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The theory of continuous dynamical systems is developed with an intrinsic geo-
metric approach based on the action principle formulated in the velocity-time mani-
fold. By endowing the finite dimensional Riemannian ambient manifold with a
connection, an induced connection is naturally defined in the infinite dimensional
configuration manifold of maps. The motion is shown to be governed, in the Ba-
nach configuration manifold, by a generalized Lagrange law and, in the ambient
manifold, by a generalized Euler law which is independent of the Banach topology
of the configuration manifold. Extended versions of Euler–Poincaré law, Euler
classical laws and d’Alembert law are also derived as special cases. Stress fields in
the body are introduced as Lagrange’s multipliers of the rigidity constraint on
virtual velocities, dual to the Lie derivative of the metric. No special assumptions
are made so that any constitutive behaviors can be modeled. © 2009 American
Institute of Physics. �doi:10.1063/1.3215979�

I. INTRODUCTION

In recent times the interest for geometric formulations of dynamics has considerably grown up
in the literature but, despite of this, most treatments still refer to Newtonian dynamics of a finite
system of point-mass particles or to rigid body dynamics and are expressed in terms of coordinates
or recourse is made to local coordinates to prove the main results. As a matter of fact, a satisfac-
tory physical and intrinsic geometrical picture of the theory for continuous dynamical systems is
still lacking. We contribute here the elements for a foundation of continuum dynamics by assum-
ing, as starting point, a geometric action principle in the velocity-time state space. The abstract
formulation is formally similar to that pertaining to discrete systems but, to cover dynamics of
continuous systems, the configuration manifold is assumed to be an infinite dimensional manifold
of maps. Dynamical systems in continuum mechanics enjoy a peculiar geometric feature in which
three differentiable structures are the playmates: the ambient finite dimensional manifold without
boundary �usually the flat Euclidean three dimensional �3D� space� in which motions take place,
a finite dimensional manifold with boundary �called the body� which provides the geometrical
picture of the body, and the infinite dimensional configuration manifold of maps whose elements
are embeddings of the body into the ambient manifold. The special geometric feature of the
configuration manifold of a continuous dynamical system permits to define a connection induced
by a given connection in the finite dimensional ambient manifold. The procedure is conceived in
terms of parallel transport. It consists in performing the parallel transport of vector fields, from one
placement to another one, along the sheaf of curves tracked by the body particles in the ambient
manifold, in correspondence to a given curve in the configuration manifold. The induced connec-
tion leads to a dynamical theory of continuous systems whose governing rules are independent of
the Banach topology of the configuration manifold. This key property is in agreement with the
physical expectation that continuum dynamics must depend only on the geometric structure of the
ambient manifold.
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The plan of the paper is the following. Preliminarily we collect some basic definitions and
notions of differential geometry and calculus on manifolds, mainly to clarify the notations for
subsequent reference. The reader is anyway assumed to be familiar with the fundamentals of the
matter. A comprehensive exposition, to our purposes, may be found, e.g., in Refs. 1–3. Next we
introduce, in an abstract setting, the definition of the geometric action principle and of the related
Euler conditions with a formulation which includes discontinuities along the trajectory and is
consistent with the paradigm of the calculus of variations discussed in Refs. 3–6. According to the
paradigm, the rate of change of the action integral, when the path is dragged by a virtual flow, is
equal to the boundary integral of the outward flux of the virtual velocity field, plus a linear term
given by the integral along the trajectory of the virtual power of regular and singular force systems
acting on the body. This definition gives up with the fixed end-point assumption which in previous
treatments has lead to identify the extremality property of the action functional with a stationarity
or minimum property.2,7,8 The corresponding nongeometric action principle, i.e., dependent on the
time parametrization of the trajectory in the configuration manifold, provides an extended version
of the classical Hamilton’s principle. The related Euler condition of extremality provides the
general form of the law of motion in the configuration manifold in the wake of the guidelines and
ideas exposed in Refs. 3–6. Then we show that the assignment of a connection in a configuration
manifold provides a generalized statement of Lagrange’s law of motion, as introduced in Ref. 5. If
the connection in the configuration manifold is induced by a given connection in the ambient
manifold, it is possible to translate Lagrange’s law from the configuration to the ambient manifold
and this leads to the formulation of the law of dynamics which generalizes to continuous systems
and to Riemannian ambient manifolds the classical one due to Euler.9 This translation is a crucial
point which seems to have been dealt with here in full generality for the first time. The proof of
this generalized Euler’s law is not trivial. It is based on the result of Lemma VIII.5 concerning the
torsion of the induced connection in the configuration manifold. To get the generalized Euler’s law
the ansatz of mass conservation along the variations is also needed. This assumption is tacitly or
implicitly made in other treatments and in the analytical dynamics context. Conservation of mass
along the dynamical trajectory leads to the generalization of d’Alembert’s law. The expression of
the law of dynamics in terms of a connection in the ambient manifold is of the utmost importance
since it permits to infer that the law of dynamics is, in fact, expressed by a variational condition
on a bounded linear functional in the Hilbert space of conforming virtual velocity fields at the
current placement. This result has a twofold basic implication. On one hand, it opens the way to
the introduction of the Cauchy stress field as Lagrange multiplier of the rigidity constraint on
conforming virtual velocity fields, thus providing the variational formulation of the law of dynam-
ics suitable to the analysis of deformable bodies. On the other hand, it reveals that no distinctions
has to be made between holonomic and nonholonomic linear constraints, in formulating the law of
dynamics. The issue is discussed in detail in Ref. 3 where also a critical review of relevant
contributions in literature is made.10–19 Under special assumptions, particular expressions of the
law of motion are provided. In fact, assuming a distant parallel transport in the ambient manifold,
the extension to continuous systems of the Poincaré law of dynamics, which we call the Euler-
Poincaré law,5,11 is given. By considering Riemannian ambient manifolds with the Levi–Civita
connection and dynamical systems governed by standard Lagrangians, an extended version of the
classical Euler’s law of motion is derived and by conservation of mass, an extended version of the
classical d’Alembert’s law is recovered. An account of the formulation of dynamics of hyperelastic
materials is provided as a last issue.

II. PRELIMINARIES

In the sequel a superscript star � denotes duality and the crochet � , � is the duality pairing. The
dot · indicates a linear dependence on the forthcoming argument. Given a set X and a Banach
space Y, the Banach space of bounded linear maps from X to Y is denoted by BL�X ;Y�. A detailed
exposition of calculus on manifolds may be found, e.g., in Refs. 1 and 2. The following summary
of concepts and definitions of differential geometry is deduced from the treatment in Ref. 3. Let M
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be a differentiable manifold modeled on a Banach space and let �TM ,�M ,M� and �T�M ,�M
� ,M� be

the dual pair of tangent and cotangent bundles over M with fibration maps �M�C1�TM ;M� and
�M

� �C1�T�M ;M� surjective submersions. The tangent map T��C0�TM ;TN� to a morphism �
�C1�M ;N� between manifolds is the linear vector bundle homomorphism, i.e., the fiber preserv-
ing and fiber-linear map pointwise defined by the differential,

�T� � v��x� = Tx� · v�x� � T��x�N, ∀ v�x� � TxM .

A vector field vN�C1�N ;TN�, with �N �vN= idN, is related to the vector field vM�C1�M ;TM�,
with �M �vM= idM, by a morphism ��C1�M ;N� �briefly �-related� if T� �vM=vN ��. If �
�C1�M ;N� is a diffeomorphism �invertible and C1, with the inverse� we have the push forward
vN=�↑vM, and the pull back vM=�↓vN. The push forward �pull back� of a covector field is
defined by evaluating the covector field on the pull back �push forward� of the vector field
arguments. The push and pull of arbitrary tensor fields are defined in an analogous way.

The flow generated by a vector field v�C1�M ;TM� is denoted by Fl�
v �C1�M ;M�. In a fiber

bundle �E ,� ,M�, with fibration map ��C1�E ;M�, for any given section s�C1�M ;E�, the natural
derivative along a vector v�TM is the vector field Tv�C1�s�M� ;TE� defined by Tvs=Ts �v. It
fulfils the property T� �Tv=v �� on s�M�. The vertical subbundle �VE ,�E ,E� of the tangent bundle
�TE ,�E ,E� has linear fibers made of the kernels ker�Te�� of the tangent maps Te�
�BL�TeE ;T��e�M�. The horizontal part of a vector Xe�TeE is the velocity of its base point in M,
i.e., Te� ·Xe�T��e�M. Vertical vectors Ve�TeE are those with a vanishing horizontal part or
equivalently those tangent to a fiber of the bundle. A 1-form ��Te

�E is said to be horizontal if it
vanishes on the vertical vectors Ve�TeE. A connection on a fiber bundle is a linear vector bundle
homomorphism PV�C1�TE ;TE�, which is fiberwise a projector on the vertical subbundle, i.e.,
PV�e��BL�TeE ;TeE� with PV�e� � PV�e�= PV�e� and im�PV�e��=ker�Te��. The complementary
projector PH= I− PV defines the horizontal subbundle HE�TE. The horizontal lift Hvs
�C1�M ;HE� and the covariant derivative �̄vs�C1�M ;VE� of a section s�C1�M ;E� along a
vector field v�C1�M ;TM� are, respectively, the horizontal and vertical components of the natural
derivative,

Hvs ª PH � Tvs, �̄vs ª PV � Tvs ,

so that Tv=Hv+ �̄v�C1�s�M� ;TE� with Hv= PH �Tv and �̄v= PV �Tv. Then T� �Hv=v �� on s�M�.
The horizontal lift is a linear homomorphism from the tangent bundle �M�C1�TM ;M� to �E
�C1�HE ;E� which is fiberwise invertible and tensorial in s�C1�M ;E�. A connection in a vector
bundle ��C1�E ;M� is linear if the horizontal lift depends linearly on the point values of s
�C1�M ;E�. The parallel transport Fl�

v ⇑s�C1�M ;E� of a section s�C1�M ;E� along the flow
Fl�

v �C1�M ;M� is defined by

Fl�
v ⇑ s ª Fl�

Hv � s .

We put Fl�
v ⇓ ªFl−�

v ⇑. The horizontal lift and the covariant derivative are expressed in terms of
parallel transport by

Hvs = ��=0Fl�
Hv � s = ��=0Fl�

v ⇑ s ,

�̄vs = ��=0Fl−�
Hv � s � Fl�

v = ��=0Fl�
v ⇓ �s � Fl�

v� .

The product bundle or Whitney product of two vector bundles �E ,�E ,M� and �H ,�H ,M�, over the
same base manifold M, is the vector bundle defined by20

E�MH ª ��e,h� � E � H��E�e� = �H�h�	 .

The vector bundle isomorphism vlTM�ux ,vx��C1�TM�MTM ;VTM� defined by
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vlTM�ux,vx� ª ��=0�ux + �vx� ,

is called the vertical lift of vx�TxM at ux�TxM. The relation vlTM�u� ·�vuª �̄vu provides the
definition of the covariant derivative �vu�TM as a tangent vector. The fiber derivative dFL
�C1�TM ;T�M� associated with a Lagrangian functional L�C2�TM ;R� is defined by

dFL�ux� · vx ª ��=0L�ux + �vx� = �TL�ux�,vlTM�ux,vx��

for all ux, vx�TxM. The correspondence between tangent and cotangent bundles induced by the
fiber derivative is the Legendre transform. The Lie derivative of a section s�C1�M ;E� of a fiber
bundle �E ,� ,M� along a vector field v�C1�M ;TM� is defined by Lvs=��=0Fl�

v ↓s=��=0TFl−�
v �s

�Fl�
v. In the tangent bundle, the equality between the Lie derivative Lvu=��=0Fl�

v ↓u for vector
fields u, v�C1�M ;TM� and the Lie bracket, defined by d�v,u�f =dvduf −dudvf for any f
�C2�M ;R�, provides the antisymmetry property Lvu= �v ,u�=−�u ,v�=−Luv. The torsion of a
linear connection in a tangent bundle �TM ,�M ,M� is the field of tangent-valued two-forms defined
by

tors�ux,vx� ª ��ux
v − �vx

u − �u,v���x� � TxM .

Main tools of calculus on manifolds are the domain displacement formula and Poincaré–Stokes’
formula,



Fl�

v���
�k = 


�

Fl�
v↓�k, 


�

d�k−1 = �
��

�k−1,

providing a defining property of the exterior derivative d, the integral extrusion formula,3

��=0

Fl�

v���
�k = 


�

�d�k� · v + �
��

�k · v ,

and the related magic formula of Henri Cartan,2,3,21–23

Lv�k
ª ��=0Fl�

v↓�k = �d�k� · v + d��k · v� ,

where �, is a k-chain with boundary ��, �k, is a k-form, and �k ·v is the contraction performed
by inserting v, as first argument of �k. The last formula may be readily inverted to get Palais
formula for the exterior derivative.24 Indeed, by Leibniz rule for the Lie derivative, for any 1-form
�1, and vector fields v, w�C1�M ;TM�, we have

d�1 · v · w = �Lv�1� · w − d��1 · v� · w = dv��1 · w� − �1 · �v,w� − dw��1 · v� .

The exterior derivative of a differential 1-form is a two-form which is well defined by Palais
formula because the expression at the right hand side fulfills the tensoriality criterion.3,22,25 The
value of the exterior derivative at a point is then independent of the extension of the argument
vectors to vector fields, extension needed to compute the involved directional derivatives and the
Lie derivative.

III. ABSTRACT ACTION PRINCIPLE AND EULER CONDITIONS

We assume that a status of the system is described by a point of a manifold M the state space.
In dynamics, the state space is the velocity-time manifold. To allow for the velocity to undergo
abrupt changes at singular time instants, a reasonably general treatment requires to consider
trajectories which are piecewise smooth on M, possibly with a finite number of jump discontinui-
ties. The evolution of the system is governed by a variational condition on the integral, along a
trajectory � : I→M, of a piecewise smooth differential one-form �1 :M→T�M. The geometric
trajectory is the 1-chain �ª��I� and the set of singular points of �, where discontinuities of the
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trajectory occur, is the 0-chain Sing���. The vector bundle T�M is the restriction of the tangent
bundle TM to �.

Definition III.1: (Action integral) The action, associated with a geometrical path � in the state
space M and with a differential one-form �1, on M, is the integral



�

�1.

In formulating the action principle, we consider a dynamical system subject to linear constraints,
the extension to affine constraints being straightforward. Linear constraints acting on the trajectory
speed and on virtual velocities are described by vector subbundles, respectively Trial� and Test�
of the vector bundle T�M.

Source terms are represented by a two-form �2, on T�M, the regular source form, which
provides an abstract description of a possibly nonpotential system of forces acting along the
trajectory. The source form �2 is potential if it is defined on a neighborhood U����M of the path
and there is exact. This amounts to assume that �2=d�1, where d is the exterior differentiation and
�1�C1�U��� ;T�M� is a differential one-form. The impulsive source form �1 is a differential
one-form on TSing���M, acting at singular points of the trajectory.

The statement of an action principle, sufficiently general for application to dynamics, requires
a suitable definition of the virtual flows along which the trajectory is assumed to be varied.

Definition III.2: (Virtual flows and velocities) Virtual flows 	� :�→M, dragging the trajectory
� in the state space M, are such that, at discontinuity points, the duality, between their initial
velocity fields v	=��=0	� :�→T�M and covectors source terms, is well defined. Initial velocities
of virtual flows are named virtual velocities.

The value taken by a source form, when acting on a virtual velocity, is called a virtual power.
An instance of explicit formulation of conditions to be fulfilled at discontinuity points will be
given in Definition V.1 with reference to virtual velocities on the tangent bundle to the configu-
ration manifold.

Proposition III.1: (Abstract action principle) In a dynamical system governed by a piecewise
smooth differential one-form �1, on M, a piecewise smooth trajectory � : I→M has tangent vector
field v� :�→T�, belonging to the subbundle Trial� and such that

��=0

	����

�1 = �
��

�1 · v	 + 

�

�2 · v	 + 

Sing���

�1 · v	

for all virtual flows 	� :�→M with virtual velocities v	ª��=0	� in the subbundle Test�.
This means that the initial rate of increase in the action integral along any virtual flow is equal

to the outward flux of virtual velocities at end points plus the integrals of the exterior forms
providing the virtual power performed by regular and impulsive source forms. Denoting by x1 and
x2 the initial and final end points of �, it is ��=x2−x1 �a 0-chain�, and the boundary integral may
be written as

�
��

�1 · v	 = ��1 · v	��x2� − ��1 · v	��x1� .

Singular points xi, i=1, n, along the trajectory also form a 0-chain, so that



Sing���

�1 · v	 = �
i=1

n

��1 · v	��xi� .

The action principle is purely geometrical since the trajectory � may be affected by an arbitrary
reparametrization. Under the assumption that the vector subbundle Test� is rich enough to allow
for localization, the action principle is equivalent to Euler’s extremality conditions provided by the
next theorem.
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Euler’s classical result assumes regular paths with fixed end points and is formulated in
coordinates. The statement below considers piecewise regular paths and variations with nonfixed
end points, leading to extremality conditions expressed by differential and jump terms. Its proof is
a direct consequence of the extrusion formula and of a localization argument.

Theorem III.1: (Euler’s extremality conditions) A path ��M fulfills the action Principle III.1
if and only if the tangent vector field v� :�→T�, belonging to the subbundle Trial� , meets, at
regular points, the differential condition

�d�1 − �2� · v� · v	 = 0, ∀ v	 � Test�,

and, at singular points, the jump conditions

����1�� − �1� · v	 = 0, ∀ v	 � Test�,

where ���1�� is the difference between the right and the left limit.
If Test�=Trial�, and the restriction of the two-form d�1, to this subbundle has a one dimen-

sional kernel at each point, Euler’s differential condition ensures local existence and uniqueness of
the trajectory through a given point of the state space. As is well known,8 this is the case in rigid
body dynamics. On the contrary, in continuum dynamics only the strict inclusion Test��Trial�
holds and further conditions specifying the constitutive behavior of the material body are required.
The issue will be discussed in greater detail in the sequel.

IV. KINEMATICS

The peculiar geometric feature of continuous dynamical systems is that three differentiable
structures are playmates: the ambient space, a finite dimensional Riemannian manifold without
boundary �S ,g� �usually the flat Euclidean 3D space� in which motions take place, the body, a
finite dimensional manifold B, with boundary describing the geometrical properties of the con-
tinuous body, and the configuration space, the infinite dimensional manifold C, describing the
kinematics of the body in the ambient space.

The metric tensor gx�BL�TxS ,TxS ;R� and the linear map gx
��BL�TxS ;Tx

�S� may be iden-
tified by virtue of the one-to-one correspondence induced by the identity gx�a ,b�= �gx

�a ,b� for any
pair a, b�TxS. Moreover, by the positive definiteness of the metric gx, the map gx

� is an isomor-
phism whose inverse gx

�= �gx
��−1 provides a metric tensor gx

��BL�Tx
�S ,Tx

�S ;R� in the dual space.
The configuration space is a manifold of maps26 which are Ck-embeddings of the body mani-

fold B into the ambient manifold �S ,g�, i.e., injective maps 
�Ck�B ;S�, such that the placements

�B� are submanifolds of S and the corestricted maps 
�C1�B ;
�B�� are diffeomorphisms.22

The theory of continuous dynamical systems is a field theory and it is essential to express
differential properties of the configuration space in terms of the ones of the ambient space.

When morphisms, flows, and tensor fields in the configuration space and the ambient space
are to be distinguished, a superscript � · �C will be used to denote quantities pertaining to the former,
when there are analogous quantities pertaining to the latter. Geometrical objects in the two mani-
folds will be labeled by the prefixes C and S, respectively.

In continuum mechanics velocity fields which are infinitesimal isometries �or rigid body
velocities� play a central role. In fact, material bodies are insensitive to isometric changes of their
placement in the ambient space. It follows that the constitutive properties of the materials do not
enter in the dynamical equilibrium condition, if rigid body test velocities are considered. The
elements of the linear space Rig��� of infinitesimal isometries at the placement �=
�B�, also
denoted by Rig
, are vector fields �v�C1�� ;TS� characterized by the condition L�vg=0.

In the configuration manifold C, the family of all linear spaces Rig
 defines a distribution Rig
in the tangent bundle �TC ,�C ,C�. The property3,27 of the Lie derivative, that L�u,v�= �Lu ,Lv� for
any pair of tangent vector fields u, v�C1�� ;TS�, ensures that the distribution Rig is involutive,
i.e., Lug=Lvg=0⇒L�u,v�g=0, and hence integrable by Frobenius theorem.2,3,22 It follows that the
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configuration manifold is foliated in a family of disjoint leaves characterized by the property that
in each leaf the body can be displaced from one placement to any other by an isometric transfor-
mation.

In the standard realm of analytical dynamics, dynamical processes are assumed to evolve in a
leaf of the foliation induced by Rig. The peculiar task of continuum mechanics is to eliminate the
rigidity constraint by means of appropriate Lagrange multipliers in duality with the stretching
evaluated by Euler’s classical formula 1

2 �Lvg�=g � �sym�v�. We provide hereafter a generalized
version of it which is valid in an ambient Riemannian manifold with an arbitrary linear
connection.3 The linear space of tangent-valued k-linear alternating forms on S is denoted by
�k�S ;TS�.

Lemma IV.1: Let �S ,g	 be a Riemannian manifold �, a linear connection in S with torsion
tors��2�S ;TS� and Tors�v�, the field of linear operators defined by

Tors�v� · u = tors�v,u�, ∀ v,u � C1�S;TS� .

Then, for any vector field v�C1�S ;TS� ,

1
2 �Lvg� = g � �sym � v� + 1

2 ��vg� + g � �sym Tors�v�� .

If � is Levi–Civita, i.e., metric �g=0 and torsion-free Tors=0 , Euler’s formula for the stretching
is recovered.

Proof: Applying the Leibniz rule to the Lie derivative and to the covariant derivative, we have
that, for any vector fields v, u, w�C1�S ;TS�,

�Lvg��u,w� = Lv�g�u,w�� − g�Lvu,w� − g�u,Lvw� ,

��vg��u,w� = �v�g�u,w�� − g��vu,w� − g�u,�vw� .

Since the Lie derivative and the covariant derivative of a scalar field coincide, we also have that
Lv�g�u ,w��=�v�g�u ,w�� and hence

�Lvg��u,w� = ��vg��u,w� + g��vu,w� + g�u,�vw� − g�Lvu,w� − g�u,Lvw� .

Moreover, since tors�v ,u�ª�vu−�uv− �v ,u� we may write

�Lvg��u,w� = ��vg��u,w� + g�tors�v,u�,w� + g��uv,w� + g�tors�v,w�,u� + g��wv,u� ,

which gives the result. �

A. Trajectories and flows

A trajectory in the configuration manifold is a piecewise smooth time-parametrized path �
�C0�I ;C� defined on a compact time interval I. The speed along the trajectory is the piecewise
smooth vector field v�

C �C0�I ;T��, with �C �v�
C =�, defined by v�

C�t�ª��=t��. Let us denote by
1: I→TI the unit section, so that �I �1= idI. The lifted trajectory in the velocity phase space 	 : I
→TC is given by 	ªv�

C.
A virtual flow ��

C :�→C in the configuration manifold is such that its velocity field v�
C

=��=0��
C�C0�� ;TC� is continuous at singular points of the trajectory. The virtual velocity field

along the trajectory, as a function of time, is denoted by �vC=v�
C ���C1�I ;TC�. A virtual flow

Fl�

�C1�I ;R� along the time axis enters in the definition of an asynchronous flow ��

C�Fl�

 :�

� I→C�R in the configuration-time manifold. A vanishing time-velocity 
 of the virtual flow at
every time t� I defines a synchronous flow ��

C� idI :�� I→C� I in the configuration-time mani-
fold. For short, we will set vt

C
ªv�

C�t� and �vt
C
ªv�

C��t�=��=0��
C��t� emphasizing that �vC is a

unique symbol so that �, by itself is meaningless.
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In the velocity-time state space the lifted trajectory is 	I : I→TC� I, with 	I�t�= �	�t� , t�, and
the trajectory speed is given by �X�vt

C� ,1t�ª��=t	I���. Trajectory images will be denoted by �
ª��I��C, �ª	�I��TC, and �Iª�� I�TC� I, so that �=�C ��.

We consider continuous dynamical systems subject to linear kinematical constraints, denoting
by Conf��TC, the vector subbundle of velocity fields which are conforming to the constraints
and by Rig��TC, the vector subbundle of velocity fields which are rigid �i.e., infinitesimal
isometries� at every configuration of the trajectory in the configuration manifold. The proper
definition of conforming vector fields for continuous systems is delayed to Sec. IX A.

V. FORCE SYSTEMS

A force acting at a configuration 
�C at time t� I is a one-form ft�T

�C. To formulate the

law of dynamics on the tangent bundle, we need to express forces as one-forms on that bundle.
Physical consistency requires that force-forms be represented by horizontal one-forms on the
tangent bundle since the virtual power at a configuration must vanish for a vanishing virtual
velocity field on the corresponding placement. Between a force one-form ft�T�t

� C and the hori-
zontal one-form Ft�T	t

� TC on the lifted trajectory in the tangent bundle, there is a linear isomor-
phism defined by

�Ft�vt
C�,Y�vt

C�� ª �ft��C�vt
C��,T�C�vt

C� · Y�vt
C��, ∀ Y�vt

C� � Tv
t
CTC .

In the velocity-time state space forces are represented by force two-forms defined by

F2
ª dt ∧ F .

From the definition it follows that

�F2 · �X,1� · �Y,
���v,t� = �dt ∧ Ft�vt
C�� · �X�vt

C�,1t� · �Y�vt
C�,
t�

= Ft�vt
C� · Y�vt

C� − �Ft�vt
C� · X�vt

C��
t,

where X�vt
C�, Y�vt

C��Tv
t
CTC, and 
t�TtI. For synchronous virtual velocities 
t=0, we get

�F2 · �X,1� · �Y,0���vC,t� = Ft�vt
C� · Y�vt

C�, ∀ Y�vt
C� � Tv

t
CTC .

Impulsive forces at singular points �t�� are described by one-forms �t��t��T�t

� C. The virtual
power performed by impulsive forces is well defined by assuming that virtual velocity fields are
continuous along the whole trajectory, i.e., v��C0�� ;TC�. The lifted trajectory 	 : I→TC in the
tangent bundle is discontinuous at singular points of the base trajectory � : I→C since there the
velocity field suffers a jump, say from v− to v+.

Definition V.1: (Virtual velocity field on the tangent bundle) A virtual velocity of the trajectory
��TC is a vector field Y :�→TTC, which projects to a vector field v��C0�� ;TC� with �
=�C ��, i.e.,

T�C � Y = v� � �C.

A well-posed definition of impulsive forces on the lifted trajectory 	 : I→TC is based on the
following property.

Lemma V.1: A virtual velocity field Y :�→TTC is such that, in correspondence to jumps from
v− to v+ of the velocity field of the projected trajectory �=�C ��, the virtual velocities Y−

�Tv−TC and Y+�Tv+TC project to the same horizontal part,

Tv−�C · Y− = Tv+�C · Y+.

Proof: Since Y :�→TTC projects to a vector field v��C0�� ;TC�, we have that

Tv−�C · Y− = v���C�v−�� ,
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Tv+�C · Y+ = v���C�v+�� .

The result follows from the equality v���C�v−��=v���C�v+�� due to the continuity of v�

�C0�� ;TC� at �C�v−�=�C�v+��C. �

From Lemma V.1 we infer that impulsive forces at discontinuity points of the lifted trajectory
	 : I→TC are horizontal one-forms At�v− ,v+�� �Tv−TC�Tv+TC�� well defined by

At�v−,v+� · �Y−,Y+� = ��t��C�v−��,Tv−�C · Y−� = ��t��C�v+��,Tv+�C · Y+� .

For brevity, we will set At�vt
C� ·Y�vt

C�ªAt�v− ,v+� · �Y− ,Y+� at singular time instants t� I.
Remark V.1: The definition of a force acting on a mechanical system given above is classical

and differs from the one recently, given e.g., in Refs. 23 and 28, where force fields are considered
as fiber preserving maps ft�C1�TC ;T�C�. Classically, a force acting on a mechanical system at a
configuration 
�C is an element of the cotangent space T


�C. The virtual power performed for a
virtual velocity �vt

C�T
C is the scalar �ft ,�vt
C��R. The force acting on a body at a given

configuration may depend on relative velocity fields between the body and its surroundings but, in
general, is not related to the velocity field of the body (with respect to some reference frame). The
dependence of a force on parameters, such as relative velocity, friction coefficients, electric
charges, electromagnetic fields, etc., is to be modeled as a constitutive property, for instance, a
multivalued maximal monotone relation between dual fields of forces and velocities.3 Moreover, a
dependence of force on body’s velocity would violate Galilei’s principle of relativity.

VI. THE LAW OF DYNAMICS

The laws of dynamics may be classically formulated in different geometrical settings by
assuming, as primary variables describing the system, either the configuration or the velocity or
the velocity-time pair �or the covelocity-time pair�. Each formulation has its merits and drawbacks
and one may choose one or another depending on whether the geometric description or the
computational machinery is prevailing. Hereafter, we present in three separate subsections the
main approaches.

A. The law of dynamics in the state space

In the geometric action principle of dynamics the state space is either the velocity-time bundle
TC� I or the covelocity-time bundle T�C� I, respectively, in the Lagrangian and the Hamiltonian
description. The Liouville one-form2 on the cotangent bundle 
�Tv�

� T�C whose variational defi-
nition is

�
�v��,Y�v��� = �v�,Tv��C
� · Y�v���, ∀ Y�v�� � Tv�T�C .

The exterior derivative d
�v�� is a weakly nondegenerate27 two-form on T�C,

�d
 · X,Y��v�� = 0, ∀ Y�v�� � Tv�T�C ⇒ X�v�� = 0.

The counterpart in the tangent bundle is the Poincaré–Cartan one-form8 
L
t
C�vC��TvC

� TC defined
by means of the Legendre transform as

�
L
t
C,Y��vC� = �dFLt

C�vC�,TvC�C · Y�vC��, ∀ Y�vC� � TvCTC .

The Hamiltonian action one-form is given by

�1�v�,t� ª 
�v�� − Ht
C�v��dt � T�v�,t�

� �T�C � I� ,

where the Hamiltonian Ht
C�C2�T�C ;R� is Legendre conjugate to the Lagrangian Lt

C

�C2�TC ;R�. In the Lagrangian description, the action one-form is given by
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�LC
1
ª 
LC − ECdt = 
LC − �EC � T�vC,t�

� �TC � I� ,

where Et
C�vC�ªHt

C�dfLt
C�vC�� is the energy functional and �ECªECdt is the energy one-form. Let

us now state the geometric action principle for a continuous dynamical system subject to linear
kinematical constraints, the extension to affine kinematical constraints being straightforward. We
set �At , �Y ,0���vt

C , t�ª �At ,Y��vt
C� and will say that the speed �X ,1� :�I→TTC�TI of a trajec-

tory �I�TC� I in the velocity-time state space is conforming to the constraints if it is such that
X :�→TTC projects to a conforming velocity v�

C �C0�I ;T�� in the configuration space, i.e.,
T�C �X=v�

C ��C with v�
C �Conf�.

Proposition VI.1: (Geometric action principle) A trajectory �I�TC� I in the velocity-time
state space has a speed conforming to the constraints and fulfills the synchronous action principle,

��=0

Fl�

�Y,0���I�
�LC

1 = �
��I

�LC
1 · �Y,0� − 


�I

F2 · �Y,0� − 

Sing��I�

At · �Y,0� ,

is fulfilled for any virtual flow Fl�
�Y,0� whose virtual velocity field Y :�→TTC projects to a virtual

velocity field v�
C �C0�� ;Conf��Rig��. A standard localization procedure shows that the varia-

tional condition is equivalent, at regular points vt
C��, to Euler’s differential condition,

�d�LC
1 − F2� · �X,1� · �Y,0� = 0,

and, at discontinuity points, to the jump condition,

���LC
1 · �Y,0��� = At · Y .

If virtual velocities are assumed to fulfill the energy conservation law, i.e., �Ft−dEt
C ,Y��vt

C�=0,
the geometric action principle VI.1 yields an extended form of the classical Maupertuis least
action principle.6

B. The law of dynamics in the phase space

The geometric action principle of Proposition VI.1 and the relevant Euler’s differential and
jump conditions may be equivalently formulated in the context of the velocity phase space TC.
This leads to an extension to continuum dynamics of Hamilton’s equation in the velocity phase
space and of the relevant jump conditions.

Proposition VI.2: (Hamilton’s equation) The differential and jump Euler conditions are
equivalent to the Hamilton equations in the velocity phase space,

d
L
t
C · X · Y = �Ft − dEt

C,Y� ,

��
L
t
C · Y�� = At · Y .

Proof: Recalling that �F2 · �X ,1� · �Y ,0���vC , t�=Ft�vt
C� ·Y�vt

C�, Euler’s differential condition
may be written as

�d�LC
1 · �X,1� · �Y,0����vt

C,t�� = Ft�vt
C� · Y�vt

C�, ∀ Y�vt
C� .

Then, observing that d�LC
1 =d
LC−d�EC, a direct evaluation of the term involving the energy

one-form �EC may be performed by means of Palais formula �see Sec. II� to get

d�EC · �X,1� · �Y,0� = d�X,1���EC,�Y,0�� − d�Y,0���EC,�X,1�� − ��EC,��X,1�,�Y,0��� .

The first term at the right hand side vanishes because ��EC , �Y ,0��=EC�dt , �Y ,0��=0. Moreover,
we may extend �X ,1�, along the flow Fl�

�Y,0� so that also the third term vanishes. Hence, being
��EC , �X ,1��=EC�dt , �X ,1��=EC, we have that d�EC · �X ,1� · �Y ,0�=−�dEC ,Y� and Hamilton’s dif-
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ferential condition follows. A direct evaluation provides the jump condition. �

Hamilton’s equation of rigid body dynamics8,21 is recovered by assuming that X�vt
C� is a rigid

speed, i.e., that it projects on a rigid velocity according to the relation T�C �X=vt
C ��C with vt

C

�Rig��t�. In this context, setting Y�vt
C�=X�vt

C�, the skew symmetry of the two form d
L
t
C yields

the energy conservation law,

�Ft − dEt
C,X��vt

C� = �d
L
t
C · X · X��vt

C� = 0.

In continuum dynamics energy conservation still holds but with an additional term expressing the
power expended by the stress field in the body against the stretching field, as shown in Sec. IX C.

C. The law of dynamics in the configuration manifold

The geometric action principle VI.1 may be equivalently expressed �in a nongeometric form�
in terms of the time-parametrized trajectory ��C1�I ;C� in the configuration manifold. Theorem
VI.1 below is an extended version of the classical Hamilton stationarity principle for the Lagrang-
ian. The main innovative features are that no connections are involved in the statement and no
fixed end-point conditions are imposed on the virtual flows, so that the statement is more properly
an extremality principle rather than a stationarity one. This leads to a more general statement,
leaving the freedom of introducing any convenient connection at a later stage �see Sec. VII�. The
formulation is also more satisfactory from an epistemological point of view since, with the elimi-
nation of the fixed end-point condition, the action principle recovers the natural property that, for
any given partition of a path, if all the pieces fulfill the extremality condition, then also the whole
path is extremal.3 Moreover Noether’s theorem is readily verified to be a special case of the new
statement.4

Theorem VI.1: (Action principle and law of dynamics) A piecewise smooth trajectory � : I
→C of a continuous dynamical system in the configuration manifold has a speed vt

C�Conf�t
and

fulfills the extremality principle,

�
�I

�dFLt
C�vt

C�,�vt
C� − ��=0


I

Lt
C���

C↑vt
C� � �dt = 


I

�ft,v�
C� � �dt + 


Sing�I�
��t,v�

C� � � .

equivalent to the differential condition,

��=t�dFL�
C�v�

C�,�v�
C� − ��=0Lt

C���
C↑vt

C� = �ft��t�,�vt
C� ,

and to the jump conditions,

���dFLt
C�vt

C���,�vt
C� = ��t��t�,�vt

C� ,

for any virtual flow ��
C�C1�� ;C� with virtual velocity �vt

C=v�
C��t��Conf�t

�Rig�t
.

Proof: Let us consider the projection ��
C :�→C of the flow Fl�

Y :T�C→TC on the configura-
tion manifold according to the relation T�C �Fl�

Y=��
C ��C and let T��

C :T�C→TC be the lifted flow.
Then the vector fields vT�

C =��=0T��
C :T�C→TTC and Y :T�C→TTC have the same horizontal

part. Hence Y=vT�
C +V, with V :T�C→TTC, a vertical vector field. The fulfillment of Euler’s

condition �d
L
t
C ·X ·V��vt

C�+ �dEt
C ,V��vt

C�=0 for any vertical virtual velocity V�vt
C��Tv

t
CT�C�v

t
C�C is

equivalent3,6 to require that Tv
t
C�C ·X�vt

C�=vt
C, which implies that X�vt

C�= v̇t
C. Then, if the trajectory

in the velocity phase space is lifted from the trajectory in the configuration manifold, i.e., 	=v�
C,

extremality with respect to vertical variations is trivially fulfilled and hence synchronous varia-
tions may be performed by the sole lifted virtual flows T���C1�T�C ;TC�. Hamilton’s equation
then writes
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d
L
t
C�vt

C� · v̇t
C · vT�

C �vt
C� = ��ft,v�

C� � �C − �dEt
C,vT�

C ���vt
C� .

To get the corresponding action principle, we may evaluate each term in the geometric action
principle VI.1 setting Y=vT�

C . In this respect we observe that, to compute the Lagrangian on the
paths drifted by the flow, one has to assume that it is defined on points outside the trajectory. Then
the Lagrangian must be evaluated on the velocity of a synchronously varied trajectory which is
equal to the push of the velocity of the trajectory. A direct computation gives3

�LC
1 ���

C↑vt
C,t� · �T��

C↑v̇t
C,1t� = Lt

C���
C↑vt

C� ,

�LC
1 �vt

C,t� · �vT�
C �vt

C�,0� = �dFLt
C�vt

C�,�vt
C� ,

and we infer that



�T��

C
�Fl�

0���I�
�LC

1 = 

I

Lt
C���

C↑vt
C� � �dt ,

�
��I

�LC
1 �vt

C� · �vT�
C �vt

C�,0� = �
�I

�dFLt
C�vt

C�,�vt
C� ,



�I

Ft
2 · �vT�

C ,0� = 

I

�ft,v�
C� � �dt ,



Sing��I�

�At,�vT�
C ,0���vt

C� = 

Sing�I�

��t,v�
C� � �t.

Substituting we get the result.

VII. THE LAW OF DYNAMICS IN TERMS OF A CONNECTION

Our first goal is a generalized version of Lagrange’s law of dynamics which proves that, at
each point of the trajectory in the configuration manifold, the law of dynamics is tensorial and is
expressed by the vanishing of a linear form on the linear subspace of test vectors. The proof of this
tensoriality result, which is basic for the foundation of continuum dynamics, is provided in Theo-
rem VII.1 and requires a linear connection to be fixed in the configuration manifold. Later, in Sec.
VIII, we show that a connection is naturally induced in the configuration manifold by a given
connection in the ambient manifold.

As a preliminary result we provide a split formula generalizing the usual partial differentiation
formula valid in linear spaces adopted, e.g., in Refs. 10, 27, and 29. This decomposition was
provided in Ref. 3 and later and independently introduced for vector bundles in Ref. 30, where the
base derivative is called the parallel derivative and the fiber-covariant derivative is called the fiber
derivative.

Lemma VII.1: (A split formula) Let N be a manifold, ��C1�E ;M� a fiber bundle with a
connection �, and f�C1�E ;N� a morphism. Then, for any section s�C1�M ;E� of the fiber bundle,
the map tangent to the composition f �s�C1�M ;N� may be uniquely split as sum of the fiber-
covariant derivative and the base derivative,

T�f � s� = Tf � Ts = dFf�s� · �s + dBf�s� .

Proof: Denoting by Fl�
v ⇑ =Fl�

Hv �C1�E ;E� the parallel transport along the flow associated
with a vector field v�C1�M ;TM�, by the definitions and the chain rule we have that
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dFf�sx� · �vx
s = Tsx

f · PV · Tvx
s = Tsx

f · �vx
s = Tsx

f · ��=0Fl�
v ⇓ sFl

�
v�x� = ��=0f�Fl�

v ⇓ sFl
�
v�x�� ,

dBf�sx� · vx = Tsx
f · PH · Tvx

s = Tsx
f · Hvx

s = Tsx
f · ��=0Fl�

v ⇑ sx = ��=0f�Fl�
v ⇑ sx� ,

so that Tsx
�f �s� ·vx=dFf�sx� ·�vx

s+dBf�sx� ·vx. �

Let �t=�t�B� be the placement of the body at time t� I along the trajectory ��C0�I ;C�. The
displacement along the trajectory is described by the diffeomorphism ��,tª�� ��t

−1�C1��t ;���.
Theorem VII.1: (Generalized Lagrange’s law of motion) Let �C be a linear connection in the

configuration manifold C with parallel transport ⇑ and torsion torsC. The law of motion for a
trajectory with speed vt

C�Conf�t
is then expressed in terms of parallel transport by

��=t�dFL�
C�v�

C�,��,t ⇑ �vt
C� − �dBLt

C�vt
C�,�vt

C� + �dFLt
C�vt

C�, torsC�vt
C,�vt

C�� = �ft��t�,�vt
C�

for any virtual velocity �vt
C�Conf�t

�Rig�t
.

Proof: The differential law of motion writes

��=t�dFL�
C�v�

C�,�v�
C� − ��=0Lt

C�T��
C�vt

C�� = �ft��t�,�vt
C� .

The invariance of the scalar product with respect to the pull back gives:

��=t�dFL�
C�v�

C�,�v�
C� = ��=t���,t ⇓ dFL�

C�v�
C�,��,t ⇓ �v�

C� ,

so that, by Leibniz rule and the definition of covariant derivative, we get

��=t�dFL�
C�v�

C�,�v�
C� = ��=t���,t ⇓ dFL�

C�v�
C� ,�vt

C� + ��=t�dFLt
C�vt

C�,��,t ⇓ �v�
C�

= ��=t�dFL�
C�v�

C�,��,t ⇑ �vt
C� + �dFLt

C�vt
C�,�v

t
C

C
�vC� .

On the other hand, defining the vector field F�C�vt
C��C1�C ;TC�, as the extension of the trajectory

velocity by push along the virtual flow,

�F�C�vt
C� � ��

C���t� = ���
C↑vt

C
� ��

C���t� = T��
C�vt

C� ,

the second term at the left hand side of the law of motion writes

��=0Lt
C�T��

C�vt
C�� = ��=0�Lt

C
� F�C�vt

C� � ��
C���t� = �T�Lt

C
� F�C�vt

C��,�vt
C� ,

and the split formula of Lemma VII.1 yields

�T�Lt
C

� F�C�vt
C��,�vt

C� = �dFLt
C�vt

C�,�
�v

t
C

C F�C�vt
C�� + �dBLt

C�vt
C�,�vt

C� .

The left hand side of the law of motion of Theorem VI.1 may then be written as

��=t�dFL�
C

� v�
C,�v�

C� − ��=0Lt
C�T��

C�vt
C��

= ��=t�dFL�
C�v�

C�,��,t ⇑ �vt
C� − �dBLt

C�vt
C�,�vt

C�

+ �dFLt
C�vt

C�,�v
t
C

C
�vC − �

�v
t
C

C F�C�vt
C�� .

Let us then consider a virtual flow ��
C�C1�� ;C� and its velocity field v�

C ���
C
ª��=���

C . Then the
Lie bracket �F�C�vt

C� ,v�
C� vanishes since

− �F�C�vt
C�,v�

C� = �v�
C ,F�C�vt

C�� = Lv
�
CF�C�vt

C� = ��=0��
C↓F�C�vt

C� = ��=0��
C↓��

C↑vt
C = ��=0vt

C = 0.

Hence, by the tensoriality of the torsion of a connection, we have that
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torsC�vt
C,�vt

C� ª �v
t
C

C
�vC − �

�v
t
C

C F�C�vt
C� − �F�C�vt

C�,v�
C� = �v

t
C

C
�vC − �

�v
t
C

C F�C�vt
C� .

Substituting we get the result. �

VIII. POSITION FIBRATION AND INDUCED CONNECTION

Let us make reference to notions and definitions introduced in Sec. IV. The next result, which
is plausible on an intuitive ground, is an essential tool for the theory developed in the sequel. It is
quoted by Marsden and Hughes in Ref. 27, Box 4.2, property �ii�, p. 170. Proofs are provided, in
the context of the theory of manifolds of maps, by Eliasson in Ref. 31, Theorem 5.2, p. 186, and
by Palais in Ref. 26, Theorem 13.6, p. 51.

Lemma VIII.1: (Identification) Let CªCk�B ;S�. Then there is a natural identification between
the vectors v


C�T
C of the tangent space at a configuration 
�Ck�B ;S� and the tangent vector
fields v
�Ck�
�B� ;TS� on the placement 
�B�, with �S �v
= id
�B�.

For our purposes it is convenient to provide an interpretation of this result in terms of a
fibration map, which we call the position map. This map is a suitable analytical tool for the
definition of a connection in a manifold of maps induced from a given connection in the codomain
manifold, as illustrated hereafter.

Definition VIII.1: (Position map) The position map is a surjective submersion posp
�C1�C ;S� which provides the position posp�
� of particle p�B at the configuration 

�C1�B ;S�,

posp�
� ª 
�p� � 
�B� .

In the configuration space of a continuous body to any particle p�B there corresponds a fiber
bundle, denoted by �C ,posp ,S�, whose fiber over the position 
�p��S is the equivalence class of
all configurations ��C1�B ;S� mapping the particle into that position. The surjective tangent map
T
 posp�BL�T
C ;Tposp�
�S� induces a fiber-linear correspondence between tangent spaces,

vposp�
� = T
 posp · v

C,

where v

C�T
C and vposp�
��Tposp�
�S.

Given a field of tangent vectors on a placement 
�B� of the body, the tangent map T
 posp
samples the vector tangent at the position of the particle p�B. In geometric terms this relation is
expressed by saying that the vector field v�C1�S ;TS� is posp-related to the vector field vC

�C1�C ;TC� according to the commutative diagram,

posp

C ——→
vC

TC

↓ ↓

S ——→
v

TS

T posp ⇔ v � posp = Tposp � vC.

By uniqueness of the solution of an ordinary differential equation, the posp-relatedness above is
equivalent to the following commutative diagram for the respective flows:

posp

C
——→

Fl�
vC

C

↓ ↓

S
——→

Fl�
v

S

posp ⇔ Fl�
v � posp = posp � Fl�

vC
.

For any fixed configuration 
�C1�B ;S�, by varying p�B, the vector vposp�
� spans the vector
field which, according to Lemma VIII.1, can be identified with the tangent vector v


C�T
C.
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There is a natural way of endowing the configuration space C, an infinite dimensional mani-
fold of maps, with a connection induced by a given one in the finite dimensional ambient space S,
to which the codomains of the configuration embeddings belong.

Lemma VIII.2: (Induced connection) A connection in ambient space S induces a correspond-
ing connection in the configuration space C.

Proof: The correspondence in the statement is best described in terms of parallel transport of
a tangent vector along a C-curve ��C1�I ;C� from a configuration �t0

to another �t1
. By Lemma

VIII.1 a vector vt0

C �T�t0
C is a vector field vt0

C �C1��t0
�B� ;TS� with �S �vt0

C = id�t0
�B�. A pointwise

parallel transport of each vector vt0

C �x�, with x��t0
�B�, along the S-curve ��x��C1�I ;S� in the

ambient manifold yields a vector field vt1

C �C1��t1
�B� ;TS�, with �S �vt1

C = id�t1
�B�. This is the vector

vt1

C �T�t1
C result of the parallel transport along the C-curve ��C1�I ;C�. �

The construction in Lemma VIII.2 is equivalently described by the following statement. If the
vector fields u, v�C1�S ;TS�, are posp-related to the vector fields uC, vC�C1�C ;TC�, then the
parallel transport Fl�

v ⇑u is posp-related to the parallel transport Fl�
vC

⇑uC according to the com-
mutative diagram,

posp

C
——→
Fl�

vC
⇑uC

TC

↓ ↓

S
——→

Fl�
v⇑u

TS

Tposp ⇔ Fl�
v ⇑ u � posp = Tposp � Fl�

vC
⇑ uC.

Lemma VIII.3: (Induced covariant derivative) Let � be the covariant derivative associated
with a linear connection in the ambient manifold S and �C be the covariant derivative according
to the induced connection in the configuration manifold C. Then the covariant derivatives of
posp-related vector fields are posp-related,

posp

C
——→

�vC
C

uC

TC

↓ ↓

S ——→
�vu

TS

T posp ⇔ �vu � posp = T posp � �vC
C uC.

Proof: By the property of the position map described above, we have that

T posp � Fl�
vC

⇓ uC � Fl�
vC

= Fl�
v ⇓ u � posp � Fl�

vC
= Fl�

v ⇓ u � Fl�
v � posp,

T posp · �vC
C uC = T posp � ��=0 � Fl�

vC
⇓ uC � Fl�

vC

= ��=0 � T posp � Fl�
vC

⇓ uC � Fl�
vC

= ��=0Fl�
v ⇓ u � Fl�

v � posp

= �vu � posp.

The commutation property T posp ���=0=��=0 �T posp holds by linearity of the tangent map
T
 posp�BL�T
C ;Tposp�
�S� since the curve �→ �Fl�

vC
⇓uC �Fl�

vC
��
� evolves in the linear space

T
C and its image through T
 posp is a curve in the linear space Tposp�
�S. �

Lemma VIII.4: (Lie brackets) The Lie brackets of posp-related vector fields are POSp -related,
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posp

C ——→
�vC,uC�

TC

↓ ↓

S ——→
�v,u�

TS

T posp ⇔ �v,u� � posp = T posp � �vC,uC� .

Proof: This is a basic property of Lie brackets.1–3
�

The next result, based on the tensoriality property of the torsion, will be resorted to as an
essential ingredient in the proof of Theorem IX.2. An analogous result holds for the curvature of
the connection.

Lemma VIII.5: �Torsion of the induced connection� Let tors be the torsion of a linear con-
nection in the ambient manifold S and torsC the torsion of the induced connection in the configu-
ration manifold C. Then

T
 posp · torsC�v

C,u


C� = tors�vposp�
�,uposp�
�� .

Proof: By tensoriality, to evaluate the torsion of the connection �C on any pair of C-vectors
v


C, u

C�T
C, we may perform an extension of these vectors to vector fields uC, vC�C1�C ;TC�.

Then, from Lemmata VIII.3 and VIII.4, we infer that T posp � ��vC
C uC−�uC

C vC− �vC ,uC��= ��vu
−�uv− �v ,u�� �posp, and hence that the torsion vector fields, of posp-related vector fields, are
posp-related

posp

C ——→
torsC�vC,uC�

TC

↓ ↓

S ——→
tors�v,u�

TS

T posp ⇔ T posp � torsC�vC,uC� = tors�v,u� � posp.

By tensoriality of the torsion, we have that

torsC�vC,uC��
� = torsC�v

C,u


C� ,

tors�v,u� � posp�
� = tors�vposp�
�,uposp�
�� .

Hence, by evaluating both members of the relatedness equality at a configuration 
�C, we get the
result. �

IX. THE LAW OF MOTION IN THE AMBIENT MANIFOLD

Let us assume that the ambient space is an n-D Riemannian manifold �S ,g	 with volume
n-form �, induced by the metric tensor g. By Lemma VIII.1 a virtual velocity �vC�T
C can be
identified with a vector field �v�C1��
 ;TS� with �S ��v= id�


and �
=
�B�.
Then each pair of covector fields bt�C1��
 ;T�S� �body forces�, with �S

� �bt= id�

and tt

�C1���
 ;T�S� �boundary tractions�, with �S
� � tt= id��


, defines a force one-form ft�T

�C by

�ft,�vC� ª 

�


�bt,�v�� + �
��


�tt,�v� � � ,

where �vposp�
�=T
 posp ·�v

C and ��ª�n is the volume �n−1�-form on the boundary ��
, n,

being the outward normal.
Let us denote by mt=�t� the mass form, with �t�C1��t ;R�, the scalar mass density. In

continuum dynamics, the Lagrangian per unit mass at the placement �tª�t�B� is a function Lt

�C2�T�t
S ;R�. The corresponding Lagrangian on the tangent bundle to the configuration mani-

fold Lt
C�C2�TC ;R� is then defined by the integral,
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Lt
C�vt

C� ª 

�t

�Lt � vt�mt,

where vt�posp��t��=T�t
posp ·v�

C��t�. By Lemma VIII.1 the tangent vector field vt�C1��t ;TS�,
spanned by vt�posp��t�� when p ranges over B, is identified with the tangent vector v�

C��t�
�T�t

C.

A. Virtual velocity fields

A proper formulation of the law of motion for a continuous body, in an ambient finite dimen-
sional Riemannian manifold �S ,g�, needs a sufficiently general definition of the linear space of
spatial virtual velocity fields on the placement �tª�t�B�, at time t� I, along the trajectory in the
ambient manifold. To this end, let us give the following definitions. A patchwork Pat��t� is a finite
family of open connected, nonoverlapping subsets of �t, called elements, such that the union of
their closures is a covering for �t. The set of all patchworks of �t is a directed set for the relation
finer than and the coarsest patchwork finer than two given ones Pat1��t� and Pat2��t� is the grid3

Pat1��t�∧Pat2��t�.
The kinematic space Kin��t� is made up of vector fields vt :�t→TS which are square

integrable with a distributional gradient �vt and square integrable in each element of a patchwork
Patvt

��t�. This space is pre-Hilbert with the positive definite symmetric bilinear form,



Pat�vt,wt�

��t�
�g�vt,wt� + ��vt,�wt�g�� ,

where Pat�vt,wt�
��t�=Patvt

��t�∧Patwt
��t� and �· , ·�g is the inner product between tensors induced

by the metric g. A continuous body at �t is defined by a fixed patchwork Pat��t� and by a closed
linear subspace of conforming virtual velocities Conf��t��Kin��t�, such that all of its vector
fields have Pat��t� as a regularity patchwork. Then Conf��t� is a Hilbert space for the topology
induced by Kin��t�. Since Conf��t� is a linear space, this definition includes any linear or affine
kinematical constraint.

Nonlinear constraints must instead be modeled by suitable constitutive laws described by
fiberwise monotone maximal graphs in the Whitney bundle whose fiber is the product of tangent
vector and covector spaces based at the same point.3

B. Law of motion

The virtual flow ��,t�C1��t ;S�, dragging a placement �t in the ambient space, is
posp-related to the virtual flow ��,t

C �C1��t ;C� of the configuration �t�C, according to the equal-
ity ��,t��t�p��=posp���

C��t��. The virtual velocity �vtª��=0��,t�C1��t ;T�t
S�, at the placement

�t, is assumed to fulfill the following condition.
Ansatz IX.1: (Virtual mass conservation) The mass form is dragged by virtual flows,

mt � ��,t ª ��,t↑mt.

Then, along virtual flows, the mass of any sub-body is preserved,

L�vt
mt = 0 ⇔ ��=0


��,t�P�
mt = 0, ∀ P � �t.

This assumption amounts in defining a proper way of extending the mass form to placements of
the body outside the trajectory and mimics the one tacitly made in analytical mechanics in assum-
ing that the material particles retain their mass measure along the variations.

Theorem IX.1: (Law of motion in the ambient manifold) In a Riemannian manifold �S ,g	, the
law of motion of a continuous dynamical system imposes that the trajectory speed vt=��=t��,t

�Conf��t� fulfills the variational condition,
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��=t

��,t��t�

�dFL� � v�,�v��m� − ��=0

��,t��t�

Lt���,t↑vt�mt = 

�t

�bt,�vt�� + �
��t

�tt,�vt� � � ,

for any virtual flow ��,t�C1��t ;S�, at time t� I, such that the virtual velocity field �vt

=��=0��,t is conforming and isometric, i.e., �vt�Conf��t��Rig��t�.
Proof: According to Theorem VI.1, the law of motion in the configuration manifold is ex-

pressed by the variational condition,

��=t�dFL�
C�v�

C�,�v�
C� − ��=0Lt

C���
C↑vt

C� = �ft��t�,�vt
C� .

Setting vposp��t�
=T�t

posp ·v�t

C and �vposp��t�
=T�t

posp ·�v�t

C , we have

�dFL�
C�v�

C�,�v�
C� = 


��,t��t�
�dFL��v��,�v��m�.

On the other hand, recalling that by assumption mt ���,tª��,t↑mt, we have

Lt
C���

C↑vt
C� = ��=0


��,t��t�
Lt���,t↑vt�mt.

Substituting, we get the result. �

Each one of the two terms at the left hand side of the law of motion in Theorem IX.1 depends
on the choice of the family of virtual flows ��,��C1��� ;TS� with index �� I. However, Theorem
IX.2 proves that the sum of the two terms at time t� I depends �linearly� only on the virtual
velocity at that time, thus defining a bounded linear functional on Conf��t��Rig��t�. This result,
which generalizes Euler’s law of motion, makes an essential recourse to the notions of a connec-
tion in the ambient manifold and of the induced connection in the infinite dimensional configu-
ration manifold.

Theorem IX.2: (Generalized Euler’s law of motion) Let � be a linear connection in the
ambient manifold S, with parallel transport ⇑ and torsion tors. The law of motion for a trajectory
with speed vt�Conf��t� is expressed by the variational condition,

��=t

��,t��t�

�dFL��v��,��,t ⇑ �vt�m� − 

�t

�dBLt�vt�,�vt�mt

+ 

�t

�dFLt�vt�, tors�vt,�vt��mt = 

�t

�bt,�vt�� + �
��t

�tt,�vt� � �

for any virtual velocity field �vt�Conf��t��Rig��t�.
Proof: By Theorem VII.1, the left hand side of the Lagrange law of motion in the configura-

tion manifold, according to the connection �C, there induced by the connection � in the ambient
manifold, writes

��=t�dFL�
C�v�

C�,��,t ⇑ �vt
C� − �dBLt

C�vt
C�,�vt

C� + �dFLt
C�vt

C�, torsC�vt
C,�vt

C�� .

Translating in terms of fields in the ambient manifold, by Lemmata VIII.2 and VIII.5, we have

�dFL�
C�v�

C�,��,t ⇑ �vt
C� = 


��,t��t�
�dFL��v��,��,t ⇑ �vt�m�,

�dFLt
C�vt

C�, torsC�vt
C,�vt

C�� = 

�t

�dFLt�vt�, tors�vt,�vt��mt,
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�dBLt
C�vt

C�,�vt
C� = ��=0Lt

C���
C ⇑ vt

C�

= ��=0

��,t��t�

Lt���,t ⇑ vt�mt

= 

�t

��=0��,t↓�Lt���,t ⇑ vt�mt�

= 

�t

�dBLt�vt�,�vt�mt + 

�t

Lt�vt�L�vt
mt,

with the last equality inferred by Leibniz rule. Setting L�vt
mt=0, we get the result. �

C. Stress field

Let us preliminarily observe that, by the linear isomorphism between the spaces TxS and Tx
�S

provided by the metric tensor g and the natural identifications BL�TxS ,TxS ;R�=BL�TxS ;Tx
�S�

and BL�Tx
�S ,Tx

�S ;R�=BL�Tx
�S ;TxS�, the twice covariant tensor εt�x��BL�TxS ;Tx

�S� and the
dual twice contravariant tensor �t�x��BL�Tx

�S ;TxS� are associated with the operators Tt�x�
�BL�TxS ;TxS� and Dt�x��BL�TxS ;TxS� through the relations

�t = Tt � g−1,

εt = g � Dt,

The pairing between dual tensors and the inner product between operators are defined by linear
invariant of the composition ��t �εt��x��BL�TxS ;TxS�,

��t,εt� = �Tt,Dt�g ª I1��t � εt� ,

whose integral over �t is the inner product in the Hilbert space Sqit��t� of square integrable
tensor fields on �t which is identified with its dual by the Riesz–Fržchet theorem.32 In turn, this
property is inferred from Korn’s second inequality.33–36 The next theorem shows that the class of
virtual velocities considered in Theorem IX.2 may be enlarged to the whole conformity subspace
by eliminating the rigidity condition through the introduction of Lagrange’s multipliers dual to the
stretching. The proof is based on the property that the image, by the differential operator sym �,
of any closed subspace of the Hilbert space Conf��t� is a closed subspace of Sqit��t�.

Theorem IX.3: (Law of motion in terms of a stress field) There exists at least a stress field
Tt�Sqit��t� such that the law of motion of a continuous dynamical system in the ambient
Riemannian manifold �S ,g	 is equivalent to the variational condition,

��=t

��,t��t�

�dFL��v��,�v��m� − ��=0

��,t��t�

Lt���,t↑vt�mt

= 

�t

�bt,�vt�� + �
��t

�tt,�vt� � � − 

Pat��t�

�Tt,sym � �vt�g�

for any virtual flow ��,t�C1��t ;S�, at time t� I whose virtual velocity field is conforming, i.e.,
�vt�Conf��t�.

Proof: Theorem IX.2 proves that the difference between the right hand side and the left hand
side of the equation of motion defines, at each time instant along the trajectory, a bounded linear
functional Fun��,t�� �Conf��t��Rig��t���, on the linear subspace of conforming rigid velocities.
The law of motion may then be written as
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�Fun��,t�,�vt� = 0, ∀ �vt � Conf��t� � Rig��t� .

By Euler’s formula for the stretching in Lemma IV.1, we have Rig��t�=ker�sym ��, where � is
the Levi–Civita covariant derivative in �S ,g	 acting on Kin��t� and ker� • � stands for kernel of •.
Then, introducing the restriction �Conf of � to Conf��t�, we have that ker��Conf�
=Conf��t��Rig��t�. The dual operator �sym �Conf���BL�Sqit��t� ;Conf���t�� of the operator
sym �Conf�BL�Conf��t� ;Sqit��t�� is defined by the identity

��sym �Conf���Tt,�vt� ª 

Pat��t�

��Tt,sym � �vt�g�, ∀ �vt � Conf��t�, ∀ �Tt � Sqit��t� .

Korn’s inequality35 implies that the range �sym ���Conf��t�� is closed in Sqit��t� and Banach’s
closed range theorem32 assures that the range �sym �Conf���Sqit��t�� of the dual operator is closed
in the dual space Conf��t��. The law of motion expressed by the variational condition in Theorem
IX.1 may then be written as

Fun��,t� � �Conf��t� � ker�sym���� = �ker��Conf��� = �sym�Conf���Sqit��t�� ,

where � • �� denotes the annihilator, i.e., the closed subspace of bounded linear functionals vanish-
ing on •.

This means that there exists a stress tensor field Tt�Sqit��t�, such that Fun��,t�
= �sym �Conf��Tt, that is, for all �vt�Conf��t�,

�Fun��,t�,�vt� = ��sym �Conf��Tt,�vt� = 

Pat��t�

�Tt,sym � �vt�g� .

The proof of the converse result is trivial since for conforming rigid virtual velocity fields �vt

�Conf��t��Rig��t� the variational condition above, being L�vt
g=0, gives �Fun��,t� ,�vt�=0. �

It is straightforward to see that the law of dynamics of Theorem IX.3 implies as a simple
corollary a generalized statement of Noether’s theorem for continuous dynamical systems.4 Under
the assumption that the mass is conserved and that mass form and Lagrangian are independent of
time, the law of motion in Theorem IX.3, setting �vt=vt, leads to the following energy conserva-
tion law:

��=t

��,t��t�

E��v��mt = 

�t

�bt,vt�� + 

��t

�tt,vt� � � − 

Pat��t�

�Tt,sym � vt�g� .

The energy Et�C2�T�t
S ;R� per unit mass is defined by Legendre transform, Et�vt�

ª �dFLt�vt� ,vt�−Lt�vt�.

X. SPECIAL FORMS OF THE LAW OF MOTION

From the general law of motion provided in Theorem IX.3, other expressions valid under
special assumptions may be derived. The following one is the extension to continuous systems of
the law of dynamics formulated by Poincaré in the context of analytical dynamics for systems
described in terms of vector components in a mobile reference frame.3,5,11

Theorem X.1: (Euler–Poincaré law of motion) Let � be a connection in the ambient manifold
S, with a distant parallel transport ⇑ and torsion tors. Let, moreover, S�vx��C1�U�x� ;TS� be the
vector field extension of the vector vx�TxS in a neighborhood U�x��S by distant parallel
transport. The law of motion is then expressed by the variational condition,
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��=t

��,t��t�

�dFL��v��,��,t ⇑ �vt�m�

− 

�t

�dBLt�vt�,�vt�mt − 

�t

�dFLt�vt�,�S�vt�,S��vt���mt

= 

�t

�bt,�vt�� + �
��t

�tt,�vt� � �

− 

Pat��t�

�Tt,sym � �vt�g�

for any virtual velocity field �vt�Conf��t�.
Proof: To evaluate the torsion at a given pair of vectors ux, vx�TxS we may extend them in

a neighborhood U�x��S by distant parallel transport to a pair of vector fields S�ux�, S�vx�
�C1�U�x� ;TS� so that

tors�ux,vx� ª �ux
S�vx� − �vx

S�ux� − �S�ux�,S�vx��x = − �S�ux�,S�vx��x,

and the result follows from Theorem IX.2. �

The standard expression of Poincaré law11 for rigid body dynamics is recovered by consider-
ing a mobile reference frame �ei	, with structure constants defined by �ei ,e j�=ci,j

k ek. Indeed, as-
suming the distant parallel transport S�ux�ªux

kek which keeps constant the components of the
vector ux=ux

kek�x� in the field of reference frames, the term �S�ux� ,S�vx��x becomes
ux

kvx
j �ek ,e j�x=ux

kvx
j ck,j

i �x�ei�x�.
The standard bulk Lagrangian per unit mass is Lt=Kt+ Pt ��S�C2�T�t

S ;R�, where Kt=
1
2g

�diag�C2�T�t
S ;R� is the positive definite quadratic form of the bulk kinetic energy per unit

mass, with diag�v�ª �v ,v� so that Kt�vt�= 1
2g�vt ,vt�, and Pt�C2��t ;R� is the bulk load potential

per unit mass.
Lemma X.1: Let the ambient manifold �S ,g	 be a Riemannian manifold with the Levi–Civita

connection �. Then the scalar fields Kt�C2�T�t
S ;R� and Pt�C2��t ;R� fulfill the relations


dFKt = g

dBKt = 1
2dB�g � diag� = 0,

� 
dF�Pt � �S� = 0

dB�Pt � �S� = TPt � �S.
�

Then, being LtªKt+ Pt ��S, with

Kt�vt� ª
1
2 �dFLt�vt�,vt� ,

Et�vt� ª �dFLt�vt�,vt� − Lt�vt� ,

we have the relation Et=2Kt−Lt=Kt− Pt ��S .
Proof: Recalling that �vtª��=0��,t, by definition of fiber and base derivative, for any ut, vt,

�vt�T�t
S, with �S�ut�=�S�vt�=�S��vt�, we have that

�dFKt�ut�,vt� = �
=0Kt�ut + 
vt� = �
=0
1
2g�ut + 
vt,ut + 
vt� = g�ut,vt� ,

�dBKt�vt�,�vt� = ��=0��,t↓Kt���,t ⇑ vt� = ��=0Kt���,t ⇑ vt� � ��,t = 0,

dF�Pt � �S��vt� · �vt = TPt��S�vt�� · T�S�vt� · �̄vt · �vt = 0,
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dB�Pt � �S��vt� · �vt = TPt��S�vt�� · T�S�vt� · Hvt · �vt = TPt��S�vt�� · �vt.

The second equality in the list holds since the Levi–Civita parallel transport in �S ,g	 preserves the
metric, that is,

g���,t ⇑ vt,��,t ⇑ vt� � ��,t = g�vt,vt� .

The last two equalities follow from the verticality of the covariant derivative and the fact that the
horizontal lift3 is a right inverse to T�S, the tangent map to the projection, so that T�S�vt� ·Hvt

= idT�t
S. �

Theorem X.2: (Euler’s law of motion: Special form) Let the Lagrangian per unit mass have
the standard form, Lt=Kt+ Pt ��S�C2�T�t

S ;R�, and � be the Levi–Civita connection in the
Riemannian ambient manifold �S ,g	. Then the law of motion writes

��=t

��,t��t�

g�v�,��,t ⇑ �vt�m�

= 

�t

�TPt��S�vt��,�vt�mt + 

�t

�bt,�vt�� + �
��t

�tt,�vt� � �

− 

Pat��t�

�Tt,sym � �vt�g�

for any virtual velocity field �vt�Conf��t�.
Proof: The result follows from Theorem IX.2 since the Levi–Civita connection is torsion-free,

and by Lemma X.1 we have that �dBLt�vt� ,�vt�= �TPt��S�vt�� ,�vt� and �dFL��v�� ,��,t⇑�vt�
=g�v� ,��,t⇑�vt�. �

In the Euclidean ambient space, a simple body is defined by the property that conforming
isometric virtual velocity fields are simple infinitesimal isometries, expressible as the sum of a
speed of translation and of an angular velocity around a pole. Then we recover the classical
Euler’s laws for the time rate of variation of momentum and of moment of momentum.

Theorem X.3: (d’Alembert’s law of motion) By conservation of mass the special Euler’s law
of motion translates into d’Alembert’s law,



�t

g�at,�vt�mt = 

�t

�TPt��S�vt��,�vt�mt

+ 

�t

�bt,�vt�� + �
��t

�tt,�vt� � � − 

Pat��t�

�Tt,sym � �vt�g� ,

for any virtual velocity field �vt�Conf��t�.
Proof: Applying the transport formula and Leibniz rule we get the identity

��=t

��,t��t�

g�v�,��,t ⇑ �vt�m� = 

�t

��=t��,t↓�g�v�,��,t ⇑ �vt�m��

= 

�t

��=tg�v�,��,t ⇑ �vt� � ��,tmt + 

�t

g�vt,�vt���=t��,t↓m�

= 

�t

g���=t��,t ⇓ v�,�vt�mt + 

�t

g�vt,�vt�Lt,vt
m

= 

�t

g�at,�vt�mt + 

�t

g�vt,�vt�Lt,vt
m ,
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where g�v� ,��,t⇑�vt� ���,t=g���,t⇓v� ,�vt� since Levi–Civita connection is metric. Imposing con-
servation of mass,3 Lt,vt

mª��=tm�+Lvt
mt=0, the result follows from Theorem X.2. �

A. Boundary value problems

The basic tool in boundary value problems governed by a linear partial differential operator
diff, of order n, is Green’s formula of integration by parts, which formally may be written as



Pat��t�

�•,Diff��� = 

Pat��t�

�AdjDiff • , ��� + �
�Pat��t�

�Flux • ,Val�� � � ,

where �t is a submanifold of a finite dimensional Riemannian space �S ,g	, Pat��t� is a fixed
patchwork, �Pat��t� is its boundary, �� is the volume form induced on the surfaces �Pat��t� by
the volume form in S, and all the integrals are assumed to take a finite value. The differential
operator adjdiff, of order n, is the formal adjoint of diff. The boundary integral acts on the duality
pairing between the two fields Flux• and Val�, with the differential operators flux and val, being
n-tuples of normal derivatives of order from 0, to n−1, in inverse sequence, so that the duality
pairing is the sum of n terms, whose kth term is the pairing of normal derivatives of two fields,
respectively, of order k and n−1−k.

Boundary value problems are characterized by the property that the closed linear subspace
Conf��t� of conforming test fields includes the whole linear subspace ker�val� of test fields in
Kin��t�, with vanishing boundary values on �Pat��t�, i.e.,

ker�Val� � Conf��t� .

Let us assume that the force virtual power �ft ,�vt� is expressed in terms of forces per unit volume
b�Sqiv��t� �Sqivªsquare integrable vector fields� and of forces per unit area �tractions� t
�Sqiv��Pat��t��, so that the force virtual power is given by



�t

�ft,�vt�mt ª 

�t

g�bt,�vt�� + �
�Pat��t�

g�tt,�vt� � � .

d’Alembert’s law may then be rewritten as



�t

g��vt
vt,�vt�mt + 


Pat��t�
�Tt,sym � �vt�g� = 


�t

g�bt,�vt�� + �
�Pat��t�

g�tt,�vt� � � ,

and a standard localization procedure3 leads to the differential equation,

− Div Tt = bt − �t · g � �vt
vt in Pat���t� ,

and the boundary conditions on the jump ��Ttn�� across the boundary of the domain �t and across
the interfaces of the patchwork Pat���t�,fulfill the conditions

Ttn � t + Conf� on �t,

��Ttn�� � t+ + t− + Conf� on Sing�Pat���t�� ,

where the fields t of surficial forces are taken to be zero outside their domain of definition and Pat�
denotes a patchwork sufficiently fine for the statement at hand.

XI. CONSTITUTIVE RELATIONS

As briefly pointed out here and there in the previous sections, the basic distinguishing feature
of continuum dynamics in comparison with analytical dynamics is the need for a specification of
the mechanical material behavior by means of a well-posed set of relations between suitable stress
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and strain measures and/or their rates which, in most engineering applications, are nonlinear and
time dependent. Under these additional relations, uniqueness of the dynamical process is expected.
We will not enter in a detailed discussion on the modeling of materials behavior, since it will not
add by itself new light to notion and methods peculiar of dynamics. Anyway, for comparison sake,
we show hereafter in some detail how an hyperelastic behavior in finite deformations may be
implemented. Let us adopt as strain measure, associated with a displacement ��,t�C1��t ;���
from the placement �t to ��, the Green deformation tensor field: G��,t

ª

1
2 ���,t↓g−g�, on �t,

pointwise defined at x��t by

�2G��,t
+ g�x�a,b� = ���,t↓g�x�a,b� ª g��,t�x��T��,t · a,T��,t · b�, ∀ a,b � TxS .

Setting g �Dt=
1
2L�vt

g=sym ��vt and being ��=0
1
2 ���,t ��t,s�↓g=g � �dG��t,s� ·�vt�, the Lie deriva-

tive formula,

��=0���,t � �t,s�↓g = �t,�s↓L�vt
g ,

gives dG��t,s� ·�vt,s=�t,s↓Dt, where �vt,sª�vt ��t,s. The global virtual power performed by the
stress field Tt, for the virtual stretching field Dt on the placement �t, may be evaluated at a
reference placement �s by the equality



Pat��s�

�St,s,dG��t,s� · �vt,s�g� = 

Pat��t�

�Tt,Dt�g� ,

which holds for the symmetric Piola–Kirchhoff stress St,s=J��t,s↓Tt�, where J is the Jacobian
defined by J�=�t,s↓�. The hyperelastic behavior postulates the existence of a differentiable
potential elastic energy per unit volume w, which is a convex function of the Green strain mea-
sured from an elastically underformed material local geometry. Then St,s�x�=dw�G��t,s��x, and
hence

�St,s,dG��t,s� · �vt,s�g = �dw�G��t,s��,dG��t,s� · �vt,s�g = d�w � G���t,s� · �vt,s = ��=0�w � G����,t

� �t,s� .

The global elastic stress virtual power is then given by the integral



Pat��s�

�St,s,dG��t,s� · �vt,s�g� = ��=0

Pat��s�

�w � G����,t � �t,s�� .

More complex constitutive relations, for instance, those describing plastic or viscous behaviors,
may be taken into account by implementing the relevant model of material response.

XII. CONCLUSIONS

The treatment of continuum dynamics developed in the paper extends notions and results of
geometric analytical dynamics to dynamical systems whose configuration manifold is infinite
dimensional. Up to now, most formulations of dynamics, including the ones based on a clear
intrinsic geometric approach, have been strongly tied to a presentation of the matter which makes
essential reference to Newtonian particle mechanics, according to the Lagrangian or Hamiltonian
formulation �see, e.g., Refs. 8, 21, and 23�. This fact witnesses that the extension to continua is not
a trivial one. On the other hand there is no doubt that rigid body dynamics should be inferred from
the dynamics of deformable bodies by imposing the rigidity constraint. It is also apparent that the
dynamics of discrete models is to be deduced by discretization of a continuous one. In fact, in
defining a discrete model without reference to a parent continuous one, a basic difficulty arises
when describing the constitutive behavior, and this is because the continuous Cauchy model is the
universally accepted standard for theoretical and experimental analyses of materials.
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The treatment developed in this paper is based on a geometric definition of the action prin-
ciple and is innovative under several aspects. It has been shown that, due to the special geometric
feature of the configuration manifold for continuous dynamical systems, the law of dynamics is
independent of the Banach topology there introduced. Moreover a connection in the configuration
manifold is induced in a natural way by the one defined in the ambient manifold. These results are
in accordance with the physical requirement that the dynamics of continuous systems should be
affected only by the geometric structure of the finite dimensional ambient manifold. The relations
between the descriptions of dynamics in the two manifolds have been illustrated in detail. The
introduction of a linear connection in the ambient manifold, the assumption of mass conservation
along virtual motions, and the result concerning the torsion of the induced connection in the
configuration manifold lead eventually to a �very� generalized form of Euler’s law of dynamics.

The ansatz of virtual mass conservation expresses a natural assumption which is tacitly made
in classical analytical dynamics where, in performing the variations, the mass of the particles is
taken as constant. Euler’s law of dynamics shows that, at any time instant, the variational state-
ment consists in the vanishing of a bounded linear functional on a closed subspace of the Hilbert
space of conforming test velocities. This result opens the way to the introduction of a stress field
as Lagrange’s multiplier of the rigidity constraint and to the formulation of a variational statement
suitable for the dynamics of deformable bodies.

The theory leads to the following main results. The classical Euler’s and d’Alembert’s laws of
analytical dynamics, and the related Poincaré’s law, are generalized to variational statements
governing the dynamics of continuous bodies undergoing motions in a finite dimensional Rie-
mannian ambient manifold. In the context of continuum dynamics, the generalized Lagrange’s law
of dynamics, formulated in Theorem VII.1, holds in the infinite dimensional configuration mani-
fold. The same is true for Hamilton’s law of dynamics.3,5 Its counterpart in the finite dimensional
ambient manifold is the generalized Euler’s law, formulated in Theorem IX.2. Special forms are
deduced by considering special Lagrangians or special connections in the ambient manifold. A
peculiar feature of Continuum dynamics as a field theory is that the governing laws must be stated
in variational form.

It is interesting to compare the approach developed in this paper with other treatments of
continuum dynamics. The one developed in Ref. 27, Sec. 5.4, is based on the coordinate expres-
sion of Lagrange’s law in terms of a Lagrangian functional defined, by means of a local chart, on
an infinite dimensional Banach model space of the configuration manifold. This Lagrangian func-
tional is the integral over a reference placement of a Lagrangian scalar field per unit volume which
is assumed to be a differentiable function of position, speed, and deformation gradient. Since a
referential description is adopted, the ansatz of virtual mass conservation is implictly and tacitly
assumed. The formulation adopted in Ref. 27 is not intrinsic and is admittedly limited to nonlinear
elasticity. Its extension, to include other constitutive behaviors and to consider connections other
than the one induced by the local charts, is not at all straightforward. Our choice has been instead
to start from the extremality principle for the action and to develop a completely intrinsic approach
in the general context of Riemannian ambient manifolds. The Lagrangian scalar field is defined
per unit mass in the actual placement so that the standard Lagrangian is given by the kinetic
energy per unit mass, i.e., one-half the squared speed of motion �force potentials do not play a
significant role here�. The introduction of stress fields as Lagrange multipliers dual to the stretch-
ing of conforming virtual velocities, measured by one-half the Lie derivative of the metric tensor,
opens the way for the implementation of constitutive laws according to well-developed procedures
of continuum mechanics.3 Our formulation of continuum dynamics has the generality sufficient to
perform the analysis of continuous structural models of engineering interest, including nonlinear
constitutive models which describe elastoplastic, elastoviscoplastic, phase transition, and dissipa-
tive behaviors.
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