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a b s t r a c t

The need for a proper geometric approach to constitutive theory in non-linear continuum mechanics

(NLCM) is witnessed by lasting debates about basic questions concerning time-invariance, integrability,

conservativeness and frame invariance. Our aim is to bring geometry to play a central role in theoretical

and computational issues of NLCM. This demand is imposed by the present state of art, dominated by a

mainly algebraic approach which, being a modified heritage of the linearized theory, is inadequate to

manage concepts and methods in a non-linear framework. A proper definition of spatial and material

fields and the statement of the ensuing covariance paradigm, provide a firm foundation to the theory

of constitutive behavior in NLCM. The notion of constitutive frame invariance (CFI) is introduced

as geometric correction to the formulation of material frame indifference (MFI). Standard models of

constitutive behavior are critically discussed and compared with the ones consistent with the new approach.

The outcome is a physically testable theory which eventually results in new effective computation tools for

structural engineers.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The awkwardness of the notion of material frame-indifference
(MFI) as usually stated in the literature, is witnessed by an
inspection of past and recent treatments. Contribution [2] by
NOLL [1, p. 13], entitled on material frame-indifference says: There

is a considerable amount of confusion in the literature about the

meaning of material frame-indifference, even among otherwise

knowledgeable people. This paper is an attempt at clarification. [1,
p. 17 and p. 29], the MFI principle is so stated: The constitutive

laws governing the internal interactions between the parts of the

system should not depend on whatever external frame of reference is

used to describe them. The precise meaning of should not depend on

is however not clarified. A similar statement was made in
[2, 3.2.9, p.194] where the axiom of MFI is commented as: Stated

loosely, this axiom means that our constitutive functions are invar-

iant under rotations of the ambient space S in which our body moves.
Such a form-invariance requires the direct comparison of two
functions with different domains and co-domains, as discussed
below in Section 13. These difficulties were already present in the
differential-algebraic treatment developed in the non-linear field

theories of mechanics (NLFTM) where in Section 14, the MFI
principle is expressed by requiring that: the response of a material

is the same for all observers. The situation has been reproduced in

the subsequent literature, until recently, as witnessed by the
debates in [3–6]. Critical remarks to the standard reduction
procedure were exposed in [7] and discussed in [8]. A further
discussion about MFI has been contributed in [9, p. 195] where it
is said: Except perhaps for thermodynamics, few aspects of con-

tinuum thermomechanics have received so much attention and been

the focus of so much controversy over the years as that of material

‘‘objectivity’’. . . In our opinion, one aspect contributing to the subtlety of,
and resulting misunderstanding surrounding this issue, is the lack of a

clear delineation of the independent concepts involved, as well as a

precise mathematical representation for these. This opinion is agreed
upon by the present authors, especially if independent is changed
into geometric.

Indeed, the need for a suitable geometric context to be delineated
pertains to the very formulation of constitutive relations in NLCM, not
only to the discussion about frame invariance, as detailedly illustrated
in the sequel.

This state of affairs renders vain any discussion about special
issues, if basic notions are not properly settled. To get rid of these
difficulties, a precise statement must be made about what is meant
by material behavior, about how this concept can be formalized as a
mathematical relation between geometrical objects involved in
its description, and about how variations of these objects due to
diffeomorphic displacements are to be evaluated.

Then, prior to introducing new definitions and results about
constitutive relations, a background presentation of basic geometric
issues in NLCM will be developed in the framework of the four-
dimensional space–time of events, with an innovative approach.
This leads to the formulation of proper notions of spatial and

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

0020-7462/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ijnonlinmec.2012.12.006

n Corresponding author. Tel.: þ39 081 768 3729.

E-mail addresses: romano@unina.it (G. Romano),

rabarret@unina.it (R. Barretta).

International Journal of Non-Linear Mechanics 51 (2013) 75–86



Author's personal copy

material tensor fields. These are fields based on the trajectory and
acting on tangent vectors with no time-components respectively
evaluated according to the time-fibrations of space–time and of
trajectory manifolds, as detailed in Section 5. This formulation is
propaedeutic to the development of the geometric theory of con-
stitutive behavior in a continuous body.1 At any event in the
trajectory, a constitutive law is in fact described by a relation
involving material tensors and their LIE derivatives along the motion.
The proper definition of rate of material tensors along the motion
and the geometrically consistent notion of frame-invariance are
natural consequences of the covariance paradigm, according to which
constitutive relations at different events on the trajectory are
compared by push along the motion. Constitutive relations, as seen
by different observers, are also related by push along the relevant
space-time frame transformation.

In this framework hypo-elastic, elastic, hyper-elastic and visco-
elasto-plastic models are reformulated and new definitions and
properties are given. Integrability conditions, conservativeness,
time-invariance, frame-invariance are thoroughly discussed. The
especially important simplest case of elastic behavior is also
analyzed and integrability and conservativeness are assessed.
This result modifies negative conclusions stated in the literature
[11] on the ground of improper treatments [12] and restores a full
physical plausibility to a computationally significant constitutive
model [13].

A distinguishing feature of the developed geometric approach
is that no observer-dependent reference placement of the body is
considered. Only fields pertaining to actual placements of the
material body in its dynamical trajectory play a physical role in
the theory. Reference placements are in fact relegated into a
purely computation realm, deprived of any physical interpreta-
tion. Computational issues are briefly outlined in Section 11. The
analysis leads to the introduction of the principle of constitutive
frame invariance (CFI) as substitute to material frame indifference
(MFI) which is geometrically inconsistent. A detailed discussion
on this issue and comparisons with the previous formulations are
provided in Section 13. The geometric approach adopted in this
paper is in line with a geometrization program of NLCM initiated
in [14–16] based on mathematical tools collected in [17].

2. Why the geometric formulation is needed

A turning point in the treatment of constitutive models in
NLCM was the appearance of the paper on the non-linear field

theories of mechanics (NLFTM) [18] whose approach has been
taken ever more as a standard reference for notions and notations.
Mechanical shortcomings are however detectable in that treat-
ment, largely influenced by NOLL’s contributions, and in subse-
quent, even recent, reformulations [19,2,20,1]:

1. The mathematical tools adopted for the theory exposed in [18]
are essentially taken from linear algebra and calculus in linear
spaces. The suitable context for NLCM is instead differential
geometry which provides proper notations, notions and results
pertaining to non-linear manifolds. For instance, the improper
algebraic approach adopted for the statement of material frame
indifference (MFI) is responsible for serious slips and for the
confusion between material isotropy and frame-invariance in
hypo-elasticity, see [18, (99.5)] and the amendments discussed
in Section 13 below.

2. Invoking MFI and relying on the algebraic polar decomposition

a reduction procedure, conceived by NOLL [21] and reproduced
in [18, Sect. 29], is commonly adopted to replace, in the elastic
law, the deformation gradient by the right stretch. This
reduction procedure involves an improper equality between
constitutive maps which, expressing points of view of obser-
vers in relative motion, have domains and co-domains that are
based at distinct points in space–time and should therefore be
compared by push according to the relative motion. The issue
is detailedly discussed in Sections 8 and 13.

3. Constitutive operators are assumed to depend on the deforma-

tion (or transplacement) gradient and possibly on its time rate
and to provide the stress or its rate along the motion. The
assumption requires the specification of preferred reference
placements which cannot have experimental evidence. More-
over time derivatives are taken with respect to the transla-
tional connection in the EUCLID ambient space, a procedure
which assigns an unmotivated preference to this connection
and is definitely not applicable to lower dimensional structural
models such as wires or membranes because parallel transport
by translation does not preserve tangency to the placements,
as sketched in Fig. 1. Even more, the important effects of thermal
variations and visco-plastic phenomena may be accounted for
only by a suitable (multiplicative) decomposition of the deforma-
tion gradient, a decomposition which leads to known conceptual
and applicative difficulties [22].

4. The intrinsic formulation discussed in [19,1] considers consti-
tutive relations as definable in an observer-independent way,
so that MFI is considered as vacuously satisfied. This trick
clashes however against the physical fact that a description of
material behavior, by means of constitutive relations involving
material tensors, presumes that an observer is making (ideal or
factual) experimental tests.2 Invariance of constitutive rela-
tions with respect to a group of transformations from one
observer to another must then necessarily be imposed, see
Section 9.

Notions such as form-invariance [9] are geometrically untenable
since constitutive relations detected by distinct observers are
imposed to be equal and not properly compared by push, as
prescribed by the covariance paradigm. Indifference with respect
to superimposed rigid motions is also considered in the literature
with improper definitions of relative motions which do not take
account of the change of base points, as discussed in Section 13.

The geometric theory restores a general validity to classical
models of elasto-visco-plasticity by extending their validity from
the simplest linearized framework to the non-linear realm simply
by changing partial time-derivatives into LIE derivatives along the
motion in the 4D trajectory manifold. Elastic strains belong to the
output rather than to the input of the constitutive operator. The
input is in fact a set of material tensors with a common base point
(stress and stressing) so that the output will be an instantaneous

Fig. 1. Lower dimensionality: wire and membrane in motion.

1 The new geometric definitions of spatial and material tensor fields should

not be confused with the homonymous notions introduced in the literature, see

e.g. [10] respectively pertaining to fields with domain in a reference and in the

current placement.

2 This criticism is agreed upon by NOLL himself who in [1, p. 20] says: Also, it

seems that the action of the environment on a system cannot be described without

using a frame of reference, and hence one must introduce such a frame in the end

when dealing with specific problems.
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elastic stretching. The same holds for thermal and visco-plastic

stretching. The sum of these instantaneous contributions provides
the total stretching. The natural requirement of conservativeness
of the elastic behavior is shown to be fulfilled by conservation of
mass and by GREEN integrability of the rate elastic law expressed
in terms of the KIRCHHOFF stress tensor, as first assessed by the
geometric analysis performed in [13].

The geometric constitutive theory is founded on two essential
requirements which, although seemingly trivial, are violated by
standard treatment [18,2,20,1]. These requirements may be enun-
ciated as follows:

� Geometric naturality (GN) requires that, in introducing basic
notions, governing principles and constitutive relations, the metric

properties and the motion along the trajectory should be the sole
geometric entities of space–time involved in the analysis.
� Dimensionality independence (DI) requires that all notions and

results of the field theory should be directly applicable to
bodies of any dimensionality.

The former requirement excludes formulations in which an
unmotivated preference is assigned to a connection in space–
time. An instance of its relevance in NLCM is provided by the
action principle of continuum dynamics. The variational principle
leads to D’ALEMBERT’s law of motion in terms of acceleration or to
POINCARÉ law where structure constants appear, depending on
whether a standard EUCLID connection by translation or the con-
nection induced by a mobile reference frame is chosen [23–25].

With special reference to constitutive theory, GN does not
allow for appearance in constitutive relations of the material
time-derivative _F of the deformation gradient which is evaluated
according to the standard connection by translation [13].

With the hope of having given enough support to the geo-
metric point of view in NLCM, we present in the next section a
collection of fundamentals from differential geometry which will
be referred to in the sequel.

3. Geometric prolegomena

Differential geometry (DG) deals with investigations concern-
ing the notion of differentiable manifold M which generalizes the
idea of regular curve or surface. At a point xAM the linear space
of zeroth order tensors (scalars) is denoted by FunðTxMÞ and the
dual spaces of tangent and cotangent vectors by TxM and Tn

xM

respectively. Covariant, contravariant and mixed second order
tensors belong to linear spaces of scalar-valued bilinear maps
(or linear operators) as listed hereafter

sCov
x ACovðTxMÞ ¼ LðTxM,TxM;RÞ ¼ LðTxM;Tn

xMÞ,

sCon
x AConðTxMÞ ¼ LðTn

xM,Tn

xM;RÞ ¼ LðTn

xM;TxMÞ,

sMix

x AMixðTxMÞ ¼ LðTxM,Tn

xM;RÞ ¼ LðTxM;TxMÞ:

The linear spaces of covariant and contravariant tensors are in
separating duality by the pairing

/sCon
x ,sCov

x S :¼ J1ðs
Con
x 3ðsCov

x Þ
A
Þ,

where J1 denotes the linear invariant and the adjoint tensor
ðsCov

x Þ
A is defined by the identity

ðsCov
x Þ

A
ða,bÞ :¼ sCov

x ðb,aÞ, 8 a,bATxM:

The generic tensor space is denoted by TensðTxMÞ. Spaces of
symmetric covariant and contravariant tensors are denoted by
SymðTxMÞ and Sym

n
ðTxMÞ respectively.

� An immersion (submersion) is a map with injective (surjective)
associated tangent map.

� A fibration of a manifold F is a projection (surjective submer-
sion) pAC1

ðF;MÞ on a base manifold M.
� A fiber FðxÞ is the inverse image of a point xAM by the

projection.
� A section of a fibration pAC1

ðF;MÞ is a map sAC1
ðM;FÞ with

the property of being a right inverse of the projection, i.e.
p3s¼ idM.
� A fiber-bundle is a fibration whose fibers are manifolds related

by diffeomorphic transformations.
� A vector-bundle is a fiber-bundle with linear fibers.
� The tangent-bundle TM to a manifold M is a vector-bundle,

with projection sAC1
ðTM;MÞ, whose fibers are the tangent

spaces TxM.
� The tensor-bundle TensðTMÞ is a bundle whose fibers are tensor

spaces.
� A tensor field is a section of a tensor-bundle.
� A bundle morphism is a fiber preserving map between fiber-

bundles. A diffeomorphism is a morphism which is invertible
with differentiable inverse. An endomorphism is a morphism
from a fiber-bundle to itself. An automorphism is an invertible
endomorphism. An homomorphism is a morphism between
linear bundles which preserves linear operations. An isomorph-

ism is an invertible homomorphism.

An intuitive sketch of a fiber bundle is provided by the image of
a hairy head, depicted at the l.h.s. of Fig. 2. Each hair is a fiber
manifold and the head skin is the base manifold. There are no
zones of the skin deprived of hairs and one get a bulb to move
infinitesimally in any direction of the head skin by suitably moving
among hairs (surjective submersion). The notion of a fiber bundle
is quite natural in NLCM whose basic notions are conveniently
formulated in terms of tensor bundles over the trajectory manifold.
The r.h.s of Fig. 2 depicts a tangent bundle.

Scalar-valued k-linear, alternating maps are called k-covectors.
Volumes are non-vanishing k-covectors of maximal order
(k¼ dim M) and the corresponding linear space is denoted by
VolðTxMÞ.

3.1. Push–pull transformations

The pull-back of a scalar f fðxÞAFunðTfðxÞNÞ along a map
fAC0

ðM;NÞ between differentiable manifolds M and N, is the
scalar ðfkf ÞxAFunðTxMÞ defined by the equality

ðfkf Þx :¼ f fðxÞ:

Given a differentiable curve cAC1
ðR;MÞ, with x¼ cð0Þ, and a

differentiable map fAC1
ðM;NÞ, the associated tangent map at

xAM, denoted by TxfALðTxM;TfðxÞNÞ is defined by the linear
correspondence

vx ¼ @l ¼ 0 cðlÞ/Txf � vx ¼ @l ¼ 0 ðf3cÞðlÞ:

Fig. 2. Fiber bundle and tangent bundle.
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If the map fAC1
ðM;NÞ is invertible, with inverse map

T-1
fðxÞf :¼ ðTxfÞ

-1ALðTfðxÞfðMÞ;TxMÞ,

the co-tangent map

Tn

fðxÞf :¼ ðTxfÞ
nALðTn

fðxÞfðMÞ;T
n

xMÞ

is defined, for every wxATxM and vn

fðxÞAT�fðxÞfðMÞ, by

/vn

fðxÞ,Txf �wxS¼/Tn

fðxÞf � v
n

fðxÞ,wxS:

The push-forward of a tangent vector vxATxM is defined by the
formula

ðfmvÞfðxÞ :¼ Txf � vxATfðxÞN:

The pull-back of a cotangent vector vn

fðxÞ, along an invertible
differentiable map fAC1

ðM;NÞ, is the cotangent vector ðfkvnÞx

defined by invariance

/ðfkvnÞx,vxS¼/vn

fðxÞ,ðfmvÞfðxÞS,

so that

ðfkvnÞx :¼ Tn

fðxÞf � v
n

fðxÞ:

Pull-back and push-forward, if both defined, are inverse opera-
tions. Push–pull operations for tensors are defined by invariance.

For instance, the pull-back of a twice-covariant tensor
sfðxÞACovðTfðxÞNÞ is a twice-covariant tensor fksfðxÞACovðTxMÞ

explicitly defined, for any pair of tangent vectors ux,wxATxM, by

fksCov
fðxÞðux,wxÞ :¼ sCov

fðxÞðTxf � ux,Txf �wxÞ

¼/sCov
fðxÞ � Txf � ux,Txf �wxS

¼/Tn

fðxÞf � s
Cov
fðxÞ � Txf � ux,wxS:

Push–pull relations for covariant, contravariant and mixed ten-
sors, along a map fAC1

ðM;NÞ, are then given by

fksCov
fðxÞ ¼ Tn

fðxÞf3s
Cov
fðxÞ3TxfACovðTxMÞ,

fmsCon
x ¼ Txf3s

Con
x 3Tn

fðxÞfAConðTfðxÞNÞ,

fmsMix

x ¼ Txf3s
Mix

x 3T-1
fðxÞfAMixðTfðxÞNÞ:

4. Trajectory manifold

Basic issues in NLCM are most conveniently investigated in
the setting of a four dimensional events manifold E and of its
representation as space–time by an observer. Space–time formu-
lations in NLCM have been considered in the previous treatments
(see e.g. [2,9] and references therein). The innovative geometric
feature of our presentation is the role played by the trajectory
manifold, see Fig. 4.

Extending standard presentations, the treatment allows for
considering trajectory manifolds whose dimensionality may be
lower than the one of the events manifold. Structural models
of wires and membranes can be thus treated in a unitary way
together with 3-D bodies.

To this end, it is expedient to introduce the notion of injective
immersion iE,T of the non-linear trajectory manifold T into the
events manifold E. In classical mechanics, an observer detects the
events manifold as a space–time product S � I, between the affine
space manifold S and the time instants line I. Two fibrations are
generated according to the cartesian projections pS,EAC1

ðE;SÞ
and pI,EAC1

ðE; IÞ, the latter being independent of the observer (in
classical mechanics time is absolute). A spatial fiber EðtÞ � ðS,tÞ is
the set of simultaneous events at a time tA I. The fibrations of
the events manifold induce analogous fibrations in the trajectory
manifold. The time fibration pI,T :¼ pI,E3iE,T associates, with each
event in the trajectory, the corresponding absolute time instant.
The space fibration pS,T :¼ pS,E3iE,T associates, with each event in

the trajectory, the corresponding spatial location in the space
manifold S. The fibers of the trajectory space-fibration are made
of localized events and the corresponding time instants will in
general belong to a subset of I which fail to be a differentiable
manifold. Accordingly the time fibration of the trajectory may not
be a fiber bundle.3

The temporal fiber T ðtÞ ¼Xt � ftg in the time fibration pI,T :¼
pI,E3iE,T collects simultaneous trajectory-events at time tA I, with
Xt ¼ pS,T ðT ðtÞÞ � S spatial placement of the body assumed to be a
compact connected submanifold. Placements are diffeomorphic
one-another and time-fibration makes the trajectory manifold T a
fiber-bundle.

5. Spatial and material fields

Time-vertical vectors are tangent to curves of simultaneous
events. The time-vertical tangent bundles to the events manifold
and to the trajectory manifold are denoted by VE and VT and are
respectively called the spatial bundle and the material bundle. Indeed,
having a null time-component, time-vertical vectors tangent to the
events manifold are spatial tangent vectors and time-vertical vectors
tangent to the trajectory manifold are material tangent vectors, see
Fig. 3. The physical meaning of the time-verticality condition is that
infinitesimal events-variations occur at frozen time, so that the
time-vertical tensor spaces are constructed over tangent spaces to
the events manifold E and to the trajectory manifold T , at a fixed
time. This means that time-vertical tensor spaces are in fact tensor
spaces over the ambient space manifold S and over the spatial
placement Xt and the observer can make the identifications

Vðx,tÞðS � IÞ �TxS, Vðx,tÞT �TxXt :

Three main kinds of tensor fields are involved in NLCM, spatial

fields, trajectory based spatial fields and material fields.
Since our primary interest is in the formulation of constitutive

laws, we will consider only spatial fields and material fields because
trajectory based spatial fields pertain to dynamics (accelerations,
kinetic momenta).

Definition 5.1 (Spatial fields). A spatial tensor field

sEAC1
ðE;TensðVEÞÞ

is a section of the spatial tensor bundle pEAC1
ðTensðVEÞ;EÞ

constructed over the time-vertical tangent bundle to the events
time-bundle pI,EAC1

ðE; IÞ.

The spatial field of interest in continuum mechanics is the
symmetric covariant spatial metric tensor field g

E
AC1
ðE;SymðVEÞÞ

acting on the spatial bundle. It is related, by definition, to the
metric tensor field gSAC1

ðS;SymðTSÞÞ acting on the EUCLID tan-
gent bundle by

g
E
¼ pS,EkgS ¼ TnpS,E3gS3TpS,E

or explicitly

g
E
ða,bÞ :¼ gSðTpS,E � aE,TpS,E � bEÞ3pS,E,

for all spatial (time-vertical) tangent vector fields aE,bEA
C1
ðE;VEÞ.
Positive definiteness of the spatial metric field g

E
AC1
ðE;

SymðVEÞÞ follows by the same property of the metric field

gSAC1
ðS;SymðTSÞÞ and by injectivity of the tangent maps

TepS,EA LðVeE;TpS,EðeÞSÞ.

3 This observation has mechanical implications. For instance, in particle

mechanics the formula for acceleration cannot be evaluated as sum of time and

spatial derivatives. Indeed partial time-derivatives at a fixed spatial point are then

not feasible.
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Definition 5.2 (Material fields). A material tensor field

sT AC1
ðT ;TensðVT ÞÞ

is a section of the material tensor bundle pTensAC1
ðTensðVT Þ; T Þ

constructed over the time-vertical tangent bundle to the trajec-
tory time-bundle pI,T AC1

ðT ; IÞ.

Most fields of primary interest in continuum mechanics are
material fields. For instance such are stretch, stretching (covariant
tensors), stress, stressing (contavariant tensors), heat, mass (volume
forms) and temperature, entropy, thermodynamic potentials (scalars).

In continuum mechanics an essential role is played by the pull-
back of the spatial metric to a material metric over the trajectory
tangent bundle. The material metric provides the geometric tool to
define the stretching entering in constitutive relations.

Definition 5.3 (Material metric field). The material metric tensor
field gT AC1

ðT ,SymðVT ÞÞ is the pull-back of the spatial metric
tensor field g

E
AC1
ðE;SymðVEÞÞ according to the injective immer-

sion iE,T AC1
ðT ;EÞ

gT :¼ iE,T kg
E

and is explicitly defined by

gT ðaT ,bT Þ ¼ g
E
ðiE,T maT ,iE,T mbT Þ,

for all aT ,bT AC1
ðT ;TT Þ.

We will denote by lT AC1
ðT ;VolðVT ÞÞ the material volume

form associated with the metric field gT AC1
ðT ;CovðVT ÞÞ.

6. Motion

The motion is a one-parameter family of orientation preserving
automorphisms of the trajectory manifold uaAC1

ðT ; T Þ over the
time shift shaAC1

ðI; IÞ defined by shaðtÞ :¼ tþa for all a,tA I, as
described by the commutative diagram

The trajectory velocity is the space–time vector field defined by

vT :¼ @a ¼ 0uaAC1
ðT ;TT Þ:

The LIE derivative of the material tensor field sT AC1
ðT ;TensðVT ÞÞ

along to the vector field vT AC1
ðT ;TT Þ is defined by the time-

derivative of the pull-back according to the motion

LvT sT :¼ @a ¼ 0 ðuaksT Þ ¼ @a ¼ 0 ðuak3sT 3uaÞAC1
ðT ;TensðVT ÞÞ:

Since the motion is parametrized by time, the time-component of
the trajectory velocity is equal to the unity. Events related by the
motion form a class of equivalence and this equivalence relation
foliates the trajectory manifold, as depicted in Fig. 4.

� A material particle is a line (a one-dimensional manifold)
whose elements are evolution-related trajectory events, see
Fig. 4.
� The body is the quotient manifold resulting from the induced

foliation of the trajectory manifold, see Fig. 4.
� A body placement is a fiber of simultaneous trajectory-events.

The placement at time tA I is then T ðtÞ ¼Xt � ftg.

Remark 6.1. In continuum mechanics it is customary to intro-
duce a manifold B, called the body, assumed to be diffeomorphic
to all body placements. We will not follow this route whose
usefulness is questionable by lack of uniqueness of the choice. The
new definition given above, although seemingly abstract, is in fact
the direct mathematical transcription of what in the mechanical
reality permits to detect the body under investigation. In the
same order of ideas, the terms spatial and material are adopted to
denote geometric fields respectively pertaining to the fibers of
simultaneous events in space–time and to the fibers of simulta-
neous events in the trajectory, both testable geometric entities.
These new definitions modify the common usage of the word
material which is attributed to untestable fields defined in an
undetectable body manifold.

Definition 6.1 (Time invariance of material fields). Time invar-
iance of a material tensor field sT AC1

ðT ;TensðVT ÞÞ along the
motion, means variance by push for any time shift aAR, as
described by the commutative diagram

By definition of pull-back

ðuaksT Þ :¼ uak3sT 3ua,

time invariance may be written as sT ¼ ðuaksT Þ and is equivalent
to the vanishing of the LIE derivative LvT sT ¼ 0.

The trajectory time-bundle of a body is characterized by a
conservation law concerning a material volume form defined on
the vertical tangent bundle VT �TT , that is the subbundle of
vectors tangent to placements.

The material mass form mT AC1
ðT ;VolðVT ÞÞ is proportional

to the material volume form mT :¼ rT lT by means of the scalar
mass density rT AC1

ðT ; FunðVT ÞÞ.

Definition 6.2 (Conservation of mass). The conservation law states
that the integral of the material mass form over any placement is
left invariant by the motion, as expressed by the condition

Z
Xt1

ðmT Þt1
¼

Z
Xt2

ðmT Þt2
,

Fig. 3. Spatial and material vectors in a spatial fiber EðtÞ.
Fig. 4. Trajectory, body and particles in space–time.
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which, by the integral transformation formulaZ
Xt2

ðmT Þt2
¼

Z
Xt1

ut2�t1
kðmT Þt1

is equivalent to the pull-back condition mT ¼uakmT or to the
differential condition LvT mT :¼ @a ¼ 0ðuakmT Þ ¼ 0 [17].

In mechanics the conservation law assesses time-invariance of
the mass form. In electrodynamics the assessment concerns time-
invariance of the electric charge form.

7. Trajectory transformations

In NLCM investigations about transformations of the trajectory
and of the relevant motion are essential to perform a proper
discussion of invariance of constitutive laws under changes of
observer and to recover a linear framework suitable for the proof
of theoretical results and for numerical computations. It is then
convenient to consider the issue from a general point of view and
then to specialize the results to the particular context of interest.

Definition 7.1. A trajectory transformation is a diffeomorphism,
between a source and a target trajectory time-bundle fAC1

ðT ; T fÞ,
described by the commutative diagram

A correspondence between the motion uaAC1
ðT ; T Þ and the

pushed motion ðfmuÞaAC1
ðT f; T fÞ is induced according to the

commutative diagram

Lemma 7.1 (Trajectory speed of pushed motions). Trajectory speeds

of pushed motions are related by push

vT f
¼ fmvT :

Proof. Being vT :¼ @a ¼ 0ua and vT f
:¼ @a ¼ 0ðfmuÞa, the direct

computation

vT f
¼ @a ¼ 0ðf3ua3f

-1
Þ ¼ Tf3vT 3f

-1
¼ fmvT ,

gives the result. &

Definition 7.2 (Invariance of material fields). A material tensor
field sT AC1

ðT ;TensðVT ÞÞ is invariant under the action of a
relative motion fAC1

ðT ; T fÞ if it varies according to push

sT f
¼ fmsT :

The following is a basic property of LIE time-derivatives [26,17].

Lemma 7.2 (Push of LIE derivatives by relative motions). The LIE

derivative of a material tensor field sT AC1
ðT ;TensðVT ÞÞ and the

LIE time-derivative of its push by a relative motion fAC1
ðT ; T fÞ, are

related by the push

fmðLvT sT Þ ¼LfmvT ðfmsT Þ:

The related result concerning invariance is provided below.

Proposition 7.1 (Invariance of LIE derivatives). Invariance of a

material tensor field sT AC1
ðT ;TensðVT ÞÞ with respect to a relative

motion fAC1
ðT ; T fÞ, implies invariance of the LIE derivative along

the motion

sT f
¼ fmsT ) LvT f

sT f
¼ fmðLvT sT Þ:

Proof. The result is a direct consequence of Lemmas 7.1 and
7.2. &

As a first application of the previous results we consider a
special class of trajectory transformations called straightening

maps which fulfill the commutative diagram

with T I trajectory segment corresponding to a time interval
I¼ ½t1,t2	, X compact manifold and shiftaAC1

ðX� I;X� IÞ the
time-translation

shiftaðx,tÞ :¼ ðx,tþaÞ:

The following basic result is a consequence of Lemma 7.2.

Lemma 7.3. The push of the LIE derivative LvT sT of a material

tensor field by the straightening map fAC1
ðT I;X� IÞ is equal to the

partial time derivative of the referential tensor field

fmðLvT sT Þ ¼ @a ¼ 0ðfmsT Þ3shifta:

Proof. By fiberwise linearity of the push fmAC1
ðTT I;TX�TIÞ

and hence

fmðLvT sT Þ ¼ fm@a ¼ 0 ðuaksT Þ ¼ @a ¼ 0 fmðuaksT Þ

¼ @a ¼ 0 ðfmuÞakðfmsT Þ

¼ @a ¼ 0 shiftak3ðfmsT Þ3shifta:

According to the usual identification, the push by the time-
translation is assumed to be the identity and this gives the
result. &

Another basic application of the previous results is to the
investigations about invariance under changes of observer. A EUCLID

change of observer is described by an isometric trajectory transforma-
tion f

iso
AC1
ðT ; T f

iso

Þ, that is such that

gT ¼ f
iso
kgT fiso

¼ ðTf
iso
Þ
n
3gT fiso

3Tf
iso

or explicitly gT ðuT ,wT Þ ¼ gT fiso
ðTf

iso
� uT ,Tf

iso
�wT Þ3fiso. EUCLID

frame-invariance is the requirement that invariance must hold for
all isometric transformations f

iso
AC1
ðT ; T f

iso

Þ.

8. Constitutive theory

Material tangent vectors at different events of the trajectory,
corresponding to the same particle, or at corresponding events at
the same time instant of pushed trajectories must be compared
by push respectively along the relevant displacement map
or along the relative motion. As a consequence, comparison of
material tensors must be made after transformation by push to
the same tangent space at a trajectory event, as required by the
following basic paradigm [13].

Proposition 8.1 (Covariance paradigm). Material tensor fields on a

trajectory are compared according to transformation by push along

the motion. Material tensor fields pertaining to transformed trajec-

tories are compared according to the relevant push.
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The covariance paradigm provides the tool to compare mate-
rial tensor fields corresponding to the same particle at different
times along the trajectory or at different placements due to a
relative motion. Thus, it is not an invariance requirement but
rather reveals the rationale to define invariance of material tensor
fields, as introduced in Definition 7.2.

In the covariance paradigm, the attribute covariance means
variance by convection (push), that is the natural variance induced
by the diffeomorphic correspondence between displaced place-
ments of the body. Naturality meaning that no other spurious
assumptions are involved.

Standard treatments in the literature are instead based on the
adoption of a parallel transport (or connection) in the ambient
manifold as comparison tool, a procedure which is geometrically
improper when applied to lower dimensional bodies, like wires or
membranes, see Fig. 1, and renders the theory dependent on the
arbitrary choice of a connection.

Moreover, according to the covariance paradigm, invariance of
material tensors is defined as variance by push, so that isometric
relative motions do indeed change the material metric tensor
by push forward, viz. the material metric tensor in the target
placement is equal to the push-forward, according to the iso-
metric map, of the material metric tensor in the source place-
ment. Unchanged, in the non-linear geometric context, has no
definite meaning.

To consider a sufficiently general class of material behavior
for engineering applications, we consider a constitutive law as a
relation between material tensor fields, governed by a possibly
multivalued constitutive operator HT , according to the following
definition.

Definition 8.1 (Constitutive laws). A constitutive operator HT on
the trajectory is a possibly multivalued material tensor bundle
morphism whose domain and co-domain are WHITNEY products4

of material tensor bundles.

The bundle morphism requirement means that material tensors
in the domain and co-domain of the constitutive map are
evaluated at the same base point in the tangent trajectory bundle,
that is, at a common pair (particle position, time instant) in the
trajectory.

To simplify the exposition, but without loss of generality, in
the forthcoming general discussion, the constitutive operator HT
will be considered as a tensor bundle morphism between dual
material tensor bundles, with the constitutive response denoted
by eT ¼HT ðsT Þ.

Definition 8.2 (Constitutive time invariance (CTI)). According to
the covariance paradigm (Proposition 8.1) the constitutive opera-
tor is time invariant if along the motion

HT ¼uamHT ,

whose definition is given by

HT ðuamsT Þ ¼ ðuamHT ÞðuamsT Þ :¼ uamðHT ðsT ÞÞ

and may be expressed by the commutativity property

HT 3uam¼uam3HT :

9. Constitutive frame invariance

According to the covariance paradigm (Proposition 8.1) mate-
rial tensors evaluated at a given event on the trajectory by
observers in relative isometric motion appear to be the same

when they are related by push–pull transformation according to
the relative motion. In the literature, the same is assumed, more or
less explicitly, to mean that involved tensors, as seen by the
observers, have a null difference. But difference of tensors, based
on trajectories detected by distinct observers, is an undefined
operation.

The material metric tensor is EUCLID frame-invariant by defini-
tion. For all other material tensors the following physical axiom
holds.

Principle 9.1 (Axiom of frame-invariance (AFI)). Material tensors

are EUCLID frame-invariant.

This axiom leads to the formulation of the new principle of
constitutive frame invariance (CFI) as a substitute to the improper
formulation of material frame indifference (MFI), to account for
the fact that distinct observers will formulate distinct constitutive
relations involving distinct material tensors. The formal state-
ment is the following.

Principle 9.2 (Constitutive frame invariance (CFI)). Any constitu-

tive law must conform to the principle of CFI which requires that

material fields, fulfilling the law formulated by an observer, when

transformed by invariance according to the relative motion, will also

fulfill the law formulated by another EUCLID observer and vice versa.

The principle is expressed by the equivalence

eT ¼HT ðsT Þ3 eT fiso
¼HT fiso

ðsT fiso
Þ,

for any isometric transformation f
iso

AC1
ðT ; T f

iso

Þ.

The difference between the new statement of CFI and the
material frame indifference (MFI) formulated by NOLL may be
put into evidence by observing that the MFI consists in the
equivalence

eT ¼HT ðsT Þ3 eT fiso
¼HT ðsT fiso

Þ,

where dependence of the constitutive operator on the obser-
ver is not taken into account.

The geometric statement of Principle 9.2 provides the precise
mathematical expression of the naı̈ve physical requirement that
material constitutive behavior should be the same when evaluated
by any EUCLID observer.

A first and somewhat vague statement of CFI might be attrib-
uted to STANIS"AW ZAREMBA who in [28], sustaining invariance under
time-dependent rigid transformations, wrote: C’est l�a une pro-

priété que doit avoir tout systeme d’équations exprimant les relations

qui existent entre les forces intérieures dans une substance et les

circonstances de son mouvement.
In [29] it is moreover written: L’emploi des variables introduites

en hydrodynamique par LAGRANGE permet d’éviter, sans introduire

aucune complication dans leséquations, l’usage d’équations incompa-

tibles avec le principe des mouvements relatifs . . .. This is probably a
first and partial recourse to the idea underlying the covariance

paradigm, since it suggests the adoption of expressions in convective
coordinates to ensure fulfillment of CFI.

This suggestion was resorted to in the proposals later made by
OLDROYD [30,31] and by TRUESDELL [32], in introducing his model of
hypo-elasticity, and since then have been reproduced in the
relevant literature.

The decisive new contribution provided by the geometric treat-
ment is the adoption of suitable tools to deal with the essentially

4 The WHITNEY product of two tensor bundles ðN,pM,N ,MÞ and ðH,pM,H ,MÞ,

over the same base manifold M, is the linear bundle defined by [27]

N�MH :¼ fðn,hÞAN�H j pM,NðnÞ ¼pM,HðhÞg:
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non-linear problems of describing the constitutive response of a
material and of detecting the proper rule governing the transforma-
tion of the constitutive law formulated by an observer into the one
formulated by another observer.

Definition 9.1 (Pushed constitutive operator). The pushed consti-
tutive operator fmHT under a relative motion fAC1

ðT ;T fÞ is
defined by the identity

ðfmHT ÞðfmsT Þ :¼ fmðHT ðsT ÞÞ,

which may be expressed by the equality

fmHT :¼ fm3HT 3fk,

as depicted by the commutative diagram

A condition equivalent to fulfillment of the CFI principle is the
following.

Proposition 9.1 (Frame invariance of the constitutive operator). A

constitutive law conforms to the principle of CFI if and only if the

constitutive operator is frame invariant, that is

HT fiso
¼ f

iso
mHT ,

for any isometric transformation f
iso
AC1
ðT ; T f

iso

Þ describing a change

of EUCLID observer. This means that pushed material fields will fulfill the

constitutive relation formulated by the pushed observer if and only if the

original material fields fulfill the constitutive relation formulated by the

original observer.

Proof. The statement follows, from Definition 7.2 of frame-inva-
riance and Definition 9.1 of pushed operator, by a direct verification
of the equivalence with the statement of Principle 9.2. &

10. Hypo-elasticity, elasticity and hyper-elasticity

A paradigmatic and especially important example of constitu-
tive law is provided by the covariant hypo-elastic model [13]
defined by

eT ¼HT ðrT Þ � _rT ,

where the stressing _rT is the LIE (or convective) along the motion,
of the material stress tensor field rT AC1

ðT ;Symn
ðVT ÞÞ

_rT :¼ LvT rT ¼ @a ¼ 0 ðuakrT Þ ¼ @a ¼ 0 ðuak3rT 3uaÞ

and eT AC1
ðT ;CovðVT ÞÞ is the elastic stretching. We explicitly

remark that the elastic stretching is not the LIE derivative of a
material field, unless it is equal to the total stretching, as occurs in
a purely elastic process where

eT ¼ 1
2
_gT :¼

1
2 LvT gT ¼

1
2 @a ¼ 0 ðuakgT Þ ¼

1
2 @a ¼ 0 ðuak3gT 3uaÞ:

A geometric formulation, providing an extension of EULER formula
for the stretching to general connections in the ambient space,
has recently been contributed in [33]. The WHITNEY product

Sym
n
ðVT Þ�T Symn

ðVT Þ is the domain of the constitutive operator

HT and its co-domain is the tensor bundle SymðVT Þ. The operator
HT is the hypo-elastic compliance and its value HT ðrT Þ is a linear
hypo-elastic tangent compliance, assumed to be invertible. The
choice originally made in [18], and in most of the subsequent
literature, was instead to write the hypo-elastic law in terms of
tangent stiffness, according to the non-covariant algebraic for-
mulation there adopted. Our choice is motivated by observing

that the hypo-elastic tangent compliance does in fact define the
elastic stretching.

The following result proven in [13] provides for the covariant
formulation of the hypo-elastic model, the basic integrability
conditions. This result differs from the one in [12] which, referring
to a geometrically inconsistent hypo-elastic model, has been the
source of difficulties in theoretically and computationally oriented
treatments of elastoplasticity [11].

The fiber-derivative dF is the derivative performed in a linear
tensor fiber by holding the base point (position and time) fixed in
the trajectory.

Lemma 10.1 (Integrability). The conditions of integrability are

expressed in terms of the hypo-elastic compliance operator by

/dFHT ðrT Þ � drT � d1rT ,d2rS¼/dFHT ðrT Þ � drT � d2rT ,d1rT S,

/HT ðrT Þ � d1rT ,d2rT S¼/HT ðrT Þ � d2rT ,d1rT S,

for all drT ,d1rT ,d2rT AC1
ðT ,Symn

ðVT ÞÞ. The former condition

ensures CAUCHY integrability, stating the existence of a stretching-

valued stress potential UT AC1
ðSym

n
ðVT Þ;SymðVT ÞÞ such that

dFUT ¼HT . Both conditions ensure GREEN integrability, stating the

existence of a scalar-valued stress potential

EnAC1
ðSym

n
ðVT Þ; FunðVT ÞÞ,

such that dFEn
¼UT and hence

d2
F En
¼ dFUT ¼HT :

By virtue of the preceding result the following new definition of
elasticity may be given.

Definition 10.1 (Elasticity). An elastic (resp. hyper-elastic) consti-
tutive model is a hypo-elastic model characterized by a time-
invariant and CAUCHY (resp. GREEN) integrable constitutive operator.

Conservation of the mechanical energy is an essential require-
ment for hyper-elastic behavior and its mathematical definition
provides another significant example of application of the covar-
iance paradigm.

Definition 10.2 (Conservativeness). A hypo-elastic constitutive
model is conservative if the time-integral of the elastic power
along the motion vanishes when the values of the stress field
at beginning and at end time-instants are related by push. This
means the vanishing of the elastic work, defined as the integral of
the specific elastic power over the trajectory segment T I corre-
sponding to the time interval I¼ ½t1,t2	Z
T I

/rT ,eT S mT ¼ 0,

for any closed path rT 3u : I/C1
ðT ;Symn

ðVT ÞÞ of stress fields, i.e.
fulfilling the condition

rT ¼ ðut2�t1
mrT Þ ¼ut2�t1

m3rT 3ut2�t1
:

Proposition 10.1 (Conservativeness). Conservation of mass and

GREEN integrability of the hypo-elastic operator, expressed in terms

of the KIRCHHOFF stress tensor, imply conservation of the elastic work.

Proof. Conservativeness of the constitutive operator is formu-
lated by performing a push according to a straightening iso-

morphism fAC1
ðT I;Xref � IÞ in the time interval I¼ ½t1,t2	. Setting

rref :¼ fmrT , eref :¼ fmeT and mref ¼ fmmT we have thatZ
T I

/rT ,eT S mT ¼

Z
Xref�I

/rref,erefS mref

¼

Z
Xref

mref

Z
I
/rref,erefS dt,
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because conservation of mass, as introduced in Definition 6.2,
ensures that mref is time-independent. Conservativeness is then
expressed by the conditionZ

I
/rref,erefS dt¼ 0:

By the assumption of CAUCHY integrability, setting Uref ¼ fmUT
and rref,a :¼ rref3shifta, the referential elastic stretching is
defined by

eref ¼ @a ¼ 0 Urefðrref,aÞ:

The time integral of the referential elastic power may then be
written asZ

I
/rref,@a ¼ 0 Urefðrref,aÞS dt

¼

Z
I
@a ¼ 0/rref,a,Urefðrref,aÞS dt

�

Z
I
/@a ¼ 0 rref,a,UrefðrrefÞS dt:

Under the assumption of GREEN integrability, setting En

ref
¼ fmEn so

that Uref ¼ dF En

ref
, we get

/@a ¼ 0rref,a,UrefðrrefÞS¼ @a ¼ 0En

ref
ðrref,aÞ:

Then, considering the potential EREF defined as LEGENDRE conjugate

of the referential stress potentieal En

ref
by the relation

ErefðdF En

ref
ðrrefÞÞþEn

ref
ðrrefÞ ¼/rref,dFEn

ref
ðrrefÞS,

the integral takes the expressionZ
Xref

mref

Z
I
@a ¼ 0 ErefðdFEn

ref
ðrref,aÞÞ dt,

which vanish by the assumed closedness of the stress path. &

Let us now state a computationally important result which
restores to the simplest elastic model, long adopted in computa-
tional codes, the basic properties of hyper-elasticity and conser-
vativeness. These results resolve the troubles expressed in [11,
ex. 5.1], which eventually led to the discard of the geometrically
inconsistent model of hypo-elasticity there considered. We
denote as usual by m40 the LAMÉ elastic shear modulus, by
�1ono0:5 the POISSON ratio and by E40 the EULER elastic mod-
ulus. The operators IT and IT respectively denote the automorph-
isms of the material bundles MixðVT Þ and VT which are fiberwise
identities.

Proposition 10.2 (Simplest elasticity). The simplest elastic opera-

tor, expressed in terms of the mixed KIRCHHOFF stress tensor

KT ¼ rT 3gT by

HMix

T ðKT Þ :¼
1

2m
IT �

n
E

IT 
 IT

¼
1

E
IT þ

n
E
ðIT �IT 
 IT Þ,

1

2m ¼
1þn

E

� �

is GREEN integrable and fulfills the principle of CFI.

Proof. Frame invariance of the operator HT follows from the
following easily verifiable frame-invariance properties

IT fiso
¼ f

iso
mIT , IT fiso

¼ f
iso
mIT :

By Lemma 10.1, integrability of the simplest hypo-elastic operator
is inferred from stress independence and symmetry. &

11. Computation chamber

Numerical computations require to formulate the constitutive
problem in a linear context in which all linear operations involved

in actual computations are feasible. This task is performed by
a straightening map which transforms the non-linear trajectory
manifold T into the straight computation chamber Xref � I (a
trivial time-bundle) and permits to formulate the constitutive
relation in terms of partial time-derivatives and to perform time-
integration in a suitably chosen time-step. The output of the
computation is the referential stress field at the end of the time-
step and this field can be pushed back to the trajectory manifold
to provide the computation estimate of the actual stress field
at the end of the time-step. Intermediate results of the time-
integration performed in the computation chamber such as the
time-integral of the elastic stretching, have no physical meaning
and are to be considered as purely computation items. Indeed the
push-back to the trajectory manifold is impossible because the
information concerning the time-instant is lost as a consequence
of the time-integration.

Let us illustrate the procedure in some detail.
In terms of a straightening map fAC1

ðT ;Xref � IÞ the refer-
ential elastic strain field is defined by the integral over a time
interval I¼ ½t1,t2	 of the pull-back of the elastic stretching field

eref,I :¼

Z
I
ðfmeT ÞðtÞ dt:

Setting

Uref ¼ fmUT , rref ¼ fmrT ,

eref ¼ fmeT , g
ref
¼ fmgT ,

the pull-back of the constitutive relation of an elastic material in
the reference placement is expressed by

eref ¼ dFUrefðrrefÞ � @a ¼ 0ðrref,aÞ ¼ @a ¼ 0Urefðrref,aÞ:

Integrating in time, we get the expression of the finite increment
elastic law

eref,I ¼Urefðrrefðt2ÞÞ�Urefðrrefðt1ÞÞ:

Under the assumption of invertibility of the stress-potential U,
the referential stress at the end of the incremental time-step is
given by

rrefðt2Þ ¼U-1
ref
ðeref,IþUrefðrrefðt1ÞÞÞ:

The corresponding stress on the trajectory at the end of the time-
step is provided by the pull-back rT ðt2Þ ¼ fkrrefðt2Þ.

In a purely elastic process eT ¼ 1
2
_gT ¼

1
2LvT gT . Time-integration

of eref ¼ fme then gives

eref,I :¼
1

2

Z
I
@a ¼ 0ðgref

3shiftaÞ dt¼
1

2
ðg

ref
ðt2Þ�g

ref
ðt1ÞÞ,

which is the GREEN referential strain evaluated in the interval
I¼ ½t1,t2	.

This formula will be resorted to in the next proposition to
clarify an issue sometimes vaguely enunciated or also ill-stated in
the literature.

The proposition provides a precise statement about the intui-
tive requirement that the stress response of an elastic material
should not change under a rigid body motion, as enunciated by
HOOKE, POISSON and CAUCHY for linearized elasticity, see Section 14.

Proposition 11.1. If the potential UT AC1
ðSym

n
ðVT Þ;SymðVT ÞÞ

of an elastic constitutive operator is injective, then any isometric

motion leaves the stress tensor field invariant.

Proof. By definition the GREEN referential elastic strain

erefðt2,t1Þ :¼ fðt1Þm
1
2ðut2�t1

kgT �gT Þ

vanishes when the displacement ut2�t1
is isometric. Then,

being erefðt2,t1Þ ¼Urefðrrefðt2ÞÞ�Urefðrrefðt1ÞÞ we infer that
Urefðrref ðt2ÞÞ ¼Urefðrrefðt1ÞÞ. Here time-invariance enters in
assuring that Uref does not depend on time. Injectivity of the
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strain-valued stress-potential UT AC1
ðConðVT Þ;CovðVT ÞÞ implies

that the referential potential Uref is injective too. Equality
rrefðt2Þ ¼ rrefðt1Þ between referential stress tensors at time instants
t1,t2A I, follows. Pushing forward by fðt2Þ and resorting to the map
composition fðt2Þ ¼ut2�t1

3fðt1Þ we get the relation rT ðt2Þ ¼

ut2�t1
mrT ðt1Þ expressing stress time-invariance. &

12. Elasto-visco-plasticity

A more general example of constitutive behavior described by
Definition 8.1, and of primary applicative interest in NLCM, is
provided by an elasto-visco-plastic material, modeled by the
relations

1
2
_gT :¼

1
2LvT gT ¼ eT þpT ,

eT ¼ d2
F En
ðrT Þ � _rT ,

pT A@FF ðrT Þ,

8>><
>>:
where F � FunðSymn

ðVT ÞÞ is the visco-plastic potential, fiberwise
subdifferentiable and convex [17].

The elastic stretching eT AC1
ðT ,SymðVT ÞÞ and the visco-plastic

stretching pT AC1
ðT ,SymðVT ÞÞ are not convective time derivatives

of material fields. Hence, strictly they should not be denoted by a
superimposed dot, contrary to the common usage in the litera-
ture. Elasto-plasticity is modeled by assuming that the potential is
the indicator function of the convex set of admissible stresses
K� Sym

n
ðVT Þ, so that

@FF ðrT Þ ¼NKðrT Þ,

where NKðrT Þ is the outward normal cone to rT AK. The visco-
plastic constitutive relation becomes then the plastic flow rule [34]

pT ANKðrT Þ:

By a pull-back procedure analogous to the one in Section 11, the
elasto-visco-plastic constitutive relations may be formulated in
terms of material tensor fields defined in a fixed reference place-
ment. Introducing the referential visco-plastic potential Fref ¼ fmF
and the referential visco-plastic stretching p

ref
¼ fmp and setting

g
ref,a :¼ ðfmgT Þ3shifta, we get

@a ¼ 0
1
2 g

ref,a ¼ erefþp
ref

,

eref ¼ @a ¼ 0 dF En

ref
ðrref,aÞ,

p
ref

A@FF refðrrefÞ:

8><
>:
In an evolution process, the computation of the referential stress
field is conveniently carried out by a discrete time integration
scheme and by an iterative algorithm, for the solution, at each time
step, of the non-linear discrete constitutive relation, on the basis of
trial estimates of the elastic stretching evaluated at a fixed
reference placement [22].

The natural physical assumption of frame invariance of mate-
rial tensors involved in elasto-visco-plastic constitutive relations
may be deduced from the assumed frame invariance of stress
power and of stress dissipation, as stated in the next proposition.

Proposition 12.1 (Frame invariance of material tensors). Frame

invariance of stress power /rT , 1
2
_gT S and of plastic stress dissipa-

tion /rT ,pT S, for any material stress, total stretching and visco-

plastic stretching, implies frame invariance of stress, stressing, elastic

and visco-plastic stretching

rT fiso
¼ f

iso
mrT , _rT fiso

¼ f
iso
m _rT ,

eT fiso
¼ f

iso
meT , pT fiso

¼ f
iso
mpT :

Proof. Frame invariance of the metric tensor gT fiso
¼ f

iso
mgT is the

characteristic property of a change of EUCLID observer, as defined
in Section 7. By Proposition 7.1 frame invariance of the total
stretching tensor _gT fiso

¼ f
iso
m _gT follows. Moreover, for any

relative motion fAC1
ðT ;T fÞ, naturality of the push with respect

to the duality pairing holds [17]

fm/rT , _gT S¼/fmrT ,fm _gT S:

Then frame invariance of the stress power f
iso
m/rT , _gT S¼

/rT fiso
, _gT fiso

S may be expressed as

f
iso
m/rT , _gT S¼/f

iso
mrT ,f

iso
m _gT S¼/rT fiso

,f
iso
m _gT S,

for all _gT AC1
ðT ;CovðVT ÞÞ and this is equivalent to frame

invariance of the stress. By a similar argument frame invariance
of the stress dissipation leads to the conclusion that the visco-
plastic stretching is frame invariant. Frame invariance of elastic
stretching is inferred by the additivity rule. &

For integrable hypo-elastic models, frame invariance of the
hypo-elastic operator HT implies frame invariance of CAUCHY-elastic
and GREEN-elastic potentials

UT fiso
¼ f

iso
mUT , En

T fiso
¼ f

iso
mEn

T :

This property follows at once from the commutativity f
iso
m3dF ¼

dF3fisom, which holds by fiber-linearity of the push between
material tensor bundles.

The proof of the following result is straightforward.

Proposition 12.2 (CFI in elasto-visco-plasticity). The constitutive

relation of hypo-elastic visco-plasticity conforms to the principle of

CFI if the hypo-elastic operator and the visco-plastic constitutive

potential are frame invariant

HT fiso
¼ f

iso
mHT , FT fiso

¼ f
iso
mFT :

Instances of fulfillment of the frame invariance conditions in
Proposition 12.2 are provided by the simplest hypo-elastic model
and by visco-plastic constitutive potentials expressed in terms of
invariants of the mixed stress tensor.

13. Comparison with other treatments

According to the analysis performed in Section 3.1, the push of
a mixed KIRCHHOFF tensor field KT AC1

ðT ;MixðVT ÞÞ involved in
Definition 7.2 of frame-invariance, is given, according to the formula
in Section 3, by the formula

f
iso
mKT ¼ Tf

iso
3KT 3Tf-1

iso
:

The treatment performed in [21], [18, 17.3–17.4] and [20, II-14-5]
provides a seemingly similar expression written in terms of the linear
isometry Q ALðV ;VÞ in the linear space V of translations of the
EUCLID ambient space. Indeed, the formula was there written (in our
notations) as

f
iso
mKT ¼Q 3KT 3Q

T :

The basic difference is that Q ,Q T ALðV ;VÞ are invertible linear maps
while instead the tangent maps

Tf
iso
AC1
ðVT ;VT f

iso

Þ and Tf-1
iso
AC1
ðVT f

iso

;VT Þ

are non-linear one-to-one correspondences between material bundles
which are only fiberwise linear because changes of base points are
involved, see Section 3.

The importance of a correct geometric description becomes
especially evident if the body is modeled by a lower dimensional
manifold, as in the continuum mechanics description of a wire or
of a membrane, see Fig. 1.

A purely algebraic treatment, which does not take into account
changes of tangent spaces, leads to the notion of form-invariance

(FI) consisting in the requirement that

HT fiso
¼HT ,

G. Romano, R. Barretta / International Journal of Non-Linear Mechanics 51 (2013) 75–8684



Author's personal copy

which should be corrected into the equality expressing invariance
of the constitutive operator

HT fiso
¼ f

iso
mHT ,

as considered in Proposition 9.1. In fact FI unwittingly assumes
equality between maps having distinct domain and co-domains
because

HT AC1
ðTensðVT Þ;TensðVT ÞÞ,

while

HT fiso
AC1
ðTensðVðT f

iso

ÞÞ;TensðVðT f
iso

ÞÞÞ:

The same criticism applies to the statement of MFI in [21,18,20]
which in our notations would require that

HT ¼ f
iso
mHT ,

instead of the geometrically correct invariance property

HT fiso
¼ f

iso
mHT ,

stated in Proposition 9.1. Another consequence of this improper
geometric treatment is the confusion between MFI and material
isotropy [18, formula 99.5].

An analogous remark applies to the axiom of MFI introduced
in [2, 3.2.9, p. 194] by requiring that the elastic strain energy E

must fulfill the condition E¼ E3R, for any orthogonal tensor R.
A similar condition is reported in [10, 1.16, p. 204]. In both treat-
ments the change of tangent spaces, due to the relative motion, is
not taken into account.

A further discussion on the relations between Euclidean frame
indifference (EFI), form-invariance (FI) and indifference with
respect to superimposed rigid body motions (RMI) has been
contributed in [9,35]. Their EFI is indeed similar to our invariance
property of Proposition 9.1 but with the push incorrectly sub-
stituted by the linear isometry Q ALðV ;VÞ which does not account
for the change of tangent spaces. The requirement of RMI is
instead identical to MFI as introduced by NOLL [21] so that the
same critical observations do apply.

Despite similarity of nomenclature, the covariance paradigm
enunciated in Proposition 8.1 has no relation with the constitutive

covariance, introduced by MARSDEN and HUGHES [2, chapter 3,
p. 199–200], which was intended to be a physical restriction on
constitutive relations. In this respect, it should be noted that the
constitutive covariance requirement is in contrast with the basic
rule dictated by the covariance paradigm because it refers to an
undefined invariance property in constitutive relations and makes
no mention of variance by push. This is especially apparent from
the following interpretation by SIMÓ [10, p. 203]: This is an

extended (stronger) version of classical material frame indifference.

The principle of objectivity only requires proper invariance under

rigid-body motions superposed onto the current configuration; that

is, invariance under spatial isometries which are characterized by

leaving the spatial metric tensor g unchanged. In the covariance

requirement, on the other hand, isometries are replaced by arbitrary

diffeomorphisms and the metric tensor g no longer remains unchanged

but is transformed tensorially (by push-forward). Here the spatial
metric tensor should be replaced by its material pull-back
(see Definition 5.3) since the MFI principle is concerned with
the relative motion between body trajectories, induced by a
change of observer and not with the spatial isometry itself.

14. Some historical notes

Let us make here some considerations on the interesting
historical notes provided in [18, 19.A, p. 45]. From there we quote
ROBERT HOOKE’s proposal in 1678 of a spring scale of forces

(the response of a spring is unaffected by a rigid motion), the
statement by SIMÉON DENIS POISSON in 1829 [36]: Si l’on fait tourner

le corps autour de l’axe des x, et que chacun de ses points décrive

un tr�es-petit angle ..., pour un tel déplacement, le corps demeure

dans son état naturel, et les pressions intérieures doivent encore être

nulles .... and the acknowledgment of his idea by AUGUSTIN LOUIS

CAUCHY in 1829 [37]: le premier état du corps continuera de

subsister, si dans le passage du premier état au second, on a déplacé

tous les points, en les faisant tourner simultanément autour de l’un

des axes coordonnés. Contrary to the opinion expressed in [18] and
reproduced in [9], these are not statements of CFI but rather refer
to the constitutive response of an elastic material. Indeed time-
invariance of the elastic constitutive operator ensures that the stress
field is invariant under isometric motions, as shown in Proposition
11.1, with invariance meaning variance by push, according to the
covariance paradigm of Proposition 8.1.

15. Conclusions

Constitutive relations are naturally expressed in terms of
material tensors and of their time derivatives evaluated at each
time instant along the motion, and constitutive frame invariance
(CFI) consists in the physical requirement that material behavior
is independent of the observer. The lack of a geometrically
consistent notion of time rates of material tensors and of a
statement about what is intended for independent of lay at the
origin of recurrent difficulties exposed and discussed in the
literature.

A full differential geometric approach to NLCM and the ensu-
ing covariance paradigm reveal that only material tensor fields and
LIE derivatives along the motion are admissible in constitutive
relations. It has been further shown that, by virtue of basic
properties of LIE derivatives, integrability issues and conserva-
tiveness are conveniently discussed by considering an arbitrarily
fixed reference placement which plays the role of an observer-
dependent computation chamber. Numerical evaluations are also
best performed stepwise in time by pull-back to a reference
placement, fixed at each step, where LIE derivatives along the
motion translate into standard linear time derivatives.

In changing EUCLID observer, the CFI principle is fulfilled if and
only if the constitutive operator is invariant, i.e. transforms by
push along the relative motion between observed trajectories.

In contribution [3] of [1] NOLL still says: NLFTM is in many

respects obsolete and perhaps should be updated after almost 40 years

of its original publication. I believe that such an update should be very

different from the original. In following NOLL’s advise, we have
chosen to contribute in the direction of a geometrical approach
to NLCM.

The ideas already exposed in [13] and the ones further developed
in this paper, lead to a consistent reformulation of NLCM which,
relying on basic notions of differential geometry, clarifies debated
issues and provides a new effective way of approaching theoretical
and computation issues in NLCM.

Only testable fields pertaining to the actual placement of the
material body in its dynamical trajectory play a physical role in
the theory while arbitrary referential placements are relegated in
a purely computation realm which, being observer-dependent, is
deprived of physical interpretation.

The analysis leads to a new definition of elastic materials
based on a revised notion of hypo-elasticity enunciated in terms
of LIE derivatives, allowing for the detection of simple integrabil-
ity conditions. A new definition of the rate visco-plastic model
adopted in engineering applications is also provided and its
coupling with the rate formulations of elasticity is illustrated.
The notion of constitutive frame invariance (CFI) is a natural
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outcome of the geometric theory which provides the needed
correction to the formulation of material frame indifference.
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