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Abstract-An extended version of generalized standard elasto-plastic material is considered in the 
framework of an internal variable theory of associated plasticity. According to a backward difIerence 
scheme for time integration of the flow rule, a finite-step structural problem is formulated in a 
geometrically linear range. Convex analysis and a brand new potential theory for monotone multi- 
valued operators are shown to provide the natural mathematical setting for the derivation of the 
related variational fo~ulation. A general stationarity principle is obtained and then specialized to 
obtain a minimum principle in terms of displacements, plastic strains and internal variables. A 
critical comparison with an analogous minimum principle recently proposed in literature is per- 
formed, showing the inadequacy of classical procedures in deriving non-smooth variational 
formulations. 

1. INTRODUCTION 

In the early seventies a model of generalized standard elasto-plastic material was proposed 
by Halphen and Nguyen (1975). In this model the plastic flow rule is assigned through a 
normality law to a generalized elastic domain defined in the product space of stresses and 
thermodynamic forces. The free energy is assumed to be additively decomposed into two 
parts depending separately upon elastic strains and internal variables. 

An extended version of generalized standard material is here addressed in the frame- 
work of convex analysis. 

Performing the time integration of the plastic flow rule according to a backward 
difference scheme, the relevant finite-step elasto-plastic structural problem is formulated in 
a geometrically linear range. 

It is then shown that the associated variational formation can be developed following 
the general guidelines provided by recent results presented in Roman0 et al. (1992b, 1993a). 

The first step is to recast the structural problem in terms of a multi-valued structural 
operator defined in the product space of all state variables. This operator encompasses in 
a unique expression the field equations and the constitutive relations describing the finite- 
step elasto-plastic problem. 

The concept of conservativity for multi-valued operators, con~ibut~ in Roman0 et 
al. (1994) is then applied to obtain the related non-smooth potential by direct integration 
along a ray in the operator domain. 

Evaluating the generalized gradient of the non-smooth potential and imposing its 
stationarity, the operator formulation of the problem is recovered. 

Stationarity amounts to requiring that the null vector belongs to the partial sub- 
differential (su~r~~erential) of the potential with respect to the arguments in which it 
results in being convex (concave). 

A family of variational principles for the finite-step structural problem can then be 
obtained by enforcing the fulfilment of field equations and constraint conditions. In par- 
ticular the explicit derivation of a minimum principle in displacements, plastic strains and 
internal variables is provided. 

Further, by appealing to duality theory in convex programming, a minimum principle 
in displacements, plastic strains, internal variables and plastic parameters is derived under 
the assumption of sublinear yield modes. 

An analogous minimum principle has been recently proposed in Comi and Maier 
(1992) and Comi et al. (1992), and referred to as non-convex. 
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A detailed comparison reveals an essential difference in the constraint conditions. In 
fact the conditions considered in Comi and Maier (1992) and Comi et al. (1992) define a 
feasible set which turns out to be a proper subset of the variationally consistent one which 
the development carried out in the present paper leads to. As a consequence a coarser result 
is obtained and unduly complicated computational algorithms are generated. 

This variational flow is shown to be imputable to the mathematical theory resorted to. 
Classical variational theory, requiring differentiability of the involved functionals, cannot 
be applied to the treatment of essentially non-smooth problems. A suitable approach must 
be exploited following the general guidelines provided by concepts and methods of convex 
analysis and potential theory for monotone multi-valued operators. 

2. SOME PRELIMINARY RESULTS 

We briefly recall here some basic definitions and properties of convex analysis which 
will be referred to in the sequel. Further the notion of generalized gradient of a non-smooth 
potential is introduced. 

2.1. A background of convex analysis 
A comprehensive treatment of the subject can be found in Ekeland and Temam (1976). 

Ioffe and Tihomirov (1979), Moreau (1966) and Rockafellar (1970). 
Let (X, X’) be a pair of locally convex topological vector spaces (1.c.t.v.s.) placed in 

separating duality by a bilinear form (., .). 
The one-sided Gateaux derivative of a convex functional f: XH ‘33 u { + co} at the 

point x,, E domf, along the direction defined by the vector x E X, is given by : 

df (xo ; xl = p$ ; u-(xll + 4 - “mdl. 

The limit exists at every point x0 E dom falong any direction x E X since the difference 
quotient in the definition above does not increase as E decreases to zero [see Ioffe and 
Tihomirov ( 1979) and Rockafellar ( 1970)]. 

s(x) Ef df(xO ; x), 

turns out to be sublinear, that is positively homogeneous and subadditive : 

s(cIx) = as(x) VCZ30 (positive homogeneity) 

s(x,)+s(x~) 2 s(x, +x2) Vx,,x2 E X (subadditivity) 

Clearly the epigraph of s is a convex cone in Xx ‘3. 
If the sublinear functional s is proper, that is nowhere - co, and lower semicontinuous 

(1.s.c.) : 

lim inf S(Z) = S(X) V z E X, -_‘X 

it turns out to be the support functional of a non-empty closed convex set K: 

with 

s(x) = sup {(x*,x)1x*+, 

K = {x*EXIIS(X) 2 (x*,x) VXEX}. 

A proper convex functional is closed if and only if it is 1.s.c. 
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The subdzJfkentiu1 of the functional f is the multi-valued map, af: XH x’, defined 
by: 

ajyxo> gf K, 

and the elements of K are called subgradients. 
In particular, if the functional f is differentiable at x,,EX, the subdifferential is a 

singleton and coincides with the usual differential. 
We remark that the above definition of subdifferential turns out to be equivalent to 

the usual definition of subdifferential in convex analysis (Rockafellar, 1970), that is : 

The following rules usually hold for subdifferentiability (Ioffe and Tihomirov, 1979 ; 
Roman0 et al., 1992c) : 

(1) Chain-rule : given a differentiable operator A : XH Y and a convex functional 
f: YH 9l u { + co} which is subdifferentiable at y = A(x) we have : 

W-~Nx) = kWx>l’~f(AW>, 

where dA(x) is the derivative of the operator A at x and [dA(x)]’ is the dual operator ; 
(2) Additivity : given two convex functionals f, : Xt+ ‘93 u { + a~} and fi : XH 

‘33 u { + co} which are subdifferentiable at x E X, it turns out to be : 

The conjugate 
defined by : 

8(fi +f2)(4 = afi(X)+af,(x). 

of a convex functional f is the convex functional f * : x’ H ‘3 u { + co} 

f *(x*) = $<x*>Y)-f (Y)), 

so that Fenchel’s inequality holds : 

f(y)+f*(x*) 2 (x*,y> VYEX, vx*gXI. 

The elements x, x* for which Fenchel’s inequality holds as an equality are said to be 
conjugate and the following relations are equivalent when f is closed : 

f(x)+f*(X*) = (x*,x), x*Eaf(x), xEaf*(X*). 

Analogous results hold for concave functionals by interchanging the role of 
+ co, 3 and “sup” with those of - co, < and “inf” ; the prefix “sub” used in the convex 
case has now to be replaced by “super”. 

In what follows the subdifferential (superdifferential) of a convex (concave) functional 
will be denoted by the same symbol 8 when no ambiguity can arise. 

A relevant example of conjugate functionals associated with a convex set Kis provided 
by the indicator functional : 

I 0 ifxEK 
UK(X) = 

+ cc otherwise, 

and by the support functional : 
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u&*) = ;:; <x*, x>. 

Moreover we recall that the subdifferential of the indicator functional of a convex set 
K at a point x E K coincides with the normal cone to K at x : 

8UK(X) = NK(X) gf 
{x*EXI: (x*,y-x) 6 0 V~EX}, if xE K 
Qr 

otherwise. 

2.2. Potential theory, generalized gradients and stationarity properties 
In the classical calculus of variations the stationarity condition for a differentiable 

functional amounts to finding its critical points, that is the points in the domain of the 
functional at which its variations, i.e. two-sided directional derivatives, vanish. 

Such concepts must be suitably generalized when multi-valued operators and non- 
smooth functionals are dealt with. 

A potential theory for such operators has been recently contributed in Roman0 et al. 
(1994) which the interested reader is referred to for a detailed account. We shall here 
summarize the main results which will be of use in the sequel. 

A basic result of this theory ensures that the integral of monotone multi-valued 
operators along any straight line can be unambiguously defined. 

The classical concept of conservativity can then be suitably extended by requiring that 
the integral of a monotone multi-valued operator vanishes along any closed polyline in its 
domain. The related potential can thus be evaluated by integrating along a straight segment 
in its domain. 

The integral theorem provided in Roman0 et al. (1994) ensures further that a multi- 
valued operator which is directly expressed as subdifferential of a convex functional, turns 
out to be monotone and conservative; its potential coincides with the functional itself, to 
within an additive constant. 

Hence, given a convex functional f: XH ‘3 u { + co} and denoting by G = LJf: A’+-+ X’, 
its subdifferential turns out to be : 

g(x) -&a> = s ’ (G(t), d5) = ’ <G(xo + t(x-xo)), (x-xo)) dt, 
XrJ s 0 

and 

g(x) = f(x) +constant. 

We shall say that a convex functional f has a stationary point at x E dom f if the null 
vector 0 E X’ belongs to its subdifferential at x : 

oEaf(x)-df(x;h) 2 0 VhEX. 

The concepts above can be further generalized to the case of functionals which are 
convex with respect to some variables and concave with respect to others. 

To fix the ideas let us consider a functional f: Xx Y++ % which can be written as the 
sum of a convex functional f, : XH ‘3 u { + co} and of a concave one f2 : YH 93 u { - co}, 
i.e. 

Setting G,(x) = af,(x) and G,(y) = afr(y) we then consider the product operator : 

G(x,y) dzf G,(x) x Gz(,y) c X’ x Y’. 

It is easy to see that the multi-valued operator G is conservative and that its potential 
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is given by the sum of the potential of G, and GZ. In fact, taking account of the definition 
of the duality pairing in the product space Xx Y, we can integrate along a straight segment 
inXx Ytoget: 

s CGY) (AY) 

<G(L rl)> d(5, v)> = 
hY0) s. (x,yo) <G (0 x G,(v), d5 x drl) 

= s x (G,(O, d0 + ’ (WA dv). 
x0 s YO 

The integral of G along any closed polyline then vanishes by virtue of the conservativity of 
GI and G2. 

From the formula above we also infer that the potential of G is given by : 

s CGY) 

<(X5, ~1, d(L VI> = f,(x) -fi(xo)+fzW -fd~o) 
(Xo.Yo) 

= fb,Y)-ff(Xo,Yo). 

The multi-valued operator G is then consistently termed generalized gradient of the 
saddle functional f and we shall write : 

G = 13jI 

The stationarity off is thus enforced by the condition : 

where the upper 8 denotes the subdifferential and the lower one the superdifferential. 
A further item in the subdifferential theory of convex functionals has to be stressed. 
Iff: XH% u { + co} is a convex functional and the ambient space turns out to be the 

Cartesian product of n component spaces, i.e. X = X1 x * - * x X,, the global subdifferential 
off with respect to x E X is not equal, in general, to the Cartesian product of the partial 
subdifferentials with respect to each argument Xi E Xi. 

In fact the following general inclusion holds (Roman0 et al., 1993a) : 

8.f(4 c fI &,f(x) Sf &t-(x) x *** x&J-(x), x = (x,, . ..,x,). 

i= I 

However, equality holds in the special case in whichf is the sum of n convex functionals 
f; and each 5 depends only on the corresponding argument xi : 

Then we have : 

i= I 

af(x) = fi aA( 
i= I 

so that the stationarity (minimum) condition on f can accordingly be enforced on each fi 
separately : 
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OEdf(x)-=OEd,fi(~~). i = 1,. .,n. 

Clearly analogous results can be stated for concave functionals. 

3. CONSTITUTIVE RELATIONS 

Let us consider a continuous elasto-plastic body undergoing small deformations in an 
isothermal process. 

We assume that hardening phenomena are described by means of a set of internal 
parameters which take account of the significant changes in the material structure at the 
microscale level. Contributions to this issue which are more relevant to the present treatment 
have been given by Halphen and Nguyen (1975), Nguyen (1977), Martin (1975, 1981) 
Martin and Reddy (1988), Martin and Nappi (1990), Eve et al. (1990) and Roman0 et al. 
(1992a, 1993b). 

We address a constitutive model which is an extension of the generulized standard 
elasto-plastic material proposed by Halphen and Nguyen (1975). 

Accordingly, the existence of a generalized elastic domain C, in the product space of 
stresses and thermodynamic forces ,4p, x Xi is postulated. This set is assumed to be convex 
and to contain the origin. 

The subscript “I” is used to distinguish the local entities, such as the variables appearing 
in the constitutive relations, from the corresponding global fields pertaining to the whole 
structure. In this respect we shall denote by x the points in the domain V of the body. 

Denoting by g1 the linear space of strains E(X) and by X, the linear space of internal 
variables a(x), the corresponding duals will be the linear space Y, of internal stresses a(x) 
and the linear space Xi of thermodynamic forces x(x). As usual the total strain E(X) E 9, is 
assumed to be the sum of an elastic strain e(x) and of a plastic strain p(x) : 

E(.Y) = e(x) +/7(x). 

The flow rule assumed by Halphen and Nguyen (1975) for the generalized standard 
elasto-plastic material is the counterpart of the analogous expression for the classical 
standard material in which the elastic domain is considered in the space of stresses alone. 

Actually the flow rule is expressed by the condition that the right time derivatives of 
the plastic strains and of the internal variables b(x), i(x) belong to the normal cone to the 
local elastic domain C, at (a(x), x(x)) : 

The free energy function cp : 9, x X, H R u { + co} is assumed to be jointly convex in 
the elastic strains e(x) and in the internal variables a(x). Stresses b(x) and thermodynamic 
forces x(x) are accordingly defined by the multi-valued relation : 

b(x), -x(x)1 E ~cp[W, 441, 

where the symbol d denotes the subdifferential operator in the product space of elastic 
strains and internal variables. 

Following Halphen and Nguyen (1975) we shall assume that the free energy is addi- 
tively decomposed in two parts depending separately upon elastic strains e(x) and internal 
variables U(X) : 

The convex function 4 : 9,~ 93 u ( + co> represents the elastic strain energy and the con- 
cave function z : X,H ‘3? u { - m} describes the role of the internal variables in the hardening 
processes. 
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The exnression which relates stresses and thermodynamic forces to elastic strains and 
internal variables can thus be re-written as follows : 

where the same symbol 8 denotes the subdifferential 
the superdifferential in the latter one. 

operator in the former relation and 

4. THE ELASTO-PLASTIC STRUCTURAL PROBLEM 

In order to develop the variational formulation of the structural problem the relevant 
relations must be written in global form, that is in terms of quantities pertaining to the 
whole structure. In the sequel such quantities will be referred to as fields. 

For a continuous model such fields are functionals defined in the domain V occupied 
by the body and are elements of a suitable functional space. 

Global functionals are then obtained from the corresponding local functionals through 
integration over the domain V. 

For instance, denoting by Cp the elastic energy stored in the whole structure and by e 
the elastic strain field, it results : 

m(e) ‘%I’ 
s 

+[e(x)] dx. 
V 

Notice that, whenever the local functionals are convex, the corresponding global ones 
also turn out to be convex in the relevant fields. 

The subdifferential of the global elastic energy is defined as : 

a E &D(e) g d@(e ; q) = 
s 

d4W) ; rl(x)l dx 3 4x) a h(x) - &)I d.~ v v(x) E %, 
V s V 

where the dot denotes the scalar product between local quantities. Hence the following 
equivalence holds (Panagiotopoulos, 1985) : 

g E &D(e) o a(x) E &$[e(x)] almost everywhere in V. 

In the sequel we shall denote by II the global functional corresponding to K and by C 
the elastic domain of stress and thermodynamic force fields defined by : 

c= {(a,x)E9xX~[a(X),X(X)]EC, VXEV}. 

The description of the elasto-plastic structural model is completed by specifying the 
field equations and the external constraints. 

We make reference to structural models in which equilibrium is unaffected by geometry 
changes so that a linear strain measure can be adopted. 

Let us denote by 9, ~2 and X the linear spaces of displacement, strain and internal 
variable fields and by 9, Y and x’ the corresponding duals, that is the linear spaces of 
external force, stress and thermodynamic force fields, respectively. 

In a geometrically linear range, equilibrium and compatibility are expressed as follows : 
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where T: 42 H 9 and T’ : Y+-+ 9 are dual linear operators (Panagiotopoulos, 1985 ; 
Roman0 and Rosati, 1988). 

External force fields are given by the sum of the applied load 1 and of reaction fields I 
of external constraints : 

f = l+r. 

Introducing the concave potential Y : $2 I-+ ‘93 u ( - co], the external constitutive 
relation between reaction and displacement fields can be written as : 

Such a relation provides a model of external constraints which includes several cases 
of interest in Structural Mechanics such as bilateral or unilateral constraints, elastic or 
elasto-viscoplastic foundations and so on. A survey of the particular expressions assumed 
by the functional Y in each of these cases can be found in Rosati (1989). 

The expression which relates external force fields to displacement fields is then : 

.f’= I+rEaI(u), or equivalently u~dI*(f’), 

where 

T(u) = (f,u)+Y(u), r*(f) = r*(f-I), 

are concave functionals I* and Y* being the conjugates of I and Y, respectively. 
For the sake of clarity we specialize the general expression of Y to the particular case 

of external frictionless bilateral constraints with imposed displacement fields 6. 

Denoting by L,, the subspace of admissible displacement fields and by R = Lh the 
subspace of external reaction fields, it results : 

Here the symbol Li represents the orthogonal complement of the subspace LO and 1-1 the 
concave indicator. 

Accordingly the relation rEZY(u) is equivalent to stating that UEU+ LO and that 

rELi = R. 
Given a load history I(t), the elasto-plastic evolutive structural problem is thus 

governed by the following set of relations : 

f=T’o static equilibrium, 

e+p = Tu kinematic compatibility, 

(d, oi) E N<.(a, x) flow rule, 

c7 E B(e) 

crEdII*(X) 
free energy, 

=aI*(.f) external constraint, 

where II* is the conjugate of II. The explicit dependence of the state variables on time t 
has been dropped to simplify the notations. 

4.1. Elasto-plastic finite-step structural problem 
The incremental analysis of the non-linear elasto-plastic structural problem is per- 

formed by a subdivision of the time interval into a finite number of steps At; we assume 
that no plastic unloading can occur during any of the intervals At, = ti- t, , . 

A finite-step analysis of the evolutive problem amounts to evaluating the finite 
increments of the unknown variables corresponding to a given increment of load when their 
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values are assigned at the beginning of the step. In the sequel we shall denote by (s),, the 
known quantities (0) at the beginning of each step. 

The irreversible, path-dependent behaviour of plasticity is accounted for by updating 
the values of the internal variables a at each step. 

In order to formulate the finite-step counterpart of the flow rule (& &) E Ne(cr, x), the 
time derivative is replaced by the finite increment ratio (p -po, a - a,)/At. Adopting a fully 
implicit time integration scheme (Euler backward difference), the flow rule is enforced at 
the end of the step, according to the relation : 

; (P-P09 a-ao)~kb4x), 

which, being N&a, x) a convex cone, can also be written : 

The extremum characterization of the solution of the finite-step evolutive problem is 
carried out in the next section. 

5. VARIATIONAL FORMULATION 

We shall prove in this section that the finite-step elasto-plastic structural problem does 
admit a variational formulation. In this respect some preliminary considerations can result 
in a deeper understanding of the matter. 

We are interested to provide the expression of a real-valued functional whose gradient, 
in a suitably generalized sense, yields back the field equations and the constitutive relations 
governing the structural problem. 

As is well known from classical potential theory, an operator admits a potential if and 
only if it is conservative, i.e. circuital integrals vanish along every closed curve in the 
connected domain of the operator. The expression of the potential can then be obtained by 
direct integration. A necessary and sufficient condition for the conservativity of a differ- 
entiable operator is the symmetry of its first derivative. 

A completely different situation has to be faced when multi-valued operators are 
dealt with. Elastic-plastic structural problems are relevant examples of this kind since the 
constitutive relations are expressed as subdifferentials of convex functionals so that dual 
pairs of state variables are related by monotone multi-valued operators. 

A potential theory for such operators has been contributed in Roman0 et al. (1994) 
and briefly outlined in Section 2.2. 

The application of the theory to the finite-step elasto-plastic structural problem will 
be now exploited in detail. To this end it is convenient to recast the original problem in a 
suitable operator form. 

We recall in advance that the finite-step flow rule can be given the following equivalent 
formulations : 

W-po,a---aO)~W~,x) = aUc(o,x)O(a,x)EaU~(p-pO,a-ao), 

where uz is the support functional of C, defined by : 

uc*(P--P09a--0) ~ffup~(~,p-pO)+(x,a--Oo) I hx)EC). 

This functional has the physical meaning of finite-step dissipation associated with a 
given increment of plastic strain and internal variable fields. It turns out to be non-negative 
if and only if the null stress and the thermodynamic force fields belong to the elastic domain 
and strictly positive if they lie in its interior (Roman0 et al., 1992a). 

us m17-0 
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The dissipation functional pertaining to the whole structure can be evaluated from the 
local one. In fact, it can be proved that (Panagiotopoulos, 1985 ; Roman0 et al., 1992d), 
from the expression of the local dissipation functional : 

Lx,(PW, W) = sup (44 *P(x) +x(x) * 44 I km x(41 E GI 3 

the corresponding global one can be obtained by the formula : 

u:(Pd = yu:,(~(x),4x)) dx. s 
Adopting the inverse form of the finite-step flow rule involving the global dissipation 

functional, the finite-step elasto-plastic structural problem can then be re-formulated as 
follows : 

1 

f=T'cr, 
e+p = TM, 

in terms of the values of the fields at the end of the finite step. 
Introducing the dual product spaces W = 92 x Y x 9 xXx 9 x X’xF and 

W’ = 9 x .9 x Y x X’ x 9’ x Xx 42, we can arrange this set of relations to build up a global 
multi-valued structural operator S : WM W’ governing the whole problem : 

OES(w) = S(w)+a, we W, aE w’, 

whose explicit form is given by : 

E 

0 T’ 0 0 0 0 -I* 

T 0 --Iv 0 --I, 0 0 

0 - Iv 

au: 

0 0 0 

0 0 0 --I,, 0 

0 -z, 0 0 a@ 0 0 

0 0 0 -z, 0 an* 0 

-z, 0 0 0 0 0 ar* 

U 

(7 

P-PC 

c?---cIQ 

e 

3 

+ 

0 

-Po 

0 

0 

0 

-UO 

0 

The conservativity of the operator S follows from the duality existing between the pairs 
(T, T’), (I,, Z*), (L, I,), (I,, I,,) and the apparent conservativity of the other relations. In 
fact the operator S can be expressed as the sum of Cartesian products of monotone 
conservative operators and hence (see Section 2.2) turns out to be conservative. 

The associated potential can then be evaluated by summing up the potentials of each 
component operator. Hence we can write : 

Q(w) = s ’ <SW), w> dt = ’ &W, w> dr-<o,po) - <x, ao), 
0 s 0 

to get : 
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W, w, a, e, x, f) = @(e)+II*(x)+Wf)+ LJ~(P-P0,~-hd+(~, Tu) 

-<f,u>--(a,e+p>--(x,d. 

The functional Cl turns out to be linear in (u,~), jointly convex with respect to the 
variables (p, ~1, e) and jointly concave with respect to the pair (x, f). 

According to the theory outlined in Section 2, the generalized gradient of $2 yields back 
the structural operator S, i.e. 

s = aa 

To achieve further evidence of this result, let us explicitly recover the operator form 
of the structural problem from the stationarity condition of R enforced at the point 

w = (u, b,p, a, e, x, f) : 

0 E an(w). 

By virtue of the properties of R previously recalled, its stationarity is expressed by the 
following sets of relations : 

1 
0 E a,fw, 
0 E am4 
(o,o, 0) E a,p,,e,w) = acp.d-w x as-w, 
no) E acx,dw) = v-w x a,w). 

Hence, performing the subdifferentials and the superdifferentials in the corresponding 
spaces, the operator form of the problem is recovered : 

OE~,R(~)~ f = 7-k, 

0 E &!2(w) o e+p = Tu, 

640) 4dw) * (a,~) E au:ti-pO, a-4, 

o~a,R(~)-=-t~~am(e), 

O~a,n(~)- ac an*(x), 

oEa,n(w)-uEar*(f). 

Reverting the steps above, a solution of the finite-step elasto-plastic problem can be 
shown to make the functional Q stationary. 

We then infer the following : 

Proposition 1. A vector w is a stationarity point for the functional St if and only if it is 
a solution of the finite-step elasto-plastic structural problem. 

6. MINIMUM PRINCIPLES 

A family of functionals can be derived from the potential n by enforcing the fulfilment 
of field equations and of constitutive relations. All these functionals do assume the same 
value when evaluated in correspondence to a solution of the structural elasto-plastic 
problem. 

We shall explicitly derive here a functional jointly convex in (u,p, a) which provides a 
useful tool for computational algorithms. 

To this end we first recall that, by Fenchel’s equality, the following equivalences hold 
(Rockafellar, 1970) : 
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uEar*(_f-)-r(u)+r*(f) = (.fYu>, 

aEarI*(x)-+rI(cr)+rI*(~) = (x,a>. 

Substituting these relations in the expression of the functional Q and enforcing in 
addition the kinematic compatibility condition e = Tu-p, we get : 

which is jointly convex in (u,p, a). 
We can then state the following : 

Proposition 2. A triplet (u,p, a) is an absolute minimum point for the convex functional 
Q, if and only if it is a solution of the finite-step elasto-plastic structural problem. 

In order to provide an explicit proof of this proposition, we will show hereafter that 
the functional RI turns out to be the potential of an operator associated with an alternative 
formulation of the finite-step elasto-plastic structural problem. 

Let us consider the subdifferential of the convex functional R, : 

S,(u,p,a) = dG(u,p,a). 

In explicit form the multi-valued operator S, is given by : 

where 

Ah P) 

S&p~a) = + 

0 _ 

- 0 

B(P, a) 

au4 

- 0 

_ aw4 

W,P) = aPN(w-0, W,a) = Q_._&p-po,a-ad~ 

and the operator N:@ xQ++33 is defined in such a way that (@oN)(u,p) = @(Tu--p), 
that is : 

N = [T, -Z,]. 

The multi-valued operator S, is apparently conservative and the integral theorem 
provided in Roman0 et al. (1994) ensures that n, is the potential of S ,. 

Hence any minimum point (u,p, a) of 52, is characterized by the inclusion : 

(0, 0, 0) E St (4~~ Co, 

and vice versa. 
To prove the result we have just to show that the operator S, corresponds to a suitably 

reduced formulation of the finite-step structural problem expressed in terms of the state 
variables (u, p, a). 

Actually the condition (0,O,O)~S,(u,p,a) is equivalently expressed by the set of 
relations : 
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oET’&D(Tu-p)-ar(u), 
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0 [I 0 
~au&w-b,~-~o)-- r@&ip)]. 

since 

A(q) = a(@ 0 N)(u,p) = N’&D(N(u,p)) = T;;;E;;; 
1 
, 

and the operator N’ : 9’ w 4” x 9, dual of N, is given by : 

T 
N’= _I 

[ 1 . 
9 

We may then conclude that there exists an external force satisfying the external 
constraint condition : 

which is equilibrated by an internal stress : 

such that the elastic strain e is associated with the pair (u,p) by the relations : 

such that : 

E = Tu, e = E-P. 

Moreover there exists a pair (CT, x) satisfying the condition : 

The whole elasto-plastic finite-step problem is thus recovered. 
follows at once by reverting the steps above. 

The converse implication 

Remark 
Minimum principles in structural mechanics are especially relevant in twofold direc- 

tions ; solution techniques based on minimization procedures can be exploited and existence 
and uniqueness results can be provided under suitable conditions by making recourse to 
the mathematical methods of functional analysis. 

In particular uniqueness is guaranteed if the functional to be minimized turns out to 
be strictly convex. In finite-step elastoplasticity the question of existence is by far more 
involved and, in general, still an open problem. 

A discussion on this issue is definitively out of the scope of this paper. Anyway we may 
quote two recent contributions by Reddy and Griffin (1988), Reddy (1991) concerning the 
existence results for elasto-plastic models of the type proposed by Martin (1981) and Martin 
and Reddy (1988). Martin’s model can be shown to be recovered as a special case of the 
generalized standard material considered here by assuming a cylindrical elastic domain in 
the product space of stresses and thermodynamic forces [see Roman0 et al. (1993b)l. 
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6.1. Sublinear yield modes 
In view of a direct comparison with an analogous minimum principle presented in 

literature (Comi and Maier, 1992; Comi et al., 1992) we shall further specialize the 
expression of the dissipation functional u z to the case of sublinear yield modes. 

Let the elastic domain be defined, for all x E V, by means of a finite family of sublinear 
yield modes tii : Y, x X$H !I? u { + co} and yield limits Y, : 

C/={[~(X),X(X)I~~DIX~~IIC/~[~(X),X(X)] < Yiy i=l,...,n}. 

The corresponding global sublinear yield modes Y, are then defined by : 

so that the global elastic domain is given by : 

C = fi Ci where c, = {(c, x) E ,Y x X’ 1 ulj(0, x) < Yi}. 
i= I 

Collecting the yield limits Yi and the parameters lj in the vectors Y and ;I, the expression 
of the global dissipation functional u: can be directly obtained by means of a formula 
provided in the appendix : 

where 

EL* Yd2 i &Y,, and 3P,(O,O) = YiCy. 
,= I 

The convex sets C p are the polars of C, : 

Proposition 2 can then be re-formulated as follows : 

Proposition 3. A quartet (u,p, a, 2) is a solution of the convex optimization problem : 

with 

s1,.,(u,p,u,A) = qTz4-p)-r(u)-l-I(cl)+1* Y, 

if and only if it is a solution of the finite-step elasto-plastic structural problem. 

Remark 
In recent papers, G. Maier, C. Comi and U. Perego have investigated the formulation 

of variational principles for finite-step solutions of elasto-plastic structural problems (Comi 
and Maier, 1992 ; Comi et al., 1992) assuming a constitutive model which is a special case 
of the one considered here. The time integration of the constitutive law has been performed 
according to a fully implicit scheme. 

A minimum principle in (u,p, cc, A) is proposed in Comi et al. (1992) to characterize a 
solution of the problem ; increments of the state variables in each finite step, instead of their 
final values, are taken as unknowns and a linear elastic behaviour is considered. 
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In particular the assumptions of sublinearity of the yield modes ‘Pi and their differ- 
entiability (even twice in the sufficiency proof) appear essential to their arguments. 

In our notations the minimum principle proposed in Comi et al. (1992) reads : 

min {Q&,p, a, A) = ‘2 Ilelli - (1, u) -II(a) +I * Y}, 

subject to the constraints : 

where 

Tu =e+p, c = Ee and x =dlI(a). 

With reference to this minimum principle some observations are in order. 
The functional 0 ,, , of our Proposition 3 coincides with !& under the assumption of 

linear elastic behaviour, external frictionless bilateral constraints and differentiability of the 
functional II, i.e. 

W-U-P) = t II =A& I’(u) = (I, u) with u E L,. 

There is however a significant difference between the two minimum principles for what 
concerns the second constraint condition. 

First we observe that this condition on the functional RM must be suitably re-written 
since the assumed differentiability of the yield modes ‘Pi is unnecessary and even question- 
able. In fact sublinear functionals turn out to be inherently non-differentiable at the origin. 
The notion of differentiability has thus to be replaced by the weaker notion of sub- 
differentiability. 

Accordingly, the constraint condition proposed in Comi et al. (1992), must be re- 
written as follows : 

P-P0 

[ 1 E i Izi d’I’i(U, X) with 
a-a0 

o = Ee ; x = dII(a). 
i= I 

Anyway, a comparison with the result of Proposition 3, reveals that the requirement 
above is unduly restrictive ; in fact it can be recovered as a natural property of a solution 
of the extremum principle, formulated under a less stringent condition. In fact sublinear 
functionals enjoy the following characteristic property : 

aYi(Up X) E dY!f(O, 0) V (Up X) E 9 X x’. 

A subtle point is worth being further clarified. As shown above the feasible set of the 
extremum principle proposed in Comi et al. (1992) turns out to be a proper subset of the 
variationally consistent one derived in the present paper. 

This proper subset contains, however, the whole solution set since the conditions 
supplementing the functional QM must be fultUed by any solution of the problem. As a 
consequence, the principle claimed in Comi et al. (1992) does in fact hold true but its 
statement, being non-optimal, belongs to the category of variational crimes. 

Finally it has to be observed that, due to the involved form of their constraint condition, 
the minimum principle proposed in Comi er al. (1992) has been referred to by the authors 
as non-convex. In this respect, we feel that a global minimum property stated in a non- 
convex context should, legitima suspicione, be carefully checked. 
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7. CONCLUSIONS 

The variational flaws pointed out above suggest some general considerations. 
Variational principles that are built up without a well established directory plan can 

eventually give rise to ill-constraining phenomena since constraint conditions in surplus to 
the minimal set are added. In this case poorer results are obtained and unduly complicated 
algorithms will be generated. 

With specific reference to the present context the source of troubles can be clearly 
detected ; it is imputable to the mathematical theory resorted to. Classical smooth potential 
theory does not in fact provide adequate tools to handle with inherently non-smooth 
problems. 

Up to now, travellers without non-smooth potential tools in their luggage, were 
compelled to discover variational principles for non-smooth problems by skilful intuition 
and to infer their validity uposteriorion the’basis of adhoc procedures. Often, on establishing 
the if and only if parts of the statement, different paths had to be followed and different 
assumptions had to be made to reach the goals ; sometimes differential rules were applied, 
despite their apparent inapplicability, as a last resource. 

As a result the pilot could eventually lose the control of the navigation allowing for 
clandestine conditions to be shipped in. 

The brand-new non-smooth potential theory provides now general guidelines for a 
direct variational formulation of problems initially put forth in terms of multi-valued 
operators. 

Plastic flow problems are significant examples of this kind in structural mechanics. 
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APPENDIX 

We present here an explicit proof of the formula : 

To this end we recall that the Minkowski formula associates a I.s.c. non-negative sublinear functional 
yK: !X^H R u { + a~) with any closed convex set K containing the origin (Rockafellar, 1970) : 

Y&) = inf{y 2 0:zcpK). 

Moreover, denoting by K” the polar of K, i.e. the closed convex set defined by : 

K” gf {z*E%-‘((z*,z) d 1, VzcK}, 

it results (Rockafellar, 1970) : 

L$(z’) = Y&*). 

Further, there is a one-to-one correspondence between sublinear functionals gi : I w R v { + co} and closed 
convex set Ai C_ 55’ according to the following formulae : 

and 

g,(z) = sup {(z*,z)lz*~Ai}, 

A,Y {z*&‘lg,(z) > (z*,z) Vz&-} = agi(0). 

The next lemma shows that, when a convex set Kis assigned as intersection of level sets of sublinear functionals 
g,. its polar K” can be expressed in terms of the convex sets Ai corresponding to gi. 

Lemma. Let gi : L!iT H R v { + CO}. ic I = { 1,. , n} be a family of non-negative sublinear functionals and K 
the convex set defined by : 

where 

are the Ieoel sets of gi at ai > 0. Then 

Proof. Taking account of the expression of gi in terms of Ai, each convex set Ki can be expressed in the form : 

K, = {zE%:(z*,z) < ai VZ*EA:}. 

By definition of the polar set, it results : 
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cl 

and A, = a,Ky, 

the second relation holding since gi is non-negative and hence each set Ai is closed and contains the origin. 
Let us recall the general relation : 

The convex hull on the right-hand side is closed and contains the origin so that, taking the polar of both sides we 
get the result (Rockafellar, 1970). 


