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Introductory Chapter

“ Lie theory is in the process of becoming the most important part of
modern mathematics. Little by little it became obvious that the most
unexpected theories, from arithmetic to quantum physics, came to
encircle this Lie field like a gigantic axis.” 1

– Jean Dieudonné

1.1 State of the art

In the general context of finite displacements, the state of the art presently
referred to in literature is the one contributed in The Non-Linear Field
Theories of Mechanics (NLFTM) by Truesdell and Noll (1965).

The finite strain constitutive theory of elasticity exposed in (Truesdell
and Noll, 1965), Sect. 43, stipulates an abstract law relating the Cauchy
stress tensor T to the deformation gradient F :

T = E(F) . (1.1)

A rate theory is also exposed in (Truesdell and Noll, 1965), Sect. 99,
based on the original proposal by Truesdell (1955) under the name hypo-
elasticity:

Ṫ = H(T,L(v)) , (1.2)

with Ṫ material time derivative and L(v) = ∇v velocity gradient.
The reduction argument adduced by Noll (1955), relying on previous

work by Richter (1952), is usually applied to rewrite the finite strain elastic
law in a reference local placement as

S = Eref(U) , (1.3)
1 Quoted from (Arild Stubhaug, 2002).

3



4 1. INTRODUCTORY CHAPTER

and the hypo-elastic law as
◦
T= H(T) ·D(v) , (1.4)

S is the symmetric Piola-Kirchhoff referential stress,

U =
√

FTF is the referential right stretch,
◦
T = Ṫ + W(v) T−T W(v) is the Jaumann co-rotational stress-rate,

D(v) = sym∇v is the stretching,

H is the elastic tangent stiffness, nonlinearly dependent on the stress T .

The reduction procedure is based on an appeal to the principle of Material
Frame Indifference (MFI) enunciated by Noll (1958). A careful analysis
reveals however that the formal expression of the principle of MFI is af-
fected by a geometrically improper interpretation of the relation between
points of view of distinct observers (Romano, Barretta, 2013b). The cor-
rect geometric formulation of frame invariance leads to the new principle
of Constitutive Frame Invariance (CFI) as substitute of the MFI, so that
reduction procedures are not feasible, as will be discussed in Sect. 3.7.

As explicitly observed in (Truesdell and Noll, 1965), Sect. 80, the elastic-
ity map E in Eq. (1.1) depends on the choice of a reference local placement.
Consequently the theory requires an assumption concerning invariance with
respect to this choice. But this invariance eventually amounts to assume
that the elasticity map E does not depend on the deformation gradient.
Moreover, not discussed in (Truesdell and Noll, 1965) are the following is-
sues.

1. The formula Eq. (1.1) states a relation between a tensor T , based at
an event on the trajectory, and a two point tensor F , pertaining to a
pair of events. This contradiction cannot be resolved just by imposing
an invariance property, as observed above. To be more explicit about
this comment, one should imagine to perform a thought experiment
to evaluate the constitutive properties of an elastic material. Assum-
ing that the stress-state and its time rate are evaluated by means of
statical measurements and theoretical reasonings and that non-elastic
phenomena are excluded by a careful testing procedure, the dual state
variable, allowed to enter in the description of the material behavior at
that time, is the time-rate of change of metric properties, the stretch-
ing. A finite strain or a deformation gradient do on the contrary refer
to a start and to a target body placement. The latter is the current
placement while the former is not detectable by laboratory tests.

2. The formula (1.1) should better describe the change in the elastic de-
formation in response to a given change of stress. In this way the
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geometric change of deformation can be directly evaluated as the sum
of various contributions described by different inelastic constitutive
responses to changes of various state variables, such as stress, temper-
ature, electromagnetic fields and internal structural parameters.

The assumption that the deformation gradient is a driving factor in
describing the constitutive behavior of elastic materials, embodied in Eq.
(1.1), contrasts with the physical evidence that materials do not react to
isometric displacements. Noll’s reduction argument, intended to eliminate
the incongruence, is a belated remedy based on an appeal to the geometri-
cally incorrect statement of MFI, as evidenced above. The further remedy,
adduced to include plasticity and other inelastic behaviors by means of a
chain decomposition of the deformation gradient into inelastic and elastic
parts (Lee and Liu, 1967; Lee, 1969), was worse than the disease. Indeed,
concerning intermediate local placements and ordering of parts in the chain,
troubles soon began and are still persistent after some fifty years. This clear
indication of inadequacy of the proposal was not effective in dissuading many
valuable researchers from perseverating and now the poisoning remedy has
risen to the role of deus ex machina in formulating geometrically nonlinear
constitutive behaviors (Lubarda, 2004).

The reason why it was, and is still commonly considered to be, difficult to
give up with the untenable chain decomposition of the deformation gradient,
is that a satisfactory rate theory of elasticity was not at hand.

The hypo-elastic law expressed by Eq. (1.4) is indeed affected by draw-
backs concerning the following issues.

1. In formula Eq. (1.4) the stress rate
◦
T suffers of a longly debated

intrinsic indeterminacy which cannot be resolved without a consistent
geometric treatment.

2. In order to give to hypo-elasticity the physical role of satisfactory
elastic model, applicable integrability and conservativeness conditions
are required.

3. The formula Eq. (1.4) should rather describe the rate of change in the
elastic response to a given rate of change of the stress. In fact rates
of change in the response may well be due to causes other than stress
rates of change, such, for instance, as temperature rates of change,
and the geometric stretching will in general also include rate inelastic
responses of the material.

Items 1 and 2 were already treated in (Truesdell and Noll, 1965), Sects. 99,
100, but the indeterminacy was not resolved, being rather accepted as an
unavoidable feature of rate theories. Integrability was discussed in (Bern-
stein, 1960) by performing a comparison between the hypo-elastic law Eq.
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(1.2) and the time derivative of the elastic law Eq. (1.1) leading to prob-
lematic conclusions. The same treatment of integrability was also adopted,
but with a simpler exposition, in (Sansour, Bednarczyk, 1993). These un-
successful investigations led researchers involved in computational issues to
strive to abandon the rate elastic model (Simo and Pister, 1984; Simo and
Ortiz, 1985; Simo, 1987, 1988).

1.2 Why geometry?

All the difficulties listed in the previous section, can in fact be overcome
by undertaking a new, geometric line of attack to the problem, as is being
evolving in a recent research activity (Romano, Barretta, Diaco, 2009a,b;
Romano, Barretta, Barretta, 2009; Romano, Diaco, Barretta, 2010; Romano,
Barretta, Diaco, 2010; Romano, G., 2011; Romano, Barretta, 2011, 2013a,b;
Romano, Barretta, Diaco, 2014a,b,c).

The leading ideas are the following.

1. New physico-geometric notions of material and spatial fields, both de-
fined on the trajectory manifold, are introduced to clarify basic issues
and restore a proper nomenclature. Constitutive properties are de-
scribed in terms of material fields. Comparisons of material tensors
at different times are performed in a natural way by push along the
motion.2 Spatial fields are instead to be compared by a choosing a
parallel transport along the motion in the trajectory manifold.

2. The geometric stretching is defined in a natural manner as the covari-
ant tensor given by one-half the Lie derivative of the material metric
tensor along the space-time motion.

3. The stress is described by a material contravariant tensor in duality
with the geometric stretching. The duality interaction between stress
and stretching provides the mechanical power per unit mass.

4. The elastic response is expressed in rate form by defining the elastic
stretching as a covariant tensor depending nonlinearly on the stress
and linearly on its time-rate, the stressing, which is the Lie derivative
of the stress tensor along the space-time motion.

5. The geometric stretching is assumed to be the result of the (commuta-
tive) addition of various physical contributions such as elastic stretch-
ing, thermal stretching, visco-plastic stretching, phase-change stretch-
ing, electromagnetic stretching, growth stretching, etc. provided by
specific models of constitutive response in function of current values

2 The notion of naturality is illustrated in detail in Sect. 3.2.1.



of the state variables, such as stress, temperature and internal param-
eters, and of the relevant time-rates along the motion.

A geometrically consistent constitutive theory can then be developed
with integrability, frame invariance and computational methods fully avail-
able, with a clear physical interpretation of the involved fields and with direct
experimental strategies designable for testing material properties. These ca-
pabilities will be evidenced in the sequel with explicit reference to elasticity.

For the reader’s convenience an essential background of geometric no-
tions and properties is provided in Ch. 2.
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Basic differential geometry

“ I am certain, absolutely certain that... these theories will be rec-
ognized as fundamental at some point in the future.” 1

– Marius Sophus Lie, 1888

2.1 Manifolds and morphisms

A manifold M is a geometric object which generalizes the notion of a curve,
surface or ball in the Euclid space. It is characterized by a family of local
charts which are differentiable and invertible maps onto open sets in a model
linear space, say <n . Then n is the manifold dimension. The inverse maps
are local coordinate systems. Velocities of parametrized curves through a
point e ∈ M on the manifold provide the tangent vectors at that point,
describing the tangent linear space TeM .

The dual space of real-valued linear maps on TeM is denoted by T ∗e M
or (TeM)∗ and its elements are called covectors at e ∈M .

To a smooth transformation χ : M 7→ N there corresponds, at each
point e ∈ M , a linear infinitesimal transformation Teχ : TeM 7→ Tχ(e)N
between the tangent spaces, called the differential, whose action on the
tangent vector ue := ∂s=0 c(s) ∈ TeM to a curve c : < 7→M , at the point
e = c(0) , is defined by

Teχ · ue = ∂s=0 (χ ◦ c)(s) . (2.1)

A dot · denotes linear dependence on subsequent arguments belonging to
linear spaces. A circle ◦ denotes composition of maps.

The chochét 〈 , 〉 denotes the bilinear, non-degenerate duality between
pairs of dual linear spaces (TeM , T ∗e M) or (Tχ(e)N , T ∗χ(e)N) .

1 Quoted from (Arild Stubhaug, 2002).

9
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The dual linear map

(Teχ)∗ : T ∗χ(e)N 7→ T ∗e M , (2.2)

is defined, for any ue ∈ TeM and wχ(e) ∈ Tχ(e)N , by the identity

〈Teχ · ue,wχ(e) 〉 = 〈ue, (Teχ)∗ ·wχ(e) 〉 . (2.3)

The tangent bundle TM and the cotangent bundle T ∗M are disjoint
unions respectively of the linear tangent spaces and of the dual spaces based
at points of the manifold.

The global transformation between tangent bundles Tχ : TM 7→ TN
is called the tangent transformation. The operator T , acting on manifolds
and on maps between them, is the tangent functor.

Zeroth order tensors are just real-valued functions. Second order tensors
at e ∈ M are bilinear maps on pairs of vectors or covectors based at that
point.

Tensors of order two are named covariant, contravariant or mixed, de-
pending on whether the arguments are both vectors, both covectors or a
vector and a covector. The corresponding linear tensor spaces at e ∈ M
are denoted by Fun(TeM) , Cov(TeM) , Con(TeM) , Mix(TeM) .

First order covariant tensors are covectors and first order contravariant
tensors are tangent vectors. Second order tensors at e ∈M are equivalently
defined as linear operators from a tangent or cotangent space to another such
space at that point:

scov(e) : TeM 7→ T ∗e M ∈ Cov(TeM) ,
scon(e) : T ∗e M 7→ TeM ∈ Con(TeM) ,
smix(e) : TeM 7→ TeM ∈Mix(TeM) .

(2.4)

A covariant tensor gM
e ∈ Cov(TeM) is non-degenerate if

gM
e (ue,we) = 0 ∀we ∈ TeM =⇒ ue = 0e . (2.5)

The corresponding linear operator gM
e : TeM 7→ T ∗e M is then invert-

ible and provides a tool to change tensorial type (alterations). The most
important alterations are those which transform covariant or contravariant
tensors into mixed ones and vice versa.

(scov)e ∈ Cov(TeM) =⇒ (gM
e )−1 · (scov)e ∈Mix(TeM) ,

(scon)e ∈ Con(TeM) =⇒ (scon)e · gM
e ∈Mix(TeM) .

(2.6)

Symmetry of covariant or contravariant tensors means invariance of their
values under an exchange of the two arguments.

The adjoint sAcov of a covariant tensor scov is defined by

sAcov(u ,w) = scov(u ,w) , (2.7)
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and hence symmetry amounts to the equality sAcov = scov .
A pseudo-metric tensor is a non-degenerate covariant tensor which is

symmetric, i.e.
gM

e (ue,we) = gM
e (we,ue) . (2.8)

A metric tensor gM
e ∈ Cov(TeM) is symmetric and positive definite,

i.e. such that
ue 6= 0 =⇒ gM

e (ue,ue) > 0 . (2.9)

A tensor bundle Tens(TM) is the disjoint union of tensor fibers which
are linear tensor spaces based at points of the manifold.

A bundle is characterized by a projection πM : Tens(TM) 7→M which
is an operator assigning to each element se ∈ Tens(TeM) of the bundle
the corresponding base point e ∈M .

The fibers π−1
M (e) are the inverse images of the projection and are as-

sumed to be related each-other by diffeomorphic transformations, so that
they are all of the same dimension.

A tensor field is a map s : M 7→ Tens(TM) from a manifold M to a
tensor bundle Tens(TM) such that a point e ∈M is mapped to a tensor
based at the same point, i.e. such that πM ◦ s is the identity map on M .
In geometrical terms it is said that a tensor field is a section of a tensor
bundle.

A transformation χ : M 7→ N maps a curve on M into a curve in N
and, under suitable assumptions, scalar, vector and covector fields from M
onto χ(M) ⊂ N (push forward ↑ ) and vice versa (pull back ↓ ).2

A synopsis is provided below. Assumptions of differentiability and in-
vertibility of the differential, are claimed whenever needed by the formulae.

Push forward from M on χ(M) , χ : M 7→ N injective .

ψ : M 7→ < , (χ↑ψ)χ(e) = ψe ,

v : M 7→ TM , (χ↑v)χ(e) = Teχ · ve ,

v∗ : M 7→ T ∗M , 〈χ↑v∗,w〉χ(e) = 〈v∗e, (Teχ)−1 ·wχ(e) 〉 .
(2.10)

Pull back from χ(M) to M .

φ : N 7→ < , (χ↓φ)e = φχ(e) ,

w : N 7→ TN , (χ↓w)e = (Teχ)−1 ·wχ(e) ,

w∗ : N 7→ T ∗N , 〈χ↓w∗,v〉e = 〈w∗χ(e), Teχ · ve 〉 .
(2.11)

2 In differential geometry push and pull are respectively denoted by low and high
asteriscs ∗;∗ (Abraham, Marsden and Ratiu, 2002; Spivak, 1970). This standard notation
leads however to consider too many similar stars in the geometric sky, i.e. push, pull,
duality, Hodge operator.
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Push-pull relations for second order covariant, contravariant and mixed
tensors, are defined so that their scalar values be invariant and are given by
the formulae

(χ↓scov)e = (Teχ)∗ · (scov)χ(e) · Teχ∈ Cov(TeM) ,

(χ↑scon)χ(e) = Teχ · (scon)e · (Teχ)∗ ∈ Con(Tχ(e)N) ,

(χ↑smix)χ(e) = Teχ · (smix)e · (Teχ)−1 ∈Mix(Tχ(e)N) .
(2.12)

These transformation rules play an important role in Mechanics since
the metric tensor is covariant and the dual stress tensor is contravariant.
As the result of a push, a mixed tensor symmetric with respect to a metric
tensor is transformed into a mixed tensor symmetric with respect to the
pushed metric tensor.

A morphism χ over φ is made of a pair of maps (χ ,φ) between
tensor bundles and their base manifolds, that preserve the tensorial fibers,
as expressed by the commutative diagram

Tens(TM) χ //

πM
��

Tens(TN)
πN
��

M φ // N

⇐⇒ πN ◦ χ = φ ◦ πM .

Morphisms that are invertible and differentiable with the inverse, are
named diffeomorphisms. Important instances of diffeomorphisms are the
displacements from a placement of a body to another one, changes of ob-
server, and straightening out maps. On the other hand, differentiable maps
which may be not diffeomorphisms are, for instance the following

1. immersions (maps with injective differentials)

2. submersions (maps with surjective differentials)

3. projections (surjective submersions).

The (gM,gN)-adjoint tangent map

(Tχ)A : T (χ(M)) 7→ TM , (2.13)

is pointwise defined by

((Tχ)A ◦ χ)(e) := (gM
e )−1 · (Teχ)∗ · gN

χ(e) , (2.14)

as expressed by the commutative diagram

(TM)∗ (TN)∗
(Tχ)∗oo

TM

gM

OO

TN
(Tχ)Aoo

gN

OO
⇐⇒ gM · (Tχ)A = (Tχ)∗ · gN . (2.15)
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By Eq. (2.3), the relation Eq. fm: adj may be written as an identity

gN
χ(e)(wχ(e) , Teχ · ue) = gM

e ((Tχ(e)χ)A ·wχ(e) ,ue) , (2.16)

for any ue ∈ TeM and wχ(e) ∈ Tχ(e)N .

2.2 Lie derivatives

In a vector bundle π : E 7→ M the velocity of a curve in a linear fiber
belongs to the vertical subbundle VE of the tangent bundle TE .

By linearity of the fibers, we may introduce the vertical lift as the fiber-
wise linear, invertible correspondence vlift : E ×M E 7→ VE defined, for
any v,d ∈ E(x) , by (Romano, G., 2007)

vlift(v ,d) := ∂λ=0 (v + λd) ∈ Tv(E(x)) . (2.17)

To any vertical vector V ∈ VE based at the vector v ∈ E(x) there
corresponds exactly one vector d ∈ E(x) such that V = vlift(v ,d) .

The Lie derivative 3 of a vector field h ∈: M 7→ TM according to a
vector field u : M 7→ TM is defined, by considering the flow Fluλ generated
by solutions of the differential equation u = ∂λ=0 Fluλ , as the derivative of
the pull-back along the flow

vlift(h ,Lu h) := ∂λ=0 (Fluλ↓h) = ∂λ=0 TFlu−λ · (h ◦ Fluλ) . (2.18)

The Lie derivative of a tensor field is defined in an analogous way and
the Lie derivative of scalar fields coincides with the directional derivative.

The commutator of tangent vector fields u,h : M 7→ TM is the skew-
symmetric tangent-vector valued operator defined by

[u ,h]f := (LuLh − LhLu)f (2.19)

with f : M 7→ Fun(TM) a scalar field.
A basic theorem concerning Lie derivatives states that Luh = [u ,h]

and hence the commutator of tangent vector fields is called the Lie bracket.
For any injective morphism χ : M 7→ N the Lie bracket enjoys the push-
naturality property (Romano, G., 2007)

χ↑(Lu h) = χ↑[u ,h] = [χ↑u ,χ↑h] = Lχ↑uχ↑h . (2.20)

For any tensor field s : M 7→ Tens(TM) the Lie derivative is defined by

vlift(s ,Lu s) := ∂λ=0 (Fluλ↓s) = ∂λ=0 Fluλ↓(s ◦ Fluλ) , (2.21)
3 This basic notion was introduced by Marius Sophus Lie, Norwegian mathematician

(Lie and Engel, 1888).
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and the push-naturality property can be extended to

χ↑(Lu s) = Lχ↑uχ↑s . (2.22)

By commutativity between push and composition, Leibniz rule for the
∂λ=0 derivative yields the analogous Leibniz rule for Lie derivatives of
tensor fields

Lu (sCon · sCov) = (Lu sCon) · sCov + sCon · (Lu sCov) . (2.23)

Forms ωk : M 7→ Altk(TM) are fields of alternating tensors of order
k ≤ n , i.e. sign changes under exchange of any two argument vectors.

All forms of order greater than the dimension n of the manifold M
vanish identically. A volume-form is a non null form of maximal order
µ : M 7→Max(TM) . The associated divergence operator div is defined by
the equality

Luµ = div(u)µ . (2.24)

A noteworthy property (Romano, G., 2007) is that for any scalar field
f : M 7→ Fun(TM) :

Lu (f µ) = L(f u)µ . (2.25)

A volume-form induces a measure defined by meas(µ) := signum(µ)µ .
The density associated with a scalar field ρ : T 7→ < and with a volume
form µ ∈Max(V T ) is the product ρmeas(µ) .

2.3 Connections

A linear connection ∇ in a manifold M fulfills the characteristic properties
of a point derivation (Dieudonné, 1969) Vol.III, XVII-18,

∇w(u1 + u2) = ∇wu1 +∇wu2 ,

∇(w1+w2)u = ∇w1u +∇w2u ,

∇w(fu) = f ∇wu + (∇wf)u ,

∇(f w)u = f ∇wu ,

(2.26)

where f : M 7→ Fun(TM) , u,ui : M 7→ TM and wi : M 7→ TM
for i = 1, 2 . ∇wf is the standard derivative of scalar fields. In terms
of parallel transport along a curve c : < 7→ M , with u = ∂λ=0 c(λ) , the
derivative according to the connection is the parallel derivative, given by

vlift(w ,∇uw) := ∂λ=0 c(λ)⇓(w ◦ c)(λ) . (2.27)
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Parallel transported vector fields (w ◦ c)(λ) = c(λ)⇑w0 have a null parallel
derivative, since

vlift(w ,∇uw) := ∂λ=0 c(λ)⇓(w ◦ c)(λ)

= ∂λ=0 c(λ)⇓c(λ)⇑w0 = ∂λ=0 w0 = 0 .
(2.28)

The curvature of the connection is the tensorial 4 map R , which acting
on a vector field s : M 7→ TM gives a tangent-vector valued two-form R(s)
defined by 5

R(s)(u ,w) := ([∇u ,∇w]−∇[u ,w])(s) , (2.29)

and the torsion T is the tangent-vector valued two-form defined by

T(u ,w) := ∇uw−∇wu− [u ,w] . (2.30)

Mixed tensor fields T(u) and R(s ,u) are defined by the identities

T(u) ·w := T(u ,w) = −T(w ,u) ,

R(s ,u) ·w := R(s)(u ,w) = −R(s)(w ,u) .
(2.31)

A connection with vanishing torsion is named torsion-free or symmetric,
and a connection with vanishing curvature is named curvature-free or flat.

Connections whose parallel transport is path independent are flat, as
can be easily deduced by assuming that, in performing the derivative in Eq.
(2.29) at a point x ∈ M , the vector field w : M 7→ TM is generated by
parallel transport from that point (a procedure allowed for by tensoriality
and path independence). The same reasoning reveals that the torsion form
of Eq. (2.30) reduces to the Lie bracket, i.e.

T(u ,w) = −[u ,w] = [w ,u] . (2.32)

The expression of Lie derivatives in terms of parallel derivatives is given
for vectors, covectors, covariant, contravariant and mixed tensors by

Lv u = ∇v u−Y(v) · u ,

Lv u∗= ∇v u∗ + u∗ ·Y(v) ,

Lv sCov = ∇v sCov + sCov ·Y(v) + Y(v)∗ · sCov ,

Lv sCon = ∇v sCon −Y(v) · sCon − sCon ·Y(v)∗ ,

Lv sMix = ∇v sMix −Y(v) · sMix + sMix ·Y(v) ,

(2.33)

4 Tensoriality of a multilinear map, acting on vector fields and generating a vector field,
means that point values of the image field depends only on the values of the source fields
at the same point. An exterior form, or simply a form, is then a vector-valued, tensorial,
alternating multilinear map.

5 The curvature form of connection on a fiber bundle and the relevant expression in
terms of parallel derivatives are treated in (Romano, G., 2007, 2011).
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where Y(v) := ∇v + T(v) . For an exhaustive presentation with proofs we
refer the reader to (Romano, G., 2007).

A result due to the author is provided by next Lemma 1. An insight
on the involved notions of differential geometry is provided in (Romano, G.,
2007). The result will be resorted to in Eq. (3.23) of Sect. 3.2.1.

Lemma 1 Let a time-parametrized family ϕα : M 7→ M of diffeomor-
phisms be acted upon by the tangent functor to give Tϕα : TM 7→ TM and
define the velocity field v := ∂α=0ϕα : M 7→ TM and the following parallel
time-derivative

L(v) := ∂α=0 (ϕα⇓Tϕα) : TM 7→ TM . (2.34)

Then the parallel time derivative of the spatial velocity field

∇v := ∂α=0ϕα⇓(v ◦ϕα) : TM 7→ TM , (2.35)

and the tensor field L(v) are related by the formula

L(v)−∇v = T(v) . (2.36)

Proof. Let us consider a curve c ∈ C1([−ε, ε]M) with ∂λ=0 c(λ) = h ∈
TM . The fiberwise linear connector K ∈ C1(T 2MTM) is related to the
parallel derivative of the velocity vector field by the relation

∇v · h := K · Tv · h . (2.37)

Denoting by T 2M the second tangent bundle and by flip : T 2M 7→ T 2M
the canonical flip defined by (Romano, G., 2007, 1.8.1)

flip · (∂α=0 ∂λ=0ϕα(cλ)) = ∂λ=0 ∂α=0ϕα(cλ) , (2.38)

we get the formula

L(v) · h = ∂α=0ϕα⇓(Tϕα · ∂λ=0 cλ) = ∂α=0ϕα⇓∂λ=0ϕα(cλ)

= K · (∂α=0 ∂λ=0ϕα(cλ)) = (K ◦ flip) · (∂λ=0 ∂α=0ϕα(cλ))

= (K ◦ flip) · (∂λ=0 v(cλ)) = (K ◦ flip) · (Tv · h) .

(2.39)

The conclusion follows from the expression of the torsion-form of a linear
connection in terms of the connector (Romano, G., 2007, 1.8.12)

T(v ,h) = (K ◦ flip−K) · Tv · h , (2.40)

and from the definition of the tensor field T(v) . �
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2.4 Exterior calculus and Stokes’ formula
The modern way to introduce integral transformations is to consider maximal-
forms as geometric objects to be integrated over a (orientable) manifold and
to resort to the notion of exterior differential of a form (Marsden and Hughes,
1983; Romano, G., 2007).

In a m-dimensional manifold M , let Γ be any n-dimensional subman-
ifold (m ≥ n ) with (n− 1)-dimensional boundary manifold ∂Γ .

The classical Ampère-Kelvin-Stokes formula, in its modern formula-
tion by Volterra-Poincaré-Brouwer, characterizes the exterior deriva-
tive of a (n − 1)-form ω : M 7→ Altn−1(TM) , defined as the n-form
dω : M 7→ Altn(TM) fulfilling the identity∫

Γ
dω =

∫
∂Γ
∂i↓ω , (2.41)

where ∂i : ∂Γ 7→ Γ is the injective immersion of the boundary manifold
∂Γ into the manifold Γ . The pull-back ∂i↓ by the immersion is needed
to transform exterior forms on TΓ to exterior forms on T∂Γ but, for the
sake of notational simplicity, it is often, and will be, abusively omitted in
Eq. (2.41) briefly denoted as Stokes’ formula.

The exterior derivative of the exterior product of a p-form times a k-
form is given by the formula

d(αp ∧ ωk) = (dαp) ∧ ωk + (−1)pαp ∧ dωk . (2.42)

Being ∂∂Γ = 0 for any manifold Γ , it follows that also ddω = 0 for any
form ω (Marsden and Hughes, 1983; Romano, G., 2007).

The exterior derivative of differential forms is characterized by the pecu-
liar property of commutation with the pull-back by an injective immersion
χ : M 7→ N

d ◦ χ↓ = χ↓ ◦ d , (2.43)

a result inferred, from Stokes and integral transformation formulae∫
Γ
d(χ↓ω) =

∮
∂Γ
χ↓ω =

∮
χ(∂Γ)

ω

=
∮
∂χ(Γ)

ω =
∫
χ(Γ)

dω =
∫

Γ
χ↓(dω) .

(2.44)

Then for v := ∂λ=0χλ we infer that

Lv (dω1) = d (Lvω
1) . (2.45)

The geometric homotopy formula relates the boundary chain generated
by the extrusion of a manifold Γ and of its boundary ∂Γ , as follows

∂(Jχ(Γ, λ)) = χλ(Γ)− Γ− Jχ(∂Γ, λ) ,
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with λ ∈ < extrusion parameter and χ : Γ × < 7→ M × < extrusion-map
fulfilling the commutative diagram

Γ×<
χλ //

π< ��

M×<
π<��

< θλ // <
⇐⇒ π< ◦ χλ = θλ ◦ π< , (2.46)

with θλ : < 7→ < the translation defined by θλ(α) := α+ λ for α, λ ∈ < .
The signs in the formula are motivated as follows. The orientation of

the (n + 1)-dimensional flow tube Jχ(Γ, λ) induces an orientation on its
boundary ∂(Jχ(Γ, λ)) .

In the boundary chain, composed by the manifolds χλ(Γ) , Γ and
Jχ(∂Γ, λ) , each one with the induced orientation, the element χλ(Γ) has
orientation opposed to the orientation of χ0(Γ) = Γ and Jχ(∂Γ, λ) , as
depicted in the diagrams Eq. (2.47), for dim Γ = 1 and dim Γ = 2 .

+1

−1,+1

Jχ(∂Γ, λ) 22

	 Jχ(Γ, λ) −1
Jχ(∂Γ, λ)��

χλ(Γ)jj

−1,+1
Γ
ii

·
��

·

00

��

·

{{ ##

χλ(Γ)
·

ll

~~·

OO

##

Γ ·

ll

��

·

OO

·

OO 22
(2.47)

Let ω be an n-form defined on the (n+ 1)-manifold Jχ(Γ, λ) spanned
by extrusion of the n-manifold Γ , so that the geometric homotopy formula
gives ∫

χλ(Γ)
ω =

∫
∂(Jχ(Γ,λ))

ω +
∫
Jχ(∂Γ,λ)

ω +
∫

Γ
ω . (2.48)

Differentiation with respect to the extrusion-time yields

∂λ=0

∫
χλ(Γ)

ω = ∂λ=0
(∫

∂(Jχ(Γ,λ))
ω +

∫
Jχ(∂Γ,λ)

ω
)
. (2.49)

Then, denoting by v := ∂λ=0χλ the velocity field of the extrusion, applying
Stokes formula and taking into account that by Fubini theorem (Abraham,
Marsden and Ratiu, 2002)

∂λ=0

∫
Jχ(Γ,λ)

dω=
∫

Γ
(dω) · v ,

∂λ=0

∫
Jχ(∂Γ,λ)

ω=
∫
∂Γ
ω · v ,

(2.50)

we get the integral extrusion formula

∂λ=0

∫
χλ(Γ)

ω =
∫

Γ
(dω) · v +

∫
Γ
d(ω · v) . (2.51)
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On the other hand, taking the time-rate of the integral transformation for-
mula, leads to Lie-Reynolds formula

∂λ=0

∫
χλ(Γ)

ω = ∂λ=0

∫
Γ

(χλ↓ω) =
∫

Γ
Lvω . (2.52)

The comparison of the expressions in Eqs. (2.52) and (2.51) and localization,
yield the differential homotopy formula (Cartan, 1951, 1967) expressing the
Lie derivative L of a k-form in terms of exterior derivatives

Lvω = d(ω · v) + (dω) · v . (2.53)

From Eq. (2.53) and the recursive Leibniz formula

Lvω ·w := Lv(ω ·w)− ω · Lvw = Lv(ω ·w)− ω · [v ,w] , (2.54)

we get the recursive Palais formula for the exterior derivative of a n-form
ω in terms the exterior derivative of a (n − 1)-form ω · v and of Lie
derivatives

dω · v ·w = −d(ω · v) ·w + Lv(ω ·w)− ω · [v ,w] . (2.55)

Performing the recursion from the (n+1)-form dω till the exterior derivative
of the 0-form (ω ·w1 . . . ·wn) and observing that d(ω ·w1 . . . ·wn) · v =
Lv(ω ·w1 . . . ·wn) , yields the original result in (Palais, 1954).

The next result, contributed in (Romano, G., 2007), provides the expres-
sion of the exterior derivative of a form in terms of linear connections. The
statement here refers to 1-forms, but can be recursively extended to forms
of any degree.

Proposition 1 (Exterior derivative in terms of a connection) The ex-
terior derivative dω1 of a 1-form ω1 ∈ Λ1(TM) is expressed in terms of
a linear connection ∇ by the formula

dω1 = ∇ω1 − (∇ω1)A + ω1 ·T , (2.56)

where the 2-forms at the r.h.s. are defined by

(∇ω1) · v ·w = (∇vω
1) ·w ,

(∇ω1)A · v ·w = (∇wω
1) · v ,

(ω1 ·T) · v ·w = ω1 ·T(v ,w) , ∀v,w ∈ TM .

(2.57)
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Proof. On 0-forms exterior and parallel derivatives are identical, so that
by Leibniz rule and definition of torsion we have

dv (ω1 ·w) = ∇v (ω1 ·w) = (∇vω
1) ·w + ω1 · ∇v w ,

dw (ω1 · v) = ∇w (ω1 · v) = (∇wω
1) · v + ω1 · ∇w v ,

T(v ,w) = ∇v w−∇w v− [v ,w] .

(2.58)

Palais formula Eq. (2.55) yields

(dω1) · v ·w = dv (ω1 ·w)− dw (ω1 · v)− ω1 · [v ,w] , (2.59)

so that, substituting Eq. (2.58), we get the result. �

2.5 Split formulae
Let (φ , idM) be a smooth non-linear morphism, between the tensor bundles
Tens1(TM) and Tens2(TM) , described by the commutative diagram

Tens1(TM) φ //

πTens1
��

Tens2(TM)
πTens2
��

M idM //M

⇐⇒ πTens2 ◦ φ = πTens1 .

(2.60)

Lemma 2 (Differential split formulae) Let the tensor field

φ ◦ s : M 7→ Tens2(TM) , (2.61)

be the composition of the morphism φ : Tens1(TM) 7→ Tens2(TM) with
a tensor field s : M 7→ Tens1(TM) . The Lie and parallel derivatives along
the flow ϕα := Flvα of a vector field v : M 7→ TM , may then be expressed
by the split formulae

Lv(φ ◦ s) = (Lvφ)(s) + dFφ(s) · Lvs ,

∇v(φ ◦ s) = (∇vφ)(s) + dFφ(s) · ∇vs .
(2.62)

Proof. By definition (ϕα↓φ)◦ (ϕα↓s) = ϕα↓(φ◦s) and hence by Leibniz
rule

Lv(φ ◦ s)= ∂α=0ϕα↓(φ ◦ s ◦ϕα)

= ∂α=0 (ϕα↓φ) ◦ϕα↓(s ◦ϕα)

= ∂α=0 (ϕα↓φ)(s) + ∂α=0φ ◦ϕα↓(s ◦ϕα)

= ∂α=0 (ϕα↓φ)(s) + dFφ(s) · Lvs .

(2.63)
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The result in Eq. (2.62)1 follows by observing that by definition

(Lvφ)(s) := ∂α=0 (ϕα↓φ)(s) = ∂α=0ϕα↓(φ(ϕα↑s)) . (2.64)

By substituting the pull-back ↓ with the inverse parallel transport ⇓ and
defining

(ϕα⇓φ) ◦ (ϕα⇓s) = ϕα⇓(φ ◦ s) , (2.65)

so that

(∇vφ)(s) := ∂α=0 (ϕα⇓φ)(s) = ∂α=0ϕα⇓(φ(ϕα⇑s)) , (2.66)

the result in Eq. (2.62)2 is got. �

2.6 A bit of matrix algebra
Let us denote by {di , i = 1, 2, 3 } and {dj , j = 1, 2, 3 } dual bases in the
space bundle, so that [〈di,dj 〉] is the identity matrix [δij ] .

The matrices associated with tensors ε ∈ Cov(V E) and σ ∈ Con(V E) ,
considered as linear operators ε : V E 7→ (V E)∗ and σ : (V E)∗ 7→ V E , are
given by

ε · di = [ε]ki dk ,
σ · di = [σ]ki dk ,

(2.67)

and are the transpose of the corresponding Gram matrices

ε(di ,dj) = 〈ε · di,dj 〉 = 〈 [ε]ki dk,dj 〉 = [ε]ji ,
σ(di ,dj) = 〈σ · di,dj 〉 = 〈 [σ]ki dk,dj 〉 = [σ]ji .

(2.68)

The matrices of a linear operator L : VeE 7→ VeE and of the dual
operator L∗ : (VeE)∗ 7→ (VeE)∗ fulfill the relations

L · dk = [L]j..k dj (2.69)

L∗ · di = [L∗].ij. dj (2.70)

〈L∗ · di,dk 〉 = 〈di,L · dk 〉 (2.71)

〈di,L · dk 〉 = 〈di, [L]j..k dj 〉 = [L]i..k (2.72)

〈L∗ · di,dk 〉 = 〈 [L∗].ij. dj ,dk 〉 = [L∗].ik. (2.73)

that is, the matrix of the dual is equal to the transpose of the matrix

[L∗] = [L]T . (2.74)

If the basis {di , i = 1, 2, 3 } is g-orthonormal, then di = g · di . The
g-adjoint operator LA : VeE 7→ VeE , defined by

〈L · di,g · dk 〉 = 〈g · di,LA · dk 〉 , (2.75)
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is then represented by a matrix equal to the transpose of the matrix of the
linear operator L

[LA] = [L]T . (2.76)

Let us consider two basis hi ∈ TxΩ and dj ∈ Tϕα(x)(ϕα(Ω)) . Then the
deformation gradient Fα and its adjoint FA

α , fulfilling the characteristic
relation

g(Fα · h ,d) = g(FA
α · d ,h) , ∀h ∈ TΩ , ∀d ∈ T (ϕα(Ω)) . (2.77)

are represented by the matrices

Fα · hi = F k.i dk ,
(FA

α ) · dj = (FA)k.j hk ,
(2.78)

so that
g(Fα · hi ,dj) = F k.i g(dk ,dj) ,
g((FA

α ) · dj ,hi) = (FA)k.j g(hk ,hi) .
(2.79)

Under orthonormal bases, being g(dk ,dj) = δkj and g(hk ,hi) = δki ,
we infer that

F j.i = (FA)i.j . (2.80)
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Continuum mechanics

“ The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”

– Hermann Minkowski, 1908

3.1 Kinematics
Continuum Mechanics is best developed in the general framework of a 4D
(four dimensional) manifold of events e ∈ E and of the relevant tangent
bundle TE with projection τ E : TE 7→ E .1

3.1.1 Space-time splitting

Each observer performs a double foliation of the 4D events manifold E into
complementary

• 3D space-slices S of isochronous events (with a same corresponding
time instant) and

• 1D time-lines of isotopic events (with a same corresponding space
location).

Time-lines do not intersect one another and each time-line intersects a space-
slice just at one point. Analogously, space-slices do not intersect one another
and each space-slice intersects a time-line just at one point.

1 The tangent bundle T E is the manifold made of the disjoint union of all linear spaces
tangent to the event manifold E , with the property that the projection is a surjective
submersion. A submersion (immersion) is a map between manifolds such that the tangent
map at each point is surjective (injective).

23
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The time-lines are parametrized in such a way that a real valued time-
projection tE : E 7→ Z 2 assigns the same time instant tE(e) ∈ Z to each
event in a space-slice, that is

tE(e) = tE(e) , ∀ e ∈ S . (3.1)

Velocities of time-lines define the field of time arrows Z : E 7→ TE .
The tangent space TeE at any event e ∈ E is split into a complementary

pair of a 3D time-vertical subspace VeE (tangent to a space-slice) and a 1D
time-horizontal subspace HeE (tangent to a time-line) generated by the
time arrow Z(e) ∈ TeE .

The time-projection tE : E 7→ < and the time arrow Z(e) ∈ TeE are
tuned if they are such that

〈dtE ,Z〉 = 1 ◦ tE . (3.2)

Definition 1 (Space and time bundles) The tangent bundle TE is split
by the differential of time-projection into a space bundle and a time bundle.
The former is the time-vertical subbundle V E while the latter is the time-
horizontal subbundle HE , respectively, disjoint unions of all time-vertical
and time-horizontal subspaces.

In the familiar Euclid setting of classical Mechanics, the space slices and
the time-projection tE : E 7→ Z are the same for all observers (universality
of time).

A reference frame {di ; i = 0, 1, 2, 3 } for the event manifold is adapted
if d0 = Z and di ∈ V E , i = 1, 2, 3 .

time lines

space slices

Figure 3.1: Euclid space-time slicing.

2 Zeit is the German word for Time.
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3.1.2 Motion and material bundle

Definition 2 (Trajectory and motion) The trajectory manifold is the
geometric object investigated in Mechanics, characterized by an embedding
3 i : T 7→ E into the event manifold E such that the image TE := i(T ) is
a submanifold of E . The motion along the trajectory

{ϕTα : T 7→ T , α ∈ <} (3.3)

is a simultaneity preserving one-parameter family of maps, fulfilling the com-
position rule

ϕTα ◦ϕTα = ϕT(α+β) , (3.4)

for any pair of time-lapses α, β ∈ Z . Each ϕTα : T 7→ T is a displacement.

The trajectory can alternatively be considered as a manifold T by itself,
with dim T = 1 + n , 1 ≤ n ≤ 3 , or as a submanifold TE = i(T ) ⊂ E of the
event manifold.

Then, a (1 + n) coordinate system describes T , while an adapted 4D
space-time coordinate system in E describes TE .

The space-time displacement ϕα : TE 7→ TE and the trajectory displace-
ment ϕTα : T 7→ T are related by the commutative diagram

TE

tE

!!

ϕα // TE

tE

}}

T
i
OO

tT
��

ϕTα // T
i
OO

tT
��

Z tα // Z

⇐⇒
{
ϕα ◦ i = i ◦ϕTα ,
tE ◦ϕα = tα ◦ tE ,

(3.5)

where the time translation tα : Z 7→ Z is defined by

tα(t) := t+ α , t, α ∈ Z . (3.6)

As sketched in fig. 3.2, to a space-time displacement ϕα : TE 7→ TE there
corresponds a pair of maps:

1. a time-preserving spatial displacement ϕSα : E 7→ E ,

2. a location-preserving time step ϕZα : E 7→ E ,

which fulfill the commutative diagram

TE
ϕSα //
ϕα

((
ϕZα ��

E
ϕZα��

E
ϕSα // TE

⇐⇒ ϕα = ϕSα ◦ϕZα = ϕZα ◦ϕSα . (3.7)

3 An embedding is an injective immersion whose co-restriction is continuous with the
inverse.
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The spatial motion {ϕSα : E 7→ E , α ∈ Z } is generated by intersecting
each spatial-slice with the time-lines passing through the events of each
material particle, as represented by thin red lines in fig. 3.2.

The space-time velocity of the motion is defined by the derivative

V := ∂α=0ϕα ∈ TT E , (3.8)

Taking the time derivative of (3.5) we have

∂α=0 (tE ◦ϕα) = 〈dtE ,V〉 = (∂α=0 tα) ◦ tE = 1 ◦ tE , (3.9)

and comparing with Eq. (3.2) we infer the decomposition into space and
time components

V = v + Z , (3.10)

with 〈dtE ,v〉 = 0 .

ϕα

ϕS
α(e)

ϕS
α

ϕZ
α

e

v V

Z

ϕα(e)

Figure 3.2: Displacement decomposition.

Definition 3 (Material particles and body manifold) The physical no-
tion of material particle corresponds in the geometric view to a time parametri-
zed curve of events in the trajectory, related by the motion as described by
the characteristic property

∃α ∈ Z : e2 = ϕTα (e1), e1, e2 ∈ T . (3.11)

Accordingly, we will say that a geometrical object is defined along (not at)
a material particle. Events belonging to a material particle form a class of
equivalence and the quotient manifold so induced in the trajectory is the body
manifold.

Definition 4 (Trajectory time bundle and body placements) The tra-
jectory inherits from the events manifold the time projection tT := tE ◦ i :
T 7→ Z . A fiber of simultaneous events, in the corresponding vertical time-
bundle V T , is a body placement Ω ⊂ TE , with dim Ω = n .
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bodysource placement target placement

Figure 3.3: Particles, body and placements.

The motions of a body is characterized by the conservation property
concerning the mass. This is a measure induced by a maximal material
form m : T 7→Max(V T ) , that is a form on the trajectory manifold whose
values are n-covectors on the time vertical bundle (Romano, G., 2007).

Definition 5 (Mass conservation) Mass conservation along the motion
is expressed by the integral condition that, for all placements Ω∫

ϕα(Ω)
m =

∫
Ω
ϕα↓m =

∫
Ω

m . (3.12)

Upon localisation, Eq. (3.12) may be expressed by the equivalent pull-back
and Lie-derivative conditions

ϕα↓m = m ⇐⇒ LV m = 0 . (3.13)

3.2 Spatial and material tensor fields

On the basis of the geometric framework set forth, the notions of spatial
and material fields can be introduced in a natural way.

As a warning for the reader, we emphasize that these notions, which
make no appeal to a local reference placement, do not comply with the
homonymic nomenclature of usage in literature, in the wake of the one
adopted in (Truesdell and Noll, 1965).

According to the nomenclature in (Truesdell and Noll, 1965) material
tensor fields are based on a reference placement and are just pull-back of
tensor fields defined on the current placement, there called spatial tensor
fields.

In the new geometric theory spatial and material vector fields are instead
both defined on body placements in the trajectory, the former being tangent
to space slices, while the latter to body placements.
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Definition 6 (Space-time bundle) The space-time bundle (TE)T is the
restriction of the tangent bundle TE to vectors based on the trajectory.

Definition 7 (Spatial bundle) The spatial bundle (V E)T is a sub-bundle
of the space-time bundle (TE)T made of time-vertical tangent vectors

(V E)T := {vE ∈ (TE)T such that 〈dtE ,vE 〉 = 0 } . (3.14)

Definition 8 (Material bundle) The material bundle V T is the sub-
bundle of the tangent trajectory bundle TT made of time-vertical tangent
vectors

V T := {vT ∈ TT such that 〈dt,vT 〉 = 0 } , (3.15)

and the immersed material bundle V T E is defined by

V T E := {vE ∈ TT E such that 〈dtE ,vE 〉 = 0 } . (3.16)

To simplify, the space-time immersion V T E = i↑(V T ) will also be referred
to as the material bundle.

Spatial and material tensors are multilinear maps acting respectively on
spatial and material vectors (Romano, Barretta, Diaco, 2014a).

All tensor fields of interest in Continuum Mechanics are defined on the
trajectory manifold and are therefore either spatial or material tensor fields,
according to Defs. 8 and 7.

The only (and important) exception is the metric tensor field which is
defined on the whole event manifold E .

Acceleration, force and metric are spatial vector, covector and tensor
fields. Stress, stressing, stretching, heat flux, temperature and thermody-
namical potentials, are material tensor, vector and scalar fields. Only ma-
terial fields are allowed to enter in constitutive relations. These involve in
fact material tensors and their time rates along the motion.

Definition 9 (Covariant, contravariant & mixed tensors) Covariant
tensors act on pairs of tangent vectors and may be equivalently interpreted as
linear maps from tangent to cotangent spaces. In the same way, contravari-
ant tensors acting on pairs of cotangent vectors, may be interpreted as linear
maps from cotangent to tangent spaces, and mixed tensors acting on pairs of
tangent-cotangent vectors, may be interpreted as linear maps from tangent
spaces to themselves.

Definition 10 (Strain and stress bundles) The linear bundle of covari-
ant (contravariant) tensors on the material bundle V T , respectively denoted
by Cov(V T ) (Con(V T ) ) will be called the strain (stress) bundle.
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3.2.1 Natural comparison of material tensors

Definition 11 (Naturality) A notion concerning material tensors is said
to be natural if it depends only on the metric properties of the event mani-
fold and on the motion, no other arbitrary assumption (such as the choice
of a parallel transport) being involved (Romano, Barretta, 2013b; Romano,
Barretta, Diaco, 2014a).

To perform the time-derivative of a material tensor field along the mo-
tion, a transportation tool must be employed to bring the base point to the
event in the trajectory corresponding to the evaluation time, prior to taking
the derivative with respect to the time lapse.

In this respect, we underline that two material tensor fields s1 and s2 ,
based at a same event e ∈ T on the trajectory, are naturally compared
by taking the difference between their evaluation on any pair of argument
vectors based at that event.

The question, of how to compare material tensors based at distinct events
along a particle on the trajectory, requires a more careful geometric exami-
nation.

At its root there is the question concerning the comparison of material
vectors tangent to distinct placements of the body along a particle. We call
attention to the following items.

1. The comparison requires the availability of a map apt to transform,
in a linear and invertible way, a tangent vector based at an event
along a particle, into another one based at the evaluation event, where
subtraction can be operated upon.

2. The temptation of defining equality by parallel transport is to be re-
sisted because an unnatural choice is involved. The same comment
holds if equality is defined by invariance of cartesian components.

3. Parallel transport is not feasible for lower dimensional bodies since
parallel transported material vectors (tangent to a placement) will in
general no more be material (tangent to the transformed placement),
see fig. 3.5.

The natural way to compare the values of a material tensor field along a
particle consists in pulling-back by the displacement map and leads to the
following definition.

Definition 12 (Material time invariance) Time-invariance of a mate-
rial tensor smat ∈ Tens(V T ) along the motion, means fulfilment of the
pull-back relation

smat = ϕTα ↓smat . (3.17)
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P
material vectors

P pushed material vectors

Figure 3.4: Push of vectors tangent to a material surface.

P
material vectors

P
translated spatial vectors

Figure 3.5: Parallel transport of vectors tangent to a material surface.

According to this definition, the time rate is evaluated as Lie derivative
along the motion, still a material tensor field, see fig. 3.4 where two events
belonging to the same particle P are considered.

Definition 13 (Material time derivative) The time derivative of a ma-
terial tensor field smat ∈ Tens(V T ) is naturally provided by the Lie deriva-
tive along the motion

ṡmat := L(i↓V) smat := ∂α=0 (ϕTα ↓smat) . (3.18)

3.2.2 Comparison of spatial tensors by parallel transport

In general, the time-derivative of a spatial tensor field along the motion
cannot be performed by pull-back along the motion, because, for lower di-
mensional bodies, the immersed material bundle is only a proper sub-bundle
of the spatial tensor bundle and therefore the tangent displacement cannot
operate on spatial vectors.

Accordingly, a not natural choice of spatial parallel transport in the event
manifold E is needed. In the Euclid framework the parallel transport by
translation is tacitly assumed.

Anyway, even in the Euclid framework, different choices of parallel
transport are possible and may be more convenient.
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An instance occurs when curvilinear coordinate systems are considered
(Romano, Barretta, 2013a).

The choice of a linear parallel transport leads to the following notions.

Definition 14 (Spatial time invariance) Time-invariance of a spatial ten-
sor sspa ∈ Tens((V E)T ) along the motion, means fulfilment of the transport-
back relation

sspa = ϕα⇓sspa . (3.19)

Definition 15 (Spatial time derivative) The definition of time deriva-
tive of a spatial tensor field s ∈ Tens((V E)T ) along the motion, is provided
by the parallel derivative

ṡspa := ∇V sspa := ∂α=0 (ϕα⇓sspa) . (3.20)

The derivative defined by in (3.20) is usually split into spatial and time
components by setting

∇V sspa = ∇v sspa +∇Z sspa , (3.21)

The split form Eq. (3.21) of the parallel derivative Eq. (3.20) is com-
monly named material time derivative but this nomenclature is not appro-
priate because the field resulting from Eq. (3.20) is not a material tensor,
but a spatial tensor, as evidenced by the sketch in fig. 3.5.

Moreover the split (3.21) is in general not performable because the vec-
tors v and Z may be transversal to the trajectory, for lower dimensional
bodies.

The spatial time derivative of the tangent displacement Fα := Tϕα :
V T E 7→ V T E is the spatial tensor defined, according to Eq. (3.20), by 4

L(v) := Ḟ = ∂α=0 (ϕα⇓Tϕα) . (3.22)

Lemma 1 provides an expression in terms of the spatial velocity field

L(v) = ∇v + T(v) . (3.23)

The usual formula L(v) = ∇v is recovered when a linear torsion-free con-
nection, such as Euclid translation, is adopted.

The spatial tensor field L(v) is not a natural notion, being dependent
on the choice of a linear connection in the event manifold. Therefore, being
neither material nor natural, its appearance in constitutive relations must
be carefully avoided (Romano, Barretta, Diaco, 2014a).

4 The standard notations Fα (the cryptic symbol F is commonly adopted) and Ḟ
are recalled here for direct comparison with treatments in literature.
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This comment contributes to deprive of physical basis treatments of ge-
ometrically nonlinear continuum mechanics in which the tangent displace-
ment Fα := Tϕα : V T E 7→ V T E and its spatial time derivative L(v) :=
Ḟ : V T E 7→ (V E)TE play the role of state variables.

Although this inadequacy was pointed out in (Romano, Barretta, 2011,
2013b; Romano, Barretta, Diaco, 2014a) such unphysical treatments are still
being proposed.

3.3 The geometry of metric measurements

At the very foundation of continuum mechanics is the way metric measure-
ments are performed.

The axioms of Euclid geometry assure that the distance between space
points can be measured in such a way that the associated vector space is
endowed with a norm topology. This means that the map defining the length
of vectors is positively homogeneous, positive definite and fulfils the triangle
inequality.

A result in the theory of normed linear spaces, reported in Def. ??, is of
extraordinary importance in kinematics of continua.

It states that, if the norm fulfils the parallelogram identity, then the
polarization formula defines a symmetric and positive definite bilinear form
on tangent spaces.

This bilinear form is the metric, a twice covariant tensor (its arguments
are both tangent vectors) which provides the master way of investigating,
point by point, the geometrical properties of a continuum and their varia-
tions along a motion.

The mechanical behavior of materials, under various conditions of in-
terest, is investigated, in the last instance, by performing direct or indirect
metric measurements of lengths.

To get a complete description of the metric properties at a material
point, it is sufficient to measure the lengths `k , k = 1, . . . ,m of the edges
dk , k = 1, . . . ,m of an infinitesimal non degenerate simplex at that point.

Being n+ 1 the number of vertices of the simplex in a body placement
of dimension n , the number of edges is given by m = n(n+ 1)/2 .

0
d1

vv
d3

��

d2

��

1
d2−d1

((3
d1−d3

``

2
d3−d2
oo

(3.24)
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The lengths `k , k = 1, . . . ,m of the edges are conveniently denoted by

‖dk‖ = `k , k = 1, . . . ,m . (3.25)

In a 3D body the simplex is a tetrahedron and m = 6 .
To evaluate the dilation rates along any direction, on the basis of the

measurements in Eq. (3.25), it is expedient to assume di , i = 1, . . . , 3 as a
basis and write

d4 = d2 − d1 , d5 = d3 − d2 , d6 = d1 − d3 . (3.26)

Definition 16 (Parallelogram identity) With reference to the diagram

Pj
di //

di−dj

��

•

O

dj

AA

di //

di+dj

55

Pi

dj

AA

(3.27)

for i, j = 1, 2, 3 , the folling parallelogram identity holds

||di + dj ||2 + ||di − dj ||2 = 2 (||di||2 + ||dj ||2) . (3.28)

The next result shows that the length of any tangent vector can be
evaluated from the knowledge of the lengths of the sides of a non-degenerate
tetrahedron as the one in the diagram Eq. (3.24).

Proposition 2 (Space metric) In a normed linear space, in which the
parallelogram identity is fulfilled, the polarization formula

g(di ,dj) := 1
4

(
||di + dj ||2 − ||di − dj ||2

)
, (3.29)

and the equivalent one involving the sides of triangle (O,Pi, Pj) in the dia-
gram Eq. (3.27)

g(di ,dj) := 1
2

(
(||di||2 + ||dj ||2)− ||di − dj ||2

)
, (3.30)

define a twice covariant symmetric and positive definite metric tensor.5

Proposition 2, applied to the space slices of Euclid space-time, in which
the parallelogram identity is fulfilled, provides the key to introduce the space
metric tensor gspa : V E 7→ (V E)∗ .

5 This result is a theorem due to Maurice Fréchet, John von Neumann, Pascual
Jordan (Yosida, 1980).
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To include the general case of possibly lower dimensional bodies, we
consider the linear operator

Πe : TeS 7→ TeΩ , (3.31)

that at e ∈ Ω projects, in an orthogonal way, the space TeS of tangent
space vectors onto the subspace of vectors tangent to the body placement
Ω , that is material vectors.

The adjoint linear operator ΠA
e : TeΩ 7→ TeS is the injection of material

vectors to generate the corresponding spatial vectors.

Definition 17 (Material metric) The material metric gmat ∈ Cov(V T )
is the restriction of the space metric tensor gspa ∈ Cov(V E) to material
vectors, as expressed by the pull-back relation

gmat := i↓gspa , (3.32)

which, see Def. 2, is explicitly written as

gmat(h ,d) := g(T i · h , T i · d) , ∀h,d ∈ V T . (3.33)

For 3D bodies, the identification gspa = gmat is feasible, even if not
advisable for sake of conceptual clarity.

Definition 18 (Geometric stretching) Setting ϕα↓gmat = gmat·(FAF) =
gmat ·U2 , the geometric stretching is defined as Lie-derivative of the mate-
rial metric tensor along the motion

εv := 1
2 ġmat = 1

2LV gmat = gmat · U̇ . (3.34)

The geometric stretching isexpressed in terms of velocities by introducing
the gspa-symmetric mixed Euler stretching tensor (Euler, 1744, 1761)

D(v) = 1
2gspa

−1 · Lv gspa = symg(∇+ T)(v) ∈Mix(V E) , (3.35)

whose kernel consists in spatial velocity fields that are infinitesimal isome-
tries.6 In Eq. (3.35) T is the torsion form of the connection, expressed in
terms of parallel derivatives as in Eq. (2.30)

T(v ,u) := ∇vu−∇uv− [v ,u] . (3.36)

We recall also that [v ,u] = Lv u is the antisymmetric Lie bracket
defined, setting u f := ∇u f for any smooth scalar function f : Ω 7→ < , by

[v ,u] f = vuf − uvf , (3.37)

Projecting, we get the material covariant geometric stretching tensor

εv = gmat ·Π ·D(v) ·ΠA ∈ Cov(V T ) . (3.38)
6 By time invariance of the space metric tensor LZ g = 0 and hence LV g = Lv g .
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3.4 Comparison with standard treatments
The space metric tensor gspa ∈ Cov(V E) , being positive definite and hence
non-singular in the space bundle, admits an inverse and provides the stan-
dard tool to perform alteration of tensors by changing their arguments from
tangent to cotangent vectors and vice versa. Deceptively, most treatments
of continuum mechanics do not even explicitly mention the metric tensor.

In standard treatments of classical mechanics, space slices of simultane-
ous events, in the 4D space-time manifold E , are identified and cumulatively
denoted by S .

The change from a placement Ω , due to the motion along the trajectory
in a time lapse α ∈ < , is called a deformation ϕα : Ω 7→ E .

The corresponding tangent map Fα := Tϕα : TΩ 7→ TS is called the
deformation gradient.

The space metric tensor gspa ∈ Cov(V E) enters implicitly and tacitly
into the treatment by considering the gspa-adjoint FA

α : T (ϕα(Ω)) 7→ TΩ
of Fα uniquely defined by the identity 7

g(Fα · h ,d) = g(FA
α · d ,h) , ∀h ∈ TΩ , ∀d ∈ T (ϕα(Ω)) . (3.39)

The polar decomposition, an algebraic decomposition inferred from Cauchy
eigenvalue theory for symmetric operators, occupies a central position in
treatments of kinematics (Truesdell, 1977)

Fα = Rα Uα = Vα Rα : TΩ 7→ TS ,
U2
α = FA

α Fα : TΩ 7→ TΩ ,

V2
α = Fα FA

α : T (ϕα(Ω)) 7→ T (ϕα(Ω)) .
(3.40)

Several observations, questions and comments may arise at this point.
The answers to most of them can be now given on the ground of the geo-
metric theory illustrated before.

1. The deformation ϕα : Ω 7→ E maps Ω into ϕα(Ω) and hence the
deformation gradient

Fα := Tϕα : TΩ 7→ TS , (3.41)

maps TΩ onto T (ϕα(Ω)) . Then, at each e ∈ Ω , Fα(e) is not a
linear transformation of a linear space into itself, but rather a linear
transformation from a tangent space, based at an event, to another
tangent space, based at the transformed event, i.e.

h ∈ TeS 7→ Fα(e) · h ∈ Tϕα(e)S , ∀ e ∈ Ω . (3.42)
7 In most treatments Eq. (3.39) defines the transpose FTα . We reserve the trans-

pose for matrices with interchanged rows and columns, the matrix of the adjoint being
the transpose only under orthonormal bases, see Sect. 2.6. Here and henceforth a dot
(sometimes omitted) declares linear dependence on the subsequent argument.
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This means that the isometry in Eq. (3.40) is such that Rα(e) · h ∈
Tϕα(e)S .

• How to compare tangent vectors based at distinct events
along the motion?
The standard (and often tacit) way is by translation in the Eu-
clid space, a procedure which is feasible only for 3D bodies. It is
in fact clear that for lower dimensional bodies the translation of
a tangent vector at a placement will in general not yield a vector
tangent to the new placement.

• There are other ways to perform the comparison?
There is not a unique way to perform a parallel transport along
a path. Henceforth the question is answered positively, so that
an embarrassing choice is left to the questioner, with no guiding
principle other than preference for tradition, if feasible.

• There is a natural way to perform the comparison?
A unique natural way is provided by the tangent map Fα :=
Tϕα : TΩ 7→ TS itself, through the notion of pull-back. Indeed
the tangent map acts pointwise as a one-to-one linear transfor-
mation between the pairs of involved tangent spaces. The idea is
almost bicentenary, going back till to George Green (1839) and
to Bernhard Riemann (1854). It involves the notion of a met-
ric tensor gspa ∈ Cov(V E) in space and consists in considering
the pull-back to the material metric gmat = i↓gspa ∈ Cov(V T )
and in introducing a fictitious metric on Ω pulled back from a
placement ϕα(Ω) , and defined for all h,d ∈ TΩ by the identity

(ϕα↓gmat)(h ,d) := gmat(Tϕα · h , Tϕα · d) . (3.43)

This means that the pulled-back material metric tensor field,
when evaluated on a pair of material vectors, that is vectors tan-
gent to the current placement Ω , yields the value of the mate-
rial metric evaluated on the corresponding pair of transformed
material vectors tangent to the transformed placement ϕα(Ω) .
By bilinearity, comparing the metric tensor and its pull-back is
equivalent to comparing the length of any tangent vector with
the length of the transformed one.

• Is this procedure equivalent to polar decomposition?
To answer, let us rewrite the pull-back as

(ϕα↓g)(h ,d) = g((Tϕα)A Tϕα · h ,d) , (3.44)

which can be rewritten as

ϕα↓g = g · (FA
αFα) = g ·U2

α . (3.45)
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The answer is then essentially positive only for 3D bodies. How-
ever Eq. (3.43) is more general, being applicable to bodies of
any dimensionality. On the contrary, the polar decomposition
does not, since the isometry Rα is uniquely defined only for 3D
bodies. Moreover, by definition, it plays no role in metric com-
parisons. The introduction of the pull-back metric avoids the
needless polar decomposition and provides instead a direct defi-
nition of the stretch tensor U2

α = FA
αFα as mixed alteration of

ϕα↓g , according to Eq. (3.45).

2. A more subtle but decisive point concerns the definition of time-rate of
the deformation gradient. Taking the derivative ∂α=0 in Eq. (3.45),
recalling by Eq. (3.8) that V := ∂α=0ϕα is the space-time motion
velocity, and observing that U0 = I , we get

ġ := LVg = ∂α=0ϕα↓g
= ∂α=0 g · (FA

αFα)
= ∂α=0 g ·U2

α

= 2 g · ∂α=0 Uα .

(3.46)

The evaluations ġ := LVg = ∂α=0ϕα↓g and U̇ := ∂α=0 Uα are
legitimate because the tensors (ϕα↓g)(e) and Uα(e) refer to the
same tangent space TeS for all α ∈ < .
The geometric stretching is then defined on the basis of Eq. (3.46) by

εv := 1
2 ġ = 1

2LVg = g · U̇ . (3.47)

On the contrary the derivative Ḟ := ∂α=0 Fα is feasible only for
3D bodies and is not a natural operation, since the evaluation of
∂α=0 Fα(e) requires the choice of a parallel transport along the mo-
tion, in order to bring the base point ϕα(e) ∈ ϕα(Ω) back to e ∈ Ω .
The practice, of setting L := Ḟ0 , with Ḟ0 ·h := ∂α=0ϕα⇓(Fα ·h) for
any material vector h ∈ V T E , and of performing the additive splitting
L = D + W of the tensor L into symmetry and skew-symmetric
parts, is therefore not applicable to the formulation of constitutive
relations. The difficulty is evident when bodies of any dimensionality
are included in the analysis. The mixed tensor L , whose expression is
given in Lemma 1, is not a material tensor and not a natural notion.
In fact it is a space tensor and its definition depends on the choice of
a space parallel transport along the motion (a not natural operation).

3. A further question concerns the formulation of constitutive equations
in terms of strain or deformation gradient. Both these notions are
in fact pertinent to a change of placement of a body and cannot be
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defined on the current placement unless some other reference (local)
placement is fixed. Moreover deformations due to phenomena other
than the ones under investigation may occur and so the geometric
strain cannot be a significant constitutive parameter. For instance, in
investigating an elastic behavior, the body may deform due to tem-
perature changes, viscosity, plastic flows or phase transformations. To
exclude these extraneous deformations one is compelled, in the last in-
stance, to define the elastic stretching starting from the stress change
and excluding other action rates. The controlling role is therefore to
be attributed to stress, temperature, electric and magnetic fields etc.,
i.e. to state variables, and to their time variations along the motion,
while the geometric stretching is to be determined as the global output
of the combination of constitutive relations describing different kinds
of the material behavior.

• How to fix the reference placement? Effective rules or crite-
ria are usually not enunciated and in fact can hardly be conceived.
All efforts are directed towards the goal of ensuring that any rea-
sonable choice should be equally acceptable. At the end of this
route the conclusion seems however to be in the implicit admis-
sion that the choice of a reference placement must be avoided to
get a meaningful theoretical framework for constitutive relations
(Noll, 2004).

• How to write constitutive relations? Constitutive laws can-
not connect the finite strain with the stress state, since the strain
variable depends on the comparison of two body placements,
while the stress state variable pertains only to the current place-
ment. This point is usually hidden by a synthetic but obscure
notation which does not display, in an explicit way, the two place-
ments to be put in comparison. Once that reference placements
have been banned from constitutive relations, the master choice
consists in a rate formulation, by defining the instantaneous re-
sponse of the material to current values of state variables and
their rates along the motion. Experimental tests are in fact to
be designed and interpreted according to this paradigm. As will
be discussed in Sect. 4.6, a class of isometric local placements,
suitable to perform laboratory tests, is considered to provide an
experimental basis to rate constitutive parameters. Invariance
along the motion is imposed to define the elastic constitutive be-
havior in other placements.

The next and last question deals with a longly debated issue in mechan-
ics about the way the rate of state variables in constitutive relations
are to be evaluated.
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• How to evaluate stress rates in constitutive relations?
A definite answer to this question is possible only after a strict
analysis has been carried out and its mathematical formulation
again requires the recourse to differential geometric notions. The
issue will be detailedly investigated in the sequel but we may here
set a guiding principle. Material tensors, the ones entering in
constitutive relations, based at different placements of the body,
must be compared in a natural way, by push along the motion.

3.5 Trajectory straightening

To apply the tools of calculus in linear spaces to the nonlinear context at
hand, the key procedure consists in making recourse to a diffeomorphism 8

ξ : Ωref × I 7→ TE , (3.48)

whose inverse transforms the (n+1)D trajectory segment TE into a straight-
ened one representable as a direct product Ωref×I of a nD manifold Ωref
times an interval of time I .

By the transformation, the motion is reduced to a time translation trα :
Ωref × I 7→ Ωref × I , defined by

trα(x , t) := (x , t+ α) , (3.49)

for all x ∈ Ωref and all t ∈ I , as described by the commutative diagram

T
ϕα // T

Ωref × I

ξ

OO

trα // Ωref × I

ξ

OO

⇐⇒ ϕα ◦ ξ = ξ ◦ trα . (3.50)

By the standard identification {Ωref , t} = Ωref for all t ∈ I , the
straightened trajectory may be interpreted as a reference manifold Ωref
and the motion as a dependence on a time-parameter.

A straightening map ξ : Ωref × I 7→ TE , with a finite dimensional
reference manifold Ωref , is adopted in computational methods of continuum
mechanics, to perform linear operations.

The co-restricted map ξ : Ωref × I 7→ ξ(Ωref × I) is invertible but an
explicit expression of the inverse map is usually not available.

The relevant tangent map is thus evaluated as the inverse of the co-
restricted tangent map Tξ : TΩref × TI 7→ Tξ(TΩref × TI) .

8 A morphism is a fiber respecting map between fiber bundles. A diffeomorphism is an
invertible morphism which is continuously differentiable with the inverse.
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A most useful property follows from the naturality of the Lie derivative
with respect to push-pull transformations by diffeomorphisms.

Hence a Lie derivative along the motion is transformed by the straighten-
ing map into a partial time derivative, at a fixed point of Ωref , as explicated
by the equality

ξ↓(LV s) = Lξ↓V (ξ↓s) = LZ sref = ∂α=0 (sref ◦ trα) , (3.51)

where s is any material tensor field and sref := ξ↓s . Instances of appli-
cations in theoretical and computational contexts will respectively be illus-
trated in Th. 1 of Sect. 4.4 and in Sect. 4.5.

ξ

Figure 3.6: Straightening of the trajectory.

3.6 Dynamical equilibrium

Definition 19 (Kirchhoff stress) To the infinitesimal isometricity con-
straint εδv = 0 on virtual velacity fields δv : Ω 7→ TS , there corresponds
a field σ : Ω 7→ Con(TΩ) of Kirchhoff stresses, twice contravariant
and symmetric tensors playing the role of Lagrange multipliers dual to
the virtual geometric stretching εδv ∈ Cov(TΩ) , defined by Eq. (3.38). 9

The composition σ · εδv at e ∈ E is a linear operator on the tangent
space TeΩ , and the relevant linear invariant defines the duality pairing

〈σ, εδv 〉 := J1(σ · εδv) , (3.52)

which provides the internal virtual mechanical power expended per unit
mass.

9 The idea, of introducing the stress as Lagrange multiplier for the virtual geometric
stretching, dates back to Gabrio Piola in (Piola, 1833).
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Definition 20 (Equilibrium) The principle of dynamical equilibrium states
that the virtual power performed by external forces fext acting on a virtual
velocity field, minus the internal virtual power performed by the stress field
acting on the stretching εδv ∈ Cov(TΩ) , must be equal to the rate of vari-
ation of the kinetic momentum along the motion. By conservation of mass
Eq. (3.13), d’Alembert formulation of the principle writes

〈fext, δv〉 −
∫

Ω
〈σ, εδv 〉m =

∫
Ω

gspa(a , δv) m , ∀ δv : Ω 7→ TS , (3.53)

where a : Ω 7→ TS is the acceleration field, i.e. the spatial vector field
defined, according to Eq. (3.20), as the time-rate of variation of the spatial
velocity along the motion

a := ∇V(v) . (3.54)

If test fields in Eq. (3.53) are restricted to be infinitesimal isometries,
that is such that εδv = 0 , the condition of dynamical equilibrium implies
that

〈fext, δv〉 =
∫

Ω
gspa(a , δv) m , ∀ δv : Ω 7→ TS : εδv = 0 . (3.55)

Vice versa, fulfillment of the variational condition in Eq. (3.55) assures
that there exists at least a field of Kirchhoff stresses σ : Ω 7→ Con(TΩ)
verifying the equilibrium condition Eq. (3.53). This implication holds as
a proven theorem for 3D bodies (Romano and Diaco, 2004). The proof
follows from Korn’s second inequality, by resorting to Banach’s closed
range theorem (Yosida, 1980).

Definition 21 (Stressing) The rate of variation of the stress field along
the motion is evaluated in a natural way by the Lie-derivative

LV σ = ∂α=0 (ϕα↓σ) . (3.56)

In performing Lie derivatives, it should be recalled that the pull back
of a material scalar field f : Ω 7→ Fun(TΩ) and of a material vector field
h : Ω 7→ TΩ along the motion, are respectively given by

ϕα↓f := f ◦ϕα ,
ϕα↓h :=Tϕ−α · (h ◦ϕα) .

(3.57)

The pull back ϕα↓ω of a material covector field ω is defined in a natural
way as

〈ϕα↓ω,ϕα↓h〉 = ϕα↓〈ω,h〉 = 〈ω,h〉 ◦ϕα . (3.58)

The pull back of other tensor fields is introduced in an analogous way.
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We also recall that, denoting, as usual, dual operators by a star ()∗ ,
a direct evaluation yields for covariant, contravariant and mixed tensors,10

the pull-back formulae

ϕα↓scov = (Tϕα)∗ · scov · Tϕα ,
ϕα↓scon = Tϕ−α · scon · (Tϕ−α)∗ ,
ϕα↓smix = Tϕ−α · smix · Tϕα .

(3.59)

The pull-back of an operator is defined by the property that, acting on
pulled-back arguments, it provides the pull-back of the original result, a
notion that will be resorted to in Eq. (4.8).

A metric is induced on the bundle of mixed material tensors smix ∈
Mix(V T ) by the material metric tensor gmat ∈ Cov(V T ) , according to
the definition

〈smix, s̄mix 〉 = J1(sAmix · s̄mix) , (3.60)

where the gmat-adjoint mixed tensor sAmix ∈ Mix(V T ) is defined by the
identity

gmat (smix · h,d) = gmat (h, sAmix · d) , ∀h,d ∈ TΩ . (3.61)

Since scon : TΩ∗ 7→ TΩ and scov : TΩ 7→ TΩ∗ , the composition
scon · scov : TΩ 7→ TΩ is a mixed tensor.

Covariant and contravariant tensors are then put in separating duality
by the pairing given by 11

〈scon, scov 〉 := J1(scon · sAcov) , (3.62)

where J1 denotes the linear invariant induced by the material metric gmat ∈
Cov(V T ) and the adjoint tensor sAcov ∈ Con(V T ) is defined by the iden-
tity in Eq. (2.7)

sAcov(h ,d) := scov(d ,h) , ∀a,b ∈ TΩ . (3.63)

Remark 1 (Symmetry) Lack of attention for the metric tensor has of-
ten led to vain discussions concerning the question whether a given mixed
tensor is symmetric or not. Strictly speaking, such a question is ill-posed
because symmetry is a property of bilinear maps acting on a pair of vectors
(or covectors), while a mixed tensor is an operator from a vector space onto
itself and hence as bilinear map it acts on a vector-covector pair. Symme-
try can be detected only after an alteration is performed to get a covariant

10 Twice covariant tensors are bilinear forms on pairs of tangent vectors, contravariant
tensors on pairs of cotangent vectors, and mixed tensors on pairs of tangent-cotangent
vectors. They are respectively equivalent to linear operators from tangent to cotangent
vectors, from cotangent to tangent vectors and from tangent to tangent vectors.

11 A separating duality pairing between linear spaces is a bilinear form such that van-
ishing for any value of one of its arguments implies vanishing of the other argument.
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or a contravariant tensor. A correct question should ask whether a given
mixed tensor is symmetrizable or not, that is, if there exists a metric tensor
performing the alteration to a symmetric tensor. Therefore the metric with
respect to which symmetry does occur, should explicitly be made mention of.
The nice properties of symmetric operators, i.e. real eigenvalues and basis
of eigenvectors, are in fact properties of symmetrizable operators. A discus-
sion, concerning the lack of commutativity between pull-back and alteration,
will be performed in Rem. 6.

3.7 Frame-invariance

A change of frame in the Euclid space-time is an isometric automorphism
ζE : E 7→ E in the event time-bundle, characterized by the property of
invariance of the spatial metric under pull-back

ζE↓gspa = gspa . (3.64)

Definition 22 (Trajectory transformation) A trajectory transformation
ζT : T 7→ Tζ is induced by a change of frame ζE : E 7→ E , as described by
the commutative diagram

E
ζE //

tE

%%

E

tEζ

yy

T
ζ=ζT //

i

OO

tT

��

Tζ
tTζ

��

iζ

OO

Z oo id // Z

(3.65)

The material metric tensors gmat ∈ Cov(V T ) and (gmat)ζ ∈ Cov(V Tζ) ,
in the source and the target trajectory time-bundle, are defined by pull-back
according to the relevant immersions

gmat := i↓gspa ,

(gmat)ζ := iζ↓gspa .
(3.66)

From (3.64) and (3.65) it follows that ζ : T 7→ Tζ is an isometric isomor-
phism between the two trajectory time-bundles, as seen by distinct observers,
according to the property

ζ↓(gmat)ζ = gmat . (3.67)
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By the trajectory transformation ζ : T 7→ Tζ the motion ϕTα : T 7→
T and the pushed motion ζ↑ϕTα : Tζ 7→ Tζ are related according to the
commutative diagram

Tζ
ζ↑ϕTα // Tζ

T
ϕTα //

ζ

OO

T

ζ

OO
⇐⇒ (ζ↑ϕTα ) ◦ ζ = ζ ◦ϕTα . (3.68)

The space-time velocity V := ∂α=0ϕ
T
α is then also transformed by push

Vζ := ∂α=0 ζ↑ϕTα = ζ↑V . (3.69)

Remark 2 The transformation law for the space velocity, due to a relative
rigid motion between observers, is recovered by considering the explicit ex-
pression of an isometric frame-transformation in the Euclid space which,
in terms of time-dependent rotation Q and translation c , is given by

ζE :
{x 7→ Q(t) · x + c(t)
t 7→ t

(3.70)

The associated Jacobi space-time block matrix writes

[TζE ] =
[
Q (Q̇x + ċ)
0 1

]
(3.71)

and the pushed velocity ζ↑V has the space-time block expression

[TζE ] · [V] =
[
Q (Q̇x + ċ)
0 1

]
·
[
v
1

]
=
[
Qv + Q̇x + ċ

1

]
(3.72)

which yields the transformation rule for the space velocity. The space-time
formulation of frame invariance reveals that the statement that velocity is not
objective (Truesdell and Noll, 1965) is in fact an instance of the importance
of taking note that, in detecting transformation rules, it is not convenient
to look only at space velocity and space transformations.

By definition frame-transformations in Euclid space are isometric and
hence by Eq. (3.67) the metric tensor is frame-invariant

(gmat)ζ = ζ↑gmat . (3.73)

A natural axiom of Continuum Mechanics, which formalizes the physi-
cal requirement that material behavior must be independent of the special
observer performing measurements, is enunciated below.
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Axiom 1 (Material Frame Invariance) All material tensors are Euclid
frame invariant.

Denoting by a subscript ()ζ transformed material tensor fields, frame-
invariance of stress and elastic stretching is expressed by

σζ = ζ↑σ , esζ = ζ↑es . (3.74)

It follows that the elastic power 〈σ, es〉 is frame-invariant

〈σζ , esζ 〉 = 〈ζ↑σ, ζ↑es〉 = ζ↑〈σ, es〉 . (3.75)

Proposition 3 (Frame invariance of time rates) Frame-invariance of
a material tensor field implies frame-invariance of its time-rate along the
motion

sζ = ζ↑s =⇒ LVζ
sζ = ζ↑(LV s) .

Proof. The push transformation law for the space-time velocity Eq. (3.69)
and the naturality property of the Lie derivative with respect to push, ex-
pressed for any tensor field s on the trajectory, by

Lζ↑V(ζ↑s) = ζ↑(LV s) , (3.76)

lead to assess the result. �

By Eq. (3.76) it follows that invariance of stress implies invariance of stress-
ing

σζ = ζ↑σ =⇒ σ̇ζ = ζ↑σ̇ . (3.77)

3.8 Constitutive frame-invariance
In providing a mathematical model of mechanical properties of materials, it
is natural to require that a principle of Constitutive Frame Invariance (CFI)
is fulfilled.

To illustrate the issue, let the rate constitutive behavior be expressed by
means of a constitutive operator C which depends, in each material fiber,
in a possibly nonlinear way on the stress and on the stressing.

Definition 23 (Rate constitutive operator) The rate constitutive law
defines the geometric stretching εv ∈ Cov(V T ) as a symmetric covariant
material tensor expressed by

εv := C(σ , σ̇) , (3.78)

where σ̇ := L(i↓V) σ ∈ Con(V T ) .
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Definition 24 (Constitutive Frame Invariance) Frame invariance re-
quires that constitutive operators described by distinct observers must fulfil
the relation

Cζ = ζ↑C . (3.79)

The pushed constitutive operator ζ↑C is defined by the property that
the transformed triplet (ζ↑εv, ζ↑σ, ζ↑σ̇) will fulfills the transformed rate
constitutive law

ζ↑εv = (ζ↑C)(ζ↑σ , ζ↑σ̇) , (3.80)

if and only if the triplet (εv,σ, σ̇) fulfills the rate-elastic law (4.2). The
requirement (3.79) of CFI may then be expressed by the equivalence

εv = C(σ , σ̇) ⇐⇒ ζ↑εv = Cζ(ζ↑σ , ζ↑σ̇) . (3.81)

The physical requirement expressed by CFI is that the results of labo-
ratory experiments performed by two observers should be comparable in a
natural way, that is on the basis of the knowledge of their relative motion.

If the first observer detects a constitutive operator C , relating state vari-
ables and constitutive responses, he is able to foretell the result of the same
experiment performed by the second observer, who detects a constitutive
operator Cζ relating the transformed state variables and the transformed
constitutive responses.

Remark 3 The principle of Material Frame Indifference (MFI), as enun-
ciated in (Truesdell and Noll, 1965), p. 403, when translated in geometric
notations, consists in the requirement that

C = ζ↑C , (3.82)

where the isometry ζT : T 7→ Tζ , fulfilling the following sub-diagram of Eq.
(3.65), describes the relative motion between observers

T
tT
��

ζT // Tζ
Tζ
��

Z id // Z

(3.83)

The constitutive maps C and ζ↑C involved in the equality Eq. (3.82) refer
to constitutive descriptions made by distinct observers, and have therefore
domains and codomains which are material tensor bundles based on distinct
trajectory manifolds T and Tζ . By definition Eq. (3.80), the equality in
Eq. (3.82) expressing MFI amounts to require that

εv = C(σ , σ̇) ⇐⇒ ζ↑εv = C(ζ↑σ , ζ↑σ̇) . (3.84)
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The r.h.s. of this equivalence is however geometrically incorrect because the
constitutive operator C acts on material tensors based on the trajectory T ,
while the argument material tensors at the r.h.s. Eq. (3.84) are based on
the transformed trajectory Tζ . In place of the incorrect equality Eq. (3.82)
expressing the MFI, the geometrically consistent requirement Eq. (3.79) of
the CFI, must be adopted. The constitutive maps Cζ and ζ↑C involved in
the equality Eq. (3.79) are in fact based on the same transformed trajectory
manifold Tζ and their equality may well be imposed and checked by a single
observer.

3.9 Material isotropy

Definition 25 (Material isotropy) The condition of isotropy of a con-
stitutive operator C consists in the requirement that, for any simultaneity
preserving isometric transformation ξ : T 7→ T , the following equality holds

C = ξ↑C , (3.85)

a condition explicitly expressed by the equivalence

εv = C(σ , σ̇) ⇐⇒ ξ↑εv = C(ξ↑σ , ξ↑σ̇) . (3.86)

The isometry ξ : T 7→ T is defined by the condition gmat = ξ↓gmat and by
the commutative diagram

T
tT
��

ξ // T
tT
��

Z id // Z

(3.87)

The physical interpretation of the condition (3.85)-(3.86) is that a single
observer gets the same constitutive response by testing two mutually rotated
material specimens.12

The similarity, between the statement (3.82)-(3.84) of the MFI and the
condition of isotropy (3.85)-(3.86), has been the source of confusion that led
to sustain the unphysical conclusion that MFI implies isotropy of material
behavior (Truesdell and Noll, 1965) fn.1, Sect. 47, p.140 and fn.2, Sect. 99,
p.403.

The geometric treatment reveals instead a basic difference because, while
ζ : T 7→ Tζ is an isometric transformation between two distinct trajectories,
induced by a change of observer according to Def. 22, the map ξ : T 7→ T is

12 The group of isometries such that (3.85) holds characterises the symmetry properties
of the material response.
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an isometric transformation of a trajectory into itself, evaluated by a single
observer.

As a consequence the statement Eq. (3.82)-(3.84) of the MFI is unten-
able, as observed above, while the requirement Eq. (3.85)-(3.86) of isotropy
is correctly formulated.

The geometric treatment reveals that the requirement of Constitutive
Frame Invariance formulated in Eq. (3.79) has nothing to do with material
isotropy because two distinct constitutive operators, evaluated by distinct
observers, are involved. 13

3.10 Material homogeneity
Let us leave to the reader the challenging answer to the following question:
How to define material homogeneity?

The solution should fulfill the requirement of being equally applicable to
bodies of any dimension. A comparison with the definition proposed by the
author can be made by consulting Sect. 15 of (Romano, Barretta, Diaco,
2014a).

13 The stress independent isotropic rate elastic law fulfills the CFI principle (Romano,
Barretta, 2013b).
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Elasticity

“ CEIIINOSSSTTVV... VT TENSIO SIC VIS ” 1

– Robert Hooke, 1675...1679

What can reasonably be measured in a laboratory test is the incremental
mechanical stretching response of an elastic material to an increment of
stress state, starting from a known stress state. A general expression of
Hooke’s law, for a uniaxially solicited specimen, should then declare direct
proportionality between stressing (vis) and stretching (ex-tensio).

4.1 Elastic constitutive relation
The mechanical response of an elastic material is expressed by an elastic
stretching εel that is a symmetric twice covariant tensor field which, in a
purely elastic process, equals the geometric stretching

εel = εv . (4.1)

A natural, and experimentally tested, assumption is the linear depen-
dence of the elastic stretching εel on the twice contravariant Kirchhoff
stressing σ̇ := Lv σ .

Definition 26 (Elastic law) The elastic stretching, corresponding to given
stress and stressing states, is expressed by the rate constitutive law

εel := H(σ) · σ̇ , (4.2)

schematically depicted by

σ̇ // • H(σ) • εel // (4.3)

1 Lectiones Cutlerianæ (Robert Hooke, 1679).

49
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The tangent elastic compliance H(σ) : Con(V T ) 7→ Cov(V T ) is a
linear map from contravariant to covariant tensors, nonlinearly dependent
on stress state, fulfilling the following properties.

1. Time-invariance along the motion

ϕα↓H = H , (4.4)

2. Fiberwise integrability to a time invariant stress potential

Ξ : Con(V E) 7→ Fun(V E) , (4.5)

such that
H = d2

FΞ . (4.6)

3. Positive definiteness

δσ 6= 0 =⇒ 〈H(σ) · δσ, δσ 〉 > 0 . (4.7)

Let us discuss in detail the three items above.

1. The pull-back ϕα↓H , of the constitutive operator H appearing in Eq.
(4.4), is defined by the requirement that, if the pair {εel , σ̇} is related
by the tangent compliance H(σ) , then the pulled back tangent compli-
ance ϕα↓(H(σ)) = (ϕα↓H)(ϕα↓σ) relates the pair {ϕα↓εel ,ϕα↓σ̇}
and vice versa, i.e.

εel = H(σ) · σ̇ ⇐⇒ ϕα↓εel = (ϕα↓H)(ϕα↓σ) ·ϕα↓σ̇ . (4.8)

The time invariance condition, expressed by Eq. (4.4), may then be
also explicitly stated as

εel = H(σ) · σ̇ =⇒ ϕα↓εel = H(ϕα↓σ) ·ϕα↓σ̇ . (4.9)

Recalling that material tensors at different times are to be compared
by push along the motion, the invariance property in Eq. (4.9) can be
enunciated by the statement:

• Time invariance of the constitutive operator of the rate elastic
law (ϕα↓H = H ) means that time invariance of the stress field
(ϕα↓σ = σ ) and of the stressing (ϕα↓σ̇ = σ̇ ) assure time in-
variance of the elastic stretching response (ϕα↓εel = εel ).

2. Fiberwise integrability, discussed in (Romano, Barretta, 2011; Ro-
mano, Barretta, Diaco, 2014c), is illustrated below. If the symmetry
condition

〈dFH(σ) · δσ · δ1σ, δ2σ 〉= 〈dFH(σ) · δσ · δ2σ, δ1σ 〉 , (4.10)
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is fulfilled for all test fields δσ, δ1σ, δ2σ , the constitutive operator H
of rate-elasticity is Cauchy integrable. Denoting by πE : TE 7→ E
the tangent bundle projection, this means that there exists a fiber-
differentiable morphism Ψ between the stress and the strain bundles,
described by the commutative diagram

Con(V E) Ψ //

πE
��

Cov(V E)
πE
��

E idE // E

⇐⇒ πE ◦Ψ = πE , (4.11)

and such that
H = dFΨ . (4.12)

The morphism Ψ is called the elastic response.
The symbol dF denotes the fiber derivative, that is the derivative
taken while leaving the base material point fixed and letting the in-
volved material tensor to vary along a curve of tensors all based at the
same point and therefore belonging to the same linear tensor space.
Green-integrability is ensured by the further symmetry condition

〈H(σ) · δ1σ, δ2σ 〉= 〈H(σ) · δ2σ, δ1σ 〉 . (4.13)

This means that there exists a fiberwise differentiable morphism Ξ be-
tween the stress and the scalar bundles, described by the commutative
diagram

Con(V E) Ξ //

πE
��

Fun(V E)
πE
��

E idE // E

⇐⇒ πE ◦ Ξ = πE , (4.14)

and such that
Ψ = dFΞ . (4.15)

The morphism Ξ is called the elastic stress potential.
Hence, combining with Eq. (4.12), we get Eq. (4.6).

3. By the assumed positive definiteness of H(σ) , the elastic response Ψ
fulfills the monotonicity property

〈Ψ(σ2)−Ψ(σ1),σ2 − σ1 〉 > 0 . σ2 6= σ1 . (4.16)

The monotonicity property Eq. (4.16), implies that the potential fulfils
the convexity property

λΞ(σ2) + (1− λ)Ξ(σ1) > Ξ(λσ2 + (1− λ)σ1) , 0 < λ < 1 . (4.17)
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As we will see in Th. 1, existence of a Green potential ensures that the
mechanical work expended in a stress cycle is vanishing.

In this respect, we underline that the notion of stress cycles involves
the comparison of stress tensors based at the same material particle but at
different times along the trajectory, a comparison that is to be performed in
the natural way, by push along the motion.

This comparison becomes an equality by means of a pull-back to a
straightened trajectory and identification of the relevant material slices with
a reference manifold.

In accord with the general rule, pull-back of the Cauchy elastic response
is defined by setting

(ϕα↓Ψ)(ϕα↓σ) := ϕα↓(Ψ(σ)) . (4.18)

A noteworthy property is commutativity of fiber-derivatives with pull-
back

ϕα↓(dFΨ) = dF (ϕα↓Ψ) , (4.19)
which follows from fiber-linearity of the pull-back operation.

By taking the derivative ∂α=0 we infer that fiber and Lie-derivatives
also commute

LV(dFΨ) = ∂α=0ϕα↓(dFΨ)
= ∂α=0 dF (ϕα↓Ψ) = dF (LVΨ) .

(4.20)

Definitions and properties Eqs. (4.18), (4.19), (4.20) apply as well to the
elastic stress potential Ξ and to any morphism between tensor bundles.

Let us now come to the central point of our presentation.
Definition 27 (Elastic state) The elastic state es ∈ Cov(V T ) is a ma-
terial symmetric twice covariant tensor, output of the (invertible) constitu-
tive relation

es := Ψ(σ) = dFΞ(σ) , (4.21)
schematically depicted as

σ // • Ψ=dFΞ • es // (4.22)

Taking the Lie-derivative of Eq. (4.21) and applying the split formula
Eq. (2.62) we get the relation 2

ės := LVes = LV(Ψ ◦ σ) = LVΨ(σ) + dFΨ(σ) · σ̇

= Ψ̇(σ) + H(σ) · σ̇

= dF Ξ̇(σ) + d2
FΞ(σ) · σ̇ = dFLV(Ξ ◦ σ) .

(4.23)

2 The two letter symbol es denotes an elastic state and ės is a simplified writing for
its time rate (es)̇ := LVes .
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By time-invariance along the motion Ξ̇(σ) = 0 and hence Eq. (4.23)
implies that the elastic stretching is equal to the rate of the elastic state

εel = ės . (4.24)

By Eq. (4.24) and property Eq. (3.51) we may introduce the following
notion.

Proposition 4 (Accumulated elastic strain) The elastic strain esref(α ,x)
accumulated in the time lapse α , at a point x ∈ Ωref of a fixed reference
placement Ωref , is defined by the integral formula

esref(α ,x) :=
∫ α

0
(ϕτ↓εel)x dτ =

∫ α

0
(ϕτ↓(LVes))x dτ = (ϕα↓es− es)x .

(4.25)

Proof. Time-integration in Eq. (4.25) is legitimate, since the tensors
ϕτ↓εel are all based at a same point in the fixed placement. The last
equality in Eq. (4.25) follows from the definition

LVes := ∂α=0 (ϕα↓es) , (4.26)

and the evaluation

ϕτ↓(LVes) = ϕτ↓(∂α=0 (ϕα↓es))
= ∂α=0 (ϕτ+α↓es)
= ∂t=τ (ϕt↓es) .

(4.27)

An analogous result holds if the pull-back to a reference manifold Ωref is
considered. �

The time-rate of the elastic state ės at a given placement is equal to the
time-derivative of the elastic strain esref(α) accumulated at that placement
along the motion

LVes = ∂α=0 esref(α) . (4.28)

In defining the notion of accumulated elastic strain, Cauchy integrabil-
ity of the rate elastic operator and the introduction of the notion of elastic
state play a basic role.

Integrability is a peculiar feature of elasticity, and therefore no notion
of anelastic state or of accumulated anelastic strain can be introduced in
continuum mechanics, due to the inherent lack of integrability of the relevant
rate constitutive law.

In spite of this, most constitutive models of ultra-elastic behavior for-
mulated in literature make still explicit recourse to the notion of a plastic
strain, leaving however the evaluation procedure, and the involved reference
state, completely undetermined.
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In the geometric theory, elasticity is well characterized, both from the
physical and the mathematical point of view, by the rate formulation of Eq.
(4.2), governed by a tangent elastic compliance, with a constitutive operator
H which is Cauchy and Green integrable, with a monotone response Ψ
and a convex, time invariant, elastic stress potential Ξ .

4.2 Legendre transform

The relation between the elastic stress potential Ξ and the conjugate elastic
state potential Ξ∗ is provided by the Legendre transform

es := dFΞ(σ) ,
Ξ∗(es) := 〈σ, es〉 − Ξ(σ) ,

σ = dFΞ∗(es) .
(4.29)

Nomenclature and notation here adopted are just the converse of the
standard ones in the linearized theory of elasticity.

There W ∗ = Ξ is called the conjugate or complementary (stress) poten-
tial while the elastic potential W is assumed to be a function of an elastic
strain measure. But this last is a quantity depending on an undetermined
reference placement.

Our change of nomenclature emphasises that the primary state variable
is the stress state, while the elastic state is defined in terms of stress state
by means of the elastic constitutive law Eq. (4.21), reproduced above in Eq.
(4.29)1 .

Time invariance of the elastic stress potential Ξ along the motion entails
time invariance of the conjugate elastic state potential Ξ∗ . Indeed, assuming
ϕα↓Ξ = Ξ , we have that

ϕα↓〈σ, es〉 = 〈ϕα↓σ,ϕα↓es〉
= (ϕα↓Ξ)(ϕα↓σ) + (ϕα↓Ξ∗)(ϕα↓es)
= Ξ(ϕα↓σ) + (ϕα↓Ξ∗)(ϕα↓es) ,

(4.30)

for any es ∈ Cov(V E) , which implies ϕα↓Ξ∗ = Ξ∗ .

4.2.1 Rate potentials

From Eq. (2.62) we get the split formulae

LV(Ξ ◦ σ) = LVΞ(σ) + dFΞ(σ) · LVσ ,

LV(Ξ∗ ◦ es) = LVΞ∗(es) + dFΞ∗(es) · LVes ,
(4.31)
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and from Legendre transform Eq. (4.29) we infer that

LV(Ξ ◦ σ) + LV(Ξ∗ ◦ es) = LV(Ξ ◦ σ + Ξ∗ ◦ es)

= 〈σ, es〉˙,

〈(dFΞ)(σ), σ̇ 〉+ 〈(dFΞ∗)(es), ės〉= 〈es, σ̇ 〉+ 〈σ, ės〉

= 〈σ, es〉˙.

(4.32)

Then, summing up the two equalities in Eq. (4.32) and setting{
Ξ̇ :=LVΞ ,

Ξ̇∗ :=LVΞ∗ ,
(4.33)

we infer the relation between the rates of conjugate potentials
es = dFΞ(σ) ,

σ = dFΞ∗(es) ,

Ξ̇(σ) + Ξ̇∗(es) = 0 .

(4.34)

Eq. (4.34) is formally analogous to Eq. (13) in (Hill and Rice, 1973), where
a ultra elastic constitutive theory, with finite strains measured with respect
to a reference configuration, was considered. In elasticity Eq. (4.34)3 is
trivially fulfilled by time-invariance of the elastic potentials.

4.3 Variational formulation
Let us assume that along the virtual motion the elastic state field, the con-
jugate elastic potential and the mass form are prolonged in such a way that

Lδv es = ε(δv) = 1
2 Lδv gmat ,

Lδv Ξ∗(es) = 0 ,
Lδv m = 0 .

(4.35)

Eq. (4.35)1 states that along the virtual motion the constitutive behav-
ior is assumed to be purely elastic. Eqs. (4.35)2,3 express invariance of the
conjugate elastic potential and of the mass form along the virtual motion.

Proposition 5 (Variational principle of elastodynamics) Assuming pro-
longations according to Eq. (4.35) , the elastic state solution of the elasto-
dynamic problem is the tensor field fulfilling the variational condition

∂λ=0

∫
δϕλ(Ω)

Ξ∗(es) m = 〈fext, δv〉 −
∫

Ω
gspa(a , δv) m , (4.36)

for all virtual velocity field δv := ∂λ=0 δϕλ .
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Proof. From Lemma 2 and Eqs. (4.35) we infer that

∂λ=0

∫
δϕλ(Ω)

Ξ∗(es) m =
∫

Ω
Lδv (Ξ∗(es) m)

=
∫

Ω
(Lδv (Ξ∗ ◦ es)) m =

∫
Ω

(Lδv Ξ∗(es) + dFΞ∗(es) · Lδv es) m

=
∫

Ω
dFΞ∗(es) · ε(δv) m ,

(4.37)

which, substituted in Eq. 4.36 gives the dynamical equilibrium condition
Eq. (3.53) for the stress field σ = dFΞ∗(es) . �

In elastostatics the acceleration field is assumed to vanish. Assuming in
addition that there are no external forces, we may set a = 0 and fext = 0
so that Eq. 4.36 yields the stationarity condition for the global potential
elastic energy along virtual motions

∂λ=0

∫
δϕλ(Ω)

Ξ∗(es) m = 0 , (4.38)

which, by convexity of the integrand Ξ∗ : Cov(TΩ) 7→ Fun(TΩ) , is in fact
a minimum property for the elastic state solution es : Ω 7→ Cov(TΩ) .

4.4 Conservativeness

Lemma 3 (Time invariance of stress and elastic state) Time invari-
ance of the stress state along the motion implies a corresponding time in-
variance of the elastic state and vice versa, as expressed by the equivalence

σ = ϕα↓σ ⇐⇒ es = ϕα↓es . (4.39)

Proof. Time invariance of the elastic response Eq. (4.4) implies that

ϕα↓Ψ = Ψ . (4.40)

Then time invariance of stress σ = ϕα↓σ implies that

ϕα↓es = ϕα↓(Ψ(σ)) = (ϕα↓Ψ)(ϕα↓σ) = Ψ(σ) = es , (4.41)

and vice versa by invertibility of Ψ . �

Definition 28 (Stress cycles) A path p : [0,∆t] 7→ Con(V T ) in the
stress bundle is a cycle if

p∆t = ϕ∆t↑p0 . (4.42)
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An analogous definition holds for cycles of elastic states in the strain bundle.
By Lemma 3 any stress cycle is also a cycle of elastic states and vice versa.

The next result shows that the two properties, of mass conservation Eq.
(3.13) and of Green integrability of the elastic operator Eq. (4.15), assure
vanishing of the elastic work performed in cycles of elastic states along the
motion.

Theorem 1 (Conservativeness of elastic response) The constitutive op-
erator of an elastic material is conservative, that is, in any cycle of stress
states (or elastic states) along the motion, no mechanical work is performed,
as expressed by the implication

σ = ϕ∆t↓σ
es = ϕ∆t↓es

}
=⇒

∫ ∆t

0

∫
ϕt(Ω)

〈σ, εel 〉m dt = 0 . (4.43)

Proof. By the relation Eq. (4.24) the scalar integrand in Eq. (4.43) may
be written as

〈σ, εel 〉 = 〈σ, ės〉 . (4.44)

From the split formula Eq. (4.31)2 and time invariance, we then get

〈σ, ės〉 = 〈dFΞ∗(es), ės〉 = LV(Ξ∗ ◦es)−LVΞ∗(es) = LV(Ξ∗ ◦es) . (4.45)

The restriction ξt : Ωref × { t } 7→ ϕt(Ω) ⊂ TE of a straightening map ξ :
Ωref× I 7→ TE transforms by pull-back the integral on ϕt(Ω) in Eq. (4.43)
to an integral on the reference manifold Ωref . Observing that the pull-back
of a Lie derivative along the motion becomes a partial time derivative at a
fixed position in Ωref , and setting ξτ = ϕτ,t ◦ ξt , the integral writes∫ ∆t

0

∫
ϕt(Ω)

LV(Ξ∗ ◦ es) m dt =
∫ ∆t

0

∫
Ωref

ξt↓(LV(Ξ∗ ◦ es)) ξt↓m dt

=
∫

Ωref

(∫ ∆t

0
∂τ=t (ξτ↓Ξ∗) ◦ (ξτ↓es) dt

)
mref

=
∫

Ωref

(
(ξ∆t↓Ξ∗) ◦ (ξ∆t↓es)− (ξ0↓Ξ∗) ◦ (ξ0↓es))

)
mref = 0 ,

(4.46)
where resort was made to the following properties:

1. mref := ξ↓m is time independent by time-invariance of the mass
form along the motion,

2. ξ∆t↓Ξ∗ = ξ0↓Ξ∗ , by the assumption of time-invariance of the elastic
potential Ξ∗ ,

3. ξ∆t↓es = ξ0↓es , since by assumption the process is a cycle of elastic
states.

This concludes the proof. �
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From Eq. (4.46) we infer that the pull-back Ξ∗ref := ξ↓Ξ∗ of the elastic
state potential to a reference manifold, defined by

Ξ∗ref(ξ↓es) := ξ↓(Ξ∗(es)) = Ξ∗(es) ◦ ξ , (4.47)

provides, with its variation in a time interval, the mechanical work per-
formed, per unit reference mass, in deforming the elastic body along the
motion.

Definition 29 (Referential elastic potential energy) The pull-back of
the elastic state potential Ξ∗ref := ξ↓Ξ∗ to a straightened trajectory will be
named referential elastic potential energy. Its variation, due to a varia-
tion of the elastic state, provides the mechanical work, per unit referential
mass, performed in changing the elastic state of the body, as described by
Eq. (4.46).

Remark 4 We underline that the referential elastic potential energy just
introduced, and the specific elastic energy usually considered in literature,
are distinct notions, pertaining to distinct theories. The latter is in fact a
scalar field based in a reference placement, and function of an elastic strain
measured from the reference placement to the current one. The definition of
specific elastic energy requires then that a class of privileged local placements
is assumed in the constitutive theory and that a procedure apt to measure
the elastic strain, between such placements and the current placement, is
detected. Physical consistency of these assumptions will be critically dis-
cussed in Sect. 6.2. The referential elastic potential energy is instead a
brand new notion, consisting in a scalar field, based in an arbitrary straight-
ened trajectory, which is function of the pull-back of the elastic state to that
straightened trajectory. The notion of finite elastic strain, in fact absent
in the new theory, is not referred to. The elastic strain accumulated in a
straightened trajectory, as defined by Eq. (4.25), and later appearing in Eqs.
(4.56)-(4.57) of Sect. 4.5, is just a computational item which lives only in a
straightened trajectory but cannot be interpreted as a material field because
the time parameter, entering in the relevant push forward to the current
placement, was lost in the integration procedure. The transformation to a
straightened trajectory is an effective mathematical tool to perform linear
operations, not feasible in the nonlinear trajectory manifold.

4.5 Computational algorithm
Let us here describe in synthesis the iterative scheme leading to the solution
of an elastostatic problem in a finite time step, according to the new theory.

The finite deformation elastostatic evolution is defined by considering a
control manifold C and a time parametrized curve c : I 7→ C , the control
process.
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The loading acting on a body at time τ ∈ I in the time interval I ⊂ Z ,
and similarly all other relevant data, are assumed to depend on the control
point c(τ) and on the displacement ϕτ,t from the placement Ωt to the
placement Ωτ = ϕτ,t(Ωt) , as expressed by

fext(τ) = A(c(τ),Ωτ ) : Ωτ 7→ T ∗S . (4.48)

The finite time step process is analyzed by an iterative trial and error pro-
cedure, as follows.

1. The start point is an equilibrium solution at time t1 ∈ I under the
loading

fext(t1) = F(c(t1),Ωt1) : Ωt1 7→ T ∗S , (4.49)

fulfilling in conjunction with the stress field σ(t1) the virtual power
variational equality

〈fext(t1), δv〉 =
∫

Ω(t1)
〈σ(t1), ε(δv)〉m . (4.50)

2. An initial guess of the displacement ϕt2,t1 corresponding to the update
of the input control point from c(t1) to c(t2) may be obtained by
updating the loading to

fext = A(c(t2),Ωt1) : Ωt1 7→ T ∗S . (4.51)

The placement Ωt1 is assumed as reference placement. Let the vector
field u : Ωt1 7→ TS be the incremental displacement from Ωt1 and
ε(u) be the corresponding stretching (linearized strain increment).
The constitutive stress response is then expressed by

σref = Ψ−1
ref
(
Ψref(σ(t1)) + ε(u)

)
. (4.52)

The solution of the geometrically linearized elastostatic problem

〈fext, δv〉= 〈A(c(t2),Ωt1), δv〉Ωt1

=
∫

Ωt1

〈Ψ−1
ref
(
Ψref(σ(t1)) + ε(u)

)
, ε(δv)〉m ,

(4.53)

yields the spatial vector field u : Ωt1 7→ TS as first trial incremental
displacement from Ωt1 .

3. Setting
ϕt2,t1(x) = u(x) + x , (4.54)

for x ∈ Ωt1 , a first trial placement of the body at time t2 is evaluated
by the assigment Ω = ϕt2,t1(Ωt1) .
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4. The control algorithm provides the loading update

fext = A(c(t2),Ω) : Ω 7→ T ∗S , (4.55)

and the trial referential finite-step elastic strain on Ωt1 is evaluated
by

esref(t2, t1) = 1
2 (ϕt2,t1↓gmat − gmat) . (4.56)

5. The updated stress on Ω is thus given by

σ = ϕt2,t1↑
(
Ψ−1

ref
(
Ψref(σ(t1)) + esref(t2, t1)

))
, (4.57)

and the related elastic response on the trial placement Ω is evaluated
by the virtual power variational expression

〈r, δv〉 =
∫

Ω
〈σ, ε(δv)〉m . (4.58)

6. If the ratio, between a suitable norm of the force gap

fext − r : Ω 7→ T ∗S , (4.59)

and the norm of the loading fext , is less than a prescribed tolerance,
an approximated fixed point of the algorithm is deemed to be reached
and the iterations stop.

7. Otherwise the force gap fext − r is applied to perform a correction of
the previous guess concerning the displacement ϕt2,t1 from Ωt1 . This
task is accomplished by assuming the previous guess Ω as reference
placement. The constitutive stress response, to the previous stress
trial σ and to a linearized strain increment ε(u) , is expressed by

σref = Ψ−1
ref
(
Ψref(σ) + ε(u)

)
, (4.60)

and the solution of the geometrically linearized elastostatic problem

〈fext − r, δv〉 =
∫

Ω
〈Ψ−1

ref
(
Ψref(σ) + ε(u)

)
, ε(δv)〉m , (4.61)

yields the spatial vector field u : Ω 7→ TS as trial incremental dis-
placement from Ω . The update of the displacement map from Ωt1 is
given by the assignement

ϕt2,t1(x) = ϕt2,t1(x) + u(ϕt2,t1(x)) , (4.62)

for x ∈ Ωt1 . Setting Ω = ϕt2,t1(Ωt1) , the iteration loop proceeds
from item 4.

After convergence, the next time-step is performed starting from placement
Ωt2 = ϕt2,t1(Ωt1) under the force fext(t2) = A(c(t2),Ωt2) : Ωt2 7→ T ∗S.
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4.6 Rate elasticity in terms of mixed tensors
Alteration of material tensors may be performed by making recourse to a
linear isomorphism between the tangent and the cotangent space at the base
material point. To any non-degenerate symmetric twice covariant material
tensor galt(e) : TeΩ × TeΩ 7→ < , there corresponds a linear, self-dual
isomorphism

galt(e) : TeΩ 7→ T ∗e Ω , (4.63)

that can do the job.
Denoting by M : Con(V E) 7→Mix(V E) the alteration from contravari-

ant to mixed tensors, the dual operator M∗ : Mix(V E) 7→ Cov(V E) , per-
forming the alteration from mixed to covariant tensors, is defined by

〈Mσ,D〉 = 〈σ,M∗D〉 , σ ∈ Con(V E) , D ∈Mix(V E) . (4.64)

We may then set

K = M · σ := σ · galt , K mixed alteration of σ ,
es = M∗ · esmix := galt · esmix , esmix mixed alteration of es ,
εel = M∗ ·Del := galt ·Del , Del mixed alteration of εel .

(4.65)

Symmetry of the contravariant Kirchhoff stress σ ∈ Con(V E) entails
galt-symmetry of the mixed alteration K := σ · galt ∈Mix(V E) , since by
definition

galt(K · h ,d) = galt(σ · galt · h ,d)
= galt(d ,σ · galt · h)
= σ(galt · h ,galt · d) .

(4.66)

Analogously, symmetry of εel ∈ Cov(V E) entails galt-symmetry of
Del ∈Mix(V E) .

The elastic power expended per unit mass is expressed, according to the
pairings Eq. (3.60) by

〈K,Del 〉= 〈M · σ,M−∗ · εel 〉

= 〈M−1M · σ, εel 〉

= 〈σ, εel 〉 .

(4.67)

From Eq. (4.67) it follows that, as expected on a physical ground, the
elastic power per unit mass is alteration-invariant, being a notion indepen-
dent of the chosen representation of tensors.

Definition 30 (Rate elastic law in terms of mixed tensors) The rate-
elastic law expressed by εel := H(σ) · σ̇ , Eq. (4.2), is translated in terms
of mixed material tensors as

Del := Hmix(K) · K̇ , (4.68)
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with the definitions

K̇ := M · σ̇ = σ̇ · galt , mixed alteration of stressing ,

Del := M∗ · ės = g−1
alt · ės , mixed alteration of elastic stretching .

(4.69)

The constitutive operators H and Hmix are related by

H(σ) = M∗ (Hmix(M · σ))M . (4.70)

Then, from the expression

dFH(σ) · δσ = M∗ · (dFHmix(M · σ) ·M · δσ) ·M , (4.71)

we infer that integrability of Hmix , expressed by the symmetry conditions

〈dFHmix(K) · δK · δ1K, δ2K〉= 〈dFHmix(K) · δK · δ2K, δ1K〉 ,

〈Hmix(K) · δ1K, δ2K〉= 〈Hmix(K) · δ2K, δ1K〉 ,
(4.72)

is equivalent to integrability of H , expressed by Eqs. (4.12) and (4.15).
Setting Hmix = dFΨmix and Ψmix = dFΞmix , the integrated elastic law

is expressed in terms of the mixed elastic state by

esmix = Ψmix(K) = dFΞmix(K) ,

K = dFΞ∗mix(esmix) ,
(4.73)

so that Del = ėsmix .
To get time invariance along the motion, if the elastic operator Hmix

is time-invariant, then the alterating tensor M : Con(V E) 7→ Mix(V E)
introduced by Eq. (4.65), must also be assumed to be time-invariant along
the motion. This amounts to assume that the material tensor field galt :
TΩ 7→ TΩ∗ is invariant along the motion.

The formulation in terms of mixed tensors is the one adopted in applica-
tions since the powerful representation in terms of a spectral decomposition
is then available.

Remark 5 (Lie-derivatives and alterations) The natural candidate as
linear isomorphism for alteration of tensors at each event on the trajectory
manifold, is the material metric. If this choice is made, one must be aware of
the fact that pull-back along the motion (hence Lie derivative) and alteration
by the material metric tensor field on the trajectory, are non-commutative
operations. In particular, vanishing of the contravariant Kirchhoff stress-
ing σ̇ := LVσ does not imply vanishing of the mixed Kirchhoff stressing
LV K with K = σ · gmat , because

LVK = LV(σ · gmat) = (LVσ) · gmat + σ · (LVgmat) . (4.74)
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Therefore, the Lie-derivative LVK is not gmat-symmetric, unless the body
is experiencing a rigid act of motion, so that ġmat := LVgmat = 0 and
hence LVK = σ̇ ·gmat . Lack of gmat-symmetry of the convective derivative
of mixed stress tensors was already put into evidence by Sedov (1960) and
remarked in (Marsden and Hughes, 1983).

Remark 6 A standard procedure to preserve gmat-symmetry of a mixed
stress tensor K under pull-back to a straightened trajectory, consists in
considering the contravariant alteration σ = K · g−1

mat , in pulling it back
and then in altering it back to the mixed form by post composition with the
material metric tensor, to get Kref = ϕα↓(K · g−1

mat) · gmat . Denoting by a
superscript ()A the gmat-adjoint, recalling the pull-back law Eq. (3.59) and
the defining relation

gmat · (Tϕα)A = (Tϕα)∗ · gmat , (4.75)

the procedure outlined above yields the well-known referential mixed Piola-
Kirchhoff stress (Piola, 1833; Kirchhoff, 1852), see (Truesdell and Noll,
1965), Sect. 43A:

Kref = Tϕ−α · (K · g−1
mat) · (Tϕ−α)∗ · gmat

= Tϕ−α ·K · g−1
mat · gmat · (Tϕ−α)A

= Tϕ−α ·K · (Tϕ−α)A .
(4.76)

If after the pull back of σ = K · g−1
alt to a reference placement, the final

alteration were performed by means of the pull-back of the altering tensor,
the result would be

ϕα↓galt = (Tϕα)∗ · galt · Tϕα . (4.77)

This procedure yields in fact the pull-back of the mixed tensor K Eq. (3.59)

ϕα↓K = Tϕ−α · (K · g−1
alt) · (Tϕ−α)∗ · (Tϕα)∗ · galt · Tϕα

= Tϕ−α ·K · Tϕα ,
(4.78)

revealing that the pull-back ϕα↓K is not galt-symmetric but is in fact
(ϕα↓galt)-symmetric, with the property of sharing, with the original galt-
symmetric K , the eigenvalue spectrum.

4.7 Isotropic, stress independent rate elasticity
Let E and G be Euler and Lamé moduli of linearised elasticity.

It is convenient to introduce the modified Euler modulus Em = E/ρ
and Lamé modulus Gm = G/ρ per unit mass, measured in a local placement
which will be called the local testing placement.3

3 A local placement is a tangent space to a placement.
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The simplest 3D rate-elastic isotropic constitutive operator H , denoting
by J1 the linear invariant, is defined as follows

εel = H(σ) · σ̇ := 1
2Gm

M∗ ·M · σ̇ − νm
Em

J1(M · σ̇) galt , (4.79)

with
1

2Gm
= 1 + νm

Em
, (4.80)

or explicitly

εel = H(σ) · σ̇ := 1 + νm
Em

galt · σ̇ · galt −
νm
Em

J1(σ̇ · galt) galt . (4.81)

Premultiplying by g−1
alt and taking the linear invariant we get

J1(g−1
alt · εel) = 1− 2 νm

Em
J1(σ̇ · galt) , (4.82)

that is
J1(Del) = 1− 2 νm

Em
J1(K̇) . (4.83)

Under the condition that 2 νm < 1 , the Lamé modulus per unit mass
may be defined by

λm = νmEm
(1 + νm)(1− 2 νm) = 2Gm

νm
(1− 2 νm) , (4.84)

and the inverse rate-elastic law may be written as

σ̇ = 2Gm g−1
alt · εel · g−1

alt + λm J1(g−1
alt · εel) · g−1

alt . (4.85)

The alterating tensor M : Con(V E) 7→ Mix(V E) is defined by setting
galt = gmat in the local testing placement 4 and assuming that galt is
pushed by the motion from that placement, i.e. that

galt = ϕα↑gmat . (4.86)

The tangent elastic compliance H(σ) , given by Eq. (4.79), is then time-
invariant along the motion (and stress independent). We will refer to the
expression

H(σ) · σ̇ := 1
2Gm

gmat · σ̇ · gmat −
νm
Em

J1(σ̇ · gmat) gmat , (4.87)

as the simplest model of elastic behavior.
4 It should be underlined that, although introduced here in a special context, this

notion has a character of generality, being the placement where experimental tests are
performed, This is feasible only in the context of a rate theory.
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Let a laboratory test be performed on the same material after a time
lapse α ∈ Z . By time invariance, the outcome will be

H(ϕα↑σ) ·ϕα↑σ̇= 1 + νm
Em

ϕα↑(galt · σ̇ · galt)− νm
Em

J1(ϕα↑(σ̇ · galt))ϕα↑galt

= 1 + νm
Em

galt · (ϕα↑σ̇) · galt −
νm
Em

J1((ϕα↑σ̇) · galt) galt .

(4.88)
The elastic law will then be expressed by the simplest constitutive model

Eq. (4.87) in all local placements related by a local isometry because there
galt = ϕα↑gmat = gmat . In non isometric local placements the law will take
the expression in Eq. (4.81) with galt = ϕα↑gmat .

In terms of the mixed Kirchhoff stress K = σ · gmat the simplest
model takes the expression

Hmix(K) := 1 + νm
Em

I− νm
Em

I⊗galt I , (4.89)

where I is the identity in the tangent space to the placement, I is the
identity in the linear space of mixed tensors and ν is the Poisson ratio.

The simplest rate-elastic constitutive law, in the formulation correspond-
ing to Eq. (4.68), expressed in terms of the mixed alteration of Kirchhoff
stressing K̇ := σ̇ · galt and of the mixed alteration of elastic stretching
Del = g−1

alt · εel , writes

Del := 1 + νm
Em

K̇− νm
Em

J1(K̇) I . (4.90)

Upon geometric linearization around the testing placement, the law in
Eq. (4.87) collapses into the familiar linear isotropic elastic compliance.

Stress independence of the constitutive expression Eq. (4.87) assures
Cauchy integrability, with the tensor potential

Ψmix(K) = 1 + νm
Em

K− νm
Em

J1(K) I , (4.91)

and, by symmetry of Eq. (4.87), the scalar Green elastic potential is given
by

Ξmix(K) = 1 + νm
2Em

J1(K2)− νm
2Em

J1(K)2 . (4.92)

Mass conservation, time invariance of the elastic moduli per unit mass
and of the alteration operator M : Con(V E) 7→Mix(V E) , assure that the
elastic law expressed by Eq. (4.79) is conservative, as explicated by Eq.
(4.43).

It is worth noting that, if the rate elastic law in Eqs. (4.87)-(4.90) is
expressed in terms of the Cauchy stress T = ρK , time independence of
the elastic moduli does not ensure conservativeness, since the mass density
is not time invariant, unless the motion is isochoric.
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4.8 Pure elasticity
Let us consider a purely elastic behavior, so that the elastic stretching is
given by

εel = εv = LVgmat = ∂θ=0ϕθ↓gmat . (4.93)
Preliminarily, observing that g−1

mat ∈ Con(V E) , from Eq. (3.59)2 we
infer that

(ϕα↑gmat)−1 =
(
(Tϕ−α)∗ · gmat · Tϕ−α

)−1
= Tϕα · g−1

mat · (Tϕα)∗

= ϕα↑g−1
mat .

(4.94)

Then, pulling back Eq. (4.81) to a local testing placement, we get

ϕα↓εel = 1 + νm
Em

gmat · (ϕα↓σ̇) · gmat −
νm
Em

J1((ϕα↓σ̇) · gmat) gmat ,

(4.95)
where, by Eq. (3.59)1

ϕα↓εel = (Tϕα)∗ · εel · Tϕα . (4.96)

The increment of referential stress in a time lapse ∆t ∈ I is evaluated by
substituting the expression Eq. (4.93) of εel into Eq. (4.96) and integrating
in time Eq. (4.95). The push forward of the upgraded referential stress to
the current placement yields the upgraded current stress.

The pull-back of the geometric stretching is given by

ϕα↓εv := ϕα↓(LVgmat) = ϕα↓∂θ=0 (ϕθ↓gmat) = ∂θ=α (ϕθ↓gmat) . (4.97)

Introducing the Piola-Kirchhoff tensor (Piola, 1833)

Sα := (ϕα↓σ) · gmat ∈Mix(V E) , (4.98)

and the Green-St.Venant strain (George Green, 1839; St. Venant, 1844)

Eα := 1
2g−1

mat ·(ϕα↓gmat−gmat) = 1
2

(
(Tϕα)A Tϕα−I

)
∈Mix(V E) , (4.99)

with the last equality following from Eq. (4.75), we have that

Ṡα = ∂θ=α Sθ = ∂θ=α (ϕθ↓σ) · gmat = (ϕα↓σ̇) · gmat , (4.100)

Ėα = ∂θ=α Eθ = ∂θ=α g−1
mat · (ϕθ↓gmat) = g−1

mat · (ϕα↓εv) . (4.101)
The mixed alteration of Eq. (4.95) writes

Ėα = 1 + νm
Em

Ṡα −
νm
Em

J1(Ṡα) I . (4.102)

Under the condition that 2 νm < 1 , the inverse law reads

Ṡα = 2Gm
(
Ėα + νm

1− 2 νm
J1(Ėα) I

)
. (4.103)
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Stretching of a rubber bar

“ The power of a theory can be better popularized by prediction of
experimental results.”

– Anonymous

To illustrate the formulation of an elastic constitutive model in the range
of finite strains, we consider the response of a rubber bar whose elastic
law is expressed by Eq. (4.68), the tangent compliance being given by the
simplest, stress independent, law in Eq. (4.89). Assuming νm = 0.5 , the
elastic stretching has a vanishing linear invariant, so that the elastic process
is isochoric. Invariance of the volumetric stretching implies a singular elastic
response so that the elastic law cannot be inverted to provide the stressing
field induced by a given elastic stretching. The elastic response of a rubber-
like material subject to a uniaxial stress field, is discussed by considering a
simple isochoric motion.

Conservation of volume and mass implies that the scalar mass density
ρ is constant, i.e. ρ̇ = 0 . Being Em constant, the modulus E = ρEm will
also be constant.

5.1 Homogeneous extension

Let {di , i = 1, 2, 3 } and {dj , j = 1, 2, 3 } be dual bases in the space
bundle V E and in the space cobundle (V E)∗ respectively. The former base
is assumed to be g-orthonormal so that the latter is g−1-orthonormal.

Setting x = xdx+y dy+z dz , the motion is expressed by the assignment

ϕα(x) = α(x εx dx + y εy dy + z εz dz) + xdx + y dy + z dz

= x (α εx + 1) dx + y (α εy + 1) dy + z (α εz + 1) dz ,
(5.1)

with the parameters εx, εy, εz assumed to be function of the time lapse.
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The corresponding space velocity is then given by

(v ◦ϕα)(x) = ∂θ=αϕθ(x)

= x (εx + α ε′x) dx + y (εy + α ε′y) dy + z (εz + α ε′z) dz .
(5.2)

Then ϕ0(x) = x and v(x) = x εx dx + y εy dy + z εz dz .
The matrices associated with the tangent displacement Tϕα and with

the Green-St.Venant strain Eα := 1
2

(
(Tϕα)A Tϕα − I

)
, are given by

[Tϕα] =

 α εx + 1 0 0
0 α εy + 1 0
0 0 α εz + 1

 (5.3)

[Eα] = 1
2

 (α εx + 1)2 − 1 0 0
0 (α εy + 1)2 − 1 0
0 0 (α εz + 1)2 − 1

 (5.4)

The matrix associated with the mixed Euler stretching

D(v) = gspa
−1 · 1

2Lv gspa = symg(∇v) , (5.5)

is evaluated by time differentiation of Eq. (5.2) to be

[D(v)] =


(εx+α ε′x)
(α εx+1) 0 0

0 (εy+α ε′y)
(α εy+1) 0

0 0 (εz+α ε′z)
(α εz+1)

 (5.6)

The matrix associated with the time rate Ėα of the Green-St.Venant
strain can be evaluated by time differentiation of Eq. (5.4) to be

[Ėα] =

 (α εx + 1) (εx + α ε′x) 0 0
0 (α εy + 1) (εy + α ε′y) 0
0 0 (α εz + 1) (εz + α ε′z)


(5.7)

Then Ė0 = D(v) . Alternatively from Eq. (4.75) and Eq. (4.96) we infer
that

Ėα = g−1
mat · (ϕα↓εv) = (Tϕα)A · (g−1

mat · ε) · Tϕα

= (Tϕα)A ·D(v) · Tϕα ,
(5.8)

which by Eq. (5.3) and Eq. (5.6) yields Eq. (5.7).
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5.2 Incompressibility
Assuming transversal symmetry, we set εy = εz = εt . Then infinitesimal
isochoricity at any time α holds if

J1(D(v)) = εx
α εx + 1 + 2 (εt + α ε′t)

α εt + 1

= εx + 2 εt + 3α εx εt + 2α ε′t (α εx + 1)
(α εx + 1)(α εt + 1) = 0 .

(5.9)

Fixing the time scale so that εx = 1 , the infinitesimal isochoricity Eq.
(5.9) is fulfilled by imposing the condition

2α (α+ 1) ε′t + (3α+ 2) εt + 1 = 0 , (5.10)

whose general solution is

εt(α) = − 1
α

+ C

α
√

1 + α
. (5.11)

The constant, evaluated to give limα→0+ εt(α) = −0.5 , is C = 1 and
we get the expression plotted in fig. 5.1

εt(α) = 1
α

( 1√
1 + α

− 1
)
⇐⇒ α εt(α) + 1 = 1√

1 + α
. (5.12)
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Figure 5.1: Transversal stretching εt(α) needed for isochoricity

On the other hand, finite isochoricity in the time lapse α holds if

det(Tϕα) = (α εx + 1)(α εt(α) + 1)2 = 1 . (5.13)

From Eq. (5.13), being εx = 1 , we infer that finite isochoricity in the
time lapse α , expressed by the condition det(Tϕα) = 1 , leads to the same
requirement Eq. (5.12), in accord with the kinematic relation

(det(Tϕα))˙ = J1(D(v)) det(Tϕα) . (5.14)
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Substituting Eq. (5.12) into Eq. (5.3), we get

[Tϕα] =

 1 + α 0 0
0 1/

√
1 + α 0

0 0 1/
√

1 + α

 (5.15)

and substitution into Eq. (5.4) gives

[Eα] = 1
2

 α (2 + α) 0 0
0 −α/(1 + α) 0
0 0 −α/(1 + α)

 (5.16)

Fig. 5.2 yields the plot of the linear invariant J1(Eα) which, evaluated
from Eq. (5.16), is given by

J1(Eα) = 1
2
(
α (2 + α)− 2α

1 + α

)

= α2(3 + α)
2(1 + α) .

(5.17)

0 1 2 3 4

0

2

4

6

8

10

Figure 5.2: Plot of J1(Eα)

Moreover substitution of Eq. (5.12) into Eq. (5.6) gives

[D(v)] =


1

1+α 0 0
0 −1

2(1+α) 0
0 0 −1

2(1+α)

 (5.18)

and substitution into Eq. (5.7) , gives

[
Ėα

]
= 1

2

 2 (1 + α) 0 0
0 −1/(1 + α)2 0
0 0 −1/(1 + α)2

 (5.19)

which can be also got by evaluating the time derivative of Eq. (5.16).
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Figure 5.3: Plot of J1(Ėα)

Fig. 5.3 yields the plot of the linear invariant J1(Ėα) which, evaluated
from Eq. (5.19) , is given by

J1(Ėα) = 1
2
(
2 (1 + α)− 2

(1 + α)2

)
= α

(
α2 + 3α+ 3

)
(1 + α)2 . (5.20)

From Eqs. (5.15) and (5.16) we get

[
Tϕα · (Tϕα)A

]
=

 (1 + α)2 0 0
0 1/(1 + α) 0
0 0 1/(1 + α)

 (5.21)

[
(Tϕα) ·Eα · (Tϕα)A

]
= 1

2

 α (2 + α) (1 + α)2 0 0
0 − α

(1+α)2 0
0 0 − α

(1+α)2


(5.22)

From Eq. (5.15) we infer that the longitudinal elongation ratio is given by

λ(α) := `(α)/`0 = 1 + α (5.23)

5.3 Elastic stress-elongation response

At a testing placement, considered as a straightened trajectory, the uniaxial
elastic law gives the mixed stressing response

gmat(K̇dx ,dx) = Em gmat(D(v) · dx ,dx) , (5.24)

σ̇(gmat · dx ,gmat · dx) = Em εv(dx ,dx) . (5.25)

which, by time invariance, is equivalent, in the current placement, to the
stressing response

σ̇(galt · dx ,galt · dx) = Em εv(dx ,dx) . (5.26)
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To simplify the notations, we avoid to be explicitly involved with the
projection in the longitudinal direction dx , in the formulae listed below.

The subsequent steps to be followed in the evaluation of the elastic re-
sponse of the incompressible elastic material under uniform axial traction,
according to Eq. (4.86), are listed hereafter.

σ̇= Em g−1
alt · εv · g−1

alt natural law

ϕα↓σ̇= Em g−1
mat ·ϕα↓εv · g−1

mat pull back

Ṡα = (ϕα↓σ̇) · gmat mixed alteration

Ėα = g−1
mat · (ϕα↓εv)

Ṡα = Em Ėα ref. mixed law

Sα = Em Eα time integration

Sα · g−1
mat = Em Eα · g−1

mat end alteration

σ= ϕα↑(Sα · g−1
mat) pushed stress

σ= Emϕα↑(Eα · g−1
mat)

= Em (Tϕα) ·Eα · g−1
mat · (Tϕα)∗

= Em (Tϕα) ·Eα · (Tϕα)A · g−1
mat

K = σ · gmat mixed alteration

K = Em (Tϕα) ·Eα · (Tϕα)A result

(5.27)

Being
A0/A(α) = `(α)/`0 = 1 + α (5.28)

and Kdx = K0dx (1 + α) , the stress K0 := g(K0dx ,dx) per unit initial
transversal area is given by

K0
Em

= α (1 + α) (2 + α)
2 . (5.29)

The initial slope in Eq. (5.29) is equal to 1 .
To compare the outcome of the analysis carried out with the new geomet-

ric theory, we observe that the plot of the nominal stress vs the elongation
ratio is given in (Treloar, 1987, (5.3) p. 81)

K0(λ) = Ĝ (λ− 1
λ2 ) (5.30)

with the modulus Ĝ introduced on the basis of a statistical mechanics ar-
gument.
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Figure 5.4: Comparison of laws K0/Em vs elongation ratio `(α)/`0

The initial slope of Eq. (5.30) normalised by Em is equal to 3 (Ĝ/Em)
and hence coincides with the slope of Eq. (5.29) by setting Ĝ = Em/3 .

Treloar’s formula Eq. (5.30) may then be rewritten as

K0(λ)
Em

= 1
3 (λ− 1

λ2 ) . (5.31)

The resulting curves, with the common slope given by the dotted line,
are plotted in fig. 5.4 where

1. the solid line is the plot of the new Eq. (5.29),

2. the dashed line is is the plot of Treloar’s formula Eq. (5.31).

The qualitative behavior of the elastic response represented by Eq. (5.29)
is in agreement with the experimental results in (Treloar, 1987) reporting a
progressive locking under increasing elongation. This characteristic behavior
is not shared by Eq. (5.31).

It might be interesting to observe that, if the procedure in Eq. (5.27)
is modified by performing the push forward directly on mixed alteration of
the referential stress response, the final result, plotted in fig. 5.5, would be

K0
Em

= α (2 + α)
2 (1 + α) , (5.32)

and the progressive locking under increasing elongation would no more hold.
The theoretical treatment outlined on the basis of the new formulation of

elasticity, may be compared to standard treatments of rubber-like materials
by a statistical mechanics approach or on the base of the Mooney-Rivlin
model, see (Rivlin and Saunders, 1951), and on its modifications (Ogden,
1972).
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Figure 5.5: Modified comparison of K0/Em vs elongation ratio `(α)/`0

An account of the state of art is provided in the review (Boyce and
Arruda, 2000) and in (Müller and Strehlow, 2004).

We conclude this case study with the following proviso. Material stress-
strain relationship described by functions of strain invariants, depending
on empirically evaluated constants, must rely upon reference placements
entering into the constitutive theory, for the evaluation of the finite strain.

While the standard approach to finite elasticity leaves these reference
placements substantially undetermined, the geometric theory illustrated in
Ch. 4 makes explicit reference to a testing placement where experimental
tests are carried out and measurements are performed according to a rate
constitutive theory.

Significant comparisons of standard treatments with the present rate
constitutive theory are thus problematic because elasticity models, in which
the finite strain is taken as primary control variable, are in the viewfinder
of the critical comments exposed in Sect. 3.4.
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Epilogue

6.1 Standard stress-rate formulations
In literature, since the beginning of the twentieth century, a large number
of proposals concerning the notion of stress-rate have been made (Zaremba,
1903; Jaumann, 1906, 1911; Oldroyd, 1950a,b; Thomas, 1955; Cotter and
Rivlin, 1955; Green and Rivlin, 1955; Truesdell, 1955; Green, 1956).

An interpretation of these proposals in terms of convective derivatives of
various tensor alterations along was provided in (Sedov, 1960) and (Marsden
and Hughes, 1983, p.100).

The proposed time derivatives were evaluated by taking into account
either the space motion or an artificial homomorphism connecting subse-
quent spaces tangent to rotated body placements, by dropping the stretch-
ing component of velocity gradient, as described by Eq. (6.8) expressing the
Jaumann (co-rotational) rate.

In all these treatments the time derivative of the stress tensor along the
motion was split into the sum of partial time and spatial derivatives, a pro-
cedure which, while giving a deceptive feeling of computational convenience,
is geometrically incorrect.

To motivate our assertion, we observe that the splitting of the space-time
displacement ϕα : TE 7→ TE , into a time-step at a fixed space position and
a spatial displacement at a fixed time instant, cannot be invoked to get a
corresponding decomposition of the time-derivative of material fields.

To illustrate this point, let us consider a formal procedure leading to
the space-time splitting formulae, as exposed for instance in (Sedov, 1960;
Marsden and Hughes, 1983).

1. The Lie derivative and the parallel derivative of the stress tensor along
the space-time motion are split in time and space components

LV σ = Lv σ + LZ σ , (6.1)

∇V σ = ∇v σ +∇Z σ . (6.2)
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2. The Lie derivative Lv σ along a space motion, is expressed in terms
of parallel (covariant) derivatives according to a Levi-Civita (metric
and torsion-free) connection in the space slice, see Eq. (2.33)4, by
means of the formula

Lv σ = ∇v σ −∇v · σ − σ · (∇v)∗ . (6.3)

3. Taking into account the equality

LZ σ = ∂α=0ϕ
Z
α ↓σ = ∂α=0ϕ

Z
α⇓σ = ∇Z σ , (6.4)

valid in the Euclid space-time, the formula Eq. fm: Lienablaplit may
be written as

LV σ = ∇Z σ +∇v σ −∇v · σ − σ · (∇v)∗ . (6.5)

By the relation Eq. (3.39) between dual and adjoint operators

(∇v)∗ · g = g · (∇v)A , (6.6)

and by the formula K := σ ·gmat , the mixed counterpart of Eq. (6.5)
is given by

◦
K = (LV σ) · gmat = K̇−∇v ·K−K · (∇v)A . (6.7)

The term K̇ := ∇V K is usually called the material time derivative.1
If the motion is an isometry, then sym∇v = 0 and hence ∇v =
W(v) = 1

2 (∇v − (∇v)A) . Consequently, being W(v)A = −W(v) ,
Eq. (6.7) yields the Jaumann (co-rotational) rate, defined by

◦
K := K̇−W(v) ·K + K ·W(v) . (6.8)

The splitting in Eq. (6.1) and Eq. (6.2) and the ensuing formulae Eq. (6.5)
or Eqs. (6.7), (6.8), although spread throughout the literature on nonlinear
continuum mechanics, are affected by the following flaws.

1. The additive decompositions of the Lie derivative Eq. (6.1) and of
the parallel derivative Eq. (6.2), along the space-time motion, have no
general validity being subject to the special assumption that spatial
and temporal components v,Z of the velocity V are not transversal
to the trajectory, see fig. 3.2. Consequently Eq. (6.3) and Eq. (6.4)
cannot be applied to get Eq. (6.5).

1 The nomenclature is improper because the parallel derivative will, as a rule, yield a
spatial tensor.
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2. The parallel (covariant) derivative Eq. (6.2) along the space-time ve-
locity V requires the evaluation of the backward parallel transport
of the stress field along the material particle but the resulting tensor
field will not in general still belong to the material bundle but rather
to the spatial bundle. As a result the parallel derivative cannot ap-
pear in constitutive relations Eq. (1.4). This comment applies to the
formulation of hypo-elasticity given in (Truesdell and Noll, 1965).

The comments above point out again the peculiar position of Euler
formula expressing the mixed material stretching in terms of parallel deriva-
tives, a formula whose general validity relies on the fact that the material
metric tensor field is the pull-back to the material bundle of the space metric
tensor field which is defined on the whole event manifold. No other mate-
rial tensor in Continuum Mechanics has this property and hence no general
formula in terms of parallel derivatives can be found to express its time
derivative along the motion.

These basic difficulties with the representation Eq. (6.5) are however of
no concern because theoretical and numerical computations are conveniently
performed in full generality by pushing the stress field σ and the stressing
field σ̇ := LVσ to a local straightened trajectory, where Lie derivatives
along the motion reduce to partial time derivatives, as shown in Sect. 3.5.

6.2 Concluding remarks
The preliminary discussion in Sect. 3.4 puts into evidence that, a geomet-
rically biased analysis of standard issues in constitutive theory, leads to
conclude that a modification of basic ingredients is compelling.

Two main intertwined points are decisive.
The first point is mainly of epistemological character, requiring that

reference states should not be invoked in the formulation of constitutive
relations. Tracks of previous actions on the material are to be recorded by
suitable internal variables and related evolution laws.

Despite the unavoidable indeterminacy intrinsic in constructions of con-
stitutive equations involving reference states, most formulations in litera-
ture, following the wake of the treatment conceived in (Truesdell and Noll,
1965), are based on this untenable notion. However, motivations against
the adoption of referential finite plastic strains in constitutive relations have
been clearly expressed in literature, see e.g. (Rubin, 2001), and the adoption
of reference states was eventually critically commented also by (Noll, 2004).

To envisage a consistent remedy to these problematics, a drastic geo-
metric revision of fundamental concepts in continuum mechanics is an un-
avoidable task, undertaken in a systematic way by the first author and his
associates, in recent contributions propaedeutic to the present treatment
(Romano, Barretta, 2011, 2013a,b; Romano, Barretta, Diaco, 2014a,b,c).
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A significant and clarifying innovation concerns the distinction between
newly defined material and space tensor fields and the statements of the
pertinent rules for their comparison along the space-time motion.

As a matter of fact, the denomination of material and space fields is
still commonly adopted to denote tensor fields in a reference placement
and on the actual placement, in one-to-one correspondence by means of the
diffeomorphic transformation between placements.

But for these fields the attributes current and referential are instead
appropriate. Both current and referential fields represent then the same
physical entity that we classify as a material field.

The new definition makes a clear physical classification and provides the
geometric definition of two quite distinct kinds of fields, which cannot be
transformed one into the another.

Material tensors act on material vectors which are tangent to body place-
ments. Space tensors act on space vectors which are based on body place-
ments but tangent to space slices.

The former must be compared, in a natural manner, by pull-back along
the motion, while the latter, which do not live in body placements, can only
be compared, in a not natural manner, according to an arbitrarily chosen
parallel transport in space, along the motion.

From the physical point of view, material fields pertain to the description
of material behavior, such as stretching, stress, mass and temperature, and
are deputed to enter in constitutive relations, while spatial fields describe
the kinetics of a material body, such as velocity and acceleration.

A related point deals with the longly debated question about the proper
definition of stress rate.

The geometric theory provides the answer in a natural and univocal
way since the values attained by material fields in a time lapse along the
motion must be compared by pull-back through the corresponding displace-
ment map. It then follows that time-derivatives of material fields must be
performed as Lie-derivatives along the motion.

This conception leads to the conclusion that mechanical constitutive
laws must be formulated in rate form as relations involving current values
of material state variables and their time rates along the motion, as con-
trol parameters. The output is the geometrical stretching, build up by the
sum of various contributions, providing interpretations of distinct physical
behaviors of materials of interest in mechanics.

In this framework, results of the present contribution may be summarised
as follows.

1. The geometric revision of elasticity theory shows that, contrary to
still repeatedly negative claims in literature, rate elasticity is a well
founded constitutive model. Even better, elasticity must indeed be
formulated as a rate model.
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2. From the mathematical point of view, integrability of the rate con-
stitutive relation, required by thermodynamical motivations, can be
imposed by simple and operative symmetry conditions on the consti-
tutive operator.

3. In the new theory, time invariance of elastic behavior is given a new
geometric definition, consistent with a large displacement analysis, in
which invariance along the motion means variance according to push
along the motion.

4. The theory leads to the notion of elastic states, which are related to
stress states by the integrated constitutive law, according to a one-
to-one correspondence. Elastic states take in the new elastic constitu-
tive law the position previously improperly occupied by elastic strains.
Troubles concerning the role played by reference placements in consti-
tutive relations are thus bypassed in a natural way.

5. Stress states are the primary variables and elastic energy is therefore
expressed in terms of stress fields. The usual denomination of elastic
strain energy ought accordingly to be changed into elastic stress en-
ergy and the complementary functional should be named elastic state
energy.

6. It is clarified that, due to lack of integrability of the rate constitu-
tive law, anelastic constitutive responses cannot be formulated as time
rates of change of state variables along the motion. Thus, for instance,
no accumulated plastic strain can be associated with the evolution of
plastic stretching.

7. A careful analysis of contravariant-covariant tensors describing stress-
stretching pairs in duality, and of their mixed alterations, dictates
the rules for the proper formulation of a rate elastic law. This issue
of mixed alterations is of the utmost importance in applications, since
mixed tensors are adopted in engineering treatments to take advantage
of the powerful spectral representation of symmetric linear operators.
However, in performing time derivatives along the motion, invariance
of the altering material metric must be considered.

Innovations adduced by the theory are outlined in the synoptic table.
The new theory is intended to provide a consistent framework for the

formulation of elastic laws in the field of large displacements and is expected
to be especially effective in applications involving thin elastic bodies, such
as wires and membranes, or very soft matter, as in biomechanics.
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Synoptic table

new previous

stressing σ̇ = LV σ stress rates no univocal
definition

elastic
stretching εel := H(σ) · σ̇

mixed
stretching Del := Hmix(K) · K̇ hypo

elastic law
◦
T = H(T) ·D

elastic stress
potential Ξ(σ)

referential
elastic
potential

W (F)

elastic state es := Ψ(σ) = dFΞ(σ)
referential
elastic
response

P = dW (F)

rate
elastic state εel = LVes mixed

stretching D

elastic state
potential Ξ∗(es)

accumulated
elastic strain

esref(α)

:=
∫ α

0
(ϕτ↓εel) dτ

=ϕα↓es− es

finite
elastic
strain

special
reference and
intermediate
placements
required
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