z) .

Material bundle VT ⊂ TT is the sub-bundle of vectors uT ∈ TeT (t)
that are time-vertical TeπZ,T ◦ uT = 0 .

In the sequel the physical terminology field s ∈ C1(B ; M) will be adopted,
corresponding to the geometric terminology section of the fiber-bundle π ∈
C1(M ; B) , see Sect.7. This means that s(x) ∈M(x) .

Space-time tensor fields sM ∈ C1(T M ; Tens(TMT M)) are sections of the
space-time tensor bundle Tens(TMT M) .

Spatial tensor fields sM
T ∈ C1(T M ; Tens(VMT M)) are sections of the spatial

tensor bundle Tens(VMT M) .

Spatial vector fields can be considered as time-dependent tangent fields to the
ambient space manifold defined on the current placement uSϕ,t ∈ C1(Ω ; TS) .
Sections of pull-back bundles TMT = iM,T ↓TMT M and VMT = iM,T ↓VMT M

will still be called space-time and spatial tensor fields.

Trajectory tensor fields sT ∈ C1(T ; Tens(TT )) are sections of the trajec-
tory tensor bundle Tens(TT ) .

Material tensor fields uT ∈ C1(T ; Tens(VT )) are sections of the material
tensor bundle Tens(VT ) .

Material vector fields can be considered as time-dependent tangent fields to
the current placement manifold uϕ,t ∈ C1(Ω ; TΩ) . The immersion preserves
simultaneity, so VT M = V(iM,T ↑T ) = iM,T ↑(VT ) . In the sequel we will drop
the subscript ()T whenever confusion may not occur.

10. Space-time, spatial and material metrics

The space-time metric gE ∈ C1(M ; Pos(TM)) is defined by the pull-back

gE := πS,M↓gS + πZ,M↓gZ ,

explicitly gM(u ,w) := gS(TπS,M ·u , TπS,M ·w)+gZ(TπZ,M ·u , TπZ,M ·w)
for all vector fields u,w ∈ C1(M ; TM) tangent to the events manifold.
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The spatial metric field g ∈ C1(M ; Pos(VMT M)) is the restriction of the
space-time metric to spatial vector fields. The time-line metric plays then no
role, so that

g := πS,M↓gS .

In turn, the material metric gT ∈ C1(T ; Pos(VT )) is the pull-back of the
spatial metric to the material bundle

gT := iM,T ↓g .

The material metric gT ∈ C1(T ; Pos(VT )) is a non-degenerate covariant
tensor field that provides the standard tool for alteration of material tensors.

11. Spatial and material projections

The spatial projection PVM ∈ C1(TM ; VM) is a homomorphism from the
tangent space-time bundle TM onto the time-vertical bundle VM , charac-
terized by the fiberwise gE-orthogonality property

gE(aM −PVM · aM ,PVM · bM) = 0 , aM,bM ∈ TM ,

and hence is gE-symmetric and idempotent PVM ◦ PVM = PVM , being,
∀ aM,bM ∈ TM

gE(PVM · aM ,bM) = gE(PVM · bM , aM) = gE(PVM · aM ,PVM · bM) .

The complementary temporal projection PZM := I−PVM is likewise fiberwise
gE-orthogonal.

The projection ΠM ∈ C1(VMT M ; VT M) , from the spatial bundle onto
the immersed material sub-bundle VT M = VM ∩ TT M , is characterized by
the g-orthogonality property

g(aM
T −ΠM · aM

T , iM,T ↑bT ) = 0 , aM
T ∈ VMT M , ∀bT ∈ VT .

The material projector Π ∈ C1(VMT M ; VT ) , from the spatial bundle onto
the material bundle, is then defined by the identity

gT (Π · aM
T ,bT ) = g(aM

T , iM,T ↑bT ) , ∀ aM
T ∈ VMT M , ∀bT ∈ VT ,
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which implies that ΠA = iM,T ↑ ∈ C1(VT ; VT M) is the (gT ,g)-adjoint trans-
formation fulfilling the commutative diagram

VT
πT ,TT

��

ΠA
// VT M

πM,TM
��

T
iM,T // T M

⇐⇒ iM,T ◦ πT ,TT = πM,TM ◦ΠA .

Then Π := iM,T ↓ ◦ΠM that is ΠM = ΠA ◦Π . For any mixed tensor field
L ∈ C1(VMT M ; VMT M) and any pair of material vectors aT ,bT ∈ VT , we
have that

g((L ◦ΠA)aT ,Π
AbT ) = gT ((Π ◦ L ◦ΠA) · aT ,bT ) ,

with Π ◦ L ◦ΠA ∈ C1(T ; Mix(VT )) mixed material tensor field.

12. Time–rates and time-invariance

The evaluation of time-rates of material and spatial tensors requires the
comparison of values of these fields at different times along the motion. This
operation is not trivial because the fields to be compared do not belong to
the same linear space.

It is therefore compelling to transform the field values at a variable time
into fields values pertaining to the evaluation time. This transformation may
be carried out separately for material and spatial fields, as dictated by the
geometric paradigm. We may then give the following definitions.

Definition 12.1 (Time rate and invariance of material fields). The time
rate of a material tensor field sT ∈ C1(T ; Tens(VT )) is given by the Lie
derivative along the motion

ṡT := LvT sT = ∂α=0ϕα↓(sT ◦ϕα) .

Accordingly, time invariance of a material tensor field along the motion, is
expressed by the differential condition ṡT := LvT sT = 0 , equivalent to the
pull-back property

sT = ϕα↓sT := ϕα↓(sT ◦ϕα) .
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Definition 12.2 (Time rate and invariance of spatial fields). The time
rate of a spatial tensor field sM

T ∈ C1(T M ; Tens(VMT M)) along the motion
is given by the parallel derivative

ṡM
T := ∇vM

T
sM
T = ∂α=0ϕ

M
α ⇓ (sM

T ◦ϕM
α ) .

Accordingly, invariance of a spatial tensor field along the motion, is expressed
by the differential condition ṡM

T := ∇vM
T
sM
T = 0 , equivalent to the parallel

transport property

sM
T = ϕM

α ⇓ sM
T = ϕM

α ⇓ (sM
T ◦ϕM

α ) .

We underline that, as resulting from the definitions above, invariance of a
material field along the motion is a natural notion, i.e. fulfill the principle
of Geometric Naturality, being determined only by the motion itself. On the
contrary, the notion of invariance of a spatial field along the motion depends
on the choice of a linear connection in the space-time manifold.

Contrary to the familiar meaning, material tensors evaluated at different
instants of time along the trajectory, might be said to be the same if they are
related by the push-pull transformation defined by the displacement map.

This geometric notion clarifies and corrects statements of formulations
where the expression the same is assumed to mean that involved tensors
have a null difference. Indeed the difference of tensors not belonging to the
same linear tensor fiber is an undefined operation.

13. Frame-invariance

A change of frame is an automorphism ζM ∈ C1(M ; M) of the events
manifold. A relative motion ζ ∈ C1(T ; Tζ) is a diffeomorphism between
trajectory time-bundles, induced by a change of frame according to the com-
mutative diagram

M

ζM

!!
T

iM,Too
ζ // Tζ
ζ−1

oo
iM,Tζ // M

⇐⇒ iM,Tζ ◦ ζ = ζM ◦ iM,T .

Trajectories and body motions ϕα ∈ C1(T ; T ) and ζ↑ϕα ∈ C1(Tζ ; Tζ) ,
as seen by observers in relative motion ζ ∈ C1(T ; Tζ) , are related by the
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commutative diagram

Tζ
ζ↑ϕα // Tζ

T
ϕα //

ζ
OO

T
ζ

OO ⇐⇒ (ζ↑ϕα) ◦ ζ = ζ ◦ϕα .

Definition 13.1 (Frame-invariance of material fields). A material ten-
sor field sT ∈ C1(T ; Tens(VT )) is frame-invariant if under the action of a
relative motion ζ ∈ C1(T ; Tζ) it varies according to push

sTζ = ζ↑sT .

Lemma 13.1 (Frame-invariance of trajectory speed). The trajectory speed
is frame-invariant

vTζ = ζ↑vT .

Proof. By definition vT := ∂α=0ϕα so that ϕα = FlvTα . A direct compu-
tation then yields

vTζ := ∂α=0 ζ↑ϕα = ∂α=0 (ζ ◦ϕα ◦ ζ−1) = (Tζ · vT ) ◦ ζ−1 = ζ↑vT ,

gives the formula. �

A Euclid change of observer means that ζ iso ∈ C1(T ; Tζiso↑ϕ) is iso-
metric, that is

gT = ζ iso↓gTζiso↑ϕ
= (Tζ iso)∗ · gTζiso↑ϕ

· Tζ iso

or explicitly

gT (uT ,wT ) = gTζiso↑ϕ
(Tζ iso · uT , Tζ iso ·wT ) ◦ ζ iso .

Invariance under Euclid change of observer is called Euclid Frame In-
variance (EFI). The material metric tensor is Euclid frame-invariant by
definition. That all other material tensors are Euclid frame-invariant is
the statement of a constitutive axiom. The following property follows from
push-naturality of Lie derivatives and Lemma 13.1.
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Lemma 13.2 (Push naturality of Lie time-derivatives). The Lie time-
derivative of a material tensor field sT ∈ C1(T ; Tens(VT )) and the Lie
time-derivative of its push by a relative motion ζ ∈ C1(T ; Tζ) , are related
by push

LvTζ
(ζ↑sT ) = ζ↑(LvT sT ) .

The related result concerning invariance is provided below.

Proposition 13.1 (Invariance of convective time-derivatives). The in-
variance of a material tensor field sT ∈ C1(T ; Tens(VT )) with respect to
a relative motion ζ ∈ C1(T ; Tζ) , implies invariance of the convective time-
derivative, viz. of its Lie derivative along the motion

sTζ = ζ↑sT =⇒ LvTζ
sTζ = ζ↑(LvT sT ) .

Proof. The result is a direct consequence of Lemma 13.2. �

Material tensors evaluated, at a given time instant along the trajectory,
by different observers in relative isometric motion, might be said to appear
the same when they are related by push-pull transformation according to the
relative motion. In literature, the same is sometimes assumed more or less
explicitly to mean that involved tensors, as seen by different observers, have
a null difference. But difference of tensors, based on trajectories detected by
different observers, is an undefined operation.

14. Galilei invariance

Definition 14.1 (Translational relative motion). A relative motion ζ ∈
C1(T ; Tζ) is translational according to a spatial connection, if the relevant
spatial velocity field vζ,S := PVM · vζ has a vanishing parallel derivative:

∇vζ,S = 0 .

Definition 14.2 (Stationary relative motion). A relative motion ζ ∈
C1(T ; Tζ) is stationary if the partial time-derivative of the relevant spatial
velocity field vanishes, viz.:

∇vζ,Z vζ,S = 0 .
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The acceleration field of the relative motion is given by

∇vζ vζ := ∂α=0 ζα⇓ (vζ ◦ ζα) = ∇vζ,Z vζ,S +∇vζ,S vζ,S ,

If the relative motion is stationary and translational the acceleration van-
ishes. By definition, the relative motion ζ ∈ C1(T ; Tζ) between two Galilei36

observers is stationary and translational, and parallel transport and push
along relative motions are coincident.

A Galilei transformation is metric-preserving and hence also volume-
preserving so that ζ↓µ = µ . Setting µ · F = ω2

F we then have:

ζ↓(µ · F) = (ζ↓µ) · (ζ↓F) = µ · (ζ↓F) .

so that the two-form ω2
F is Galilei invariant iff the vector field F is such.

Moreover, taking the time derivative and applying the Leibniz rule:

Lζ (µ · F) = (Lζ µ) · F + µ · (Lζ F) .

Being Lζ µ = 0 . It follows that:

Lζ (µ · F) = µ · (Lζ F) ,

and we may conclude that the Lie derivative of the two-form field ω2
F is

Galilei invariant iff the Lie derivative of the vector field F is such.

15. Space-time and trajectory connections

Connections ∇S in the space manifold and ∇Z in the time line, natu-
rally induce a connection ∇ in the space-time manifold M by defining the
transports of spatial and temporal projections of a space-time vector.

15.1. Space-time connection

Definition 15.1 (Space-time connection). The parallel transport of a tan-
gent vector uM(e) ∈ TeM , along a space-time curve c ∈ C1(R ; M) through
e = c(0) , is performed by considering the spatial (time) projection, in trans-
porting the projected vector according to the induced spatial (time) parallel

36 Galileo Galilei (1564-1642) Italian scientist.
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transport along the space-time curve, denoted by ⇑M,S (⇑M,I ) and in defin-
ing

π↑(c(λ)⇑uM(e)) := c(λ)⇑M,S uM(e) ,

πMZ ,M↑(c(λ)⇑uM(e)) := c(λ)⇑M,I uM(e) .

The parallel derivative, along the tangent vector vM(e) = ∂λ=0 c(λ) ∈ TeM
based at e = c(0) , of a tangent vector field uM ∈ C1(M ; TM) , defined on a
segment of the space-time curve c ∈ C1(R ; M) around e ∈M , is accordingly
given by

∇vM(e)uM := ∂λ=0 c(λ)⇓ (uM ◦ c)(λ) .

In NLCEM all fields of interest for parallel differentiation, other than the
metric tensor field, are spatial fields whose domain is the space-time immer-
sion T M ⊂M of the trajectory. The space-time curve c ∈ C1(R ; T M) must
then lie in the immersed trajectory with velocity vM(e) ∈ TeT M .

Remark 15.1 (Material time-derivatives). The material time-derivative

∇vs ∈ C1(T M ; Tens(TMT M))

of a space-time tensor field s ∈ C1(T M ; Tens(TMT M)) is the parallel deriva-
tive in direction of the space-time trajectory velocity v ∈ C1(T M ; TT M) de-
fined by

∇vs := ∂α=0ϕα⇓ (s ◦ϕα) .

Let us consider the orthogonal decomposition

v = vZ + vS , vZ := PZM(v) , vS := PVM(vM) .

The celebrated Euler37 formula, for the material (or substantial) time-
derivative of a space-time field along the motion, is in fact the statement
of additivity of the space-time connection ∇

∇vs = ∇vZ+vSs = ∇vZs +∇vSs .

Taking into account that vZ = PZM(v) = 1 , so that ∇vvZ = 0 , the formula
for the acceleration writes

∇vv = ∇(vZ+vS)vS = ∇vZvS +∇vSvS .

37 Leonhard Euler (1707-1783) Swiss scientist.
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These formulae are however applicable only when the trajectory manifold is,
at least locally, a product space-time manifold, because then neither vZ nor
vS can point out of the trajectory and hence temporal and spatial partial
derivatives are feasible. In the kinematics of lower dimensional continua
these split formulae are therefore not applicable.

Definition 15.2 (Galilei time-invariance). Time-invariance of a spatial
tensor field α according to a Galilei observer means that

∇vZ α = 0 .

where vZ is the time-component of the measured space-time velocity.

16. Electromagnetic induction: standard treatment

A noteworthy physical application of the theory of differential forms and
integration on manifolds is to the laws of Electromagnetism, see (É. Cartan,
1924), (Deschamps, 1970). In fact this is the natural context for the math-
ematical modeling of these physical phenomena, more than the usual vector
calculus which leads unavoidably to a confused coincident representations of
geometrically distinct objects.

Let {S ,g} be the Euclid ambient 3-D affine manifold without bound-
ary, endowed with the metric tensor field g and the induced the volume
3-form µ .

The geometric objects involved in electrodynamics are impair and pair
exterior forms related to vector and scalar fields by linear isomorphisms gen-
erated by the metric tensor (for one-forms) and by the volume form (for
two-forms and three-forms), as explicitly illustrated in the following lists.

• Faraday law:

ω1
E = g · E electric circulation (one-form , vector field) ,

ω2
B = µ ·B magnetic vortex (two-form , impair vector field) ,

• Ampère law:

ω1
H = g ·H magnetic winding (impair one-form , impair vector field) ,

ω2
D = µ ·D electric flux (impair two-form , vector field) ,

ω2
J = µ · J current flux (impair two-form , vector field) ,

ρ3 = ρµ electric charge (impair three-form , scalar field) .
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In engineering and physics literature, it is customary to express the laws of
electromagnetic induction in terms of the spatial vector fields E,B,H,J,D ∈
C1(M ; VMT M) and of the scalar field ρ ∈ C1(M ; Fun(VMT M)) , electric
charge density per unit volume, by the integral relations∮

∂Σin

g · E = −
∫

Σin

µ · (∇vZ B) Henry-Faraday(1831)∮
∂Ωout

µ ·B = 0 Gauss(1831)∮
∂Σout

g ·H =

∫
Σout

µ · (∇vZ D + J) Maxwell(1861)-Ampère(1826)∮
∂Ωout

µ ·D =

∫
Ωout

ρµ Gauss(1835)

with ∇vZ D and ∇vZ B partial time-derivatives, as seen by an observer,
Σ a bounded connected surface and Ω bounded connected domain in S .
Applying Ampère law to closed surfaces Σ = ∂Ω , we infer that

∇vZ ρ+ div J = 0

which expresses the so called equation of continuity.
In all equations above, the time-change of the surface Σ and of the

domain Ω , as seen by a Galilei observer, are not considered, neither the
effect of a change of observer is taken into acount. A critically discussion
about these equations, which are customary in literature, will be performed
in the sequel, with the equation of continuity discussed in Remark 19.1.

17. Electromagnetic induction in continuous bodies

The standard formulation of the laws of electromagnetic induction is in-
troduced hereafter, with innovative features: Galilei invariant induction
laws are formulated and their well-posedness is discussed, leading to cor-
rect expressions of electric and magnetic charge conservation in terms of Lie
derivatives. The laws are first introduced as integral laws, over arbitrar-
ily drawn two-dimensional submanifolds, and then translated into equivalent
differential expressions. While integral formulas provides a direct tool for the
evaluation of electromotive or magnetomotive forces along circuits, the dif-
ferential formulas opens the way for introduction and evaluation of potential
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fields, respectively one-forms and zero-forms. Metric independent formula-
tions of electromagnetic induction were introduced by Murnaghan (1921);
Kottler (1922); É. Cartan (1924); van Dantzig (1934).

18. Electromotive induction by magnetic vortex rate

18.1. Integral Faraday law

The magnetic vortex ω2
B is a Galilei invariant, material pair two-form.

In (Tonti, 1995, p. 284) it is said: Therefore, the magnetic flux is associated
with a surface element and inner orientation, i.e. with a prescribed direction
along its boundary. The name flux is however not appropriate for an extensive
quantity dependent on inner orientation, no crossing direction across the
surface being specified.

For this reason, we prefer to adopt the name magnetic vortex, suggested
by the sketch in fig.3. The name magnetic flux is rather apt to describe
extensive quantities related to outer oriented surface, as depicted in fig.4,
which will be considered with reference to electrical induction, in Section 19.

To introduced the law of induction formulated by Faraday38 in 1821 ,
let us consider an inner oriented spatial surface Σin , with the induced inner
orientation on its boundary ∂Σin (see fig. 3). Faraday law of magnetic
induction is expressed by

−
∮
∂Σin

ω1
E = ∂α=0

∫
ϕα(Σin)

ω2
B =

∫
Σin

Lv ω
2
B .

Here ω1
E is the pair spatial electric one-form and Lv ω

2
B is the Lie derivative

of the pair spatial magnetic vortex two-form along the motion. By Stokes
formula and localization, denoting by dS the exterior derivative of spatial
forms Faraday law may be expressed by the differential condition

−dS ω1
E = Lv ω

2
B .

The electric field E , defined by ω1
E = g ·E , is an pair vector field, while the

magnetic vector field B , defined by ω2
B = µ ·B , is an impair vector field.

38 Michael Faraday (1791-1867) British physicist.
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The Lie derivative of the magnetic vortex two-form, according to Prop.7.1,
is expressed in terms of parallel derivatives by

Lv ω
2
B = ∇v ω

2
B + 2 anti((∇vS)∗ · ω2

B) .

Remark 18.1. In (Schwinger et al., 1998, p.9) and in (Thidé, 2010, p.12-
14) the parallel derivative ∇vS ω

2
B (according to translation in Euclid space)

is considered in place of the Lie derivative LvS ω
2
B . This mistake amounts

in assuming that Lv ω
2
B = ∇vS ω

2
B viz. that emi (ω2

B ◦ ∇vS) = 0 . So the
treatment is correct for purely translational motions in which ∇vS = 0 but
will lead to completely wrong conclusions in general. An especially important
consequence is the false claim about a proof of the Lorentz force term.

18.2. Well-posedness of Faraday law

In order that the integral Faraday formula be meaningful, its r.h.s.
should be proven to be independent of the choice of the surface Σin , for a
given boundary ∂Σin , and independent of the motion of the surface Σin for
a given motion of the boundary ∂Σin . This condition may be formalized by
requiring that the time-derivatives of the integrals∫

ϕ1
α(Σin

1 )

Lv ω
2
B ,

∫
ϕ2
α(Σin

2 )

Lv ω
2
B ,

be the same for any motions such that

∂(ϕ1
α(Σin

1 )) = ∂(ϕ2
α(Σin

2 )) ,

which is equivalent to require that, for any spatial control-window C ⊂ S

∂α=0

∫
ϕα(∂C)

ω2
B =

∮
∂C

Lv ω
2
B =

∫
C

dS (Lv ω
2
B) = 0 .

Under the assumption that the
By localizing and recalling the commutation property in Lemma 3.2, this

is equivalent to

dS (LSv ω2
B) = dS (LSv (iM,MS↓ω2

B)) = dS (iM,MS↓Lv ω
2
B) = LvZ (dS ω

2
B) = 0 ,
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a condition assured by Gauss law39 dS ω
2
B = 0 for the magnetic vortex.

By Poincaré Lemma, the closedness condition dS (Lv ω
2
B) = 0 assures the

existence of a one-form ω1
E electric field, fulfilling Faraday differential law

−dS ω1
E = LSv ω2

B .

18.3. Differential formulation of Faraday law

The theory of electromotive induction is based on the assumption that
the trajectory, in which the electric field ω1

E and the magnetic vortex ω2
B

are defined, may spread over the whole ambient space, being either a material
body or the empty space (or aether).

The aether is assumed to be homogeneous, isotropic and mass-free, so
that no motion of it can be detected. As a consequence the induction law
in the aether is written in terms of partial time derivatives by any observer
since the aether appears as motion-free, to any observer.

A careful attention must be devoted to singularities in the time depen-
dence of the fields at a fixed spatial point in the trajectory (i.e. in a spatial-
fiber) at those time instants when sudden changes of material properties
occur, as tested by an observer.

To recover a standard form of Faraday law, we consider the magnetic
vortex ω2

B form at an event on the trajectory in whose neighborhood the
vortex has a smooth spatial and temporal dependence. Then the Lie deriva-
tive along the space-time velocity v can be split as sum of Lie derivatives
along the spatial and temporal components v = vS + vZ

Lv ω
2
B = LvZ ω

2
B + LvS ω

2
B ,

so that the spatial description of Faraday differential law writes

−dS ω1
E = LvZ ω

2
B + LvS ω

2
B .

Expressing the Lie derivative of the magnetic vortex ω2
B along the spatial

velocity LvS ω
2
B by the homotopy formula, and recalling that dS ω

2
B = 0 ,

we get:

LvS ω
2
B = dS (ω2

B · vS) + (dS ω
2
B) · vS = dS (ω2

B · vS) ,

39 The physical interpretation is that magnetic charge density is vanishing.
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and the Faraday law may be rewritten in integral form as

−
∮
∂Σin

ω1
E =

∫
Σin

(LvZ ω
2
B + LvS ω

2
B)

=

∫
Σin

LvZ ω
2
B +

∮
∂Σin

ω2
B · vS ,

where Σin is a surface in the body placement Ω . The first integral at the
r.h.s. (i.e. the surface integral of LvZ ω

2
B ) is wrongly omitted in the formula

proved in (Greiner, 1998, p.240). The differential expression is

−dS ω1
E = Lv ω

2
B

= LvZ ω
2
B + LvS ω

2
B

= LvZ ω
2
B + dS (ω2

B · vS) ,

which in vectorial notation becomes

−rot E = LvZ B + rot (B× vS) .

The convective term rot (B× vS) is omitted in (Weyl, 1922, §20 (8) p.161)
entitled The Electrodynamics of Moving Fields.

We observe that B is an impair spatial vector field and vS is a pair
spatial vector field. The cross product B × vS , between impair and pair
spatial vector fields, is a pair vector field and the rotor rot (B × vS) of a
pair spatial vector field, is an impair vector field. Also LvZ B is impair and
all this agrees with the fact that rot E is impair too.

18.4. Galilei invariance of Faraday law

Let ζ ∈ C1(T ; Tζ) be the relative motion between two Galilei ob-
servers. Galilei invariance of ω1

E and ω2
B is expressed by

(ω1
E)ζ = ζ↑ω1

E , (ω2
B)ζ = ζ↑ω2

B .

By Lemma 13.2 these invariance properties assure Galilei invariance of
Faraday law

−
∮
∂Σin

ω1
E =

∫
Σin

Lv ω
2
B ⇐⇒ −

∮
∂ζ(Σin)

(ω1
E)ζ =

∫
ζ(Σin)

L(ζ↑v) (ω2
B)ζ .
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Indeed it is ∮
∂Σin

ω1
E =

∮
∂ζ(Σin)

ζ↑ω1
E =

∮
∂ζ(Σin)

(ω1
E)ζ ,

and ∫
Σin

Lv ω
2
B =

∫
ζ(Σin)

ζ↑(Lv ω
2
B) =

∫
ζ(Σin)

L(ζ↑v) (ω2
B)ζ .

18.5. Faraday potential one-form

Faraday law of magnetic induction is expressed by

−
∮
∂Σin

ω1
E = ∂α=0

∫
ϕα(Σin)

ω2
B =

∫
Σin

Lv ω
2
B .

An explicit expression for the electric field ω1
E can be got by observing

that, being dω2
B = 0 , Poincaré lemma ensures that the closed form of

magnetic vortex ω2
B admits a potential ω1

B , the pair Faraday one-form,
so that we may set

ω2
B = dS ω

1
B ⇐⇒ B = rot A ,

where A , defined by ω1
B = g ·A , is the pair magnetic vector potential. By

relying on the commutation property in Lemma 3.2, Faraday differential
law may be written as

−dS ω1
E = Lv ω

2
B = Lv dS ω

1
B = dS Lv ω

1
B ,

and leads to the following formula, in terms of the pair electric scalar poten-
tial VE ∈ C1(S ; Fun(TS))

−ω1
E = Lv ω

1
B + dS VE .

To get a Galilei invariant electric field, the Faraday one-form ω1
B and

electric zero-form VE are assumed to be Galilei-invariant. Splitting the
Lie derivative by additivity along time and space components

Lv ω
1
B = LvZ ω

1
B + LvS ω

1
B ,

and resorting to homotopy formula for the space component, we get

−ω1
E = LvZ ω

1
B + ω2

B · vS + dS (ω1
B · vS) + dS VE
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and in vector notation

−E = LvZ A + B× vS + dS (g(A,vS)) + dS VE .

This expression should be compared with the not Galilei invariant formula,
see e.g. (Sadiku, 2010, eq. 9.45 ), which may be obtained by dropping the
convective derivative

−ω1
E = LvZ ω

1
B + dS VE ⇐⇒ −E = LvZ A + gradVE .

It is important to underline that the scalar field ω1
B · vS is spatially dif-

ferentiable only under a regularity assumption on the velocity field which is
likely to be violated in applications. Instances of lack of regularity are met
in the investigation of induction due the motion of a transverse conductive
bar sliding on a pair of parallel rails or in the spinning of a disk. In these
situations singular terms due to jumps in the velocity field must be properly
taken into account, see Sect. 33, 32.2.

Remark 18.2. The Galilei invariant formula for the electric field, in terms
of the Lie derivative of the Faraday one-form ω1

B along the motion, should
give up with the claim about the fact that two Galilei observers, one fixed to
the magnets and the other drifted by a relative translational motion, should
evaluate the electric field induced by a magnetic vortex by resorting to dif-
ferent laws of electrodynamics (see e.g. (Griffiths, 1999, p. 477)), a claim
exposed also by Albert Einstein at the very beginning of his celebrated
paper on electrodynamics of moving bodies (Einstein, 1905).

Remark 18.3. After having independently developed the present treatment,
in reading the treatise on Electricity and Magnetism by J.J. Thomson (1893),
the author became aware of the fact that the same Galilei invariant formula
for the electric field, expressed in cartesian coordinates, was there reported in
ch. VII, p. 534, as depicted in fig. 5 below. It easy to check that the formula
there exposed, when written in our notations, becomes

ω1
E = −ω2

B · vS − LvZ ω
1
B − dS (ω1

B · vS)− dS VE ,

or in vector notation: E = vS ×B−LvZ A− dS g(A,vS)− dS VE . As J.J.
Thomson40 says, he got this expression by a modification of the original

40 Joseph John Thomson (1856-1940) British physicist.

49



Figure 5: J.J. Thomson formulation

formula in (Clerk-Maxwell, 1861, (77) p.342) where, setting

UE = VE + ω1
B · vS ,

the electric field was written as

ω1
E = −ω2

B · vS − LvZ ω
1
B − dS UE ,

or in vector form

E = −LvZ A + vS ×B−∇UE ,

see also (Clerk-Maxwell, 1865, (D) p.485).
It is surprising that engineers and physicists, who had at hand the Galilei

invariant expression of the electric field as formulated by Clerk-Maxwell
and J.J. Thomson, did instead adopt, and still do, a non-invariant expres-
sion. The reason may probably be found in that the wave equation in empty
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space is readily obtained from the expression without the convective term.
In our opinion, the two seemingly contradictory requirements, i.e. Galilei
invariance and recovery of the wave equation in empty space, may be recon-
ciled by observing that the vanishing of the velocity field is a consequence of
isotropy and homogeneity of the electromagnetic constitutive properties of the
mass-free empty space, a feature that makes any motion of it undetectable.

Remark 18.4. In literature, the term vS × B is referred to as the mag-
netic Lorentz41 force per unit electric charge on a body in motion (Lorentz,
1899), and most often introduced as a fundamental rule to be assumed in addi-
tion to the law of magnetic induction, on the basis of experimental evidence,
see e.g. (Barut, 1980, p.88), (Feynman et al., 1964, II.17-2), (Greiner,
1998, p.238) (Jackson, 1999, p.3), (Griffiths, 1999, ch.5.1.2), (Kovetz, 2000,
sec.15), (Sadiku, 2010, ch.9.3B) (Lehner, 2010, 6.1.2, p.344). The physical
significance of a not Galilei-invariant force is however firmly questionable.
As shown above, the term v×B was still present in the original treatment by
Maxwell, but only as one of two addends, each one not Galilei invariant,
the total contribution −LvZ A + vS × B being instead Galilei invariant.
The issue will be further discussed in Rem. 32.1.

19. Magnetomotive induction by electric flux rate

19.1. Ampère law

The discovery in 1820 by Ørsted42 that a magnetic field was induced by
an electric current, was immediately followed by a mathematical formulation
of the law of electric induction, due to Ampère (1820), subsequently mod-
ified by Clerk-Maxwell who envisaged the need for the additional term
concerning the electric displacement (Clerk-Maxwell, 1861). According to
the geometric point of view exposed in this paper, Ampère law is expressed
by the integral condition∮

∂Σout

ω1
H = ∂α=0

∫
ϕα(Σout)

ω2
D +

∫
Σout

ω2
J =

∫
Σout

LvS ω
2
D + ω2

J ,

41 Hendrik Antoon Lorentz (1853-1928) Dutch physicist.
42 Hans Christian Ørsted (1777-1851) Dutch physicist.
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for any outer oriented circuit ∂Σout bounding a correspondingly outer ori-
ented surface, Σout see fig. 4. The magnetic winding ω1

H is an impair one-
form, the electric displacement flux and the conduction current flux ω2

D,ω
2
J

are impair two-forms.
The electric displacement D , defined by ω2

D = µD , is a pair vector
field, and the magnetic field H , defined by ω1

H = gH , is an impair vector
field. The electric current J , defined by ω2

J = µJ , is a pair vector field.

19.2. Well-posedness of Ampère law
In order that Ampère law be meaningful, it is to be proven that the

r.h.s. is independent of the choice of surface Σ , for a given circuit ∂Σ , and
independent of the motion of surface Σ for a given motion of circuit ∂Σ .
This condition may be formalized by requiring that the time derivatives of
the integrals ∫

ϕ1
α(Σout

1 )

Lv ω
2
D + ω2

J ,

∫
ϕ2
α(Σout

2 )

Lv ω
2
D + ω2

J ,

be the same for motions such that

∂(ϕ1
α(Σout

1 )) = ∂(ϕ2
α(Σout

2 )) .

The chain ϕ1
α(Σout

1 ) − ϕ2
α(Σout

2 ) is then a closed surface at any time. It
follows that, for any outer-oriented control-window Cout , the flux across its
boundary surface ∂Cout should vanish∮

∂Cout

(Lv ω
2
D + ω2

J) =

∫
Cout

dS (Lv ω
2
D + ω2

J) = 0 .

Localizing, we get the equivalent closedness condition

dS (Lv ω
2
D + ω2

J) = 0 .

The commutative property in Lemma 3.2 implies that

dS (Lv ω
2
D) = Lv (dS ω

2
D) .

The geometric formulation of Gauss law43 for the electric displacement flux,
consists in the assessment of the exactness condition

ρ3 = dS ω
2
D .

43 This law is the physical interpretation of a mathematical property ensuing from the
fact that the Euclid ambient space S is star shaped. Then Poincaré lemma 3.1 holds
true and the law follows from the vanishing of the 4-form dS ρ

3 in the 3-space S .
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Hence the closedness condition above translates into electric charge balance
law

Lv ρ
3 + dS ω

2
J = 0

and, in integral form∫
Cout

Lv ρ
3 + dS ω

2
J = ∂α=0

∫
ϕα(Cout)

ρ3 +

∫
Cout

dS ω
2
J

=

∮
∂Cout

Lv ω
2
D + ω2

J = ∂α=0

∮
ϕα(∂Cout)

ω2
D +

∮
∂Cout

ω2
J = 0 .

The electric charge ρ3 is an impair three-form which may be integrated over
even non-orientable manifolds to evaluate the total charge.

In empty space, i.e. at events not laying in a charged material particle,
Gauss law reduces to the closedness condition dS ω

2
D = 0 .

Observing that the outer orientations of open 3D manifolds in Euclid
space, spring and sink, respectively correspond to outer orientations outward
and inward for its boundary 2D manifold, the electric charge balance law
has to be read as

- The time-rate of increase of the total electric charge, in a traveling
control-window, is equal to the inward flux of electric conduction cur-
rent through the window boundary.

We emphasize that the assumption of absence of bulk sources of electric
charge plays a basic role in ensuring well-posedness of Ampère law. The
electric charge balance law Lv ρ

3 + dS ω
2
J = 0 is Galilei invariant since

such are by assumption ρ3 and ω2
J ad hence the terms Lv ρ

3 and dS ω
2
J

according to Lemma 13.2 and 3.2.

Remark 19.1. In literature, the electric charge balance law is usually writ-
ten as LvZ ρ

3 + dS ω
2
J = 0 or in vectorial notation

LvZ ρ+ div J = 0 ,

being LvZ ρ = ∇vZ ρ . This is called the equation of continuity (Weyl, 1922,
p.161), (Feynman et al., 1964, II.18-1), (Barut, 1980, p.90), (Purcell, 1985,
p.127), (Schwinger et al., 1998, p.9), (Greiner, 1998, p.251), (Jackson, 1999,
p.238), (Griffiths, 1999, p.345), (Wegner, 2003, p.50), (Thidé, 2010, p.10),
(Sadiku, 2010, p.385). The correct expression Lv ρ

3 + dS ω
2
J = 0 introduced
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above, reduces to the incomplete one by assuming a translating body and a
Galilei observer sitting on it, so that vS = 0 and hence v = vZ . If the
formulation of the equation of continuity in terms of partial time derivative of
the electric charge is assumed to be (as usually made in literature) a general
physical law, this would lead to the completely unsatisfactory conclusion that
Ampère law of induction is well-posed only for Galilei observers testing
time-invariant material circuits.

When the material tensor ρ3 has a regular spatial and time-dependence, we
may write

Lv ρ
3 = LvZ ρ

3 + LvS ρ
3 .

Then, by the homotopy formula, being dS ρ
3 = 0 , we infer that

LvS ρ
3 = dS (ρ3 · vS) + (dS ρ

3) · vS = dS (ρ3 · vS) ,

and the spatial description of electric charge balance law may be written, in
terms of exterior derivatives, as

LvZ ρ
3 + dS (ρ3 · vS) + dS ω

2
J = 0 .

Expressing our formula in vector notations, Helmholtz differential condi-
tion expressing electric charge balance law is recovered

LvZ ρ+ div (ρvS) + div J = 0 ,

as quoted in (Darrigol, 2000) who refers to (Helmholtz, 1870). It seems that
the correct analysis perfomed in (Clerk-Maxwell, 1861) and in (Helmholtz,
1870) have been neglected in the course of the nineteenth century, probably
also due to the influence exerted by the incorrect formulation of classical
electromagnetics referred to in (Einstein, 1905).

19.3. Differential formulation of Ampère law

Upon localization, Ampère’s law may be formulated in differential terms
according to the equivalent notations

dS ω
1
H = Lv ω

2
D + ω2

J .

dS (g H) = Lv (µD) + µJ ,

µ · (rot H) = Lv (µD) + µJ ,
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rot H = Lv D + (div v) D + J .

Setting ω2
D = ρ2 + ω2

Z with dS ρ
2 = ρ3 and dS ω

2
Z = 0 , we may introduce

the Ampère electric potential one-form ω1
Z such that

ω2
Z = dS ω

1
Z ,

and the differential form of Ampère law may be written as

dS ω
1
H = Lv ρ

2 + dS Lv ω
1
Z + ω2

J .

Being dS (Lv ρ
2 + ω2

J) = 0 we may set Lv ρ
2 + ω2

J = dS ω
1
N and write

ω1
H = Lv ω

1
Z + ω1

N + dS VH

where all terms at the r.h.s. are Galilei invariant.
If the additive decomposition of Lie derivative is feasible, we get

ω1
H = LvZ ω

1
Z + dS (ω1

Z · vS) + ω2
Z · vS + ω1

N + dS VH

Ampère law is accordingly written then as∮
∂Σout

ω1
H =

∫
Σout

(ω2
J + LvZ ω

2
D) +

∮
∂Σout

ω2
D · vS +

∫
Σout

ρ3 · vS ,

and in differential form

dS ω
1
H = LvZ ω

2
D + ω2

J + dS (ω2
Z · vS) + ρ3 · vS ,

or in vector analysis notation, setting ω2
Z = µ · Z

rot H = LvZ D + J + rot (Z× vS) + ρvS .

The customary one, e.g. (Sadiku, 2010, eq. 9.23 )

rot H = LvZ D + J ,

in which the velocity is assumed to vanish, has not general validity.

19.4. Galilei invariance of Ampère law

Galilei invariance of Ampère law follows from the Galilei invariance
of the involved fields ω1

H , ω2
D , ω2

J and from Lemma 13.2 and 3.2 ensuring
invariance under relative motions of the Lie derivative and of the exterior
derivative of invariant tensors.
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20. Electromagnetic constitutive relations

When expressed in terms of differential forms, the laws of electromagnetic
induction do not involve neither the chosen orientation nor the metric prop-
erties of the physical space. The constitutive laws, expressing the electric
permittivity and the magnetic permeability of a medium in terms of vector
fields, depend on the metric properties of the space.

Indeed, in the standard Euclid space (S ,g) the non-singular metric
tensor leads to the one-to-one correspondences

ω1
E = g · E , ω2

B = µ ·B , ω1
H = g ·H , ω2

D = µ ·D ,

The impair electric flux two-form ω2
D is in one-to-one linear correspon-

dence with the pair electric displacement vector field D according to the
relation ω2

D = µ ·D .
The impair magnetic winding one-form ω1

H and the magnetic impair
vector field B which is in one-to-one linear correspondence with the pair
magnetic vortex two-form ω2

B according to the relation ω2
B = µ ·B .

The empty space is assumed to be massless and to have have linear,
uniform and isotropic electromagnetic constitutive properties.

The electric permittivity εo is a pointwise relation between the electric
field one-form ω1

E and the electric flux two-form ω2
D .

The separating duality induced by the pairing 〈ω1
E,D〉 , between dual

pair geometrical fields, leads to the following electric constitutive equation

εoω
1
E = D .

Analogously, the magnetic permeability µo is a pointwise relation between
The duality pairing 〈ω1

H,B〉 , between dual impair geometrical fields,
leads to the following magnetic constitutive equation

µoω
1
H = B .

The electric permittivity and the magnetic permeability are then fields of
linear maps between dual spaces, which can be represented by scalar fields.

In empty space we may set

D = εo E , B = µo H ,

with εo, µo : S × Z 7→ R constant scalar fields. such that c−2 = εo, µo .

56



Assuming as basic fields E and M = cB , the law of electromagnetic
induction may be written in the symmetric form{

rot E = c−1 Lv M

rot M = c−1 Lv E ,

Due to uniformity and isotropy of its electromagnetic constitutive prop-
erties, no spatial motion of the massless empty space can be detected and
the laws of induction in empty space reduce to the standard ones referred
to in literature as Maxwell-Hertz equations (see e.g. (Einstein, 1905)),
where partial time-derivatives are put in place of Lie derivatives along the
space-time motion.

20.1. Poynting vector

The total electric and magnetic power expended, per unit volume in a
control window in empty space, is the pair scalar field given by the formula:

〈ω1
E,J + Ḋ〉+ 〈ω1

H, Ḃ〉 ,

where Ḋ := LvZ D and Ḃ := LvZ B .
On the other hand, we have the identity

〈ω1
E, rot H〉 − 〈ω1

H, rot E〉 = −div (E×H) .

Faraday and Ampère laws of induction

rot H = J + Ḋ ,

−rot E = Ḃ ,

substituted in the identity above, yield Poynting relation

〈ω1
E,J + Ḋ〉+ 〈ω1

H, Ḃ〉 = −div (E×H) ,

whose integral version pertaining to a 3D control window C writes∫
Cout

〈ω1
E,J + Ḋ〉+ 〈ω1

H, Ḃ〉µ+

∮
∂Cout

µ · (E×H) = 0 .

The introduction of the pair vector field E ×H is due to Poynting44 in
(Poynting, 1884) and to Heaviside45 in the same year, see (Stratton, 1941,

44 John Henry Poynting (1852-1914) British physicist.
45 Oliver Heaviside (1850-1925) British physicist.
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ch.II, p.132). The relation may be so read: The total electric and magnetic
power expended, per unit volume of a control window in empty space, is equal
to the incoming flux of Poynting vector field through its boundary.

21. Events manifold and framings

The events manifold M is a 4-dimensional star shaped orientable mani-
fold without boundary.

Definition 21.1 (Framing). A framing is a section

(u ,α) ∈ C1(M ; TM×M T∗M)

of the Whitney product between tangent and cotangent bundles, such that

〈α,u〉 6= 0 ,

dα= 0 .

The values of the tangent vector field u ∈ C1(M ; TM) are called time-arrows
and the closed one-form α ∈ Λ1(TM) is called the slicing.

Lemma 21.1 (Space-time split). Tangent vectors w ∈ TM are uniquely
split into a spatial and a temporal component such that

w = wS + wZ ,

wZ = k u ,

〈α,wS 〉 = 0 .

Proof. The evaluation

〈α,w〉 = 〈α,wS 〉+ 〈α,wZ 〉 = k 〈α,u〉 ,

gives the result. �

Lemma 21.2 (Spatial foliation). Tangent vectors in the kernel of α draw
an integrable distribution which foliates the events manifold into 3-dimensional
leaves called spatial slices.
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Proof. By star-shapedness and Poincaré Lemma, closure is equivalent to
exactness so that we may set α = dt with t ∈ C1(M ; Fun(TM)) . Integra-
bility of the kernel-distribution is assured by Frobenius condition{

〈dt,v1 〉 = 0

〈dt,v2 〉 = 0
=⇒ 〈dt,Lv1v2 〉 = 0 ,

whose fulfillment follows from the equality Lv1v2 = −Lv2v1 = [v1 ,v2] and
the expression of Lie bracket

〈dt, [v1 ,v2]〉 = [v1 ,v2] t = (v1v2 − v2v1) t ,

since by assumption v1 t = 〈dt,v1 〉 = 0 , v2 t = 〈dt,v2 〉 = 0 . �

Under the action of a framing (u ,α) ∈ C1(M ; TM×M T∗M) the tangent
manifold TM is split into a Whitney bundle HM ×M ZM of horizontal
and vertical vectors. The 3-D fibers of HM are in the kernel of α while the
1-D fibers of ZM are lines generated by u .

Both subbundles of TM are integrable. The 3-D leaves of the horizontal
foliation are level set for the time 0-form t ∈ C1(M ; Fun(TM)) . Each 1-D
leaf of the vertical foliation defines a spatial point.

The oriented lines of events envelops of the time-arrows, are called time-
lines and define equivalence classes of isotopic events. The corresponding
quotient 3D manifold MS is isomorpic to a typical fiber S called the ambient
manifold. The projector on the spatial manifold MS will be denoted by
π ∈ C1(M ; MS) .

The complementary time-fibration defines equivalence classes of simulta-
neous events, also called spatial slices and the relevant quotient manifold,
denoted by MZ is isomorphic to the time-line Z (motivated by the German
word zeit for time).

Definition 21.2 (Tuned framing). In a framing

(u ,α) ∈ C1(M ; TM×M T∗M) ,

the time-arrows vector field u ∈ C1(M ; TM) and the time 0-form (scalar
field) t ∈ C1(M ; Fun(TM)) are said to be tuned if 〈dt,u〉 = 1 .

Lemma 21.3 (Tunability). Any framing (u ,α) ∈ C1(M ; TM ×M T∗M)
is tunable.
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Proof. Frobenius integrability of the kernel-distribution of α may be
equivalently expressed by the condition

α ∧ dα = 0 .

For any scalar field f ∈ C1(M ; Fun(TM)) we have that

d(fα) = f dα+ df ∧α .

This relation ensures integrability of the kernel-distribution of fα since

d(fα) ∧ (fα) = f d(fα) ∧α = f(fdα ∧α+ df ∧α ∧α) = 0 .

Tuning is realized by setting f = 〈α,u〉−1 . �

22. Special framings

The events manifold M is a m-dimensional pseudo-Riemann mani-
fold with pseudo-metric tensor field gE ∈ C1(M ; Sym(TM)) having the
Minkowski signature (+ + + –). An observer is defined by a pair (u , dt)
made of a field u ∈ C1(M ; TM) of tangent vectors called time-arrows and
of an exact time one-form dt ∈ C1(M ; T∗M) such that 〈dt,u〉 = 1 .

The subbundle of the tangent bundle TM whose fibers are the null spaces
of the time one-form is integrable, which means that there exists a subman-
ifold (the integral manifold) whose tangent manifold gives the subbundle.

In classical physics the events manifold M is a four-dimensional affine
manifold with model linear space V , see e.g. (É. Cartan, 1924) and an
observer is defined by a constant vector field of time-arrows generated by
translations of a vector u ∈ V .

Two observers are synchronized if the corresponding classes of simulta-
neous events are parallel each other and the time origin event e0 of each of
them belongs to the same class.

Each observer generates an isomorphism γ ∈ C1(M ;S × Z) defined by

γ(e) = (x , t) ⇐⇒ x ≡ tu + e0 ∈M , x ∈ S , t ∈ Z .

which assigns, to any event in M , the corresponding location and time-
instant as detected by the observer. An observes splits then the tangent
bundle TM into complementary subbundles, the spatial bundle VM and
a temporal bundle ZM . The projectors on spatial slices and on time-lines
are denoted by π ∈ C1(M ; MS) and πMZ ,M ∈ C1(M ; MZ) so that Tπ ∈
C0(TM ; VM) and TπMZ ,M ∈ C0(TM ; ZM) are the corresponding tangent.

60



23. Space-Time and Material-Time splits

The next Lemma shows that a k-form on the events m-manifold M is
seen by an observer (u , dt) as equivalent to a pair of forms, respectively of
degree k and k−1 , in spatial subbundle VM . The result will enable one to
compare formulations of electrodynamics in the four-dimensional space-time
with the standard one in three-dimensional space.

Let us consider the quotient manifold MS and its injective immersion
i ∈ C1(MS ; M) in the space-time manifold such that π ◦ i = idMS .

Lemma 23.1 (Space-time split). A framing

(u , dt) ∈ C1(M ; TM×M T∗M)

induces a one-to-one bilinear correspondence between forms ωkTM ∈ Λk(TM ;R)
in the events manifold and pairs of spatial forms, according to the relations

ωkVM := i↓ωkTM ∈ Λk(VM ;R) ,

ωk−1
VM := i↓(ωkTM · u) ∈ Λk−1(VM ;R) ,

with the inverse split formula

ωkTM = π↓ωkVM + 1
〈dt,u 〉dt ∧ (π↓ωk−1

VM ) .

In a tuned framing the formula becomes

ωkTM = π↓ωkVM + dt ∧ (π↓ωk−1
VM ) .

Proof. Setting k = 2 for simplicity and π↑δei = δxi , 〈dt, δei 〉 = δti , for
i = 1, 2 , we have that

δei =
δti
〈dt,u〉

u + i↑δxi ∈ TM ,

being π↑u = 0 . Then

(π↓ω2
VM) · (δe1 , δe2) = ω2

VM · (δx1 , δx2)

= (i↓ω2
TM) · (δx1 , δx2)

= ω2
TM · (i↑δx1 , i↑δx2) .
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On the other hand the definition of exterior product gives

dt ∧ (π↓ω1
VM) · (δe1 , δe2)

= (ω2
TM · u · (i↑δx2)) δt1 − (ω2

TM · u · (i↑δx1)) δt2 .

Then the evaluation

ω2
TM · (δe1 , δe2) =ω2

TM · ( δt1
〈dt,u 〉 u + i↑δx1 ,

δt2
〈dt,u 〉 u + i↑δx2)

= δt1 δt2
〈dt,u 〉2 (ω2

TM · u · u) + ω2
TM · (i↑δx1) · (i↑δx2)

+ 1
〈dt,u 〉

[
(ω2

TM · u · (i↑δx2)) δt1 − (ω2
TM · u · (i↑δx1)) δt2

]
,

taking into account that ω2
TM · u · u = 0 , yields the result. �

Let us now assume the trajectory velocity vT ∈ C1(T ; TT ) as time-
arrows field, so that

〈dt,vT 〉 6= 0 , π↑vT = 0 , δei =
δti

〈dt,vT 〉
vT + i↑δxi ∈ TM .

Lemma 23.2 (Material-Time split). A tuned trajectory framing

(vT , dt) ∈ C1(T ; TT ×M T∗T )

induces a one-to-one bilinear correspondence between forms ωkTM ∈ Λk(TT ;R)
in the trajectory manifold and a pair of material forms, according to the re-
lations

ωkVT := i↓ωkTT ∈ Λk(VM ;R) ,

ωk−1
VT := i↓(ωkTT · vT ) ∈ Λk−1(VM ;R) ,

with the inverse split formula

ωkTM = π↓ωkVM + dt ∧ (π↓ωk−1
VM ) .

The next result follows from Lemma 3.2 with the proviso that the chains
involved in the proof must lie in a spatial slice.
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Lemma 23.3 (Spatialization of exterior derivative). The pull-back ac-
cording to the canonical immersion i ∈ C1(MS ; M) and the exterior deriva-
tives, d in the space-time manifolds M and dS in the spatial fibers of MS
fulfill the commutative diagram

Λk+1(TM ;R)
i↓ // Λk+1(VM ;R)

Λk(TM ;R)
i↓ //

d

OO

Λk(VM ;R)

dS

OO

⇐⇒ i↓ ◦ d = dS ◦ i↓ .

Lemma 23.4 (Spatialization of Lie derivative). The pull-back accord-
ing to the canonical immersion i ∈ C1(MS ; M) of the Lie derivative Lv ω

k
TM

of a form ωkTM ∈ Λk(TM ;R) in the space-time manifold is equal to the Lie
derivative Lv ω

k
VM of its spatialization ωkVM = i↓ωkTM ∈ Λk(VM ;R)

i↓(Lv ω
k
TM) = Lv (i↓ωkTM) .

The property can be also enunciated by assessing that pull-back according to
the immersion i ∈ C1(MS ; M) and Lie derivative Lv along the motion,
fulfill the commutative diagram

Λk(TM ;R)
i↓ // Λk(VM ;R)

Λk(TM ;R)
i↓ //

Lv

OO

Λk(VM ;R)

Lv

OO

⇐⇒ i↓ ◦ Lv = Lv ◦ i↓ .

Proof. The motion preserves simultaneity and hence the following commu-
tation property holds

M MSioo

M

ϕα

OO

MSioo

ϕα

OO TM VM
i↑oo

TM

ϕα↑

OO

VM
i↑oo

ϕα↑

OO
⇐⇒

{
i ◦ϕα = ϕα ◦ i ,

i↑ ◦ϕα↑ = ϕα↑ ◦ i↑ .
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Hence a direct computation

(i↓(Lv ω
k
TM))(a) = (Lv ω

k
TM)(i↑a)

= ∂α=0 (ϕα↓ωkTM)(i↑a)

= ∂α=0ω
k
TM(ϕα↑i↑a)

= ∂α=0ω
k
TM(i↑ϕα↑a)

= ∂α=0 (i↓ωkTM)(ϕα↑a)

= Lv (i↓ωkTM)(a) ,

yields the result. �

Lemma 23.5 (Spatialization of a contracted form). Let us consider a
form ωkTM ∈ Λk(TM ;R) on the space-time manifold and a time-vertical
vector field w ∈ C1(M ; TM) so that w = i↑wS with wS ∈ C1(M ; VM) .
Then

i↓(ωkTM ·w) = (i↓ωkTM) ·wS .

Proof. For any aS ∈ C1(M ; VM)

i↓(ωkTM ·w)(aS) = (ωkTM ·w)(i↑aS) = ωkTM(i↑wS , i↑aS)

= (i↓ωkTM)(wS , aS) .

which gives the result. �

24. Space-time formulations of electromagnetics

The expressions of electric and magnetic induction rules, according to
Faraday and Ampère laws, take their most concise and elegant form when
expressed, in the four-dimensional space-time manifold M , in terms of Fara-
day and Ampère electromagnetic two-forms ω2

M,F,ω
2
M,A ∈ Λ2(TM ;R) and

of the 4-current three-form ω3
M,A ∈ Λ3(TM ;R) .

The treatment developed below extends classical results, where body mo-
tion is not taken into account (É. Cartan, 1924, p. 17-19).
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Faraday and Ampère electromagnetic two-forms and of the current
three-form in the space-time manifold are expressed in terms of corresponding
spatial fields by

ω2
M,F = π↓ω2

B − dt ∧ π↓ω1
E ,

ω2
M,A = π↓ω2

D + dt ∧ π↓ω1
H ,

ω3
M,A = π↓ρ3 − dt ∧ π↓ω2

J .

The former pair of forms is usually referred to as electromagnetic field strength
and electromagnetic excitation (Hehl and Obukhov, 2003) or electromagnetic
field and electromagnetic induction (Marmo et al., 2005).

The formulation of Faraday induction law is expressed by the closedness
of Faraday pair two-form ω2

M,F , equivalent to vanishing of its integral on

the boundary of any three-dimensional submanifold Σ3
M ⊂M∮

∂Σ3
M

ω2
M,F =

∫
Σ3

M

dω2
M,F ⇐⇒ dω2

M,F = ω3
M,F .

In the same way, Ampère induction law is expressed, in terms of the impair
two-form ω2

M,A by the condition∮
∂Σ3

M

ω2
M,A =

∫
Σ3

M

ω3
M,A ⇐⇒ dω2

M,A = ω3
M,A .

The manifold M being star-shaped, according to Poincaré Lemma these
conditions are equivalent to the closedness properties

dω3
M,A = 0 , dω3

M,F = 0 ,

which are expressions of the conservation of electric and magnetic charges,
respectively. To esplicate the relation between these conditions and the stan-
dard ones in the three-dimensional Euclid space, we resort to the split in-
duced by an Euclid observer.

24.1. Faraday law in space-time manifold

Let vT := ∂α=0ϕα ∈ C1(T ; TT ) be the trajectory velocity.
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Definition 24.1 (Electric field and magnetic vortex). The electric field
and the magnetic vortex in the body in motion may be set equal to the fol-
lowing pull-backs, to the time-vertical subbundle VM , of the electromagnetic
two-form ω2

M,F in the space-time bundle TM ( spatializations)

ω2
B = i↓ω2

M,F ∈ Λ2(VM ;R) ,

−ω1
E = i↓(ω2

M,F · vT ) ∈ Λ1(VM ;R) .

Proposition 24.1 (Faraday law). Closedness of Faraday two-form in space-
time manifold is equivalent to the spatial Gauss law for the magnetic vortex
and to the spatial Faraday induction law, i.e.

dω2
M,F = 0 ⇐⇒

{
dS ω

2
B = 0 ,

LvT ω
2
B + dS ω

1
E = 0 .

Proof. Recalling the commutativity properties stated in Lemmata 23.3,23.4
and the homotopy formula of Sect. 3

(dω2
M,F) · vT = LvT ω

2
M,F − d(ω2

M,F · vT ) ,

from Lemma 23.1 we infer that

i↓(dω2
M,F) = dS (i↓ω2

M,F) = dS ω
2
B ,

i↓((dω2
M,F) · vT ) = i↓(LvT ω

2
M,F − d(ω2

M,F · vT ))

= LvT (i↓ω2
M,F)− dS (i↓(ω2

M,F · vT ))

= LvT ω
2
B + dS ω

1
E ,

and the result follows. �

In defining the electric field and the magnetic vortex the following gauges
should be taken into account

−ω1
E := i↓(ω2

M,F · vT ) + dS ω
0
E ,

ω2
B := i↓(ω2

M,F) + dS ω
1
B .

Then no definite value may be assigned to electric field and to magnetic
vortex on the basis of Def. 24.1.
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24.2. Ampere law in space-time manifold

Let us now turn to the Ampère induction law.

Definition 24.2 (Electric flux, magnetic winding, charge, current).
Magnetic winding ω1

H , electric flux ω2
D , electric current flux ω2

J and elec-
tric charge ρ3 may be may be set equal to the pull-backs ( spatializations)

ω2
D = i↓ω2

M,A ∈ Λ2(VM ;R) ,

ω1
H = i↓(ω2

M,A · vT ) ∈ Λ1(VM ;R) ,

ρ3 = i↓ω3
M,A ∈ Λ3(VM ;R) ,

−ω2
J = i↓(ω3

M,A · vT ) ∈ Λ2(VM ;R) .

Proposition 24.2 (Charge conservation law). Closedness of the Ampère
three-form in space-time manifold is equivalent to spatial conservation law for
the electric charge, i.e.

dω3
M,A = 0 ⇐⇒ LvT ρ

3 + dS ω
2
J = 0 .

Proof. By homotopy formula we have that

(dω3
M,A) · vT = LvT ω

3
M,A − d(ω3

M,A · vT ) .

Recalling the commutation property dS ◦ i↓ = i↓ ◦ d stated in Lemma 23.3 ,
the pull-back of the Lie derivative and of the exterior derivative at the r.h.s.
may be written as{

i↓(LvT ω
3
M,A) = LvT (i↓ω3

M,A) = LvT ρ
3 ,

i↓d(ω3
M,A · vT ) = dS (i↓(ω3

M,A · vT )) = −dS ω2
J .

According to Lemma 23.1, the condition dω3
M,A = 0 is equivalent to the

conditions 
i↓(dω3

M,A) = 0 ,

i↓(dω3
M,A · vT ) = LvT (i↓ω3

M,A)− dS (i↓(ω3
M,A · vT ))

= LvT ρ
3 + dS ω

2
J = 0 .

The former holds by trivial vanishing of the 4-form i↓(dω3
M,A) in the 3D

spatial slice, while the latter is the charge spatial conservation law. �
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We underline that partial time derivatives, such as the one appearing in
literature in the so called equation of continuity LvZ ρ

3 + dS ω
2
J = 0 for

electric charges, may be not defined due to abrupt changes, with respect
to time, of the electric charge at a spatial point crossed by an electrically
charged body.

Proposition 24.3 (Ampère law). Ampère law in space-time manifold is
equivalent to the spatial Gauss law for the electric displacement flux and to
the spatial Ampère induction law, i.e.

dω2
M,A = ω3

M,A ⇐⇒

{
dS ω

2
D = ρ3 ,

LvT ω
2
D − dS ω1

H = −ω2
J .

Proof. By Lemmata 23.1, 23.3,23.4 and the homotopy formula, we get the
equalities 

i↓ω3
M,A = ρ3 ,

i↓(dω2
M,A) = dS (i↓ω2

M,A) = dS ω
2
D ,

i↓(ω3
M,A · vT ) = −ω2

J ,

i↓(dω2
M,A · vT ) = i↓(LvT ω

2
M,A)− i↓(d(ω2

M,A · vT ))

= LvT (i↓ω2
M,A)− dS (i↓(ω2

M,A · vT ))

= LvT ω
2
D − dS ω1

H ,

and hence the result. �

25. Electromagnetic potentials in space-time manifold

In conclusion, we see that the laws of electrodynamic induction are writ-
ten and discussed in the simplest way, from the geometric point of view, when
formulated in a 4-dimensional space-time manifold M . The physical inter-
pretation is however more cryptic than in the standard 3-dimensional spatial
treatment, since the familiar picture, provided by the everyday space-time
splitting, is lost.
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The mathematical expressions of magnetic and electric charge balance
laws in the space-time manifold are respectively given by

dω3
M,F = 0 ⇐⇒

∮
∂Ω4

M

ω3
M,F = 0 ,

dω3
M,A = 0 ⇐⇒

∮
∂Ω4

M

ω3
M,A = 0 ,

to hold for all 4-dimensional submanifold Ω4
M ⊂M .

These closedness properties are respectively equivalent to assume that ab-
sence of bulk sources of magnetic or electric charges is found by any observer
testing the charge balance laws.

By Poincaré Lemma, the closedness conditions above are equivalent to
the potentiality requirements{

ω3
M,F = dω2

M,F ,

ω3
M,A = dω2

M,A ,

which in turn have been previously shown to be equivalent to the differ-
ential Faraday and Ampère induction laws in space-time. The integral
expression are given by 

∫
Ω3

M

ω3
M,F =

∮
∂Ω3

M

ω2
M,F ,∫

Ω3
M

ω3
M,A =

∮
∂Ω3

M

ω2
M,A ,

to hold for all 3-dimensional submanifold Ω3
M ⊂M .

It is usually assumed that ω3
M,F = 0 , a condition inferred from the ex-

perimental fact that magnetic monopoles and magnetic currents are still
undiscovered. Faraday law of electromagnetic induction may accordingly
be expressed as∮

∂Ω3
M

ω2
M,F = 0 ⇐⇒ 0 = dω2

M,F ⇐⇒ ω2
M,F = dω1

M,F ,

or as an action principle for the space-time Faraday two form

∂α=0

∫
δϕα(Ω2

M)

ω2
M,F =

∮
∂Ω2

M

ω2
M,F · δv ,
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where δϕα ∈ C1(Ω2
M ; M) is a virtual motion in the events manifold with

velocity δv = ∂α=0 δϕα ∈ C1(Ω2
M ; TM) .

The space-time potential one-form ω1
M,F ∈ Λ1(TM ;R) , called electro-

magnetic potential, is related to the spatial magnetic potential one-form
ω1

B ∈ Λ1(VM ;R) and to the scalar potential VE by the pull-backs

ω1
B = i↓ω1

M,F ,

VE = i↓(ω1
M,F · vT ) ,

so that
ω1

M,F = π↓ω1
B − dt ∧ π↓VE .

26. Frame invariance

A space-time change of framing ζM ∈ C1(M ; M) is compatible with a
spatial change of framing ζS ∈ C1(MS ; Mζ,S) if the following commutative
diagram holds

M Mζ,S
iζoo

M

ζM

OO

MSioo

ζS

OO
⇐⇒ iζ ◦ ζS = ζM ◦ i .

Acting on with the tangent functor, we get the commutative diagram

TM TMζ,S
T iζoo

TM

TζM

OO

TMST ioo

TζS

OO
⇐⇒ T iζ ◦ TζS = TζM ◦ T i .

In the sequel all space-time change of framing will be assumed to be com-
patible with a spatial change of framing.

Lemma 26.1 (Commutation between spatialization and push). Let us
consider a form ωkTM ∈ Λk(TM ;R) in the space-time manifold and a time-
vertical tangent vector field w ∈ C1(M ; TM) so that w = i↑wS with
wS ∈ C1(M ; VM) . Then

ζS↓iζ↓ωkTM = i↓ζM↓ωkTM .
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Proof. Assuming k = 2 and a,b ∈ VM , we get

(ζS↓iζ↓ωkTM)(a ,b) = ωkTM(iζ↑ζS↑a , iζ↑ζS↑b)

= ωkTM(ζM↑i↑a , ζM↑i↑b)

= (i↓ζM↓ωkTM)(a ,b) ,

which gives the result. �

Proposition 26.1 (Frame invariance of Faraday and Ampère laws).
The space-time frame invariance of Faraday and Ampère electromagnetic
two-forms and of the current three-form

(ω2
M,F)ζM = ζM↑ω2

M,F ,

(ω2
M,A)ζM = ζM↑ω2

M,A ,

(ω3
M,A)ζM = ζM↑ω3

M,A ,

imply the space-time frame invariance of Faraday and Ampère laws of
induction

dω2
M,F = 0 ⇐⇒ d(ω2

M,F)ζM = 0 ,

dω2
M,A = ω3

M,A ⇐⇒ d(ω2
M,A)ζM = (ω3

M,A)ζM ,

Proof. The result is a direct consequence of the commutativity between
exterior derivative and push by a diffeomorphism, see Lemma 3.2. Indeed

d(ω2
M,F)ζM = d(ζM↑ω2

M,F) = ζM↑(dω2
M,F) ,

and similarly for the second equivalence. �

The next result proves the equivalence between frame-invariance of events
four-forms and spatial frame-invariance of their spatial components, under
any change of frame. We underline that a frame is just a chart for the events
manifold which assigns Gauss coordinates to each event in it (Einstein,
1916, Part II: The General Theory of Relativity - 25. Gaussian Co-ordinates,
p.75). Consequently, a change of frame is just an automorphism of the events
manifold, as enunciated in the definition given in Sect.13, in accord with the
spirit of general relativity. Nevertheless neither relativity theory, special or
general, nor Minkowski pseudo-metric, play any role in the treatment of
frame invariance.
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Proposition 26.2 (Space-time and spatial frame-invariance). Space
time frame invariance of Faraday and Ampère electromagnetic two-forms
ω2

M,F,ω
2
M,A ∈ Λ2(TM ;R) and of the current three-form ω3

M,A ∈ Λ3(TM ;R)
is equivalent to spatial frame invariance of all spatial electromagnetic forms


(ω2

M,F)ζM = ζM↑ω2
M,F

(ω2
M,A)ζM = ζM↑ω2

M,A

(ω3
M,A)ζM = ζM↑ω3

M,A

⇐⇒



(ω1
E)ζS = ζS↑ω1

E

(ω2
B)ζS = ζS↑ω2

B

(ω1
H)ζS = ζS↑ω1

H

(ω2
D)ζS = ζS↑ω2

D

(ω2
J)ζS = ζS↑ω2

J

(ρ3)ζS = ζS↑ρ3

Proof. Let us assume space-time frame invariance (ω2
M,F)ζM = ζM↑ω2

M,F of
Faraday two-form. Then, by space-time frame invariance of the trajectory
speed vTζ = ζ↑vT , stated in Lemma 13.1, and the commutativity property
stated in Lemma 26.1, we infer the material frame invariance of the electric
field one-form ω1

E , since

(ω1
E)ζS = iζ↓((ω2

M,F)ζM · vTζ) = iζ↓(ζM↑ω2
M,F · ζM↑vT )

= iζ↓ζM↑(ω2
M,F · vT ) ,

ζS↑ω1
E = ζS↑i↓(ω2

M,F · vT ) = iζ↓ζM↑(ω2
M,F · vT ) ,

and spatial frame invariance of the magnetic vortex two-form ω2
B , follows

by a similar evaluation

(ω2
B)ζS = iζ↓(ω2

M,F)ζM = iζ↓ζM↑ω2
M,F ,

ζS↑ω2
B = ζS↑i↓ω2

M,F = iζ↓ζM↑ω2
M,F .

The converse implications follow from Lemma 23.1. The same procedure
leads to the conclusion that space-time frame invariance of Ampère two-
form and of the 4-current three-form is equivalent to spatial frame invariance
of magnetic winding ω1

H , electric flux ω2
D , electric current flux ω2

J , and
electric charge ρ3 . �
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27. Frame changes in components

Let us represent the Faraday two-form ω2
M,F by its Gram matrix

with respect to a space-time framing { e0, e1, e2, e3 } with the time arrow
as first vector, i.e. e0 = u , and the tangent vector fields { e1, e2, e3 } got
by immersion of an orthonormal frame { s1, s2, s3 } in the spatial slice. Run-
ning indexes are assumed to be α, β = 0, 1, 2, 3 and i, j, k = 1, 2, 3 . The
dual coframing { e0, e1, e2, e3 } in the cotangent bundle T∗M of the framing
{ e0, e1, e2, e3 } in the tangent bundle TM is defined by 〈eα, eβ 〉 = δα·β .

Then, according to Def.24.1, being ei = i↑si , the elements of the Gram
matrix of Faraday two-form are given by

ω2
M,F(ei , ej) = ω2

B(si , sj) = µ(B, si, sj) = εi,j,k Bk ,

ω2
M,F(e0 , ei) = ω2

M,F(vT , ei) = −ω1
E(si) = −Ei .

By assumed orthonormality, εi,j,k = µ(si, sj, sk) is the Ricci46 permutator
giving 0 if two indices are equal and otherwise +1 or −1 , depending on
the parity of the indices permutation.

Denoting the space-time velocity of the test particle by

vT =


1
vT
0
0

 ,

the matrix expression of the Faraday two form is given by

Gram(ω2
M,F) =


0 −E1 −E2 − vTB3 −E3 + vTB2

E1 0 B3 −B2

E2 + vTB3 −B3 0 B1

E3 − vTB2 B2 −B1 0

 .

Indeed from the relation −ω1
E = i↓(ω2

M,F · vT ) , being
0 −E1 −E2 − vTB3 −E3 + vTB2

E1 0 B3 −B2

E2 + vTB3 −B3 0 B1

E3 − vTB2 B2 −B1 0

 ·


1
vT
0
0

 =


−vT E1

E1

E2

E3


T

46 Gregorio Ricci Curbastro (1853-1925) Italian mathematician.
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we infer that

Gram(ω1
E) =


−vT E1

E1

E2

E3


T

·


0 0 0
1 0 0
0 1 0
0 0 1

 =

E1

E2

E3

T .
28. Classical Electrodynamics

The Galilei transformations for a translational motion with relative
spatial velocity vS in the x direction and the associated Jacobi matrix in
the framing { e0, e1, e2, e3 } are given by

ζM :


t 7→ t

x 7→ x− vS t

y 7→ y

z 7→ z

[TζM] =


1
−vS 1

1
1


The pushed Faraday two form ζM↑ω2

M,F is defined by

(ζM↑ω2
M,F)(aζM ,bζM) = ω2

M,F(Tζ−1
M · aζM , Tζ

−1
M · bζM) ,

or, shortly
ζM↑ω2

M,F = (Tζ−1
M )∗ ◦ ω2

M,F ◦ Tζ−1
M .

In the dual coframing { e0, e1, e2, e3 } of the framing { e0, e1, e2, e3 } , defined
by 〈eα, eβ 〉 = δα·β , the matrix [(Tζ−1

M )∗] of the dual map (Tζ−1
M )∗ is the

transpose of the matrix of the map Tζ−1
M i.e. [(Tζ−1

M )∗] = [(Tζ−1
M )]T .

Denoting by [ω2
M,F] the matrix of the operator ω2

M,F(x) ∈ BL (TxM ; T∗xM)
it is easy to check that

Gram(ω2
M,F) = [ω2

M,F]T , Gram(ζM↑ω2
M,F) = [ζM↑ω2

M,F]T .

The relation [ζM↑ω2
M,F] = [Tζ−1

M ]T ◦ [ω2
M,F]◦ [Tζ−1

M ] may then also be written

Gram(ζM↑ω2
M,F) = [Tζ−1

M ]T ◦Gram(ω2
M,F) ◦ [Tζ−1

M ] .

Performing the computation and setting vT S = vT − vS we get

Gram(ζM↑ω2
M,F) =


0 −E1 −E2 − vT S B3 −E3 + vT S B2

E1 0 B3 −B2

E2 + vT S B3 −B3 0 B1

E3 − vT S B2 B2 −B1 0

 .
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The particle velocity in the new framing is given by the push ζM↑vT and
has the matrix expression

[TζM] · [vT ] =


1
−vS 1

1
1

 ·


1
vT
0
0

 =


1

vT − vS
0
0

 =


1
vT S
0
0

 .

The contraction ζM↑ω2
M,F · ζM↑vT has the Gram matrix representation

Gram(ζM↑ω2
M,F) · [ζM↑vT ] =


−vT S E1

E1

E2

E3


T

.

The components of the spatial electric field (ω1
E)ζS = −iζ↓(ζM↑ω2

M,F·ζM↑vT )
in the new framing may be evaluated by applying the Gram matrix above
to the pushed basis vectors { ζM↑e1, ζM↑e2, ζM↑e3 } . This is equivalent to
compute the matrix expression of (TζM)∗ · (ζM↑ω2

M,F · ζM↑vT ) , given by

[TζM]T ·Gram(ζM↑ω2
M,F) · [ζM↑vT ] =


−(vT S + vS)E1

E1

E2

E3


T

Hence

Gram((ω1
E)ζS ) =


−(vT S + vS)E1

E1

E2

E3


T

·


0 0 0
1 0 0
0 1 0
0 0 1

 =

E1

E2

E3

T

in accord with the invariance property assessed in Prop.26.2.
We underline that the matrix Gram(ω2

M,F) of the Faraday two form,
given at the beginning of the section, differs from the one reproduced in
most treatments of electromagnetism. According to these treatments, it is
assumed ab initio that the spatial velocity of the test particle vanishes, that
is vT = u . As a matter of fact, this needless assumption led to the wrong
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statement that the value of electric field in the new framing can be recovered
from the matrix

Gram(ζM↑ω2
M,F) =


0 −E1 −E2 + vS B3 −E3 − vS B2

E1 0 B3 −B2

E2 − vS B3 −B3 0 B1

E3 + vS B2 B2 −B1 0

 ,

by contracting with the vector u = [1, 0, 0, 0] and then performing the spa-
tialization to get the incorrect result

Gram((ω1
E)ζS ) =


0
E1

E2 − vS B3

E3 + vS B2


T

·


0 0 0
1 0 0
0 1 0
0 0 1

 =

 E1

E2 − vS B3

E3 + vS B2

T .
The right evaluation requires instead to perform the contraction with the
vector ζM↑u = [1,−vS , 0, 0] and then performing the spatialization to get
the final correct result

Gram((ω1
E)ζS ) =

E1

E2

E3

T .
29. Relativistic Electrodynamics

Let us consider a Lorentz transformation and the associated Jacobi
matrix

ζM :


c t 7→ β(c t− vS x)

x 7→ β(x− vS c t)

y 7→ y

z 7→ z

[TζM] =


β −β vS
−β vS β

1
1


Then, assuming c = 1 and setting 1

β2 = 1 − v2
S and ψ = 1 − vT vS , the

matrix
Gram(ζM↑ω2

M,F) = [Tζ−1
M ]T ◦Gram(ω2

M,F) ◦ [Tζ−1
M ]
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is given by
0 −E1 −β(E2 + vT S B3) −β(E3 − vT S B2)
E1 0 β(ψB3 − vS B2) β(−ψB3 − vS B3)

β(E2 + vT S B3) −β(ψB3 − vS B2) 0 B1

β(E3 − vT S B2) −β(−ψB3 − vS B3) −B1 0

 .

The pushed particle velocity is

[ζM↑vT ] =


β ψ
β vT S

0
0


We see that the time component of the velocity is not equal to unity. The
ratio between the spatial component in the x-direction and the time compo-
nent gives the velocity expression

β vT S
β ψ

=
vT S
ψ

=
vT − vS
1− vT vS

,

which is Einstein’s formula for composition of velocities having the same
direction and opposite sense.

Being β2(ψ + vS vT S) = 1 , the spatial electric field (ω1
E)ζS in the new

framing is evaluated by the following contraction

Gram(ζM↑ω2
M,F) · [ζM↑vT ] =


−β vT S E1

β ψ E1

E2

E3


T

.

The components of the spatial electric field (ω1
E)ζS = −iζ↓(ζM↑ω2

M,F·ζM↑vT )
in the new framing may be evaluated by applying the Gram matrix above to
the pushed basis vectors { ζM↑e1, ζM↑e2, ζM↑e3 } . This is equivalent to com-
pute the matrix expression of (TζM)∗ · (ζM↑ω2

M,F · ζM↑vT ) , which, recalling
that β2(ψ + vS vT S) = 1 , is given by

[TζM]T ·Gram(ζM↑ω2
M,F) · [ζM↑vT ] =


β2 vT (vS − 1)E1

E1

E2

E3


T
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Hence

Gram((ω1
E)ζS ) =

E1

E2

E3

T
in accord with the invariance property assessed in Prop.26.2.

The behavior of electric and magnetic fields under Lorentz transforma-
tions was considered in Einstein’s seminal paper47 on the principle of rel-
ativity and his conclusions have propagated in all subsequent literature, see
e.g. (Weyl, 1922, p.194), (É. Cartan, 1924, p.17), (Stratton, 1941, p.72,79),
(Panofsky and Phillips, 1962, p.330), (Feynman et al., 1964, 26.4, p.840),
(Purcell, 1985, p.108,128), (Schwinger et al., 1998, 10.3 p.119), (Greiner,
1998, 22.33 p.465), (Jackson, 1999, 11.10 p.558), (Griffiths, 1999, 12.3 p.531),
(Wegner, 2003, p.86), (Vanderlinde, 2004, p.316-317), (Thidé, 2010, p.173),
(Lehner, 2010, p.628).

Neither in Einstein’s paper, nor in any of the subsequent reproductions
of his result, an explicit calculation was however performed. The original
statement in (Einstein, 1905) is as follows.
Now the principle of relativity requires that if the Maxwell-Hertz equations
for empty space hold good in system K, they also hold good in system k
... Evidently the two systems of equations found for system k must express
exactly the same thing, since both systems of equations are equivalent to the
Maxwell-Hertz equations for system K. Since, further, the equations of the
two systems agree, with the exception of the symbols for the vectors, it follows
that the functions occurring in the systems of equations at corresponding
places must agree, with the exception of a factor ψ(v), which is common for
all functions of the one system of equations, and is independent of ξ, η, ζ and
τ but depends upon v. Thus we have the relations

X′ = X, L′ = L,
Y′ = β

(
Y − v

c
N
)
, M′ = β

(
M + v

c
Z
)
,

Z′ = β
(
Z + v

c
M
)
, N′ = β

(
N− v

c
Y
)
.

This same result might be deduced by performing an improper geometric op-
eration of contraction between pushed two-form ζM↑ω2

M,F and the unpushed
vector field u . Expressed in terms of the matrix Gram(ζM↑ω2

M,F) and of

47 (Einstein, 1905) 6. Transformation of the Maxwell-Hertz Equations for Empty Space.
On the Nature of the Electromotive Forces Occurring in a Magnetic Field During Motion.
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the vector [u] = [1, 0, 0, 0] , the contraction leads to the incorrect result

Gram(ζM↑ω2
M,F) · [u] =


0
E1

β(E2 + vT S B3)
β(E3 − vT S B2)

 .

For a vanishing velocity of the test particle vT = u it is vT S = vS and the
previous wrong formula specializes to coincide with Einstein’s result.

In all treatments in literature reference is made to relativistic electrody-
namics and to Lorentz transformations. As seen above, the issue is however
of a more general character and consists in detecting the proper geometric
transformation of the spatial representative of space-time electromagnetic
differential forms, under an automorphic change of framing in the space-time
manifold. The issue is in line with the spirit of general relativity in that it is
required that the laws of electromagnetic induction should be equally valid in
any framing. Equal validity means that the involved fields should transform
by push according to diffeomorphic transformations between observers, the
molluscs of Einstein.48

30. When and how velocity comes into play

In line with the requirements of general relativity, we want to state the
laws of electromagnetic induction so that they will be equally valid in any
frame. This means that they should transform by push according to diffeo-
morphic transformations between observers, the molluscs of (Einstein, 1916,
Part II: The General Theory of Relativity - 28. Exact Formulation of the
General Principle of Relativity, p.84).

In this respect, the natural choice is the one made in Sect.24, since closed-
ness of Faraday and Ampère electromagnetic two-forms is an invariant
property under diffeomorphic transformations if Faraday and Ampère two-
forms are assumed to be invariant, as stated in Prop.26.1.

To get the spatial form of the laws of electromagnetic induction, the
electric field ω1

E , magnetic winding ω1
H and electric current flux ω2

J have
been defined as spatialization of the contraction of between the space-time
forms and the velocity of the particle.

48 (Einstein, 1916, Part II: The General Theory of Relativity - 28. Exact Formulation
of the General Principle of Relativity, p.84).
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These definitions of spatial electromagnetic forms are however subject to
a degree of indeterminacy and could in general be reformulated by adding
the exterior derivative of potential forms. Indeed, the spatial laws of electro-
magnetic induction 

LvT ω
2
B + dS ω

1
E = 0 ,

LvT ω
2
D − dS ω1

H = −ω2
J ,

LvT ρ
3 + dS ω

2
J = 0 ,

leave the fields ω1
E,ω

1
H,ω

2
J determined to within the exterior derivative of

zero-forms to ω1
E and ω1

H , and of a one-form to ω2
J . Any conclusion about

the evaluation of these fields must involve the determination of these potential
forms. This conclusion is in contrast to the claim of a motional term to be
added to the inductive electric field in moving bodies and of an analogous
(unnamed) term to be added to the magnetic winding in moving bodies.

To better enlighten the issue, and see how these additive terms make
their appearance into the theory, let us consider two trajectory velocity fields
v1,v2 ∈ C1(T ; TT ) measured in a frame. Denoting the change of speed by

∆v = v2 − v1 ∈ C1(T ; TT ) ,

observing that ∆v = i↑∆vS with ∆vS ∈ C1(T ; VT ) and recalling Lemma
23.5, the change ∆ω1

E of spatial electric field ω1
E is given by

−∆ω1
E = i↓(ω2

M,F · v2)− i↓(ω2
M,F · v1) = i↓(ω2

M,F ·∆v)

= (i↓ω2
M,F) ·∆vS = ω2

B ·∆vS ,

Analogously, the change ∆ω1
H of magnetic winding ω1

H is given by

∆ω1
H = i↓(ω2

M,A · v2)− i↓(ω2
M,A · v1) = i↓(ω2

M,A ·∆v)

= (i↓ω2
M,A) ·∆vS = ω2

D ·∆vS ,

and the change ∆ω2
J of spatial current ω2

J is given by

−∆ω2
J = i↓(ω3

M,A · v2)− i↓(ω3
M,A · v1) = i↓(ω3

M,A ·∆v)

= (i↓ω3
M,A) ·∆vS = ρ3 ·∆vS .
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One could thus conclude that the expressions of the electric field ω1
E , mag-

netic winding ω1
H and electric current ω2

J , as posited in Def. 24.1 and
24.2, are dependent on particle velocity and also give the expression of the
induced variations in these electromagnetic fields by a variation of spatial
velocity. Such a conclusion has however no physical basis because other
equivalent definitions of these fields may be given with suitable gauges. This
basic warning does not seem to have been taken into account in literature.
There the addition of velocity dependent terms is motivated either by trans-
formations similar to the ones given above or attributed to experimental
evidences. In literature on electromagnetics, the additive motional term to
the transformer electric field is commonly called Lorentz force (Lorentz,
1895, 1899) although the term is reported as customary in (Hertz, 1892, XIV-
2, p.248) where the equations of electrodynamics of moving bodies developed
by Helmholtz (1874) are referred to. Improper attribution to Hertz (1892) of
first attempts to extend Faraday induction law to moving bodies, was made
by Weyl (1922, p.191-192) who was evidently unaware of the comprehensive
general formulation given by Clerk-Maxwell (1861, (77) p.342) and referred
to by J.J. Thomson (1893, (1) p.534).

31. About relativistic Electromagnetics

The consequences of the previous results are of the utmost importance: if
either Galilei or Lorentz space-time invariance is assumed to be fulfilled
by Faraday and Ampère space-time two-forms, the corresponding spatial
invariance will be fulfilled by all spatial electromagnetic forms.

Classical electrodynamics and relativistic electrodynamics differ just by
the assumed group of transformations under which Faraday and Ampère
space-time two-forms are considered to be invariant. Relativistic electrody-
namics collapses naturally into classical electrodynamics when speeds slower
and slower than light speed are considered, because in the limit Galilei and
Lorentz groups of transformations tend to coincide.

The Galilei and Lorentz transformations for a translation with rela-
tive velocity vS in the x direction are respectively expressed by the replace-
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ments 
t 7→ t

x 7→ x− vS t

y 7→ y

z 7→ z


c t 7→ β(c t− γ x)

x 7→ β(x− γ c t)

y 7→ y

z 7→ z
where γ = vS/c and β given in terms of the scalar speed vS between
observers, by

1

β2
= 1−

(vS
c

)2

= 1− γ2 ,

so that β2(1− γ2) = 1 .
The corresponding Jacobi matrices are

1
−vS 1

1
1




β −β γ
−β γ β

1
1


with inverses 

1
vS 1

1
1



β β γ
β γ β

1
1


When c→ +∞ the transformations are equal in the limit.

Let us represent the Faraday two form by its Gram matrix with respect
to a basis { e0, e1, e2, e3 } in space-time with the time arrow as first basis
vector, i.e. e0 = u ∈ TM , and any basis { e1, e2, e3 } in the spatial slice

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


In this respect we quote the following comments from (Einstein, 1905)

1. If a unit electric point charge is in motion in an electromagnetic field,
there acts upon it, in addition to the electric force, an “electromotive force”
which, if we neglect the terms multiplied by the second and higher powers
of v/c, is equal to the vector-product of the velocity of the charge and the
magnetic force, divided by the velocity of light. (Old manner of expression.)
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2. If a unit electric point charge is in motion in an electromagnetic field,
the force acting upon it is equal to the electric force which is present at the
locality of the charge, and which we ascertain by transformation of the field
to a system of co-ordinates at rest relatively to the electrical charge. (New
manner of expression.)

Furthermore it is clear that the asymmetry mentioned in the introduction
as arising when we consider the currents produced by the relative motion of
a magnet and a conductor, now disappears. Moreover, questions as to the
“seat” of electrodynamic electromotive forces (unipolar machines) now have
no point.

The formulae derived in (Einstein, 1905), motivated by Lorentz trans-
formation of space-time coordinates between observers in relative motion,
differ from the former two ones derived in Sect.30 just by a relativistic effect
consisting in the multiplicative factor β .

While the formulae in (Einstein, 1905) refer to a change of observer ac-
cording to a Lorentz transformation, the issue of Sect.30 refers to a change
of electromagnetic fields due to a change of the body velocity, as detected by
a given observer, under the action of given associated electromagnetic fields
and appear to be new.

The term ω2
B·∆vS has nothing to do with the seemingly similar Lorentz

force term introduced in literature.
As we have shown, the asymmetry mentioned by Einstein is only due to

an improper statement of Faraday law of induction. The relativity principle
cannot be invoked to be capable of symmetrizing Faraday law of induction.

The important observations stem rather from purely kinematical consid-
erations concerning the finite maximal velocity of light, playing the role of
event communication tool, and concerning the independency of light scalar
speed in empty space from the velocity of the source.

Precisely they the principle of relativity and on the principle of the con-
stancy of the velocity of light, are there enunciated as follows.

1. The laws by which the states of physical systems undergo change are
not affected, whether these changes of state be referred to the one or
the other of two systems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates with
the determined velocity c, whether the ray be emitted by a stationary or
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by a moving body. Hence

velocity =
light path

time interval

where time interval is to be taken in the sense of the definition in § 1.

The conclusions of Prop.26.2 have no effect on most issues investigated in
(Einstein, 1905), such as 7. Theory of Doppler’s Principle and of Aberration,
8. Transformation of the Energy of Light Rays. Theory of the Pressure of
Radiation Exerted on Perfect Reflectors, 9. Transformation of the Maxwell-
Hertz Equations when Convection-Currents are Taken into Account, 10. Dy-
namics of the Slowly Accelerated Electron, this last with the exception of
items 1. and 3. where the electron is considered to be acted upon by mag-
netic forces which are absent in our theory, the only force acting on the
electron being the electric field.

All of Sect. 6. Transformation of the Maxwell-Hertz Equations for Empty
Space. On the Nature of the Electromotive Forces Occurring in a Magnetic
Field During Motion, should be obviously corrected.

Let us now examine the following statements in (Einstein, 1905).

Now the principle of relativity requires that if the Maxwell-Hertz equations
for empty space hold good in system K, they also hold good in system k
and that

Evidently the two systems of equations found for system k must express
exactly the same thing, since both systems of equations are equivalent to the
Maxwell-Hertz equations for system K. Since, further, the equations of the
two systems agree, with the exception of the symbols for the vectors, it follows
that the functions occurring in the systems of equations at corresponding
places must agree, with the exception of a factor ψ(v), which is common for
all functions of the one system of equations, and is independent of ξ, η, ζ and
τ but depends upon v. Thus we have the relations

X′ = X, L′ = L,

Y′ = β
(
Y − v

c
N
)
, M′ = β

(
M + v

c
Z
)
,

Z′ = β
(
Z + v

c
M
)
, N′ = β

(
N− v

c
Y
)
.

No explicit algebra for the derivation of these formulae is reported in
(Einstein, 1905) but we can argue that the result should follow by an algebra
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performed according to a reasoning akin to the one exposed in our Sect.30,
as explicated below.

−∆ω1
E = i↓((ω2

M,F)ζM · vζM)− i↓(ω2
M,F · v)

= i↓(ζM↑ω2
M,F · ζM↑v)− i↓(ω2

M,F · v)

= i↓(ω2
M,F · ζM↑v)− i↓(ω2

M,F · v)

= (i↓ω2
M,F) ·∆vS

= ω2
B ·∆vS ,

where ∆vS is the spatial component of the relative velocity between ob-
servers vζM − v = ζM↑v − v . This computation is however based on the
wrong condition (ω2

M,F)ζM = ω2
M,F which pretends to express equality be-

tween forms detected by distinct observers and the wrong evaluation vζM−v
of the relative velocity. Frame-invariance is instead expressed by the mean-
ingful equality (ω2

M,F)ζM = ζM↑ω2
M,F between forms detected by the same

observer.
When the spatial velocity vanishes so that v = vZ = u , these relations

become
ω2

B := i↓ω2
M,F ∈ Λ2(VM ;R) ,

−ω1
E := i↓(ω2

M,F · u) ∈ Λ1(VM ;R) .

In components with respect to a synchronized observer u = (0, 0, 0, 1) .
Hence an equivalent expression in terms of vectors E and B is obtained
by the following matrix form of ω2

M,F , as reported in most classical formu-
lations, see e.g. (Stratton, 1941)

0 B3 −B2 −E1

−B3 0 B1 −E2

B2 −B1 0 −E3

E1 E2 E3 0


If this matrix expression is retained also for a non-vanishing spatial velocity,
the following expression is got

0 B3 −B2 −E1

−B3 0 B1 −E2

B2 −B1 0 −E3

E1 E2 E3 0

·

v1

v1

v1

1

 =


v1B3 −B2 v1 − E1

−v1B3 + v1B1 − E2

v1B2 − v1B1 − E3

v1E1 + v1E2 + v1E3

 =

vS ×B− E

gS(E,vS)
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This formulation is responsible for the introduction of the velocity-dependent
term in the evaluation of the electric field, see e.g. (Weyl, 1922).

0 B3 −B2 −v1B3 +B2 v1 − E1

−B3 0 B1 v1B3 − v3B1 − E2

B2 −B1 0 −v1B2 + v2B1 − E3

E1 E2 E3 0

 ·

v1

v2

v3

1

=


−E1

−E2

−E3

v1E1 + v2E2 + v3E3



=

 −E

gS(E,vS)
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32. Examples of applications of Faraday law

32.1. Charged body translating in a uniform magnetic vortex

Let a material body in a translational motion ϕα ∈ C1(T ; T ) with re-
spect to an observer be crossing a region with a spatially constant value of
the magnetic vortex, according to the standard Euclid connection, so that:

∇ω2
B = 0 .

Let us first explain the idea in discursive terms. The vector potential A
associated with the odd-vector field B of magnetic vortices may be assumed
to have transversal circular envelope lines around the point of a longitudinal
axis with the direction of the magnetic field. Then, at any istant of time,
the vector potential intensity is linearly varying along any straight line. Let
the body velocity field be orthogonal to the magnetic vortex odd vector field
B . Accordingly, the parallel derivative of the vector potential, along the
motion velocity, will have the direction of the vector potential and intensity
given by the product of half the intensity of the rotor times the intensity
of the velocity. Taking into account the usual orientations, and evaluating
the parallel derivative of the magnetic vortex potential, the electric field due
to magnetic induction is given by one-half the standard expression of the
Lorentz force (per unit electric charge):

1
2
vS ×B .

To see this result expressed in formulae, we rely on the expression of the Lie
derivative of a spatial tensor field in terms of parallel derivatives, which for
a covariant tensor field writes (G. Romano, 2007):

Lvα
Cov = ∇vα

Cov +αCov · ∇vS + (∇vS)∗ ·αCov ,

and on the following results.

Lemma 32.1 (Linear Faraday potential). A magnetic vortex field which
is spatially constant, according to the standard connection of Euclid space,
so that ∇ω2

B = 0 , admits a linear Faraday potential one-form ω1
B ∈

Λ1(TS ;R) , that is ω2
B = dS ω

1
B with

ω1
B := 1

2
µ ·B · r = 1

2
ω2

B · r ,

to within a Galilei invariant scalar potential. Here µ is the standard vol-
ume form and r(x) := x .
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Proof. Being ∇ω2
B = 0 , ∇r = I , ∇∗r = I∗ , and recalling that dS ω

2
B = 0 ,

the homotopy formula (see Section 7.3) and the above quoted expression of
the Lie derivative in terms of parallel derivative, give

dS (ω2
B · r) = Lrω

2
B = ∇rω

2
B + ω2

B ◦ ∇r +∇∗r ◦ ω2
B = 2ω2

B ,

which is the formula to be proved. �

Proposition 32.1 (Electric field in a translating body). A body with
a translational motion, across a region of spatially uniform magnetic vor-
tex, experiences an electric field given by

−ω1
E = LvZ ω

1
B + 1

2
ω2

B · vS + dS VE .

If the electric zero-form VE has a null gradient, then a Galilei observer
which measures a time-invariant Faraday one-form ω1

B will detect, in the
translating body, an electric field which admits a velocity-dependent scalar
potential according to the formula

ω1
E = − 1

2
ω2

B · vS = dS (ω1
B · vS) ⇐⇒ E = 1

2
(vS ×B) .

Proof. Let us consider a Galilei observer which detects a translational
motion ϕα ∈ C1(T ; T ) and measures the space-time velocity v := ∂α=0ϕα ,
which has a uniform spatial component, so that ∇vS = 0 . From the formula
for the Lie derivative in terms of parallel derivatives, we get

LvS ω
1
B = ∇vS ω

1
B + ω1

B · ∇vS = ∇vS ω
1
B .

Being ∇ω2
B = 0 , Lemma 32.1 gives ω1

B = 1
2
ω2

B · r and

∇vS ω
1
B = 1

2
ω2

B · vS

hence
LvS ω

1
B = ∇vS ω

1
B = 1

2
ω2

B · vS .

The electric field is then given by

−ω1
E = Lv ω

1
B + dS VE

= LvZ ω
1
B + LvS ω

1
B + dS VE

= LvZ ω
1
B + 1

2
ω2

B · vS + dS VE .
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The term − 1
2
ω2

B ·vS = − 1
2
µ ·B ·vS = 1

2
g ·(vS×B) is the one-form providing

the velocity-dependent part of the electric field (that is, force per unit electric
charge) as detected by an observer which measures a time-invariant magnetic
potential ω1

B and a spatially constant scalar potential VE . To see that a
Galilei observer, which measures a time-invariant Faraday one-form ω1

B ,
detects an electric field admitting a velocity-dependent potential, we observe
that the homotopy formula

LvS ω
1
B = (dS ω

1
B) · vS + dS (ω1

B · vS)

= ω2
B · vS + dS (ω1

B · vS) ,

and the previously proved formula LvS ω
1
B = 1

2
ω2

B · vS together yield the
potentiality property: − 1

2
ω2

B · vS = dS (ω1
B · vS) . �

Remark 32.1. It is manifest that the so-called Lorentz force law ω2
B ·vS

is contradicted by the previous calculation which instead agrees with the 1881
findings by J.J. Thomson. His result was subsequently modified by Heav-
iside in 1885 − 1889 and by Lorentz in 1892 , who eliminated the factor
one-half. These historical notes, taken from (Darrigol, 2000), came to the
attention of the author just after the present theory had been independently
developed. The same expression was introduced as a well-known formula in
Hertz (1892, XVI-2, p.248) with a brief discussion and a warning against its
interpretation as an electric force, see fn.52.

32.2. Faraday’s paradox

Faraday disk: the classical device is constructed from a brass or copper
disk that can rotate in front of a circular magnet. The induction EM force
between the center of the disk and a point on its rim is measured by closing
the circuit with the aid of brush contacts.

- 1st experiment: The magnet is held to prevent it from rotating, while
the disc is spun on its axis. The result is that the galvanometer registers
a direct current.

- 2nd experiment: The disc is held stationary while the magnet is spun
on its axis. The result is that the galvanometer registers no current.

- 3rd experiment: The disc and magnet are spun together. The galvano-
meter registers a current, as it did in step 1.
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These experiments are commonly referred to as a paradox as it violates the
standard spatial version of Faraday’s law of electromagnetic induction.

In fact, according to (Feynman et al., 1964, II.17.2): as the disc rotates,
the ”circuit”, in the sense of the place in space where the currents are, is
always the same. But the part of the ”circuit” in the disc is in material
which is moving. Although the flux through the ”circuit” is constant, there
is still an EMF, as can be observed by the deflection of the galvanometer.
Clearly, here is a case where the v × B force in the moving disc gives rise
to an EMF which cannot be equated to a change of flux.

The conviction that there are evidences of failure of Faraday’s flux rule
has been taken for granted in literature as witnessed by the recent comments
in (Lehner, 2010, 6.1.4. p.349).

A perfectly similar situation is provided by the experiment of the homopo-
lar generator where a cylindrical magnet itself is spinning around its axis and
two brush contacts, at the axel and on the rim, are placed to close the con-
ducting circuit. These and others, real or thought, experiments have repeat-
edly been proposed in literature to confirm the possible failure of Faraday’s
flux rule. What really emerges from these examples is the inadequacy of the
standard formulation of the induction law in which the motion of the material
circuit is not properly taken into account.

Hering’s experiment, discussed in (Lehner, 2010, 6.1.4. p.349), can be
interpreted according to Faraday’s flux rule by observing that there is a
circuit including the galvanometer through which the magnetic flux is van-
ishing at all times during the opening phase of the experiment. An emf is
induced between the sliding contacts but this may well give rise to eddy cur-
rents in the magnet and not in the controlled circuit. All these experiments
are thus adducing no evidences against Faraday’s flux rule but rather they
are warnings against incorrect interpretations of it.

Let us discuss the paradox by applying the formula for the spatial de-
scription of the induced electric field, illustrated in Section 18.5:

ω1
E = −LvZ ω

1
B − d(ω1

B · v)− ω2
B · v + dVE .

In Faraday experiments the spatial description of the magnetic vortex is
time-independent, when measured by the Galilei observer sitting on the
support of the disk axis. The same observer will measure also a time-invariant
Faraday potential, so that: LvZ ω

1
B = 0 and a velocity field of the spinning

disk which, in terms of the angular velocity antisymmetric tensor W = ωR ,
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is given by:
vS(x) = W · r(x) = ωR · r(x)

with R rotation of π/2 in the disk plane, x a radius vector with origin at
the disk axis and r(x) := x . Then ∇vS = W . Assuming that the magnetic
flux ω2

B is spatially constant in the disk, i.e. ∇ω2
B = 0 , from Lemma 32.1

we know that the Faraday potential is given by: ω1
B = 1

2
ω2

B · r , so that:

LvS ω
1
B = ∇vSω

1
B + ω1

B · ∇vS

= ∇vS ω
1
B + 1

2
(ω2

B · r) ·W .

The parallel derivative of the magnetic potential, being ∇ω2
B = 0 by as-

sumption, evaluates to:

2∇vS ω
1
B = ω2

B · vS + (∇vS ω
2
B) · r = ω2

B · vS .

Being RT = R−1 = −R , for an arbitrary spatial vector field h in the disk
plane, we get

ω2
B(W · r,h) = ωω2

B(R · (R · r),R · h) = −ω2
B(r,W · h) ,

and hence

2 〈LvS ω
1
B,h〉= 2 〈∇vS ω

1
B,h〉+ ω2

B(r,W · h)

= ω2
B(W · r,h) + ω2

B(r,W · h) = 0 .

The analysis reveals that the magnetically induced electric vector field in the
disk vanishes identically, when the magnetic vortex in the disk is spatially
uniform. However, to compute the electromotive force in the circuit we must
take into account the jump discontinuity of the velocity at the axis and at
the rib brush contacts. These provide concentrated contributions to the emf
whose sum is equal to:

−ω1
B(x1) · (W · x1) + ω1

B(x2) · (W · x2)

=− 1
2
ω2

B · x1 · (W · x1) + 1
2
ω2

B · x2 · (W · x2) .

The global emf so evaluated is coincident with the one provided by the in-
tegral formula of Faraday for moving bodies, see Section 18.1, when the
spinning velocity of the material disk radius closing the circuit is taken into
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account. Indeed the expression above is exactly equal to the magnetic induc-
tion times the rate at which the spatially fixed radius is spanning the disk
area with an angular velocity opposite to that of the wheel.

The discussion of the Faraday disk performed in (Lehner, 2010, 6.1.4.
p.350) provides an evidence of the inadequacy of the flux rule to discuss
problems of magnetic induction involving a discontinuous velocity field.

33. Sliding bar on rails under a uniform magnetic vortex

Let us consider the problem concerning the electromotive force (emf)
generated in a conductive bar sliding on two fixed parallel rails under the
action of a magnetic vortex which is spatially uniform, time-independent
and complanar. An observer sitting on the rails measures a time independent
Faraday potential field and may thus evaluate the emf due to the electric
field distributed along the bar is found by integration along the line from x1

to x2 :
−ω1

E · l = 1
2
ω2

B · v · l .

On the other hand, by the integral formula of Faraday, the total emf in a
circuit, obtained by closing the loop by another transversal bar fixed to the
rails, is evaluated to be:∮

ω1
E = −

∮
ω2

B · v = −ω2
B · v · l .

So one-half of the total emf is lost as a result of our previous evaluation
of the contribution provided by the electric field distributed along the bar.
To resolve this puzzling result we have to consider that, in this thought
experiment, the velocity field is no more uniform in space. Moreover, being
uniform in the bar and vanishing in the rails, it undergoes two points of
jump discontinuities at the sliding contacts. Then, the observer sitting on
the rails measures the distributed electric field in the bar, as evaluated before,
plus two impulses of emf concentrated at the sliding contacts, whose sum is
opposite to the sum of the jumps given by:

(ω1
B(x1)− ω1

B(x2)) · v = 1
2
ω2

B · v · l

where x1,x2 are the positions of the sliding contacts and l = x2−x1 . Indeed
the velocity jumps, in going from 1 to 2 , are v and −v , respectively, and
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Faraday potentials at 1 and 2 are given by

ω1
B(x1) = 1

2
ω2

B · r(x1) = 1
2
ω2

B · x1 ,

ω1
B(x2) = 1

2
ω2

B · r(x2) = 1
2
ω2

B · x2 ,

so that

ω1
B(x1)− ω1

B(x2) = 1
2
ω2

B · x1 − 1
2
ω2

B · x2 == − 1
2
ω2

B · l .

Thus, the two impulses of emf concentrated at the sliding contacts provide
just the lost one-half of the total emf in the circuit, which therefore amounts
to −ω2

B · v · l and is equal to the one previously computed in one stroke
by the integral rule of Faraday. The instructive problem illustrated above
is discussed in (Sadiku, 2010, C. Moving Loop in Time-Varying Field, Ex-
ample 9.1, p. 375 ), by tacitly assuming a Galilei observer sitting on the
rails and adopting the Lorentz force expression. The same problem with
one bar fixed and the other one translating is discussed in (Feynman et al.,
1964, II.17.1, fig.17.1) both in terms of the flux rule and in terms of the
Lorentz force (also with a tacit choice of the suitable Galilei observer).
Both analyses, and similar ones in literature, make no distinction between
distributed and concentrated contributions to the emf and are based on the
non-invariant Lorentz force expression. The right value of the total emf
in the circuit is however found, because the doubled value of the distributed
electric field is equivalent to the addition of the impulses of emf at the sliding
contacts.

33.1. The railgun: a weapon application

Let two parallel conductive rails and a sliding or rolling conductive pro-
jectile be subject to a high intensity electric current. The magnetic vortex
field ω2

B generated by the electric current act on the current itself by trying
pushing away one from the other the two rails, which should then be properly
fixed to remain in place, and pushes forward the sliding projectile, see fig.6.

33.2. The Hall effect

The Hall49 effect consists in detecting a potential difference (Hall volt-
age) on opposite sides of a thin sheet of conducting or semiconducting ma-
terial through which an electric current is flowing in presence of a coplanar

49 Edwin Herbert Hall (1855-1938) American physicist.
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Figure 6: US Navy Railgun 2008

magnetic vortex, fig.7. The experiments were first carried out on a thin
gold sheet mounted on a glass plate at Johns Hopkins University under the
guidance of Rowland50 (Hall, 1879). The motivation for the experiment
adduced in Hall’s paper is a reasoning on a statement in (Clerk-Maxwell,
1873, vol.II p.144). The effect is commonly explained in terms of Lorentz
force, but should be properly interpreted on the basis of the formula exposed
here in Prop.32.1 which differs by a factor one-half. Since the quantized
Hall effect is currently adopted as the standard for the definition of the
electrical resistance, a corresponding revision should be made.

34. Discussion

According to the new treatment developed before, in both induction laws,
the motion of material particles could be measured by any Galilei observer,
without changing the evaluation of the electric field and of the magnetic wind-
ing. In this respect, confusions are still made in the recent literature, when
dealing with the general laws of electromagnetic induction, as can be verified
by inspecting several exposition of the fundamentals of electromagnetism.

The treatment of Galileian Electromagnetism by Le Bellac, Leblond (1972)
considers two nonrelativistic limits (electric and magnetic) with arguments
based on a non covariant formulation of the laws of electromagnetism.

In the introduction and survey of (Jackson, 1999, p.3) it is said:

50 Henry Augustus Rowland (1848-1901) American physicist.
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Figure 7: Hall effect - standard interpretation

Also essential for consideration of charged particle motion is the Lorentz
force equation, F = q(E + vS ×B) , which gives the force acting on a point
charge q in the presence of electromagnetic fields.
In Faraday’s law of induction (Jackson, 1999, p.209) the electric field is de-
noted by E′ which is so described, ibid. p.210:

It is important to note, however, that the electric field E′ is the electric
field at dl (an infinitesimal piece of circuit) in the coordinate system or
medium in which dl is at rest, since is that field that causes current to flow
if a circuit is actually present.
Then, ibid. p.21,1 in writing: E′ = E + vS ×B it is said that

E is the electric field in the laboratory and E′ is the electric field at dl
in its rest frame of coordinates.
So an infinite number of observers would be needed to measure E′ in a ma-
terial circuit in arbitrary motion. Moreover, how to define univocally the rest
frame of reference for an infinitesimal piece of of circuit? The same formula
is reported in (Post, 1962, p.71-72), (Misner, Thorne, Wheeler, 1973, p.73),
(Barut, 1980, p.88) and (Wegner, 2003, p.43). In all these treatments, no
convincing strategy is exposed to choose the observer measuring the velocity
which appears in the expression of the so called Lorentz force.

The formula providing the spatial description of Faraday law for mobile
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circuits is reported, without motivations, in (Sadiku, 2010, eq. 9.16 ) but a
similar extension to mobile circuits is not considered for Ampère law. More-
over, ibid. ch. 9.5, devoted to Maxwell equations, it is literally said:

it is worthwhile to mention other equations that go hand in hand with
Maxwell’s equations. The Lorentz force equation F = q(E + vS × B)
is associated with Maxwell’s equations. Also the equation of continuity is
implicit in Maxwell’s equations.
In (Griffiths, 1999, p.475), introductory remark to Electrodynamics and Rel-
ativity, it is affirmed that:

Does it (Galilei principle of relativity) also apply to the laws of electro-
dynamics? At first glance the answer would seem to be no.
A discussion, on the effect of relative motion between a conducting loop
moving with a train and a magnet fixed on the rails, follows, but the whole
analysis contains unmotivated affirmations.

In (Phipps, 1993), and in (Schwinger et al., 1998, p.9) the electromo-
tive force induced by a magnetic field on a moving (translating) circuit, is
evaluated by means of the material time-derivative, (expressed as sum of
partial time-derivative plus parallel derivative at frozen time), according to
the formula (in our notations):

−dS ω1
E = ∇v ω

2
B = ∇vZ ω

2
B +∇vS ω

2
B ,

in which parallel derivatives are improperly considered instead of Lie deriva-
tives. The same treatment is reproduced in (Thidé, 2010, p.12-14).

Hertz51 is wrongly credited by Darrigol (2000) to have first proposed,
in the monograph on Electric waves, an ad hoc modification of electromag-
netic induction laws to recover Galilei invariance. However, as quoted by
Hertz himself in that monograph (Hertz, 1892, XIV, fn.2 p.247), the correct
Galilei invariant statement of the law in terms of convective derivatives was
already contributed in (Clerk-Maxwell, 1861, (77) p.342). A general formu-
lation of the equations of electrodynamics of moving bodies was developed
by Helmholtz (1874) and quoted in the treatment by Hertz (1892, XVI-2,
p.248) where a statement concerning what is now called the Lorentz force
was made in the following terms:52

51 Heinrich Rudolf Hertz (1857-1894) German physicist.
52 The triplet (X1, X2, X3) are the components of the vector ρ (vS ×B) .
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Now the resultant of (X1, X2, X3) is an electric force which arises as
soon as a body moves in the magnetic field. It is that force which in a nar-
rower sense we are accustomed to denote as the electromotive force induced
through the motion. But it should be observed that, according to our views,
the separation of this from the total force can have no physical meaning.
This warning about the interpretation of the velocity dependent term as an
electric force was however ignored in later treatments and is presently com-
pletely neglected.

Later on, in his treatise on Space-Time-Matter (Raum-Zeit-Materie),
Weyl (1922, p.191-192)53 still attributed to Hertz the first attempts to ex-
tend Faraday induction law to moving bodies, seemingly unaware of the
fact that a treatment in terms of scalar and vector potentials was first con-
tributed in (Clerk-Maxwell, 1861, (77) p.342) as quoted in the book (J.J.
Thomson, 1893, (1) p.534) who says: In the course of Maxwell’s investiga-
tion of the values of X, Y, Z due to induction, the terms...respectively in the
final expressions for X, Y, Z are included under the Ψ terms. We shall find
it clearer to keep these terms separate and write the expressions for X, Y, Z
as.... This last reference provides the first explicit formulation of the dif-
ferential laws of induction in which the velocity dependent scalar potential
appears as separated from the Galilei invariant electrostatic potential.

Consideration of Lorentz force term seems to emerge in a natural way in
the treatment by Hertz (1892, p.248), later reproduced by (Weyl, 1922, p.191-
192), being deduced from the induction law written as rot E = rot (vS ×B)
under the assumption that LvZ B = 0 . There the motion is correctly taken
into account by the convective term. The fault was to assume that the
undetermined scalar potential was the electrostatic potential. The analysis
developed in the present paper have instead shown that a further velocity
dependent scalar potential ω1

B · vS must be taken into account. This leads
naturally to get a Galilei invariant theory with results in perfect accord to
the formulation by (J.J. Thomson, 1893, (1) p.534).

Feynman54 in The Feynman Lectures on Physics (Feynman et al., 1964,
II.17-1), while illustrating Faraday law of induction, says:

53 Hermann Klaus Hugo Weyl (1885-1955) German mathematician.
54 Richard Phillips Feynman (1918-1988) American physicist.
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We know of no other place in physics where such a simple and accurate
general principle requires for its real understanding an analysis in terms of
two different phenomena. Usually such a beautiful generalization is found to
stem from a single deep underlying principle. Nevertheless, in this case there
does not appear to be any such profound implication. We have to understand
the rule as the combined effect of two quite separate phenomena. Moreover,
ibid. ch. II.17-2, as a comment to the paradoxes of Faraday disk and of
the circuit with rocking contacts, envisaged for discussing the applicability
of Faraday law of magnetic induction (referred to as the flux rule), it is
said that: The ”flux rule” does not work in this case. It must be applied
to circuits in which the material of the circuit remains the same. When the
material of the circuit is changing, we must return to the basic laws. The
correct physics is always given by the two basic laws F = q(E + vS ×B) and
rot E = −LvZ B .

According to the point of view exposed in the present paper, the opposite
conclusion, that neither one of the previous laws can be considered as a
basic law of magnetic induction, must be drawn. The expression of the
Lorentz force law (with a correction factor one-half) and the expression
of the induction law in terms of partial time-derivative are simply additive
terms entering into the evaluation of the electric field according to Faraday
law. These terms do not enjoy Galilei invariance and hence cannot be
given the physical interpretation of forces but might be at most defined as
pseudo-forces, detected by special observers in special circumstances. The
basic position in the theory must be reserved to Faraday law and to the
consequent expression of the electric field in terms of the magnetic potential.

When dealing with the relativity of magnetic and electric fields in (Feyn-
man et al., 1964, II.13-6) it is written:

When we said that the magnetic force on a charge was proportional to
its velocity, you may have wondered: ”What velocity? With respect to which
reference frame?” It is, in fact, clear from the definition of B given at the
beginning of this chapter that what this vector is will depend on what we
choose as a reference frame for our specification of the velocity of charges.
But we have said nothing about which is the proper frame for specifying the
magnetic field.
Feynman’s answer to the question is based on a relativity argument, A rel-
ativity argument is also resorted to in the treatment developed in (Purcell,
1985, ch.5). The same approach is taken in a recent book by Crowell (2010).
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Anyway, it is hardly acceptable that experiments in classical electrodynamics
should require relativistic arguments for their interpretation. Our treatment
shows that the Galilei invariant formulation, the one naturally set up in
the present paper, does the job, without any recourse to special relativity.
Feynman definition of B is based on the Lorentz force law exerted on an
electrically charged body in motion, a magnetic force which, as he says, has
a strange directional character (Feynman et al., 1964, II.13-1). The same
approach is taken in (Purcell, 1985, ch.6). In this respect the treatments,
of moving conductors or dielectrics in magnetic fields, performed in (Lan-
dau and Lifshits, 1984) should also be consulted. These views concerning
the Lorentz force law seem again to originate from the treatment given by
Hermann Weyl in his treatise on Raum-Zeit-Materie (Weyl, 1922, p.191-
192).

The recent treatments of classical electrodynamics in (Hehl and Obukhov,
2003; Lindell, 2004) is performed in terms of differential forms and adopts the
elegant and synthetic geometric approach in the 4-dimensional space-time
manifold. However body motions are still ignored and, in the expression of
the induction laws, partial time derivatives at fixed points in the Euclid
space are considered instead of Lie time-derivatives along the body motion,
with the consequence that the laws of induction are not covariant and hence
Galilei invariance does not follows.

In (Kovetz, 2000, sec. 8 ), when illustrating Faraday law, the magnetic
induction flux is considered through a fixed, open surface. An open surface
probably there stands for a surface with boundary, but the meaning of fixed
is not (and could hardly be) clarified. In (Sadiku, 2010, ch. 8.2 ) the force
acting on an electrically charged particle is said to be the sum of two terms.
The former is the electric field and the second is the Lorentz force due to
the magnetic induction and to the charged body velocity. But the electric
field is just defined as the field providing the force acting on the unit point
charge, so that a contradiction is apparent. The only way of picking the elec-
tric field out of the total force would indeed be to consider a fixed charged
body, but again fixed with respect to what Galilei observer? A critical dis-
cussion on Lorentz force is reported by Smid (2010), although in somewhat
näıve terms. The intrinsic strangeness of Lorentz law and the unanswered
question about what Galilei observer is measuring the body velocity, both
quoted by Feynman, may be overcome, as illustrated in this paper, by con-
sidering the correct form of the magnetic induction law for moving material
circuits. The analysis, performed in Sections 33 and 32.2, of two well-known
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examples of a magnetically induced emf puts moreover into evidence that
due attention to jump discontinuities of the velocity field must be paid, to
evaluate concentrated impulses of the induction emf there located.

The space-time 4D formulation of the electromagnetic induction laws, in
terms of conservation laws of two basic tensor fields, was proposed by Bate-
man (1910)55 on the basis of earlier work by Hargreaves (1908). The theory,
which was formulated in terms of differential forms by Élie Cartan56 in
(É. Cartan, 1924, p. 17-19) and is also reported in (Truesdell and Toupin,
1960, Ch. F). A formulation in terms of differerential forms in space-time
is revisited in the context of relativity theory in (Misner, Thorne, Wheeler,
1973) and has recently been revisited in the textbooks (Hehl and Obukhov,
2003; Lindell, 2004) on the foundations of classical electrodynamics. In line
with traditional treatment in literature, a generalized Lorentz force rela-
tion is however there introduced as a further assumption, see the second of
the six axioms in (Hehl and Obukhov, 2003, B2 p.121) and the treatment in
(Lindell, 2004, ch. 5.4, p.151). A geometric treatment of electromagnetism
in space-time, with a careful distinction between even and odd forms, has
been contributed in (Marmo et al., 2005; Marmo and Tulczyjew, 2006).

New features of the approach developed in the four dimensional treatment
introduced in Sect. ?? of the present paper, are

1. no additional law is assumed, the induction laws and the constitutive
relations being the only ones considered as basic,

2. body motion is taken into account in induction laws.

Constitutive relations in the four-dimensional formalism are treated in (Marmo
et al., 2005) and in (Lindell, 2004, 2006).

35. Conclusions

The fundamentals of electromagnetism have been revisited by a proper
formulation of the electromagnetic induction laws for material bodies in mo-
tion. We emphasize that considering the motion of a body is an unavoidable
task since the absence of motion would imply a restriction to consideration of
a translating body as seen by an observer sitting on it. Then, bodies in rela-
tive translational motion and, more in general, deforming bodies, which are

55 Harry Bateman (1882-1946) British mathematician.
56 Élie Cartan (1869-1951) French mathematician.
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dealt with in everyday engineering applications of electromagnetism, would
be ruled out. The differential geometric approach, performed in terms of
integrals of exterior forms, leads to a formulation involving the Lie deriva-
tive, along the space-time motion, of the magnetic vortex (Faraday) and
of the electric displacement flux (Ampère). The well-posedness conditions
(independence of the considered surfaces and of their spatial motion) have
been investigated and explicated in terms of balance laws. Galilei invari-
ance of the new form of the induction laws is discussed and assessed by push
naturality of Lie derivatives. The Lorentz force law, concerning the non-
Galilei invariant force acted by a magnetic vortex upon a moving electri-
cally charged particle, usually introduced as an independent axiom motivated
by experience, has been critically addressed. The Galilei invariant formula,
which differs by a one-half multiplicative factor in the velocity dependent
term and by an additional term expressing the time-rate of the magnetic
vortex potential, has been deduced as a direct consequence of Faraday law,
when applied to detection of the electric field induced in a body translat-
ing in a region of spatially uniform magnetic vortex and of time-invariant
Faraday magnetic potential. Constitutive relations have been briefly dis-
cussed in the Euclid framework. The formulation of electromagnetics in
the four-dimensional space-time affine manifold has been extended to mov-
ing bodies, thus providing a clear picture of the following fundamental result.
The balance laws for the electric and the magnetic charges, expressed by the
closedness conditions on two electromagnetic 3-forms, are equivalent to the
laws of electromagnetic induction which state the existence of correspond-
ing potential 2-forms. Motions of involved bodies are taken into account by
considering the description provided by an observer. Galilei invariance of
the basic fields laws is a natural consequence of the observer-independent
space-time formulation.
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Helmholtz, H. von, 1870. Über die Theorie der Elektrodynamik. Erste Ab-
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