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The dynamics of Lagrangian systems is formulated with a differential geometric approach and according
to a new paradigm of the calculus of variations. Discontinuities in the trajectory, non-potential force sys-
tems and linear constraints are taken into account with a coordinate-free treatment. The law of dynamics,
characterizing the trajectory in a general non-linear configuration manifold, is expressed in terms of a
variational principle and of differential and jump conditions. By endowing the configuration manifold with
a connection, the general law is shown to be tensorial in the velocity of virtual flows and to depend on
the torsion of the connection. This result provides a general expression of the EULER–LAGRANGE operator.
POINCARÉ and LAGRANGE forms of the law are recovered as special cases corresponding, respectively, to
the connection induced by natural and mobile reference frames. For free motions, the geodesic property
of the trajectory is directly inferred by adopting the LEVI-CIVITA connection induced by the kinetic energy.
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1. Introduction

In recent times the interest for geometric formulations of dy-
namics has considerably grown up in the literature on mathemati-
cal and physical aspects of the theory (see, e.g. [1–3]). Anyway most
treatments still refer to Newtonian dynamics of a finite system of
point-mass particles and are expressed in terms of coordinates, a
point of view which prevents to get a clear geometric picture of the
theory. We contribute here a treatment of Lagrangian dynamics, in
the wake of guidelines and ideas exposed in [4–6], where a new
paradigm in variational calculus is illustrated with the purpose to
provide a remedy to otherwise unsatisfactory statements of varia-
tional principles in dynamics and in optics. The paradigm consists
in a new definition of the extremality of the geometric action inte-
gral, i.e. the integral of a one-form along a path, according to which
it is required that the rate of change of the action integral, when
the path is dragged by a virtual flow, must be equal to the boundary
integral of the outward flux of the virtual velocity field plus the vir-
tual power performed by the force-forms. This definition, together
with a suitably refined definition of virtual velocities and the addi-
tion of the terms representing the effect of regular and impulsive
forces, covers the case of piecewise regular paths and yields EULER's
differential conditions at regular points and the related jump con-
ditions at singular points. The standard format, which substantially
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reproduces EULER's original treatment [7] by considering the re-
stricted class of variations with fixed end points, is not adequate
from the epistemological point of view and does not directly yield
the jump conditions at singular points [5,6]. Indeed, extremality of
subsequent portions of a path does not imply extremality of their
union, a natural requirement to be fulfilled by a well-posed defini-
tion. The assumption of fixed end points has naturally suggested to
identify the extremality property of the action functional with a sta-
tionarity or minimum property [8]. The new definition of extremality
for the geometric action integral yields in a natural way the general
form of the law of constrained dynamics. By assuming an arbitrary
linear connection in the configuration manifold, the extension of the
classical EULER's differential condition is directly derived by making
recourse to an intrinsic decomposition formula, due to the first au-
thor [6]. This coordinate-free formula is valid on a general manifold
with a connection and performs the split of the variation of the
Lagrangian functional in terms of a fiber-covariant derivative and
of a base derivative. It takes the role played by the partial deriva-
tive formula in coordinates. No symmetry of the second covariant
derivative of scalar functions is assumed and this fact eventually
results in the appearance of the torsion of the adopted connection
in the expression of the law of dynamics. The usual coordinate form
of LAGRANGE law is recovered as a special case by taking the torsion-
free connection induced by a coordinate system. ThePOINCARÉ form
of the law is got by assuming that the connection is induced by a
mobile reference frame. Finally the LEVI-CIVITA connection associated
with the metric provided by the kinetic energy is considered. The
specialization of the law of dynamics leads to an expression of the
law of motion in terms of the WEINGARTEN map of the constraint dis-
tribution and, for free motions in the absence of constraints, yields
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the geodesic property of the trajectory. In the conclusions the de-
bated issue of commutativity between the � and ()̇ operations is
discussed and clarified. This is a further hint that in the framework
of geometric formulations of dynamics, principles and variational
conditions may be defined and discussed in precise mathematical
terms. As a consequence most long debated issues, often affected by
ill-defined terms, may be answered.

2. Preliminary notions

A dot · denotes linear dependence on subsequent arguments, a
superscript star ∗ denotes the dual quantity and the crochet 〈, 〉 is the
duality pairing. For an exposition of calculus on manifolds, we refer,
e.g., to [2,6,9]. Let us consider a dynamical system whose configu-
ration manifold M is modeled on a BANACH space and let us denote
by pM ∈ C1(TM;M) and p∗

M
∈ C1(T∗M;M) the dual tangent and

cotangent bundles over M. The WHITNEY sum of two fiber bundles
pE ∈ C1(E;M) and pF ∈ C1(F;M) over the same base manifold M,
denoted by E⊕F (or by E×MF), is the bundle whose fiber over x ∈ M
is the Cartesian product Ex × Fx. The PONTRYAGAIN vector bundle over
M is the WHITNEY sum of the tangent and the cotangent bundles over
M [10].

The tangent map Tu ∈ C1(TM;TN) to a morphism u ∈ C2(M;N)
between manifolds is the vector bundle homomorphism (fiber pre-
serving and fiber linear map) defined by the differential

(Tu ◦ v)(x) = Txu · v(x), ∀v(x) ∈ TxM.

Two vector fields v ∈ C1(M;TM) and u ∈ C1(N;TN) are u-
related if Tu ◦ v = u ◦ u. Then u = u ↑ v is the push forward. Two
scalar fields f ∈ C1(M;R) and g ∈ C1(N;R) are u-related if f = g ◦u
and f =u ↓ g is the pull back. Two covector fields v∗ ∈ C1(M;T∗M)
and u∗ ∈ C1(N;T∗N) are u-related if 〈v∗, v〉 = u ↓ 〈u∗,u ↑ v〉 for
any v ∈ C1(M;TM). Then the pull back is given by the formula u ↓
u∗ = T∗u ◦ u∗ ◦u. Push forward of vectors and pull back of arbitrary
tensors by an isomorphism u ∈ C1(M;N) may be similarly defined
and are denoted by u ↑ and u ↓, with u ↓ =u−1 ↑. The usual no-
tation for push and pull in differential geometry is u∗ = u ↑ and
u∗ =u ↓ but then too many stars do appear in the geometrical sky
(duality, HODGE star operator). The natural derivative Tvs ∈ C1(M;TE)
of a section s ∈ C2(M;E) of the fiber bundle p ∈ C1(E;M) along a
vector v ∈ TM is defined by Tvs = Ts ◦ v and meets the property
Tp ◦ Tv = v ◦ p. The fibers of the vertical subbundle VE of the tan-
gent bundle TE are the kernels of the tangent fibration map Tp ∈
C1(TE;E). Vertical vectors V ∈ VE are then characterized by a null
velocity of their base point in M. A connection on a fiber bundle is a
projector V ∈ C1(TE;TE) on the vertical bundle VE, i.e. a vector bun-
dle homomorphism P(e) ∈ BL (TeE;TeE) such that P(e)◦P(e)=P(e),
im(P(e))=VeE. The projector H= I−V defines the horizontal subbun-
dle HE ⊂ TE. The horizontal lift Hvs ∈ C1(M;HE) and the covariant
derivative ∇vs ∈ C1(M;VE) of a section s ∈ C2(M;E) along a vector
field v ∈ C0(M;TM) are, respectively, the horizontal and the verti-
cal components of the natural derivative [6,11]:

Hvs := H ◦ Tv ◦ s, ∇vs := V ◦ Tv ◦ s,

so that Tvs=Hvs+ ∇vs and Tp(s) ◦Hs= idTp(s)M, where Hs ◦ v=Hvs.
The horizontal lift is tensorial in s and is an isomorphism between
the tangent bundle TM and the horizontal bundle HE. The push of
a section s ∈ C1(M;E) along the flows generated by the pair (v,X)
with v ∈ C0(M;TM) and X ∈ C0(E;TE), is given by Fl(v,X)� ↑ s :=
FlX� ◦ s ◦ Flv−� ∈ C1(M;E) and the parallel transport Flv� ⇑ s ∈ C1(M;E)
of a section s ∈ C1(M;E) of the fiber bundle p ∈ C1(E;M) along the
flow Flv� ∈ C1(M;M) is defined by [6]

Flv� ⇑ s := FlHv
� ◦ s = (Fl{v,Hv}

� ↑ s) ◦ Flv�,

so that p◦Flv� ⇑ s=p◦FlHv
� ◦s=Flv� ◦p◦s=Flv�. We set Flv� ⇓:= Flv−� ⇑.

The LEGENDRE transform associated with a Lagrangian L ∈ C1(TM;R)
is the morphism dFL ∈ C0(TM;T∗M) defined by

dFL(v) · w := ��=0L(v + �w) = TL(v) · vlTM(v) · w,

for all (v,w) ∈ TM⊕TM. The vertical lift at v ∈ TM is the linear map
vlTM(v) ∈ C1(TpM(v)M;TvTM) defined by vlTM(v) · w := ��=0(v +
�w). It is a fiberwise invertible homomorphism between the bundles
TM and VTM.

The LEGENDRE transform induces a covariant functor LEG between
the categories of tangent and cotangent bundles over the base man-
ifold M. The Lagrangian functional is regular if its fiber deriva-
tive is a diffeomorphism between the bundles TM and T∗M. More
in general, the FENCHEL–LEGENDRE transform relates Hamiltonian H ∈
C0(T∗M;R) and Lagrangian L ∈ C0(TM;R) according to the conju-
gacy relations [12,13]:

H(v∗) = sup
v∈Tp∗

M
(v∗)M

{〈v∗, v〉 − L(v)},

L(v) = sup
v∗∈T∗

pM (v)M

{〈v∗, v〉 − H(v∗)}.

The FENCHEL–LEGENDRE transform holds under the assumption that
the functionals are convex and fiber-subdifferentiable. This means
that the definition of the fiber derivative must be rewritten as [14]

d+
F L(v) · w := ��=0L(v + �w), ��0,

and that the unilateral derivative is a sublinear (i.e. positively ho-
mogeneous and subadditive) function of the vector w ∈ TM. Then
conjugacy is equivalent to the subdifferential rules:

v∗ ∈ �L(v), v ∈ �H(v∗), (v, v∗) ∈ TM ⊕ T∗M,

where the graph of the maps �L and �H is monotone maximal and
conservative [15]. Non-differentiable but fiber-subdifferentiable La-
grangians arise naturally in the analysis of problems of the calculus
of variations involving extremality of a length, as in FERMAT's prin-
ciple in optics [5,6]. In continuum mechanics fiber-subdifferentiable
Lagrangians must be introduced to simulate anelastic constitutive
behaviors of the materials and the most usual kinds of boundary
constraints [6].

3. Basic tools of calculus on manifolds

The first tool is the POINCARÉ–STOKES' formula which states that the
integral of a (k − 1)-form xk−1 on the boundary chain �� of a kD
submanifold � of M is equal to the integral of its exterior derivative
dxk−1, a k-form, on �, i.e.
∫
�
dxk−1 =

∮
��
xk−1.

This equality can be assumed to be the very definition of the
exterior derivative of a k-form. The second tool is LIE's derivative of
a vector field w ∈ C1(M;TM) along a flow u� ∈ C1(M;M) with
velocity v = ��=0u�:

Lvw = ��=0(u� ↓ w),

which is equal to the antisymmetric LIE-bracket: Lvw = [v,w] =
−[w, v] defined by d[v,w]f =dvdwf −dwdvf , for any f ∈ C2(M;R). The

LIE derivative of a differential form xk ∈ C1(M;�k(TM)) is similarly
defined by Lvxk = ��=0(u� ↓ xk). The third tool is REYNOLDS' trans-
port formula
∫
u�(�)

xk =
∫
�
u� ↓ xk �⇒ ��=0

∫
u�(�)

xk =
∫
�
Lvx

k,
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and the fourth tool is the integral extrusion formula [6]

��=0

∫
u�(�)

xk =
∫
�
(dxk) · v +

∫
��
xk · v,

and the related differential HENRI CARTAN's magic formula [2,3,16] (also
called homotopy formula [1])

Lvx
k = (dxk) · v + d(xk · v),

where xk · v denotes the (k − 1)-form which is the contraction per-
formed by taking v as the first argument of the form xk. The homo-
topy formula may be readily inverted to get PALAIS formula for the
exterior derivative. Indeed, by LEIBNIZ rule for the LIE derivative, we
have that, for any two vector fields v,w ∈ C1(M;TM)

dx1 · v · w = (Lvx
1) · w − d(x1 · v) · w

= dv(x1 · w) −x1 · [v,w] − dw(x1 · v).
The expression at the r.h.s. of PALAIS formula fulfills the tensori-

ality criterion, see, e.g. [6,16,17]. The exterior derivative of a differ-
ential one-form is thus well defined as a differential two-form, since
its value at a point depends only on the values of the argument vec-
tor fields at that point. The same algebra may be repeatedly applied
to deduce PALAIS formula for the exterior derivative of a k-form [18].

4. Action principle and Euler conditions

Let a status of the system be described by a point of a manifold
M, the state space. In both theory and applications, there are many
instances in which it is compelling to consider fields which are only
piecewise regular on M. To this end, we give the following definition.

Definition 1. A patchwork T(M) on M is a finite family of disjoint
open subsets of M such that the union of their closures is a covering
of M. The closure of each subset in the family is called an element
of the patchwork.

The disjoint union of the boundaries of the elements, deprived of
the boundary of M, is the set of singularity interfacesI(M) associated
with the patchwork T(M). A field is said to be piecewise regular on
M if it is regular, say C1, on each element of a patchwork on M which
is called a regularity patchwork. In the family of all patchworks on M
we may define a partial ordering by saying that a patchwork PAT1 is
finer than a patchwork PAT2 if every element of PAT1 is included in an
element of PAT2. Given two patchworks it is always possible to find
a patchwork finer than both by taking as elements the non-empty
pairwise intersections of their elements. This property is expressed
by saying that the family of all patchworks on M is an inductive
set. Then, let T(I) be a time-patchwork, i.e. a patchwork of a time
interval I. The evolution of the system along a piecewise regular path
c ∈ C1(T(I);M) is assumed to be governed by a variational condition
on its signed-length, evaluated according to the piecewise regular
differential action one-form x1 ∈ �1(T(M);T∗M), with T(M) a
regularity patchwork. We assume, without loss in generality, that
the trajectory c ∈ C1(T(I);M) is regular in each element of the time-
patchwork T(I). Let us denote by C := c(I) the geometric trajectory
and by TCMthe vector bundle which is the restriction of the tangent
bundle TM to C.

Definition 2. The action integral associated with a geometrical path
C in the state-space M is the signed-length of the 1D oriented
submanifold C, evaluated according to the action one-form x1 on
M:

∫
C x

1.

A general statement of the action principle requires a suitable
definition of the virtual flows along which the trajectory is assumed
to be varied.

Definition 3. The virtual flows of C are flows u� ∈ C1(M;M) whose
velocities vu ∈ C1(C;TCM) are tangent to interelement boundaries
of the regularity patchwork T(M). Velocities of virtual flows are
virtual velocities.

In formulating an action principle, the velocities at C of the test
flows are assumed to belong to a vector subbundle TESTC of the vec-
tor bundle TCM. Force systems are represented by a differential
two-form a2 on TCM, the regular force-form, which provides an ab-
stract description of a possibly non-potential system of forces acting
along the trajectory. The force-form a2 is potential if it is defined
on a neighbourhood U(C) ⊂ M of the path and there is exact. This
amounts toassume that there exists a differential one-form b1 ∈
C1(U(C);T∗M) such that a2 = db1, where d is the exterior differen-
tiation. We consider also a differential one-form a1 on TI(C)M, the
impulsive-force-form, which provides an abstract description of an
impulsive system of forces acting at singular points on the trajectory.

Definition 4 (Geometric action principle). A trajectory of the system
governed by a piecewise regular differential one-form x1 on M is a
piecewise regular path C ∈ C1(T(I);M) such that

��=0

∫
u�◦C
x1 =

∮
�C
x1 · vu +

∫
C
a2 · vu +

∫
I(C)
a1 · vu,

for all virtual flowsu� ∈ C1(M;M) with virtual velocities vu=��=0u�
taking values in a test subbundle TESTC ⊂ TCM.

This means that the initial rate of increase of the x1-length of
the trajectory C along a virtual flow is equal to the outward flux
of virtual velocities at end points plus the virtual power performed
by the force-forms. Denoting by x1 and x2 the initial and final end
points of C, it is �C= x2 − x1 (a 0-chain) and the boundary integral
may be written as
∮

�C
x1 · vu = (x1 · vu)(x2) − (x1 · vu)(x1).

The action principle is purely geometrical since it characterizes
the trajectory C to within an arbitrary reparametrization. A neces-
sary and sufficient differential condition for a path to be a trajectory
is provided by the next theorem and will be called EULER's condition.
The classical result of EULER deals with regular paths and fixed end
points and is formulated in coordinates. The new statement intro-
duced in [5,6] deals with the more general case of non-fixed end
points and piecewise regular paths, and extremality is expressed in
terms of coordinate-free differential and jump conditions.

Theorem 4.1 (Euler's conditions). A path C ⊂ M is a trajectory if
and only if the tangent vector field vC ∈ C1(T(C);TC) meets, in each
element of a regularity partition T(C), the differential condition

(dx1 − a2) · vC · vu = 0, ∀vu ∈ TESTC,

and, at the singularity interfaces I(C), the jump conditions

[[x1 · vu]] = a1 · vu, ∀vu ∈ TESTC.

EULER's conditions show that the geometry of the trajectory is
uniquely determinate if the exact two-form dx1 has a 1D kernel at
each point. This is the basic assumption to ensure local existence
and uniqueness of the trajectory through a point of the state-space.

5. The law of dynamics

In continuum dynamics, the configurations of the body are
depicted as points of a differentiable manifold C modeled on a
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BANACH space. The associated tangent bundle is denoted by pC ∈
C1(TC;C). The geometric action principle of dynamics is formulated
by considering as state-space the product tangent bundle TC×TI or
the product cotangent bundle T∗C × T∗I to the configuration-time
product manifold C × I. We will denote by prTC and prTI the Carte-
sian projectors associated with TC×TI and similarly for the product
cotangent bundle. The canonical or LIOUVILLE one-form on the cotan-
gent bundle over the configuration manifold h ∈ C1(T∗C;T∗T∗C) is
defined by 〈h(v∗),Y(v∗)〉=〈v∗, Tv∗p∗

C
QY(v∗)〉, for any Y(v∗) ∈ TV∗ T∗C,

with the basic property that its exterior derivative is a two-form
with a trivial kernel. The counterpart in the tangent bundle is the
POINCARÉ–CARTAN one-form hL := dFL ↓ h. In the Hamiltonian descrip-
tion, the action one-form is x1 := prT∗C ↓ h − g ∈ T∗T∗C × T∗T∗I
with g(v∗, t) := H(v∗, t)prT∗I ↓ dt.The Hamiltonian Ht ∈ C1(T∗C;R)
is FENCHEL–LEGENDRE conjugate to the Lagrangian Lt ∈ C1(TC;R). In
the Lagrangian description, the action one-form is x1

L := prTC ↓
hL − gL ∈ T∗TC × T∗TI, where gL(v, t) := E(v, t)prTI ↓ dt with
Et(v) = Ht(dFL(v)) the energy. Let us then consider a compact time
interval I, a piecewise regular time-parametrized path c ∈ C1(I;C)
in the configuration manifold and its image C=c(I). The speed along
the path is the vector field vc ∈ C1(C;TC) defined by vc(c(t)) :=
��=tc(�). Conforming virtual speeds of the body are assumed to
belong to a vector subbundle DC of the tangent bundle TCC to the
trajectory. The trajectory in the configuration-time state-space is
then given by (c, idI) ∈ C1(I;C × I), with image CI = (c, idI)(I), and
the lifted trajectory in the velocity–time state-space is(Tc, idTI) ∈
C1(TI;TC × TI). A virtual flow u� ∈ C1(C;C) in the configuration
manifold induces a synchronous flow u� × idI ∈ C1(C × I;C × I) in
the configuration-time state-space and a tangent synchronous flow
with velocity (vTu, 0) ∈ TTC×TTI. In the Hamiltonian formulation,
non-potential forces acting on the mechanical system are taken into
account by introducing a force two-form given by

a2f (v
∗, t) := −(f ∧ dt)(v∗, t), p∗

C(v∗) ∈ c(t).

Given a force one-form Ft ∈ C1(C;T∗C) on the configuration
manifold, the induced force one form

Ft ∈ C1(T∗C;T∗T∗C)

on the cotangent bundle is provided by the formula

ft(v∗) · Y(v∗) := 〈Ft(p∗
C(v∗)), Tp∗

C · Y(v∗)〉, ∀Y(v∗) ∈ Tv∗ T∗C.

Our definition differs from the one given in [3,10] where forces
fields are considered as fiber preserving maps F ∈ C1(TC;T∗C). In-
deed, given the configuration manifold C of a mechanical system,
forces are elements of the cotangent manifold T∗C and force fields
are sections of the cotangent bundle p∗

C
∈ C1(T∗C;C), that is, to any

placement x ∈ C they assign a force-covector acting on that place-
ment. The so-called velocity dependent forces acting on a body do
in fact depend on relative velocity fields between the body and its
surroundings. Dependence of forces on parameters, such as relative
velocity fields, friction coefficients, electric charges, and electromag-
netic fields, is to be modeled as a constitutive property, for instance
a multivalued monotone relation between dual fields of force and
velocities, depending on physical parameters. There is no place for
velocities in the very definition of force. Impulsive forces at singular
points are one-forms a1 ∈ T∗T∗C defined by

a1 · Y〈At , Tp∗
C · Y〉 ∈ C1(T∗C;R),

where At(x) ∈ T∗
xC. Non-potential forces in Lagrangian formulation

are similarly introduced or may be deduced with a pull back by
the LEGENDRE transform. In the tangent bundle TC, the subbundle
of infinitesimal isometries is denoted by RIG. These are the tangent
vector fields v ∈ C1(C;TC) fulfilling the conditionLvg=0, where g

is the euclidean metric. Note that the property of the LIE derivative
[2,6]

L[u,v]g = [Lu,Lv]g

ensures that the bundle RIG is involutive and hence by FROBENIUS
theorem, integrable, see, e.g. [6,19]. The geometric action principle
is stated as follows.

Proposition 5.1 (Geometric Hamilton's principle). The lifted trajectory
in the velocity–time state-space, fulfills the action principle:

��=0

∫
(Tu�×TidI)(CI)

x1
L =

∮
�CI

x1
L · (vTu, 0)

+
∫
CI

a2 · (vTu, 0) +
∫
I(CI)

a1 · (vTu, 0)

for any flow u� ∈ C1(C;C) whose velocity vu = ��=0u� ∈ C1(C;DC ∩
RIG) is a conforming infinitesimal isometry at C.

In the action principle of Proposition 5.1 the variations of the
lifted trajectory in the velocity–time state-space are performed by
lifted virtual flows which are the differentials of flows in the con-
figuration manifold and no flows along the time axis are considered
(synchronous variations). It can be shown that the action principle
so formulated is equivalent to the one in which a larger class of
flows are considered by allowing fiber-respecting, fiber-linear flows
in the velocity phase-space and time-flows. A thorough discussion
on this topic is performed in [5,6]. On the paths drifted by the flow,
the Lagrangian functional is computed by evaluating the velocity of
the synchronously varied trajectory which is equal to the push of
the velocity of the trajectory. Indeed, by the chain rule we have

��=t(u� ◦ c)(�) = (Tu� ◦ vc)(c(t)) = (u� ↑ vc ◦u�)(c(t)).

It is convenient to perform the extension of the trajectory speed
vc ∈ C1(C;TC) to a vector field

Fu(vc) ∈ C1(�u(C);T�u(C)C),

where �u(C) := ∪|�|� �u�(C) is the �-sheet through C generated by
the flowu� and �>0. For each � with |�|��, the extension is defined
by the push

Fu(vc) ◦u� := u� ↑ vc ◦u� = Tu� ◦ vc.

Hence the LIE bracket [Fu(vc), vu] vanishes [6].
The geometric action principle of Proposition 5.1 can be writ-

ten in a non-geometric form, i.e. in a form depending on the time-
parametrization. In the next proposition we show that the new
paradigm of variational calculus yields directly the differential con-
dition equivalent to the extremality principle, without requiring
neither partial differentiation nor integration by parts, which are
not available unless a connection is defined on the configuration
manifold.

Proposition 5.2 (Action principle and general law of dynamics). The
trajectory of a dynamical system in the configurationmanifold is a piece-
wise regular path c ∈ C1(T(I);C) fulfilling the extremality principle:

��=0

∫
I
Lt◦Tu� ◦ vc ◦ cdt =

∮
�I

〈dFLt ◦ vc, vu〉 ◦ c

−
∫
I
〈Ft , vu〉 ◦ cdt −

∫
I(I)

〈At , vu〉 ◦ c.

This non-geometric form of the action principle is equivalent to the
differential condition

dvc 〈dFLt ◦ vc, vu〉−〈T(Lt ◦Fu(vc)), vu〉=〈Ft , vu〉 − 〈��=tdFL� ◦ vc, vu〉,
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and the jump conditions 〈[[dFLt ◦vc]], vu〉=〈At , vu〉, for any virtual flow
u� ∈ C1(C;C) whose virtual velocity vu = ��=0u� ∈ C1(C;DC ∩ RIG) is
a conforming infinitesimal isometry at C.

Proof. For any regular elementP of a patchwork of the time-interval
I finer than the regularity patchwork T(I) we have that

��=0

∫
P
Lt ◦ Tu� ◦ vc ◦ cdt =

∫
P

��=0(Lt ◦ Tu� ◦ vc ◦ c)dt

=
∫
P

��=0(Lt ◦Fu(vc) ◦u� ◦ c)dt

=
∫
P

〈T(Lt ◦Fu(vc)), vu〉 ◦ cdt,
∮

�P
〈dFLt ◦ vc, vu〉 ◦ c=

∫
P
(〈��=tdFL� ◦ vc, vu〉

+ dvc 〈dFLt ◦ vc, vu〉) ◦ cdt.

The equivalence then follows by evaluating the variational con-
dition in each element of the patchwork and summing up. �

We remark that the differential law of dynamics is independent
of the values of the virtual velocity field outside the trajectory. In fact
the r.h.s. is tensorial in the virtual velocity field and the l.h.s is ten-
sorial too, even if the two addends are not such. An alternative ten-
sorial expression of the terms at the l.h.s will be provided in Propo-
sition 5.3 by introducing a connection in the configuration manifold.
Moreover, recalling that vTu=��=0Tu� =k ◦Tvu=k ◦T��=0u�, with
k ∈ C1(TTC;TTC) the canonical flip, we have that

��=0(Lt ◦ Tu� ◦ vc ◦ c) = 〈TLt ◦ vc, vTu ◦ vc〉 = 〈TLt ◦ vc,k ◦ Tvu ◦ vc〉,

and the differential condition in Proposition 5.2 may be rewritten as

dvc 〈dFLt ◦ vc, vu〉 − 〈TLt ◦ vc, vTu ◦ vc〉 = 〈Ft , vu〉 − 〈��=tdFL� ◦ vc, vu〉.

The deduction of the law of dynamics from the action principle, in
the non-geometric form of Proposition 5.2, is based on the following
intrinsic result [6]. A somewhat ambiguous special expression in
coordinates is reported in [20,21].

Lemma 5.1 (A split formula). Let N be a manifold, p ∈ C1(E;M) a
fiber bundle with a connection ∇ and f ∈ C1(E;N) a morphism. Then,
for any section s ∈ C1(M;E) of the fiber bundle, the map tangent to the
composition f ◦ s ∈ C1(M;N) may be uniquely split as the sum of the
fiber-covariant derivative and the base derivative:

T(f ◦ s) = Tf ◦ Ts = dFf(s) · ∇s + dBf(s).

Proof. Denoting by Flv� ⇑ =FlHv
� ∈ C1(E;E) the parallel transport

along the flow associated with a vector field v ∈ C1(M;TM), by the
definitions and the chain rule we get

dFf(s(x)) · ∇v(x)s = (Tf ◦ ∇v(x)s)(x)

= (Tf ◦ V ◦ Ts ◦ v)(x)

= Ts(x)f · ��=0(Fl
v
� ⇓ s)(Flv�(x))

= ��=0(f ◦ Flv� ⇓ s ◦ Flv�)(x),

dBf(s(x)) · v(x) = (Tf ◦ Hv(x)s)(x)

= (Tf ◦ H ◦ Ts ◦ v)(x)

= (Tf ◦ ��=0Fl
v
� ⇑ s)(x)

= ��=0(f ◦ Flv� ⇑ s)(x),

so that T(f ◦ s) · v(x) = dFf(s(x)) · ∇v(x)s + dBf(s(x)) · v(x). �

Proposition 5.3 (General law of dynamics in terms of a connec-
tion). The trajectory of a dynamical system in the configuration mani-

fold is a piecewise regular path c ∈ C1(T(I);C) which, for any given
connection ∇ on C, fulfills the differential condition

〈∇vc (dFLt ◦ vc), vu〉 − 〈dBLt ◦ vc, vu〉 − 〈dFLt ◦ vc, TORS(vc, vu)〉
= 〈Ft , vu〉 − 〈��=tdFL� ◦ vc, vu〉,

for any virtual flow u� ∈ C1(C;C) with vu=��=0u� ∈ C1(C;DC ∩ RIG)
a conforming infinitesimal isometry at C.

Proof. The split formula in Lemma 5.1 yields

〈T(Lt ◦Fu(vc)), vu〉 = 〈dFLt ◦ vc,∇vuFu(vc)〉 + 〈dBLt ◦ vc, vu〉.

Moreover, by LEIBNIZ rule we have that

dvc 〈dFLt ◦ vc, vu〉 = 〈∇vc (dFLt ◦ vc), vu〉 + 〈dFLt ◦ vc,∇vcvu〉.

Then, setting FGEN := Ft−��=t(dFL�◦vc), the differential condition
in Proposition 5.2 may be written as

〈∇vc (dFLt ◦ vc), vu〉 = 〈dBLt ◦ vc, vu〉 + 〈FGEN, vu〉
+ 〈dFLt ◦ vc,∇vcvu − ∇vuFu(vc)〉.

Since the bracket [Fu(vc), vu] vanishes, we have that

TORS(vc, vu) := ∇vcvu − ∇vuFu(vc) − [Fu(vc), vu]

= ∇vcvu − ∇vuFu(vc),

and the differential law takes the tensorial form in the statement.
�

Remark 5.1. Given a trajectory c ∈ C1(I;C), the EULER–LAGRANGE
map associates the differential one-form ELt ◦ vc ∈ T∗

CC to the field
vc ∈ C1(C;TC):

〈ELt ◦ vc, vu〉 := dvc 〈dFLt ◦ vc, vu〉 − 〈TLt ◦ vc, vTu ◦ vc〉
= 〈∇vc (dFLt ◦ vc), vu〉 − 〈dBLt ◦ vc, vu〉

− 〈dFLt ◦ vc, TORS(vc, vu)〉, ∀vu ∈ C1(C;TCC).

The differential law of dynamics is then written 〈ELt ◦ vc, vu〉 =
〈FGEN, vu〉. In [22] the negative of the former expression is taken to
be the EULER–LAGRANGE operator, but tensoriality in vu is not proved.

There are some special, but important, contexts in dynamics
where the variational law of motion may be written as an equation.
This situation occurs when the test virtual velocities are exactly the
vector fields tangent to the configuration manifold at the trajectory.
We shall refer to these contexts as perfect dynamical systems. Two
main instances of perfect dynamical systems are rigid body dynam-
ics and elastodynamics. In the former, the configuration manifold is
a leaf of the foliation induced by the (integrable) rigidity constraint
and the sections of the tangent bundle to such a leaf are exactly the
infinitesimal isometries. In the latter, the bundle of test fields is en-
larged to the whole tangent bundle to the configuration manifold
by introducing a stress tensor field as LAGRANGE multiplier in duality
with the Eulerian implicit description of the rigidity constraint, ac-
cording to which the LIE derivative of the metric tensor is the field
characterizing the lack of rigidity. This extension is at the very heart
of continuummechanics. The stress tensor field is then related to the
strain tensor field by a pointwise elastic law in the body. By adding
the negative elastic potential energy and the force potential to the
kinetic energy, the Lagrangian for the field theory of elastodynamics
is formulated.
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6. Special forms of the law of dynamics

The original LAGRANGE's law of dynamics is immediately recovered
from the general expression by endowing the configuration mani-
fold with the local connection induced by a coordinate system. This
connection is conveniently described by considering the distant par-
allel transport obtained by pushing the standard translation in the
model linear space by the coordinate map. Both curvature and tor-
sion tensor fields vanish for the standard connection in the model
linear space and the diffeomorphic coordinate map simply pushes
the curvature and torsion tensors to the ones of the induced con-
nection in the configuration manifold which hence vanish too [6].
By the vanishing of the torsion of the induced connection, the law
of dynamics specializes to the invariant form of LAGRANGE law

〈∇vc (dFLt ◦ vc), vu〉 − 〈dBLt ◦ vc, vu〉 = 〈Ft , vu〉 − 〈��=tdFL� ◦ vc, vu〉,

and for perfect dynamical systems takes the standard aspect of
LAGRANGE equation [23]

∇vc (dFLt ◦ vc) − dBLt ◦ vc = Ft − ��=tdFL� ◦ vc.

The more general form of the laws of dynamics due to
POINCARÉ holds when the reference system is a mobile frame whose
base vectors are not necessarily the velocities along the coordinate
lines. A common instance of this occurrence is provided by the so-
called engineering reference systems which consist in curvilinear
coordinate systems with velocity base vectors normalized to a unit
length. In a mobile frame the induced connection in the configu-
ration manifold is such that the related distant parallel transport
S ∈ C1(TC;TC) is defined by the property that the components
of a vector do not change when the frame base point is displaced.
The torsion of this connection is evaluated on a given pair of vec-
tors ux, vx ∈ TxC by extending them to a pair of vector fields
S(ux), S(vx) ∈ C1(C;TC) according to the distant parallel transport.
Then, by tensoriality

TORS(ux, vx) := ∇uxS(vx)−∇vxS(ux)−[S(ux), S(vx)] = −[S(ux), S(vx)].

The law of dynamics then takes the form

��=t〈dFL� ◦ vc, vu〉 + 〈∇vc (dFLt ◦ vc), vu〉 = 〈dBLt ◦ vc, vu〉 + 〈Ft , vu〉
−〈dFLt ◦ vc, [S ◦ vc, S ◦ vu〉],

which for perfect systems gives POINCARÉ law [23] in invariant form.
Let us now consider the standard case in which the Lagrangian is

the sum L = K + P ◦ p ∈ C1(TC;R) of the positive definite quadratic
functional kinetic energy K ∈ C1(TC;R) and of the load potential P ◦
p ∈ C1(TC;R). By polarization, a metric tensor g ∈ BL (TC,TC;R)
can then be associated with the kinetic energy, so that K=1/2g◦DIAG,
where DIAG(v) := (v, v), so that g := dFK ∈ BL (TC;T∗C) and g−1 :=
dFK−1 ∈ BL (T∗C;TC). Adopting the LEVI-CIVITA connection ∇ in the
Riemannian manifold {C,g} we have that ∇dFK=∇g=0 and TORS=0.
Moreover, from the invariance of the norm of a vector field which is
parallel transported according to a metric connection, we infer that
dBK = dB((1/2)g ◦ DIAG) = 0 and, by the definition of fiber and base
derivative, we have that

dF(P ◦ p)(v) = TP(p(v)) · Tp(v) · ∇v = 0,

dB(P ◦ p)(v) = TP(p(v)) · Tp(v) · Hv = dP(p(v)).

Recalling thatDC is the subbundle ofTCC described by the virtual
velocities at C which are conforming to the (also non-holonomic)
linear constraint, and setting FGEN := −��=t(dFL� ◦ vc) + Ft + dP, the
law of motion for a perfect dynamical system becomes

∇vcvc − g−1FGEN ∈ D⊥
C .

Denoting by P,P⊥ ∈ C1(TC;TC) the fiberwise orthogonal
projectors on DC and D⊥

C , the law of motion may be rewritten as
P(∇vcvc − g−1FGEN) = 0. Introducing in the WHITNEY sum DC ⊕ D⊥

C

the tensorial WEINGARTEN map: W(u, v) := P⊥(∇uv), we may write
the law of motion for a perfect dynamical system as in [3,24]

∇vcvc − W(vc, vc) =Pg−1FGEN.

In the free dynamics of a perfect system with no mass-loss time-
rate, we have that FGEN = 0 and the law of dynamics becomes

∇vcvc = W(vc, vc).

In the absence of constraints it is W(vc, vc) = 0 and the law of
dynamics yields the differential equation of a geodesic ∇vcvc = 0.

The jump conditions then give 〈[[dFLt ◦ vc]], vu〉 = 0, which, re-
calling that the virtual velocities are required to be tangent to the
discontinuity interfaces in the configuration manifold, directly yield
the conservation of the tangent component of the momentum at the
singularity interfaces. We remark that the constrained dynamics for-
mulated above is the classical one which is also called d'Alembertian
[24] as opposed to the recently proposed vakonomic constrained dy-
namics [23].

7. Conclusions

The HEUN-HAMEL central equation, quoted in [20,21] as �L=d/dt(p ·
dq) (recall that in the standard notation in analytical dynamics q is the
vector of Lagrangian variables and p=dL/dq̇ the vector of momenta)
is the coordinate expression, in the special context of discrete sys-
tems and time independent Lagrangianwithout non-potential forces,
of the differential law of dynamics formulated in invariant terms in
Proposition 5.2. In [20,21] the variation �L of the Lagrangian is eval-
uated as �L= (dL/dq̇)�q̇+ (dL/dq)�q and the law is deduced from the
LAGRANGE variational law of dynamics (see Section 6) relying on the
key property �q̇ = (�q)̇ which is also resorted to in standard treat-
ments, to deduce LAGRANGE's equations from HAMILTON's principle [1].
Alas, the �-()̇ notation, although adopted in most textbooks and arti-
cles, does not unambiguously clarify the operations to be performed
especially when dealing with a non-linear configuration manifold.
Let speed denote the time-rate. Then the rate of variation of the speed
is defined by ��=0��=t(u� ◦ c)(�) and the speed of the rate of varia-
tion is defined by ��=t��=0(u� ◦ c)(�).They are, respectively, equal to
the evaluations of the vector fields vTu ∈ C1(TC;TTC) and Tvu ∈
C1(TC;TTC) at the point vc(c(t)) ∈ Tc(t)C:

��=0��=t(u� ◦ c)(�) = ��=0(Tu� ◦ vc)(c(t))

= (vTu ◦ vc)(c(t)) ∈ TvcTc(t)C,

��=t��=0(u� ◦ c)(�) = ��=t(vu ◦ c)(�)
= (Tvu ◦ vc)(c(t)) ∈ TvcTc(t)C.

These vectors, which belong to the second tangent bundle TTC,
are related to one another by the canonical involutive flip operation
k ∈ C1(TTC;TTC) according to the formula vTu = k ◦ Tvu, see, e.g.
[16,6]. If the manifold C is a linear space, each tangent space Tc(t)C
is identified with the linear space itself. Hence TvcTc(t)C is identi-
fied with C and the flip involution collapses to the identity by the
EULER–SCHWARZ theorem [6]. This is the case when working in coor-
dinates, so that the terms �q̇ and (�q)̇ coincide. Anyway, as shown
in Proposition 5.3 and in Section 6, in relating the general law of
dynamics to LAGRANGE's law, the symmetry property to be invoked
is ∇vcvu = ∇vuFu(vc). Here the covariant derivatives are performed
according to the connection defined by pushing the standard con-
nection in the linear model space. This property is a consequence
of the vanishing of the torsion of the induced connection and of the
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vanishing of the LIE bracket [Fu(vc), vu], due to the extension of the
trajectory speed, which give

TORS(vc, vu) = ∇vcvu − ∇vuFu(vc) − [Fu(vc), vu]

= ∇vcvu − ∇vuFu(vc) = 0.

If the manifold C is a linear space, the identifications discussed
above result in killing the horizontal subspaces in TTC and in the
consequent identification of vertical subspaces with tangent spaces,
so that the covariant derivative equals the natural derivative [6,11]
and then

∇vcvu = Tvu ◦ vc, ∇vuFu(vc) = TFu(vc) ◦ vu,

with TFu(vc) ◦ vu = ��=0Tu� ◦ vc = vTu ◦ vc. We conclude that, far
from being a question of points of view, as affirmed in [20,21], the
equality �q̇=(�q)̇ holds in coordinates with the standard connection.
In the general, non-linear case LAGRANGE's law must be substituted by
the law of dynamics provided in Proposition 5.3, whose expression
depends on the torsion of the adopted connection. These results
confirm that geometric formulations of dynamics, powered by the
tools of differential geometry and calculus on manifolds, are able
to define and discuss in precise mathematical terms the relevant
principles and variational conditions. As a consequence most long
debated issues may be answered and clarified.
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