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Abstract--In the general framework provided by the internal variable theories of associated inelastic 
behaviour the formulation of constitutive relations is addressed in this paper. Attention is focused on 
the basic properties of the evolution relation involving rates of internal variables and dual 
thermodynamic forces. It is shown that a suitable generalization of the uniaxial rigid-perfectly plastic 
law can be performed by introducing the definition of step-shaped constitutive maps. This definition 
allows us to derive a general theory of associated inelastic behaviour with its characteristic properties: 
convexity of the elastic locus, normality rule, existence of a sublinear dissipation functional and of a 
canonical yield functional. Finally the formulation of the constitutive relation in terms of yield 
functionals and related inelastic multipliers is discussed. The analysis is performed on the basis of a 
chain rule of subdifferential calculus, recently contributed by the authors, which provides an effective 
tool to develop the theory of Kuhn-Tucker vectors in optimization problems. 

1. INTRODUCTION 

In recent times a relevant interest has been devoted to the formulation of constitutive theories 
in which the inelastic behaviour is described in terms of internal variables [l-lo]. 

The basic properties to be fulfilled by the evolution relation between the rates of the internal 
variables and the corresponding thermodynamic forces have been explored in a recent paper by 
Eve et al. [ll] using concepts and methods of convex analysis. 

In particular their contribution has been devoted to the analysis of the connections existing 
among Hill’s principle of maximum dissipation, the existence of a dissipation functional and the 
normality rule to a convex elastic locus. 

The main theorem proved in [ll] concerns the conditions to be imposed on the set-valued 
map expressing the relation between the rates of internal variables and the corresponding 
thermodynamic forces in order to ensure the existence of a nonnegative lower semicontinuous 
sublinear potential, having the physical meaning of dissipation functional. 

Maximal responsiveness is assumed to be the characteristic property of the constitutive 
operator; it reproduces Hill’s principle of maximum plastic dissipation. 

The approach and the ideas contributed in [ll] are quite interesting and deserve a special 
attention. Incidentally we remark that some slips have been detected by a careful reading of 
the paper; a detailed discussion on this point is reported in Appendix C. 

A different and, in the authors’ opinion, more attractive approach is proposed in this paper. 
A background of convex analysis is preliminarily reported and results from the potential 

theory of monotone multi-valued maps developed in [12] are recalled. 
We start from the consideration that the rigid-perfectly plastic behaviour in a ideal uniaxial 

test is represented by a step function relating the uniaxial stress to the plastic elongation rate. 
In a general model of inelastic behaviour the constitutive relation involves rates of internal 

state parameters and dual thermodynamic forces. The following question arises then in a 
natural way: “which are the essential features that the graph of the constitutive relation directly 
inherits from the simplest uniaxial step function?” 

The answer is straightforward and leads to the definition of the class of step-shaped 
constitutive maps; these are maximal monotone set-valued maps whose value at zero coincides 
with the entire image set of the map. 

t Dedicated to the memory of Professor MANFREDI ROMANO. 
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The image set of the constitutive map is the closed convex set of admissible thermodynamic 
forces and will be referred to as the elastic locus. 

The theory of step-shaped maps is developed in detail by means of a number of theorems. 
To make the exposition more plain these results are collected in Appendix A. 

The proofs of further results which are relevant to the analysis performed in the paper are 
reported in Appendix B. 

It is proved that step-shaped maps are precisely those ones which admit a sublinear 
potential; this potential turns out to be the support functional of the elastic locus and assumes 
the meaning of dissipation functional. 

It is further shown that the constitutive map is step-shaped if and only if the rates of internal 
variables fulfill the normality rule to the elastic locus. 

The relations among step-shaped, responsive and monotone conservative maps are then 
analyzed and it is proved that step-shapedness and maximal responsiveness are equivalent 
properties for a multi-valued map. 

In the formulation of specific models of inelastic behaviour the elastic locus is often 
conveniently assigned as the level set of a convex yield functional rather than as the image of a 
multi-valued map. The normality rule is accordingly reformulated in terms of a complemen- 
tarity relation involving the yield functional and the relevant inelastic multiplier. The treatment 
is based upon a chain-rule of subdifferential calculus, recently contributed by the authors, 
which provides an effective tool for the development of the theory of Kuhn-Tucker vectors in 
optimization theory. 

For metallic materials the concept of classical yield funcfionals is then introduced. Their 
distinctive feature is that of having level sets all proportional. This property expresses the 
mechanical requirement that the elastic locus changes proportionally to the value of the 
nominal yield stress. 

It is shown that a classical yield functional can always be represented as the composition of a 
non-constant Young function and of a canonical yield functional. Such a functional has been 
first defined in [ll] as the polar of the dissipation functional. 

Canonical yield functionals turn out to be inherently non-differentiable at the origin. A direct 
application of the chain-rule quoted above shows however that regularization at the origin can 
always be achieved by means of a suitable smoothing Young function. 

The theory developed in the paper covers a broad range of applications from associated 
elasto-plasticity to unilateral problems in mechanics, no-tension or no-compression materials, 

frictionless contact and so on. 
As final remark it is pointed out that the definitions and the results here presented are 

amenable to an extension to more general models of inelastic behaviours in which the evolution 
relation is defined in product spaces of state variables. 

2. SOME PRELIMINARY RESULTS 

We recall some basic definitions and properties of convex analysis and of potential theory for 
monotone multi-valued operators which will be useful in the sequel. 

2.1 A background of convex analysis 

A comprehensive treatment of the subject can be found in [13-161. 
Let (X, X’) be a pair of locally convex topological vector spaces (1.c.t.v.s.) placed in 

separating duality by a bilinear form ( . , . ) . 
Let us consider a convex functional f :X -8 U { +m} with a nonempty effective domain, 

which is the convex set on which it assumes finite values: 

domf = {x EX 1 f(x)< +w}. 
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The Fenchel’s conjugate f * :X’ H ‘3 U { +a~} off is defined as: 

f*(x*) = S”P {(x*9 Y > -f(Y)>7 

1107 

YEX 

so that the following Fenchel’s inequality holds: 

f(Y) +f*(x*) 2 (x*V Y >9 

A relevant example of conjugate functionals 
convex set C: 

VY EX, vx* E X’. 

is provided by the indicator functional of a 

ifxEC 

otherwise, 

and by its support functional: 

uE(x*) = SJlg (x*, x). 

The pairs (x, x*) for which Fenchel’s inequality holds as an equality are said to be conjugate 
and are related by the subdifferential multi-valued operator d, defined by: 

x* E af(&f(z) -f(x) 2 (x*, z -x) vz EX. 

If the closed convex subdifferential set af(x) is nonempty, the functional f is said to be 
subdifferentiable at x and each x* E af(x) is called a subgradient off at x. 

For any convex function f, it turns out to be: 

x* E 3f(x) *x E df*(x*), 

while the converse implication holds if f is lower-semicontinuous (1.s.c.) [14]: 

lim_yff(z) rf(x) tlxex. 

In particular we recall that the subdifferential of the indicator functional of a convex set C at 
a point x E C coincides with the normal cone to C at x: 

euc(x)=N,(x)~f{x*EX’:(X*,y-x)~O vy EX}. 

A functional f :X H 8 U { +a~} is said to be sublinear if it is positively homogeneous and 
subadditive; in formulas: 

1 
f(c=) = d(x) varo 

f(-Q) +f(X*) ‘f(% +x*) vzi, x2 E x. 

Under these conditions f is convex and its epigraph is a convex cone in X x $3 U { +m} ; the 
cone is closed if f is 1.s.c. 

2.2 Monotone multi-valued maps 

To make the paper reasonably self-contained we briefly report, without proofs, the basic 
results of the potential theory for monotone multi-valued maps developed in [12], 

A graph G is a nonempty subset of the product space: G E X x X’. Two multi-valued maps 
are naturally associated with a graph G: the right map M :X HX’, and the left map 

M-’ :X’ I+ X, defined by: 

M(x) = {x* E X’ / (x, x*) E G} E X’, 

M-‘(x*) = {x E X 1 (x, x*) E G} c X. 

A graph G E X x X’ is said to be monotone if: 

(x;-x~,x2-x*) 10 V(xj, XT) E G; i= 1, 2. 

The maps M and M-’ themselves are then said to be monotone. 
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A graph G is cyclically monotone [16] if it results: 

for every (Xi, ~7) E G with i = 1, . . . , II, n + 1~ 0. 
A graph G,, c X x X' is an extension of a graph G if G c G,,; the extension is proper if 

G,, # G. Whenever G and G,, are monotone, G,, will be called a monotone extension of G. 
A graph G E X X X' is said to be maximal in a given family if it is not properly included in 

any other graph of the family. The maps M and M-’ are then said to be maximal. 
It has been proved in [12] that for a monotone multi-valued map M :X w X' the integral 

along line segments and polylines in its domain can be unambiguously defined. 
Given an oriented line segment with extremes a, b E dom M and parametric representation 

a(t) = a + t/z, where h = b -a and 0 5 r 5 1, the line integral of M along the segment 
a, b E dom M is then well-defined by: 

fhW> dr) = 1’ (M@(t)), h) dt ‘5‘ 1’ (A@(t)), h) dt, 
a 0 0 

the last integral being independent upon the choice of &f@(t)) E M@(t)) [12]. 
A monotone multi-valued map M : X I+ X' is said to be conservative if: 

f 
(M(x), h) = 0, 

n 

for every closed polyline n G dom M. 
A potential functional f :X I+ 8 U { +m} can be associated with a conservative map 

M : X H X' having a convex domain. It is defined on dom M by the formula: 

f(x)-.%) %‘ /?M(r), dr) = ll(M(i(Q)> h) dt, 
x0 

and it is assumed to be +w outside dom M. It has been proved in [12] that the potential f(x) 
turns out to be the restriction to dom M of a proper convex functional and that cyclical 
monotonicity and conservativity are equivalent properties for a map M with a convex domain. 

3. THE CONSTITUTIVE MODEL 

It is nowadays widely accepted that internal variable theories provide a suitable framework 
for the formulation of constitutive relations of inelastic behaviours of continuous media 

[4,5,10,13,17]. 
In an internal variable theory the central role is played by the evolution relation between the 

rates of internal variables and the conjugate thermodynamic forces. The physical meaning of 
internal parameters depends on the particular constitutive model under consideration. 

In a recent paper by Eve ef al. [ll], the following question has been addressed: which are the 
minimal assumptions to be made on the evolution relation in order to derive an associated 
model of inelastic behaviour? 

The basic property assumed in [ll] is that of maximality in the class of the evolution relations 
satisfying Hill’s principle of maximum dissipation. 

The same topic will be dealt with in this paper starting from a different and, in authors’ 
opinion, more attractive approach. The key idea is to envisage a suitable generalization of the 
characteristic properties of the one-dimensional rigid-perfectly plastic law relating the uniaxial 
tension (I to the plastic strain rate &,. 
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The characteristic features of the multi-valued map o E M(.$,) can be summarized as follows: 
(a) the map M is monotone; 

(b) the entire image set of M coincides with its value at zero; 
(c) the map M is maximal in the class of the maps satisfying properties (a) and (b). 

In a general theory of inelastic behaviour the internal variables (Y and the dual thermo- 
dynamic forces x are supposed to belong to a pair of dual 1.c.t.v.s. X and X’. The multi-valued 
map M will now relate a set of thermodynamic forces to a rate of internal variables: 

x E M(k). 

The family of maps M which meet properties (a), (b) above is named according to the 

following: 

DEFINITION 3.1. Step-like maps. A map M: X H X’ is said to be step-like if: 

(i) G = graph (M) is monotone, 

(ii) M(0) = Im M (step property). A 

The class of maps which fulfill also property (c) is then introduced: 

DEFINITION 3.2. Step-shaped maps. A map M :X I+ X’ is said to be step-shaped if it is maximal 
in the family of step-like maps. A 

An example of step-like maps is sketched in Fig. l(a). The simple one-dimensional example 
of Fig. l(b) stresses the common properties shared by step-shaped maps and rigid-perfectly 
plastic laws. 

We will show that Definition 3.2 can be properly assumed as starting point of an internal 
variable formulation of associated inelastic models. 

To this end a detailed analysis of the basic properties of step-shaped maps has been 
performed. The relevant proofs are collected in Appendix A to make the exposition more 
plain. 

The properties which play a basic role in the description of the mechanical model are proved 
in Lemma A.1 and Theorems A.2, A.3 and are summarized hereafter. These properties allow 
us to state that the following alternative formulations of the evolution relation are equivalent: 

(i) x E M(k) with M step-shaped, 
(ii) x E ao(&) with D 1.s.c. and sublinear, 

(iii) dr E N&) with K nonempty, closed, convex, 
where: 

K=ImM=M(O)={jjeX’:D(&)r(~, &) V&EX}, 

a) Step-like map b) Step-shaped map 

Fig. 1. A one-dimensional example of step-like and step-shaped maps. 
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Fig. 2. Sublinear functional and related step-shaped map. 

and 
M=dD; D(k) = U:(k) = sug (x, &I>. 

A simple example is sketched in Fig. 2. 
In the model of inelastic behaviour the convex set K is the locus of admissible 

thermodynamic forces and its boundary defines the yield surface. The law L+ E N,(x) embodies 
the normality rule which is characteristic of associated inelastic behaviours. 

In fact non-vanishing rates of internal variables must necessarily correspond to thermo- 
dynamic forces belonging to the boundary of K since, as well known, it results: 

I 

x e int K eN&) = {0}, 

XebndKea&drX-{O}:&eN&). 

The support functional D of the set K provides the value of the dissipation associated with a 
given rate of internal variables. 

The second principle of thermodynamics requires that the dissipation must be non-negative. 
This is accomplished by assuming that the null thermodynamic force is admissible: 

O~KaD(ci)r0 VhEX. 

An example is provided in Fig. 3 with reference to no-tension materials with limited strength 
in compression, a model often used for concrete and masonry. 

A mechanical model characterized by a strict dissipative behaviour requires the more 
stringent assumption that the null thermodynamic force belongs to the interior of the set K: 

Oeint KeD(c+)>O VciEX- (0). 

The two equivalences above are proved in Theorem B. 1. 

R X’ 

D 
1 ----- 

M=aD 
* 

-2 X K X 

Fig. 3. An example of non-strict dissipative behaviour. 
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Let us now show that a theory of inelastic behaviour can be developed by postulating, as 

alternative starting points, either the validity of Hill’s principle of maximum dissipation or the 
step-shapedness of the constitutive operator. 

The statement of Hill’s principle in terms of the constitutive operator has been introduced in 
[ll] and is based on the following: 

DEFINITION 3.3. Responsive maps. A map M : X H X’ is said to be responsive if: 

1 

(XI> &) 2 (x2, &I) 

Ijt::;:;:x,,,, Lk*)>(xl, &z)’ 

where G = graph (M). A 

It can be easily verified that the definition above is equivalent to the following property: 

(&, x) E G = graph (M) = + (x, iu) = max{ (2, &I> : 2 E Im M}, 

which is the formal statement of Hill’s principle. 
The constitutive map M will be fully characterized by Hill’s principle if the converse of the 

implication above holds true that is any pair (~2, x) which provides a maximum value of the 
dissipation must belong to the graph of M. This property is expressed in mathematical terms by 
imposing that the graph of the map M must be maximal in the class of the responsive ones. 

The equivalence of Hill’s principle and of the step-shapedness of the constitutive operator 
follows then from Remark A.9 and Theorem A.10 which provide the proof that step- 
shapedness and maximal responsiveness are equivalent properties for a multi-valued map. 

Incidentally we notice that the original definition of responsiveness given in [11] includes the 
further assumption that (0,O) E G, that is 0 E K. This hypothesis is claimed by the requirement 
of the second principle of thermodynamics but plays no role in the formalization of Hill’s 
principle. 

Two further significant results are proved in Appendix A. According to the first one (see 
Remark A.6) step-like and responsive maps are monotone and conservative. The second result 
(see Remarks A.9 and A.ll) shows that the maximality of step-like and of responsive maps in 
the corresponding families is equivalent to their maximality in the broader class of monotone 
maps. 

The hierarchic nesting of the families of the maps introduced above is symbolically 
represented in Fig. 4. 

Fig. 4. Nested families of monotone maps. 
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A summary of the main results proved in Appendix A is reported hereafter: 

step-like + responsive j monotone and conservative, 

step-shaped @ maximal responsive, 

step-shaped e step-like and maximal monotone, 

maximal responsive #responsive and maximal monotone. 

The form of the evolution relation considered in this paper is similar to the one adopted by 
Martin [6,7] in the context of elastoplasticity. In this model an evolutive relation is assumed 
between the rates of internal variables and the dual thermodynamic forces; the hardening 
behaviour is modelled by means of an appropriate form of the Helmholtz free energy. 

Starting from the contribution by Halphen and Nguyen [43 a number of different models of 
associated elastoplasticity have been proposed in literature [l-3,9, lo]. 

The theoretical treatment developed in [4] is based on the following idea: a generalized 
associated behaviour is formulated by means of an evolution relation stated with reference to 
an elastic domain which is defined in the product space of the pairs (a, x) of stresses and 
thermodynamic forces x. 

The normality rule is expressed in terms of the corresponding rates ($,, &) of plastic strains 
and internal variables. The hardening behaviour is accounted for by considering, depending on 
the value of the thermodynamic force, different sections of the elastic domain projected into 

the stress space. 
It can be shown [18J that Martin’s model can be recovered by assuming a cylindrical shape 

for the generalized elastic domain proposed in [4]. 
The definitions and the results contributed in the present paper can be immediately extended 

to these more general models of inelastic behaviour by properly identifying the dual parameters 

involved in the evolution relation. 

4. YIELD FUNCTIONALS 

Although the ~ssibility of assigning an elastic locus as the image set of a multi-v~ued map 

could appear intriguing, when dealing with applications of the theory it is usually more 
convenient to define it as the level set of a convex functional f :X’ H % U { +a~). The choice of 
this functional depends upon the particular yield criterion adopted for the material. 

Assuming that the minimum value off is not zero, the elastic domain K is defined by: 

K={xEX’ : f(x)sO}. 

The normality rule can then be re-formulated in terms of the functional J To this end we 
preliminarily notice that: 

UK(X) = ~!df(X>l~ 

where %- is the convex cone of non-positive reals. 
Assuming f continuous on K, a chain-rule of subdifferential calculus, recently contributed in 

[19], yields: 

au,(x) = WJ!W of)(x) = aL-Mf(x)l Wx) VXEK. 

The normality rule can then be re-written in the following equivalent forms: 

6) k e N&x) = a&(x), 

The last inclusion shows that A. is zero when f(x) < 0 and non-negative when f(x) = 0, so that 
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we can write: 

k e A 3f(X), 3L?O, f (xl 5 0, hf (xl = 09 
which is the explicit expression of the normality rule in terms of a complementarity relation. 

The functional f is often conveniently generated by means of a finite family of differentiable 
yield modes 5 according to the formula: 

f (xl = i=spP 5(x), 
* . ..n 

so that the elastic domain turns out to be the intersection of a finite number of convex domains: 

K=iiKi with K~={xEX’ : lxx) 5 019 
i=l 

and the normality rule can be written as: 

3ri ? 0, 

& E x ill df;:(X), with 

1 

X(x) 5 0, 
id 

U(X) = O9 

where I is the numerical set of the indices associated with the active modes (see Fig. 5). 
For metallic materials the yield modes are usually expressed in the form: 

L(X) = h(X) - a~ 

where the parameter a is related to the nominal yield stress. 
A familiar example is provided by the classical yield criterions proposed by von Mises and 

Tresca [20]. The deviatoric part of the stress tensor u plays here the role of thermodynamic 
force, that is X = dev u = (I - j(tr a)Z. 

Von Mises criterion is obtained by setting: 

f(x)=Ilxll-a with a=mu,, 

where 11.11 denotes the norm of a tensor and a,, is the nominal yield stress of the material 
determined in a uniaxial test. 

Tresca criterion follows in turn by considering the yield functional: 

f(X) = s”P{Xi - Xj - a; i, i = 1~2, 3}~ 

where Xi are the principal values of the deviatoric stress X and the parameter a is the nominal 
yield stress of the material. 

1,2 active modes 

Fig. 5. An inelastic model with three yield modes. 
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Experimental tests for metallic materials sharing the same qualitative yield properties show 
that the elastic loci corresponding to different nominal yield stresses can all be expressed as 
positive scalar multiples of a single set. This mechanical requirement can be fulfilled by 
endowing this class of materials with a yield criterion governed by a functional whose 
level sets are all pro~~ional. 

It is then natural to put the following question: which convex functionals do have the 
property that their level sets are all proportional? 

To answer this question we recall some preliminary results. 
A canonical yield functional Y: X’ - % U { +m} can be associated with any elastic locus K 

containing the origin, according to the Minkowski formula: 

Y(x) = inf{ y =Z 0 : x E yK}. 

Its characteristic property is that the unitary level set yields back the assigned elastic locus, 
that is: 

K=(~EX’:Y(~)Il}. 

The functional Y turns out to be sublinear, I.s.c. and non-negative. In fact, denoting by K” 
the closed convex set polar of K: 

K”={~IE:(x,LL)(~,VXEK}, 

it turns out to be 

The dissipation and the canonical yield functionals are then support functionals of polar sets 
[see Figs. 6(a) and 6(b)] and by Theorem B.3 the following inequalities hold: 

D*(X) + D(k) 1 ~(~~Y(~) =z (2, iu>, ViuEX, VXEX’. 

I I 

-2 KC9 1 X -In K 1 X’ 

a) Strict dissipative behaviour 

b) Non-strict dissipative behaviour 

Fig. 6. Canonical yield functionals for dissipative behaviours. 
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When the pair (iy, x) satisfies the evolution relation, the expression above turns out to be an 
equality. Consequently D(dr) will vanish when Y(x) < 1. According to Theorem B.2 the 
assumption of a strict dissipative behaviour ensures that D(k) vanishes if and only if x E int K. 
Under the less stringent assumption of a non-strict dissipative behaviour a null dissipation can 
in general occur also when x E bnd K. 

We further recall that a Young function is an extended real-valued function on % U { +m} 
which is monotone, I.s.c., convex and non-negative with g(0) = 0. 

We are now ready to answer properly the question put forth above, by invoking a result 
proved in [ 161: the level sets of a yield functional II : X’ H % U { +a~} are all proportional if and 

only if II can be represented as the composition of a canonical yield functional Y and of a 
non-constant Young function g: 

II=goY. 

The yield functionals which meet this property will be called clus.sicuZ yield function& 
To show that the level sets of II are all proportional we notice that, given any a > 0, the 

u-level set of II is given by: 

K,={~EX’:II(~)~u}={~EX’:(g~Y)(~)~a} 

= {x E X’ : Y(x) 5 g-‘(u)} = [g-‘(u)]K. 

Under suitable assumptions the normality rule to the set K, can be expressed in terms of the 
classical yield functional II. 

Assuming that 0 belongs to the interior of K and that domg = [0, +m[, the domain of II is 
the whole space X’ and then K, c dom Il. Since a > 0 = inf II the chain-rule of subdifferential 
calculus contributed in [19] can be applied to obtain the following relation: 

al-w = &u(x)1 WC)- 
Hence we can write: 

or equivalently: 

(i E A an(x), rz ro, II(x) 5 a, A[I-I(x) - a] = 0. 

It has to be pointed out that a canonical yield functional, being sublinear and non-negative, 
is inherently non-differentiable at the origin. However, when the origin is the only point at 
which Y is non-differentiable, the associated classical yield functional II turns out to be 
differentiable at the origin if and only if dg(0) = 0. 

The result follows by observing that the set G’II(x) is given by the product of the interval 
ag[Y(x)] and of the set aY(x). Hence aII(0) = 0 if and only if ag[Y(O)] = dg(0) = 0. 

Yield functionals are often choosen to be positively homogeneous of degree m, with m 2 1 to 
ensure convexity. A representation theorem [16] states that the most general form of such a 
functional is the following: 

l-w =; Mx)1”~ 

which turns out to be a classical yield functional with g(s) = (l/m)(.)“. It is apparent that 
positively homogeneous yield functionals of degree m > 1 are differentiable at the origin. In 
fact, being dg(.) = (.)“-‘, it results: 

{ 

dg(0) = 0 ifm>l 

dg(0) = 1 ifm=l 

dg(O)=+m ifmel. 

A familiar example of a differentiable classical yield functional is provided by the expression of 
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\ 

R 

\ / 

Y(x) = II x II 

I 

X' X' 

a) Canonical functional b) Regularized functional 

Fig. 7. Yield functionals for von Mises criterion. 

the von Mises criterion in terms of the functional II(x) = 4 11~11~ (see Fig. 7). This expression 
can be immediately derived from the representation formula of II as the composition of the 
parabolic Young function J(s)” and the canonical yield functional Y(x) = Ilxll. 
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APPENDIX A 

We present here a detailed development of the theory of step-shaped maps which has been referred to in the 
previous sections. 

Given a family of reponsive (step-like) maps, we shall say that the graph of a monotone map M is maximal 
responsive (step-like) if graph (M) is maximal in the corresponding family. 

We preliminarily prove the following: 

LEMMA A.1. The image of a step-shaped map M :X -X’ is the nonempty closed convex set: 

K~f{X*EX*:(X*,y)S(y*,y) WY> Y’) E G), 

where G = graph (M). 
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PROOF. By definition of step-like maps, any (x, x*) E G is such that x* E Im M = M(0). Moreover the monotonicity of 
G implies that: 

(x* -y*, -y) 20 V(y, y’) e G, 

and then M(0) = Im M c K. 
To prove the opposite inclusion, let us consider an arbitrary x* E K. Adding the pair (0,x*) to G we obtain a 

monotone extension G,, = graph (M,) of G such that the map M, is step-like. Since M is step-shaped its graph can not 
be properly included in the graph of any other step-like map; hence G,, = G and x* E M(0). 0 

The next two theorems show that a map M is step-shaped if and only if it is the subdifferential of the support 
functional of a closed convex set, that is: 

M step-shaped ($ M = 3 U 2 with K = Im M. 

T?lEOREM A.2. The subdifferential of a lower-semicontinuous sublinear functional f : X - % U { +a} b a step-shaped 

map. 

PROOF. Let f be a I.s.c. sublinear functional on X. A classical result of convex analysis [15] ensures that the closed 
convex set: 

K= af(O)= {x* EX’ : f(x)? (x*,x) vx E X}, 

is nonempty and that f is the support functional of K: 

f(x) = G(x). 

Since f is I.s.c. the following equivalence holds: 

x* E af(x E af ‘(x’) = NK(x*), 

so that the normal cone to K at x’ is nonempty. It follows that x* E K and: 

Im ZJf c K = 3f (0). 

Since the opposite inclusion holds trivially, the subdifferential 3f is a step-like map. To prove the maximality of 3f in 
the family of step-like maps let us consider the graph G, obtained by adding to G = graph (3f) a pair (x, x*) E X XX’. 
The maximahty property amounts to stating that, if G,, turns out to be step-like, then (x, x*) must belong to G. In 
formula: 

(i) (x*-y*,x-y)rO (X’X*)EXXX”[(ii) xt~af(0)=K V(y’y*)Egraph(af) +(x,x*)agraph(af). 

The monotonicity property (i) implies that: 

(y*-x*,x)50 V(O, Y *) l graph (af) 

and the step property (ii) ensures that the normal cone NK(x*) is nonempty. We can then conclude that x E N&*) and 
the result is proved. cl 

THEOREM A.3. A step-shaped map M: X t+ XI is the subdifferential of a I.s.c. sublinear functional f :X H 8 U { +a}. 

PROOF. By Lemma A.l, K = M(0) = Im M is a nonempty closed convex set and, by Theorem A.2, the subdifferential 
of the support functional f(x) = U;(x) is a step-shaped map. Since: 

x* E M(x) +x* E M(0) = K, 

the set NK(x*) is nonempty. By monotonicity of M we have: 

(y*-x*,x)50 Vy* E Kex E&(x*)~x* E Jf(x), 

so that graph (M) c graph (af). The opposite inclusion follows by the maximality of M in the class of step-like maps. 0 

We present hereafter a number of results concerning the relations existing among step-like, responsive and 
monotone conservative maps. Further we provide an alternative proof of Theorem A.3 based upon the potential theory 
of monotone operators recently developed in [12] and briefly recalled in Section 2.2. Finally the analysis allows us to 
establish the equivalence of step-shapedness and maximal responsiveness for a multi-valued map. 

LEMMA A.4. A step-like map M: X H X’ is mponsiue. 

PROOF. Setting G = graph (M) we have, by monotonicity: 

(x,x*)eGj{x*-y*,x)zO Vy* E M(0) = Im M@ (xi, x) = max{(y*, x) :y* E Im M}, 

and then M is responsive. 0 

An important feature of responsive maps is illustrated hereafter. 

LEMMA AS. A responsive map M: X - X’ is cyclia~Uy monotone. 
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PROOF. Let M be a responsive map and G the associated graph. For every choice (xi, xt) E G, with i = 0, - . . n, n + 
l-0, we have: 

! 
(X; -x,*,x,) 20 

(x; -x:, XJ so 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

(Xi*,1_Xr,Yi+l) =O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 

(x,:-x:,x,)~o, 

and summing up: 

2 (XT+, -xi*, xi+,) 20, 

which is the characteristic property of a cyclicaliy monotone graph. a 

REMARK A.6. The two Iemmas above imply that any step-hke map M is cyclically monotone. Since cyclic monotoni~ty 
is a property of the graph of M and implies conservativity [12], it turns out that both M and M-’ are conservative. A 

Let us now present an alternative proof of Theorem A.3, based upon the results of the potential theory of monotone 
multi-valued maps [12], which provide an explicit formula for the potential of the map M-‘. 

ALTERNATIVE PROOF OF THEOREM A.3. A step-shaped map M :X 
functionatf:X~WU {+=J}. 

*XI is the subdifferential of a I.s.c. sublinear 

PROOF. Let us first notice that, by Remark A.6, M-’ is conservative and that, by Lemma A.l, 
K = dom M-’ = Im M is closed and convex. Given a line segment [x$ x*] in K with parametric representation 
z*(t)=x,:+th*, where h’ =I* - x,* and t E [0, 11, the potential associated with the inverse map M-’ is given by the 
following expression: 

p(x’)-p(x-)=l^‘(M-‘(z*(r)), h*) dt VX* e dom M-‘. 
6 

Assuming that p(xz) = O_ and retailing that the integral above does not depend upon the choice of ~-‘~z*(~)) E 
M-‘(z*(f)), we can set M-‘(z’(t)) = 0. Hence, the potential p turns out to be zero on dom M-’ and, by definition, +m 
outside dom M-’ so that: 

Denoting by f the conjugate of p we get: 

p(x*) = u,(n*). 

f(x) = p”(x) = L_$(x). 

It remains to prove that M = a$ Since p is I.s.c., 3f is the inverse map of 3~ and hence: 

graph (3~) = graph (af). 

Being G included in the graph of the potential of M-’ [12], it results G c graph (3~) = graph (af). By Theorem A.2 
the map $f is step-shaped and hence the maximality of G in the family of step-like maps implies that: 

G = graph (af). 

The equality above allows us to infer: 

M=af and M-‘=af*, 

which proves the theorem. 0 

The following results show that a step-shaped map admits no proper extension in the broader class of monotone 
maps; i.e. step-shaped maps are step-like and maximal monotone. 

LEMMA A.7. The image of every monoione extension of a step-shaped map M : X +-+ X’ coincides with Im M = M(0). 

PROOF. Let us consider a monotone extension G,, = graph (Me*) obtained by adding a point (n, x*) E X xX’ to 
G = graph (M). 

If X* $ Im M = M(0) the pair (x,x*) would not satisfy the monotonicity property for all (y, y*) E G (see Lemma 
A.l). ‘Ihe lemma is thus proved. 0 

?WOREM A.8. There is no proper ~no~one extension of a step-sled map M: X t-, X’. 

PROOF. Let My be a monotone extension of M and G,, = graph (M,,) and G = graph (M) the corresponding graphs. 
The map M; turns out to be conservative [12] since it is a monotone extension of the conservative map M- 

the same domain by Lemma A.7. Hence its potential coincides with the potential p of M-’ and: 
having 

G,, E graph (8~) = G. 

Since the opposite inclusion is trivia1 we have G,, = G and the lemma is proved. Cl 

REMARK A.9. From the theorem above we infer that a step-shaped map is maximal in the family of monotone maps 
and hence a forriori in the subfamily of responsive maps. A 
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The converse result is the argument of the following: 

THEOREM A. 10. A maximal responsive map M :X HX’ is step-shaped. 

PROOF. Setting G = graph (M) the maximal responsiveness of M can be explicitly stated as follows: 

(x,x*)eXXX’ : (x*,x)=max{(y*,x) : y*aImM)J(x,x*)~G. 

Hence, observing that trivially: 

(z*-y*,O)=O Vy*, z*aImM, 

we infer that (Ot z*) E G Vz* l Im M, i.e. 

Im M = M(O). 

The map M is then step-like and, being maximal in the class of responsive maps, it will be also maximal in the subclass 
of step-like maps. 0 

REMARK A.ll. By Theorems A.8 and A.10 it follows that a responsive map is maximal responsive if and only if it is 
responsive and maximal in the class of monotone maps. A 

APPENDIX B 

We collect here some results of convex analysis [16] which have been directly referred to in the previous sections. 

THEOREM B. 1. Let K be a closed convex set with a nonempty interior. The support functional D : X ++ 3 U { +m} of K is 
non-negative if and only if 0 E K and turns out to be strictly positive if and only if 0 E int K. 

PROOF. The first statement is proved as follows. 
The implication: 

OEK 3 D(x)?0 vx’xx-{0}, 

follows the definition of D(x) = sup{ ( x*, x) : x’ E K} by observing that the numerical set {(x*, x) :x* E K} includes 
the zero. 

The converse implication: 

D(x)?0 Vx’xX-{O}+OeK, 

is proved per absurdurn. In fact if 0 $ K the Hahn-Banach theorem [21] would ensure that 3f E X - (0) : (x’, a) < 
0 Vx* E K and hence D(i) < 0, in contrast with the assumption. 

To prove the second statement we first consider the implication: 

OeintK<jD(x)>O vxex- (0). 

Now if 0 E int K there exists a neighbourhood N of the origin included in the set K. Being X’ a locally convex linear 
topological space, the open set X will include a convex, balanced and absorbing open set I [21]. Since the spaces X and 
X’ are in separating duality, it follows that: 

vxxx-{0} 3X’EX’ : (x*,x)#O; 

whence, being the set I balanced and absorbing, we infer that: 

vxex- (0) 3x’~K : (x*,x)>O, 

and then it results D(x) > 0. 
The converse implication: 

D(x)>0 VxxX-{O}+OointK 

is proved per absurdurn. 
In fact if 0 $ int K the Hahn-Banach theorem ensures that: 

3xEX-{o}:(X*,X)~O Vx* E K. 

Hence D(x) 5 0 in contrast with the assumption. 0 

THEOREM B.2. If Y :X’H ti U {+m} is the Minkowski functional of a nonempty closed convex set K E X’ and 
0 E int K, we have: 

XobndKoY(X)=l 

PROOF. First we prove that when 0 E int K every ray in X’ meets the boundary of K at most at one point. 
In fact let x E bnd K and R be the ray passing through x: 

R={x,EX’ : ~,=tx;tzO}. 

The segment S = (x, E X’ :x, = tx; 0 5 t < 1) will then belong to the interior of the convex set K. 
To prove uniqueness we observe that any intersection between R and bnd K other than x should correspond to a 

value t > 1; this would in turn imply that x E int K, in contrast with the assumption. 

ES 31:8-B 
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Let us now prove the statement of the theorem. The value of the Minkowski functional Y is less than one at all 
interior points of K and is greater then unity outside K. Since Y(rx) is a continuous function of t > 0, it will be of 
unitary value for t = 1. cl 

In order to prove the next theorem we recall some further results of convex analysis. Given a Young function g and a 
non-negative. sublinear, I.s.c. functional k, the conjugate of g ok is the functional: 

(gok)*(x*) = g*(k”(x*)) 

By virtue of the polarity inequality: 

k”(x*)k(x) 2 (.P, x), 

and of Fenchel’s inequality, we get: 

f*(X*) +f(x) =g*(k”(x*)) +g(k(x)) z k”(x*)k(x) z (x”, x) VXEX, Vn* E X’. 

It follows that if (x, x*) is a conjugate pair with respect to f and f* it turns out to be also a polar pair with respect to 
k and k”. 

We can now prove the following: 

THEOREM B.3. Given a non-negative lower-semicontinuous sublinear functional D :X +-+ !H U { +m}, the following 
inequalities hold: 

D*(x*) + D(x) 2 D”(x*)D(x) 2 (x*, x). 

PROOF. Let us consider a Young function g. Being: 

(@)*(x*) = @*Do)+*), 
and: 

(g*D”)(x*) + (gD)(x) 2 D”(x*)D(x) 2 (x*, x), 

the result follows by choosing as g the identity function, so that gD = D and g*D” = (gD)* = D*. 0 

APPENDIX C 

A careful reading of the recent paper by Eve et al. [11] has revealed some flaws in the presentation of the subject and 
in the proof of some results. 

We list here the main observations to be made with the spirit of stimulating the discussion and of contributing to a 
deeper understanding of the subject. 

(i) Formula (3.13) of (111 reads p = F(X), but clearly should be p E F(X) since there is no reason to rule out the 
absence of corners on the yield surface (notice that in our notation p = dr and X = x). 

(ii) Figures 2.3, and 6.lc-6.4~ are wrongly drawn; the subdifferential set is not convex! 
(iii) The proof of the basic Lemma 5.1, which deals with the existence of the plastic multiplier is not completely 

satisfactory. In fact the assumptions that x belongs to the interior of dom g and that g(x) > 0 are essential for 
the validity of the result but play no role in the proof. Moreover there is no evidence that the maximum 
appearing at the end of the proof must be actually attained. 


