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SUMMARY 
Formulas for the computation of the shear deformability of thin-walled prismatic beams can be found in the 
technical literature only in the special case of symmetric cross sections. In order to fill this gap a formulation 
of the flexural behaviour of thin-walled beams taking into account transverse shear deflections is developed 
in the present paper. On this basis, the general expression of the shear centre location and the shear 
deformability tensor for open and closed sections of arbitrary shape are given and their properties discussed. 
In the case of polygonal, circular and arc-shaped cross sections explicit formulas, which can be suitably 
implemented for automatic computations, are provided. For the sake of completeness, the expression of the 
stiffness tensor for prismatic beams, previously obtained by the first two authors in a co-ordinate-free 
version, is reported. Finally, a numerical example is carried out and comparisons with the results given by 
Cowper’ for symmetric cross sections are presented. 

INTRODUCTION 

In the analysis of the flexural behaviour of elastic beams it is often necessary to take account 
of the effect of transverse shear deformations. In fact, shear deformability can play a significant 
role in the evaluation of the global stiffness of a structure and in the distribution of the internal 
forces among its constitutive members. This is the case, for instance, of the structural skeletons 
of tall buildings, subjected to horizontal forces, when the presence of concrete shear walls is 
predominant. 

As is well known, ’~~ in the Saint Venant beam theory, the transverse deflections are produced 
by the flexural curvature while the warping of the cross section is due to the shear strains 
associated with the shearing stresses. However, in the Saint Venant theory the kinematical 
restraints are absent while, in the technical beam theory, boundary conditions on the flexural 
rotations of sections, assumed perfectly rigid in their own plane, are imposed. Therefore the 
warping of the cross section due to the shearing strains results in an additional transverse 
deflection of the beam. 

Recently4v5 a satisfactory formulation of the flexural behaviour of thin-walled beams with 
arbitrary cross section has been given in the framework of the technical beam theory. In 
particular it has been shown that the principal axes of the shear deformability tensor, which relates 
the shearing force to the dual kinematical variable, are different, as a general rule, from the ones of 
the bending deformability tensor. This means that, when the cross section of the beam is not 
symmetric, the effects due to a shearing force cannot be considered separately in the two principal 
planes of inertia, as is usually assumed in the technical literature. 

In the case of open thin-walled sections, a relevant contribution to illustrate this point has 
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been provided by Capurso,6 who derived the correct expression of the shear deformability tensor 
referred to the principal axes of the bending deformability tensor. 

However, a general treatment which allows one to compute the shear factors tensor for 
thin-walled beams with non-symmetric cross sections is still lacking in the literature on the 
subject. 

In this paper a simple and direct procedure is presented for the evaluation of the shear 
deformability tensor and for the shear centre location of open and closed thin-walled sections of 
arbitrary shape. In addition, a general expression of the stiffness tensor which takes account of the 
shear deformability is provided. As an example of different orientation between the principal 
directions of the bending and shear deformability tensors, explicit computations for a thin-walled 
L-section are carried out. A comparison with the shear factors values computed by Cowper’ for 
Timoshenko beam theory in the case of symmetric cross sections is finally performed. 

KINEMATIC MODEL 

Let us consider a prismatic thin-walled beam whose longitudinal axis is oriented by means of 
a unit vector k. By assuming an arbitrary point as origin of a reference system, each point of the 
beam will be identified by the corresponding position vector p. Denoting by A the area of a cross 
section, the elastic centroid 0 will then be located by the vector 

where E(p) is the Young’s modulus of the generic point at the position p. It is convenient to 
introduce the relative location of the points on a cross section with respect to the elastic centroid 
by means of the position vector r defined by 

r = P - P o  (2) 
According to the well-known Bernoulli-Navier hypothesis, it is assumed in the technical beam 

theory that the cross sections remain plane after deformation and perfectly rigid in their own 
plane. Hence the parameters defining the kinematic model of the beam are the axial displacement 
of the elastic centroid, the flexural and torsional rotation of the section and the transverse 
displacement of the shear centre. 

For what concerns a pure flexural behaviour, the significant parameters are then the flexural 
rotation + of the cross section and the transverse displacement u of the shear centre. The 
corresponding parameters of deformation are the flexural curvature of the section, 

(3) 

6 = u’+ k x +  (4) 

cf = k x +’ 
and the transverse shearing strain of the axis of the shear centres 

where the prime denotes differentiation along the axis of the beam. The extensional strain of the 
longitudinal fibres can be evaluated from equation (3): 

E(r) = (k x +’) * r ( 5 )  
and results in a linear function of the position vector r. 
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THE SHEAR DEFORMABILITY TENSOR 

The flexural curvature cf and the transverse shearing strain S are related to the bending moment 
mf and the shearing force t ,  respectively, by the bending and shear deformability tensors Cf and 
C, : 

(6) 

6 = C,t (7) 

k x 9' = Cf(k x mf) 

The bending deformability tensor Cf of the cross section can be readily evaluated by means of 
the formula 

Cf = J-'  (8) 
where the tensor 

J = jA E(r)r 0 r dA (9) 

is the second elastic area moment with respect to the elastic centroid. 

principle, per unit length of the beam: 
The shear deformability tensor C, can be evaluated by applying the internal virtual work 

Z*'T 
t* - 6 = [ A  z*  * y dA = j A  ~ ( r )  dA 

where t* is an arbitrary shearing force, z*  is a corresponding equilibrated shear stress field, y is 
the shear strain field associated with z and G(r) is the shear modulus at the point identified by the 
position vector r. 

Let us now write the shear stress field z(r) in the form 

t z(r) = G(r)ll(r)- 
A G  

where the factor 

AG = j A  G(r)dA 

has been introduced to get a dimensionless tensor II(r). Equation (10) will then be rewritten as 

t* t 

AG 

t* t 

A G  A G  
t * - 6  = jA  G(r)n(r)--n(r)-dA = G(r)IIT(r)n(r)--'-ddA 

Hence, defining the shear factors tensor as 

and comparing equations (13) and (7), we get the expression of the shear deformability tensor: 

x c, = - 
A G  

The tensor x ,  and hence C,, is symmetric and turns out to be positive definite if and only if n(r) 
is not singular. 



286 G. ROMANO, L. ROSATI AND G. FERRO 

A relevant property concerning the eigenvalues of the shear factors tensor is provided by the 
following theorem whose proof is here derived as a revised version of an original idea due to 
C ~ o r n o . ~  

Theorem. The eigenvalues of the shear factors tensor x are greater than unity 

eigenvalue x is then given by 
Proof. Let e be the unit vector associated with an eigenvector of x .  The corresponding 

G(r)ll(r)e.ll(r)edA 

In order to prove the statement let us consider the well known Cauchy-Schwarz inequality 
2 [-'-j AG A G(r)I'I(r)e-ll(r)edA]['s A G  A G(r)e*edA] 2 ['I AG A G(r)I'I(r)e-edA] (17) 

Since, by definition 

t = j A  t(r) dA 

it follows that 

1 G(r)ll(r)dA = I 
A G  A 

where I denotes the identity tensor. Then 

-!- G(r)H(r)e*edA = 1 
AG A 

Noting also that 

S G(r)e.edA = 1 
AG A 

we get, from equation (17), 

x = [ G(r)II(r)e-II(r)edA 2 1 
AG A 

The equality above holds iff we have in the Cauchy-Schwarz inequality 

ll(r)e = cie 

Actually, the scalar multiplier ci is found to be of unit value since, by equation (18), we can write 

e = - G(r)n(r)edA = - G(r)aedA = cie 
AG 's A 

1 
AG A 

Notice that II(r) cannot be constant since otherwise the shear strain field y(r) would be constant 
over the section and equal to its mean value t/AG-see equation (1 1). 

0 Therefore the inequality in equation (19) must be strict and the proof is complete. 
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SHEAR FLOW IN THIN-WALLED SECTIONS 

Explicit formulas of the shear deformability tensor C, can be easily derived for thin-walled beams. 
Let s denote the curvilinear co-ordinate along the centre line of the cross section, q(s) the shear 
flow across an imaginary longitudinal cut taken parallel to the axis of the beam, 6(s) the thickness 
of the wall and d(s) the unit vector tangent to the centre line. 

We shall employ the usual thin-walled assumption according to which the shear stress is 
uniform over the thickness of the wall and directed as d(s): 

while the shear stress perpendicular to the centre line is zero. 
We shall first consider the thin-walled open sections and then the closed ones. 

Open thin-walled sections 

Assuming as origin of the curvilinear co-ordinate system a free edge of the cross section, the 
relation between the shearing force t and the shear flow q(s) can be evaluated by means of the well 
known equilibrium equation 

q(s)  = - C,t.s(s) = - CfS(S) . t  (21) 
where 

s(s) = E(r)rdA I, 
is the first elastic area moment of the part A' of the cross section to one side of the imaginary 
longitudinal cut. By virtue of the hypotheses made on the shear stress distribution, equation (10) 
becomes 

where c is the length of the centre line of the cross section. Hence, by means of equation (21), we 
have 

cfs@cfsds t * . t  = t*-Cf ds=[Ic G6 1 (Cf s - t * ) (Cf s * t) 

Defining the tensor r as 

equation (24) can be written, by the arbitrariness oft*: 

Here, and henceforth, the explicit dependence of G, S and 6 on the tangential co-ordinate s will be dropped to simplify 
the notations 
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Finally, comparing equation (26) with equation (7), we get 

c, = cf rcf 
which yields the explicit expression of the shear deformability tensor. 

Closed thin-walled sections 

In the case of closed sections the shear flow can be expressed as 

qc(s) = q ( s )  + q a  (28) 
where q(s) is the shear flow in the open cross section obtained by the closed one by introducing 
a longitudinal cut and qa is the additional constant shear flow necessary to enforce the compati- 
bility condition which essentially results in a null relative warping of the opposite faces of the slit. 
The shear flow qa is accordingly determined by the compatibility equation: 

fcyds = f c " " ~  = 0 (29) 

so that its expression is given by 

Denoting by 

equation (28) can also be written as 

qc = - Cft - (s + sa) (32) 
and equation (23) becomes 

(33) 
Cq*(s) + qa*1 Cq(s) + 4.1 d i  

G6 
t * .6  = (ji 

Let us now apply the principle of virtual work to the true shear flow q(s) + qa associated with 
the shearing force t and to an arbitrary constant shear flow q,* in equilibrium with a torque. Since 
the external virtual work is zero we get 

(34) 
[q(') 4: ds = 0 

so that equation (33) can be simplified to 

t*.fJ = fC Cq(s)q*(26- qaqa*I  ds 
(35) 
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By means of equations (21) and (30), equation (35) can also be written as 

By the arbitrariness of t*, we infer that the shear deformability tensor is still expressed by 
equation (27) but the tensor r is now given by 

Properties of the deformability matrices 

The symmetry of the tensor r is apparent from equations (25) and (37). Moreover, the tensors 
Cf and r turn out to be positive definite if the singular case of narrow rectangular sections is ruled 
out. 

For closed sections the positive definiteness of r in equation (37) can be proved by means of the 
Cauchy-Schwarz inequality (see Appendix I). Hence the tensor C, is symmetric and positive 
definite since, by equation (27), it turns out to be congruent to r by means of the symmetric and 
positive definite tensor Cf.  

It is important to notice that the principal axes of the two tensors C, and C, do not coincide 
unless the cross section has an axis of orthogonal symmetry. 

SHEAR CENTRE OF THIN-WALLED SECTIONS 

It is known that the shear centre may be defined as the point of the cross section of a beam 
through which the shearing force should be applied in order not to produce twist. Its position can 
then be determined by looking for the point with respect to which the moment of the shear stress 
distribution due to an arbitrary shearing force vanishes. 

The equation which determines the position vector pc of the shear centre C with respect to the 
elastic centroid is thus given by 

n 

Jc (p, - r) x dq* ds = 0 

where q* denotes an arbitrary shear flow distribution over the cross section. In terms of scalar 
components along the longitudinal axis of the beam, equation (38) becomes 

j c p c x d * k q * d s  = r x d - k q * d s  I 
or equivalently, denoting by n = d x k the unit vector normal to the centre line, 

(39) 
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Let us express the shear flow q* in the general form-see equation (32)- 

q* = - Cft*’  (S + Sa) (41) 
where t *  is the shearing force associated with q*; equation (41) embodies also the case of an open 
section by setting s, = 0. 

Equation (40) can then be written as 

jc [n*pc][Cft*-(s + s,)]ds = [n*r](Cft**(s + s,)]ds s. 
jc [(s + s,) 0 n] pc *Cft* ds = [(s + s,) 0 n]r. Cft* ds I 

[ f c s @ n d s + s a @ f c n d s ] p c = ~ ( s ~ n ) r d s + s a  B n - r d s  (44) 

$ n d s = O  (45) 

(42) 

or equivalently 

(43) 

which, by the arbitrariness of the vector Crt*, yields 

With 

equation (44) simplifies to 

[ f s O n d s ] p c = $ ( s O n ) r d s + s a $ n . r d s  C 

where s, = 0 for open sections. If the middle line c of the section is not a straight line, the tensor in 
square brackets in the formula above is regular and equation (46) possess a unique solution. 

SHEAR FLOW IN THIN-WALLED POLYGONAL SECTIONS 

We shall consider open or closed polygonal cross sections having constant thickness and elastic 
moduli along each branch. The parametric equation of the ith branch of the polygonal centre line 
is given by 

r = ri(l) (1 - A)ri + 0 d 1 d 1 (47) 
where ri and r i+  are the position vectors of the ith and (i + 1)th vertex. 

thickness of the ith branch respectively, the second elastic area moment can be expressed as 
Denoting by n the number of branches of the polygon and by ci and hi the length and the 

J = [ A  E(r)r 0 rdA = 
i =  1 

where Ai = &sici is the elastic area of the ith branch. Setting 

equation (48) can be written as 
f l  
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and performing the integrations we have finally 

where sym denotes the symmetric part of the tensor Ri(i+l). 
The flexibility tensor Cf can then be easily computed by inverting the positive definite tensor J. 

Shear factors tensor for thin-walled polygonal section 

the sequel, explicit formulas will be provided for open and closed sections. 
In order to evaluate the shear deformability tensor (27) the expression of tensor r is needed. In 

Open polygonal sections. Let us express s(s) as a function of the parameter 1 sweeping the ith 
branch: 

s(s) = si-l + si(A); si(l) r= Airdt (52) l 
where s iPl  is the first elastic area moment of the first i - 1 branches with respect to the elastic 
centroid and si(l) the first elastic area moment of the portion of the ith branch with local 
co-ordinate values ranging from 0 to 1. Hence we obtain 

r i  

Since 

the explicit form of the tensor r becomes 
1 

Closed polygonal sections. In the case of closed sections the additional term r, on the 
right-hand side of equation (37) has to be evaluated. By virtue of equation (55) we have 

so that 
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With the expressions of r and Cf at hand it is an easy matter to evaluate the shear flexibility 
tensor C, by means of equation (27) and then, by means of equation (15), the shear factors tensor. 

The shear centre 

The tensor on the left-hand side of the linear system (46) can be evaluated by substituting the 
expression of the first elastic area moment given by equation (52); then, by means of equation (54), 
we have 

1 A .  
i = l  i =  1 6 [ ~ ~ - ~ + s ~ ( l Z ) ] @ n ~ c ~ d l =  s i - l@ni+1(2 r i+ r i+ l )@ni  (58) 

The two terms on the right-hand side of the linear system (46) are respectively given by 

1 + ni.ri 
i =  1 

the product n - r being constant along each branch, and by 

(59) 

which turns out to be zero for open sections (s, = 0). 

SHEAR FLOW IN THIN-WALLED CIRCULAR SECTIONS 

Let us consider a homogeneous thin-walled circular section of thickness 6 and centre line radius 
ro. The second elastic area moment is then given by 

Er 0 r dA = 6E r @ rds  = 6riE n @ nds = n6r: E I  (61) J = J - A  i 
where n is the outward normal to the centre line c. To extend the definition of n outside c, we set 
ii(r) = r/ro, so that 

(62) 
I 
r0 

fc n @ nds = fc ii @ nds jn grad iidQ = -nr i  = nroI 

since ii(r) = n on c and grad ii(r) = I/ro. 

Shear factors tensor for thin-walled circular section 

the sequel explicit formulas will be provided for open and closed sections. 
In order to evaluate the shear deformability tensor (27) the expression for tensor r is needed. In 

Open circular sections. In this case the tensor r is given by 

G6 ds = cfc[ G [:6rondc] @ [ [:drond(]ds 

The integrals in square brackets can be evaluated by means of the first Frenet formula n = - rod, 
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where the superimposed dot denotes derivation with respect to s: 

= * [ ji rod dt]  0 [ ji rod dt]  ds = 

- - !?.!.!? [ 4 d 0 dds  + 4 do 0 dods - 4 d 0 dods - 4 do 0 dds] 

fc [d - do] 0 [d - do] ds 
G 

(64) 

G 

do being the unit vector tangent to the centre line c at the endpoints (see Figure 1). Setting d = Rn, 
where 

0 
R = [ 1  

is the skew orthogonal tensor which rotates an 
angle 4 2 ,  we have, by virtue of equation (62), 

f. P 

- 0 'I 
arbitrary vector counterclockwise through the 

$ Q 0 dds  = $ Rn 0 Rnds = R[ i n  0 nds]RT = nr01 

The second integral in equation (64) is given by 

do 0 do ds = 2nrodo O do 

while the third and the fourth integrals are zero by equation (45). 
Finally, equation (64) becomes 

Figure 1. Thin-walled circular section 
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and, since A = 27cr06, the expression for the shear factors tensor is given by 

x = GACf TCf = 2[I+  2do 0 do] (69) 

Closed circular sections. In the case of closed sections, the additional term on the right-hand 
side of equation (37) has to be evaluated. With 

i &ds = 
[ j: ron d<] ds = - [ ji d dt]  ds 

(70) 
- - - [ fc Rnds - do $ ds] = -do 2 7 ~ 2  E 

G 

we have 
27c6r; E 

G do 0 do r, = 

Then, by virtue of equation (68), equation (37) becomes 

I r=-  z6r; E 
G 

and 
x = GACfTCf = 21 (73) 

which is the known expression of the shear factors tensor for the closed thin circular section. 

The shear centre 

The tensor on the left-hand side of the linear system (46) is given by 

j c s Q n d s  = 6roE f [ J:nd(] 0 nds (74) 

Evaluating the integral in square brackets by means of the first Frenet formula, see equations 
(63) and (64), equation (74) becomes 

jc s 0 nds = - 6r iE  [$ d 0 nds - do 0 $ nds] = - 6r iE  fi d 0 nds (75) 

Expressing, by the Gauss theorem, the above integral in the form 
n n 

$ d @ n d s  = J gradidf l  
R 

where a = Rr/ro, equation (75) becomes 

s 0 n d s  = - 6r iE  gradddfl = - 6r iE  = - 6nriER (77) 

since grada = R/ro. 
The first term on the right-hand side of the linear system (46) can be written in the form 

j c ( s@n) rds  = j cs (n . r )ds  = I[ j i 6 roEnd t ]n* rds  (78) 
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while the second one is zero since s, = 0. Since n r = ro on the centre line c and recalling equation 
(74) we get finally 

h ( s @  n)rds = - 6rzE [d - do]ds = briE dods = 2nbr;Edo I I (79) 

The position vector of the shear centre is thus given by 

pc = - 2roR- do = 2roRdo (80) 
that is, the shear centre lies on the axis of symmetry of the open section at a distance 2r0 from the 
centre and on the opposite side of the opening. 

SHEAR FLOW IN THE THIN-WALLED CIRCULAR ARC 

Let us consider a homogeneous thin-walled section having the shape of an arc subtending an 
angle 28, symmetric with respect to an horizontal axis, and let ro be the radius of the centre line 
c (see Figure 2). 

By making use of the first Frenet formula, the first elastic area moment with respect to the 
centre of the circle can be expressed as 

rands = - 6r iE  l C d d s  (81) 

where n is the normal to the centre line and p = r,n on c. With 

where u is the angular co-ordinate sweeping the centre line of the section, equation (81) can also 
be written as 

= - 6riE[d(O) - d( - O ) ]  (83) 

Figure 2. Thin-walled circular arc 
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Denoting by el the unit vector directed along the axis of symmetry of the section, equation (83) 
becomes 

so = 26rg E sin eel (84) 

Since the elastic area of the arc is equal to 28E6ro, the expression of the vector which defines the 
position of the centroid with respect to the origin of the reference frame is given by 

so sin0 po = - = ro-el 
A 8 (85) 

The expression of the second elastic area moment takes the form 

r O r d A  = 6E [p - pol 0 [p - po]ds 
(86) 

I 
= d E [  jc p 0 pds + po O po 

The first integral in the formula above can also be written in the form 
e I p 0 pds = r-0’ I n 0 nds = r-0’ I-. Wel 0 Wel du 

where 

1 = [ cos u - sin CI 

sin u COS LY 

is the skew tensor which rotates an arbitrary vector through the angle u counterclockwise. After 
some manipulation we get 

Ic p O pds = ro” 8 - sin8cos8 O I  

According to equation (85), the second integral in equation (86) becomes 

po 0 po jc ds = 20ro ( r0 y>’ el 6 el 

while, by means of equations (83) and (85), the third integral can be expressed as 

Collecting the last three terms we get finally 

2 sin2B 8 + sinOcos8 - - 
J = 6 d E  I e 

0 e - sin e cos e] - 1  
The flexibility tensor Cf can then be easily computed by inverting the positive definite tensor J. 
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Shear factors tensor for  the thin-walled arc section 

In order to evaluate the shear deformability tensor (27) the expression of tensor r is needed: 

By means of the first Frenet formula and of equation (82) we have 

[yepd.i = - r; [:eddy = - ro[d(a)  - d(- O)] 

and by equation (85) 

With [-:::I d(a) = k x n  = 

(94) 

(95) 

(96) 

we get, after some algebra 

0 
3 2 .  sin2 8 

8 + -sin28 + -8sln28 - 4- 

0 

Sr:E2 2 3 e r=--[ 
8 - -sin28 3 + 28cos28 

2 
G 

and then, since A = 2Sr00, the shear factors tensor is given by 

3(e2 + 8sin8cos8 - 2 ~ i n ~ 8 ) ~  
,. 202 - 38sin28 + 482cos28 x =  

1 U 

It can be easily verified that for 8 = n the same solution as the one of the open circle is 
recovered. 

The shear centre 

By means of equations (85 )  and (94) the tensor on the left-hand side of the linear system (47) can 
be written in the form 

s O nds = I [ 1; SEr dt]  0 nds = S r i E  j:e [ j:e (P - PddY] O nda 

1 
(99) 

sin 8 
= - Sr:E [:e[d(r)@n - d(- 8 ) O n  + ---(a + 8)el O n  da e 
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Performing the integrations we have finally 
2 sin’ 0 

- 8 - sin8cos8 + ~ 

0 

0 

8 - sin 8 cos 8 
j c s @ n d s  = - 6r:E 

The right-hand side of the linear system (47) can be expressed as 
9 jc (s @ n)rds = jc (n*r)sds = j ron * [p - pol [ droE[p - pol d.i]du 
- 9  - 0  

11 (lol) 

= - B r ~ E [ ~ o { [ l  --Tco~a][[d(~)-d(--8)] sin 8 +---(u+8)el sin 8 da 
8 

and after some algebra takes the form 

(102) I 0 
sin’ecos 8 

8 sin8 - 28cos8 + [ jc (s 0 n)r ds = - dr; E 

so that the position vector of the shear centre is given by 

ros in8  - 2 0 ~ ~ 0 ~ 8  + sin28cos81 
O2 - Osin8cos8 

0 
Pc = ro 

It can be easily verified that for 8 = n the same solution as the one of the open circle is 
recovered and that for 0 -+ 0, i.e. when the section reduces to a point, the vector pc tends to roel.  

THE STIFFNESS TENSOR OF A BEAM ELEMENT 

The flexural behaviour of beams with shear deformability can be completely described by the 
stiffness tensor of the beam element whose coefficients will depend upon the shear deformability 
tensor. 

The stiffness tensor of the beam element has been already obtained by the first two authors in 
a completely co-ordinate-free ve r~ ion ,~  and it is here reported for the sake of completeness. The 
details of its derivation can be found in Reference 3. 

and +z the flexural rotations at the 
end sections 1 and 2 of the beam and by A, and A2 the corresponding transverse displacements of 
the shear centre, the stiffness tensor can be expressed as 

Let us consider a straight beam of length 1. Denoting by 

where b, , b2, f, and f2 are the bending moments and shearing forces at the terminal sections of the 
beam and the unit vector k points from section 1 towards section 2. 

Defining the adimensional tensor 
12JC, A = -  

l 2  
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and denoting by I the identity tensor, the elements of the stiffness tensor are given by 

1 
1 

1 

B11 = B22 =- ( I  + A)-'(4I + A)J 

B12 = B21 = I(I + A)-'(2I - A)J 

12 
1 Slz = SZl = - T(r + A)-'J 

As proved in Reference 3, all tensors in equation (106) turn out to be symmetric and, in addition, 
the diagonal elements B l l ,  B,,, S1, ,  S22 are positive definite. 

From equation (106) it is apparent that the stiffness tensor in equation (104) provides the 
generalization of the classical stiffness tensor for beams with shear deformability which can be 
found in standard textbooks and whose validity is limited to the case of symmetric cross sections, 
see e.g. References 8-10. 

A NUMERICAL EXAMPLE 

A simple application of the theory is presented here to show a relevant example in which the 
principal directions of the shear deformability tensor and of the bending deformability tensor 
turn out to be significantly different. 

To this aim let us consider a thin-walled L-shaped cross section with constant thickness and 
having a one-half ratio between the side lengths as shown in Figure 3. 

The position vectors of the vertices with respect to the origin are given by 

P I  = b [ i ] ,  PZ =[:I. p3 = b [ i ]  

so that the elastic centroid is 

Po = "[ 6 4  '1 
Setting r = p - po, we get the position of the vertices with respect to the centroid: 

b - 1  b - 1  
r l  =![ 6 - 4  ' 1 ,  r2=-[ 6 - 4  1, r3=;[ 8] 

By applying equation (51), the second elastic area moment tensor turns out to be 
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I I \ 

Principal directions of the bending deformability tensor 

Principal directions of the shear deformability tensor 

Figure 3. Thin-walled L-section 

and, on the basis of the equations ( 5 9 ,  the tensor r has the form 

- E 2 b 5 6 [  53 - 1301 
360G - 130 416 

By computing the inverse of J: 

the final expression of the shear factors tensor is finally obtained, by means of equations (15) and 
(27): 

x = - [  3 56 '1 
40 1 23 

The eigenvalues of the tensor J are given by 

19-J% 1 9 + m  
( 1  = 24 9 5 2  = 24 
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and the corresponding eigenvectors can be written as 

8 

13 + J233 8 

j2 = J i G z i Q 5 z O 1  - J i G Z q z O 2  

where o1 and o2 respectively denote the unit vectors parallel to the shorter and the longer branch 
of the cross section. 

a) Thin-walled round tube 

I b I 

7 
c) Thin-walled T-section 

I b I 

b) Thin-walled box section 

h 

I b I 
I 

d) Thin-walled I-section 

Figure 4. Thin-walled sections considered in the comparison of the shear factors values 
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Table I. Comparison of the computed shear factors for different values of 
Poisson’s ratio v 

Shear factor values Round tube Square tube T-section I-section 
Present theory 2~000 2.400 3.380 2.544 

v = o  2~000 2.400 3.380 2.544 
Cowper’ v = 0.1 1.954 2.359 3.38 1 2.554 

v = 0.3 1.885 2-296 3.383 2.569 

The eigenvalues of the shear factors tensor x are given by 

79 - J1093 79 + J1093 
2 , ?2 = 

and the corresponding eigenvectors are expressed by 

2 ?1 = 

2 
01 - 

3 3 + J i o 9 3  

3 3 - 4 6 5 3  2 

c1 = 
J2186 + 6 6 m  

c2 = 0 1  - 
,/2186 - 6 6 m  

J2186 + 6 6 m 0 2  

,/2186 - 6 6 m 0 2  

The relative rotation between the principal directions given by equations (115) and (1 17) is clearly 
depicted in Figure 3. 

An automatic procedure has been implemented in a computer program to deal with thin- 
walled cross sections of arbitrary shape. 

Four additional examples have been developed for symmetric cross sections in order to 
compare the values of the shear factors along the axis of symmetry with the ones obtained by 
Cowper for Timoshenko beam theory by integrating the equations of the three-dimensional 
theory of elasticity. 

Additional results on the shear factors values for symmetric thin-walled cross sections can be 
found, e.g., in References 11-13. 

The shapes of the four cross sections are sketched in Figure 4 and the comparison of the results 
is reported in Table I. The numerical results for the three last examples refer to the special case in 
which b = h. 

It has to be remarked, however, that the present method and Cowper’s approach always yield 
the same results when the Poisson’s ratio v is zero. This occurrence can be justified by the fact that 
the assumed shear stress distribution satisfies the equilibrium conditions but cannot meet the 
compatibility requirements unless v = 0.14 

CONCLUSIONS 

It has been shown that the elastic analysis of thin-walled beams, with open and closed cross 
sections of arbitrary shape, can be simply and effectively achieved when transverse shear 
deformations need to be taken into account. 

To this aim, explicit formulas have been provided for the calculation of the shear deformability 
tensor and shear centre location in the case of polygonal, circular and arc-shaped cross sections. 
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A fairly exhaustive presentation of the relevant formulas for open and closed cross sections has 
been developed, thus providing useful tools for practical applications. 

A new co-ordinate-free expression of the stiffness tensor for beam elements which takes into 
account the shear deformability is provided. It generalizes the classical formulas to the case of 
beams with non-symmetric cross sections. 

A computer code for the automatic analysis of thin-walled cross sections of arbitrary shape has 
been developed and some numerical examples have been carried out. 

The shear deformability of thin-walled multicell cross sections, which have not been dealt with 
here, will be the subject of a forthcoming paper. In this more complex case, actually, the 
evaluation of the shear stress distribution requires the adoption of methods and procedures which 
are inherent to graph theory. 
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APPENDIX I 

Let r be the tensor defined by equation (37). In order to prove its positive definiteness it is 
sufficient to show that Tv-v > 0 for every constant vector v. Since 

we can write 

Hence we have to show that 

( f c g d s ) ( f c $ ) > ( f c z d s > '  V v f O  

Iff@) and g(s) are two square integrable real functions, the Cauchy-Schwarz inequality ' gives 

Now, with the positions 

equation (121) becomes 

where the equality sign has been ruled out since s * v cannot be constant unless v = 0. 
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APPENDIX I1 

P C  

area of the beam cross section 
adimensional tensor-see equation (105) 
elastic area of the ith branch of a polygonal section 
see equation (1 2) 

stiffness submatrices of the beam-see equation (106) 

bending moments at the end section of the beam 
bending deformability tensor of the cross section 
shear deformability tensor of the cross section 
flexural curvature of the cross section 
shear centre 
length of the centre line of the cross section 
length of the ith branch of a polygonal section 
unit vector tangent to the centre line of the generic thin wall 
unit vector tangent to the centre line of the circular section at s = 0 
arbitrary unit vector 
unit vector along the axis of symmetry of an arc section 
Young’s modulus of elasticity 
Young’s modulus of elasticity of the ith branch of a polygonal section 
shearing forces at the end section of the beam 
shear modulus 
shear modulus of the ith branch of a polygonal section 
identity tensor 
second elastic area moment tensor 
unit vector along the beam axis 
length of the beam 
bending moment 
unit vector orthogonal to the centre line of the generic thin wall 
unit vector orthogonal to the centre line of the ith branch of a polygonal section 
elastic centroid 
position vector of a generic point on a cross section with respect to an arbitrary 
origin 
position vector of the shear centre with respect to the elastic centroid of the cross 
section 
position vector of the elastic centroid with respect to an arbitrary origin 
shear flow at abscissa s in case of open sections 
constant shear flow at abscissa s in case of closed sections 
see equation (28) 
see equation (65) 
see equation (49) 
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position vector of the generic point with respect to the elastic centroid of the cross 
section 
centre line radius of circular and arc sections 
position vector of the ith vertex of a polygonal section with respect to the elastic 
centroid of the cross section 
first elastic area moment vector at abscissa s with respect to the elastic centroid of 
the cross section 
see equation (31) 
first elastic area moment vector of the first i - 1 branches of a polygonal section 
with respect to the elastic centroid of the cross section 
see equation (52) 
profile co-ordinate 
symmetric part of the tensor M 
transpose of the tensor M 
shearing force 
shearing forces at the end section of the beam 
transverse displacement of the shear centre 
tensor-see equation (88) 
shear factors tensor of the cross section 
eigenvalue of the shear factors tensor of the cross section 
transverse shearing strain of the axis of the shear centres 
thickness of a generic wall of the cross section 
thickness of the ith wall of a polygonal section 
transverse displacements of the shear centre at the end sections of the beam 
extensional strain of the generic longitudinal fibre of the beam 
flexural rotation of the cross section 
flexural rotations at the end section of the beam 
tensor-see equations (25) and (37) 
tensors-see equation (37) 
see equation (47) 
shear strain vector 
tensor-see equation (1 1) 
shear stress vector 
half-width of the angle subtending the arc section 
derivative symbol along the axis of the beam 
scalar product 
derivative symbol with respect to s 
vector product 
tensor product 
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