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S O M M A R I O  : Si  presentano i risultati di una ricerca volta a 
forttire una sicura base al criterio energetico come metodo di inda- 
gine sulla stabilith e l'instabilit~ dei modelli ingegneristici non 
lineari di strutture elastt'cbe continue quali travi, piastre e volte 
soggette a ¢arichi conservativi. 

Si mostra come, nel caso di modelli strutturali con comporta- 
mento lineare hello fase precritica, sin possibile fornire una for- 
mulazione rigorosa del criterio energetico, basata su uno sviluppo 
in formula di Taylor del funzionale energia potenziale. 

S U M M A R Y :  llTe present some results of a research intended 
to provide a satisfactory foundation to the energ O, criterion as a 
tool for /be investigation of the stability and the instabtTi O, of 
nonlinear engineering models of continuous elastic structures such 
as beams, plates, and shells under conservative loading. 

I t  is shown how, in the case of structural models with a linear 
prebuckling behavior, it  is possible to give a rigorous formtdation 
of the energy criterion, based on an expanffon of the potential 
energy functional in Taylor' s formula. 

1. Introduct ion.  

The stability of an equilibrium configuration of an elastic 
structure under conservative loading is conveniently ana- 
lyzed by the energy method. 

Indeed the energy criterion reduces the stability problem 
to a statical one based on the investigation of the behavior 
of the potential energy in a neighborhood of an equilibrium 
configuration. 

An extensive and successful application of this criterion 
has been made in solving many engineering problems in 
the field of  elastic stability. 

Recently, however, a number of criticisms have been 
formulated about the validity of the energy criterion of 
stability when applied to continuous elastic structures. 

A comprehensive discussion of  the problem may be 
found in [t]. 

I t  turns out that the main motivation of  these criticisms 
consists in some paradoxical results to which the criterion 
is shown to lead [2]. 

As a consequence many researchers in this fieldhave felt 
the need for a more rigorous approach to the problem, 
starting from a critical review of the very definition of  the 
stability of  an elastic structure. 

Although the problem have not been solved in full 
generality, many valuable contributions have been made 
to a deeper understanding of  the subject [3-5]. 

In this paper we present some results of  a research in 
this direction, which specially concern the possibility of 
giving a satisfactory foundation to the energy criterion 
for the investigation of the stability and the instability 
of the usual nonlinear engineering models of continuous 
elastic structures such as beams, plates, and shells under 
conservative loading. 

2. Generalities. 

We shall take the dynamical definition of stability (ac- 
cording to Lyapunov's approach) as basic. 

It can be roughly stated as follows: 

"An equilibrium configuration of  a given dynamical 
system is stable if, in the motion subsequent to an initial 
disturbance, the state of  the system remains arbitrarily 
near to the equilibrium configuration when the initial 
perturbed state is sufficiently near to it." 

From this definition it is apparent how the concept of 
stability is a topological one, since it is based on the notion 
of "'nearness" between two states of  the system. 

It must be pointed out here that the set of admissible 
states of the system, which consists of the solution set of 
the nonlinear dynamical problem under a given set of  initial 
data, is not known in the general case. 

We must then make an a priori assumption regarding 
the state space in which the stability problem is set. 

In connection with the development of an energy ap- 
proach to the analysis of the stability of conservative 
dynamical systems, the choice of the state space and of its 
topology must meet the following obvious physical re- 
quirements: 

i) the total energy is finite at every state of  the system; 

ii) the unloaded natural configuration is stable. 

3. The  energy criterion. 
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A sufficient energy criterion of stability may be obtained 
by a suitable generalization of the Lagrange-Dirichlet 
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theorem of analytical mechanics, stating that: u 

"If  the potential energy functional is continuous in a 
neighborhood of an equilibrium configuration and has a 
positive lower bound on arbitrarily small closed surfaces 
around it, then the equilibrium configuration is stable in 
the dynamical sense." 

It is worth noting that the simple positivity of the 
potential energy on arbitrarily small closed surfaces around 
the equilibrium configuration suffices for the proof  of the 
theorem in the discrete case since the potential energy 
functional, being continuous, admits a positive minimum 
on every dosed and bounded (and hence compact) set. 

This conclusion does no more hold in the continuous 
case where closed and bounded sets of the infinite dimen- 
sional state space need not to be compact. 

A sufficient energy criterion of  instability cannot be 
proved in full generality in the context of  a purely conser- 
vative theory. 

However, a general result can be obtained under the 
additional assumption of a strictly positive dissipation. 

In this case indeed the total energy functional is strictly 
decreasing along any trajectory which does not degenerate 
in an equilibrium point. 

On the other hand, by the assumed continuity, the total 
energy functional will be constant on every limit orbit. 

I t  follows that the limit orbits must consists of equilib- 
rium configurations. 

This simple result and the existence of limit orbits of 
every trajectory which remains in a compact subset of  the 
state space are the key points in the proof  of  the energy 
criterion of instability which may be roughly stated as 
follows: 

"An isolated equilibrium configuration of a strictly dis- 
sipative dynamical system is unstable if  the potential energy 
functional is continuous and assumes negative values in 
every sufficiently small neighborhood of  it and each 
trajectory of  the system lies in a compact subset of the 
state space." 

A more rigorous statement and an explicit proof are 
given in [6]. 

We remark that in the discrete case the last assumption 
can be trivially dropped, since trajectories which do not 
lie in a compact subset of the state space are in fact un- 
bounded. 

A simple physical interpretation of the abstract com- 
pactness assumption above and a discussion of it plausibility 
will be given in the last section, in connection with the 
stability analysis of  the nonlinear engineering models of  
continuous elastic structures. 

The results of the stability and the instability theorems 
which have been stated in this section may be made oper- 
ative if  an effective method of investigating the behavior 
of  the potential energy functional in a neighborhood of  
the equilibrium configuration is available. 

I f  the potential energy functional is F r~he t  differentiable 
a sufficient number of times in a neighborhood of the 
equilibrium configuration, a suitable tool is provided by 
an expansion in Taylor's formula. 

4. Structural systems. 

Let us consider a one or two-dimensional model of an 
elastic structure under conservative loading. 

To be definite we shall refer to a two-dimensional plane 
elastic structure. 

Let A be the regular domain which the structure occupies 
in its natural undeformed configuration. 

The dynamical behavior of the structure will be described 
by the function pair {u, k} where u is the displacement 
vector field from A and/¢ is the corresponding velocity 
field. 

The total energy: 

E(u, ;,) = ~(,,) + ~:(;,) 

which is the sum of  the potential energy ~ and of the kinetic 
energy K is assumed to be strictly decreasing along any 
trajectory: 

.= , , (x , t )  x E A  tE[to,+Co) 
h = h(x, t) 

and hence is the most obvious candidate to the role of 
Lyapunov's functional of the system. 

We shall consider structural models whose potential 
energy functional meets the following requirements: 

the functional ~(u) has the expression: 

~(u) = ~A ~0(u(x)) dx 

with ~v function of  the displacement vector u and of  its 
derivatives up to and including that of  order m, such that 
derivatives of  u at most of  order m - -  1 do appear in the 
expression of 00 with an exponent greater than two and 
with a quadratic part expressible as: 

a(u, u) - -  i b(u, u) 

where: 

a(u, v) = z [ apq(x) • D , o ( x )  a x  
0=; I2ol, Iql~m 

b(u, v) = Z f hr,(x) D ' u ( x )  . D ' v ( x )  d x  
O:s Irl,I61=; m - t  a A  

°-We assume that the kinetic energy itself is chosen as a meas- 
ure of "nearness in velocity" to the equilibrium state. Without 
loss of generality we also assume that the potential energy is 
zero at the equilibrium configuration under investigation. 

with am = aqo and br8 = b~r so that the bilinear forms a 
and b are symmetric. The multi-index notation has been 
used: e. g., p = (p , , p~ )  and [p] = p l  -}-p~ with pz and j02 
integers. 

Here t is the load parameter. 
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The previous requirements are met by the potential 
energy functional of me usual nonlinear engineering 
models of  beams, plates, and shells with a linear prebuckling 
behavior. 

We shall show that ~ satisfactory foundation can be 
given to the energy method when applied to the analysis 
of  the stability and the instability of  these structural 
systems. 

To this end let us recall some mathematical definitions 
and results needed in the sequel. 

Consider the Sobolev space Hm(A) of the displacement 
functions on A with square summable generalized deriv- 
atives up to and including that of order m, whith the 
norm: 

ll,,))o= 

If  rigid body displacements are ruled out, the following 
inequality holds: 

where V is the closed subspace of  Hm(A) of the displace- 
ment functions satisfying the geometric bounda~ con- 
ditions. 

We need the following basic result of functional analysis, 
known as Rellich's "selection principle": 

" I f  the domain A is properly regular, s the embedding 
of  the space Hm(A) into the space Hm-I(A) is compact." 

The coerciveness condition (4.1) on a(u, u), the continuity 
of  b(u, v) on Hm-I(A) and the selection principle above, 
allow to prove the following existence theorem: 

Consider the variational problem: 

P) ~(u, v ) - -  3. b(,,, v) = t(v) V ~ ~ v 

with l(v) bounded linear functional on V. 
Problem P admits an unique solution for every l if 3. 

doesn't belong to the spectrum of the associated eigen- 
problem: 

Pa) a(u, v ) - -  3. b(u, v) = 0 V v ~ V 

The spectrum of P consists of  an increasing sequence of 
positive eigenvalues {3.,+} and a decreasing sequence of 
negative eigenvalues {;~ -},4 each of finite multiplicity. 

When 3. belongs to the spectrum of Pa, problem P 
admits solutions if and only if/vanish on the corresponding 
eigenspace. 

a The exact definition of properly regular domain is given 
in [7]. 

4 If the quadratic form b(u, u) is positive (negative) definite 
the sequence {2#-} ({;t,+}) is empty. 

The solution set is then a finite dimensional linear 
variety parallel to this eigenspace. 

Assuming that the potential energy functional ~ is 
Fr~chet differentiable in a neighborhood of  the equilibrium 
configuration (which we take to be the origin of  the state 
space) as many times as needed, we may analyze its behavior 
near the origin by an expansion in Taylor's formula. 

The first differential at the origin will be zero by the 
equilibrium condition. 

Let us consider the two basic situations to be detected: 

(s) the potential energy functional has a positive lower 
bound on any sufficiently small sphere around the origin. 

(/) the potential energy functional assumes negative 
values in any neighborhood of  the origin. 

Now, if the second differential satisfies a coerciveness 
condition: 

d~,(O) u= >/k= II.ll~ v u ~: V (4.2) 

then (s) holds true (see, e.g., [8]). 
Note that since: 

d2$(O)uZ=a(u,u)--3.b(u,u) >~(1----~)a(u,u)>~ 
1 

/> yZ (1---~-~)tlull~,,, V u ~ V (4.3) 

the coerciveness condition (4.2) is equivalent to require 
that :s 

0.< , t <  3.+ 

I f  3. = ),t + (the critical load) and the associated eigenspace 
is one-dimensional, i.e., there exists only one "critical 
direction" ul such that: 

da~(0) utv=a(ut, v)--2~b(u,, v ) = 0  V v ~ V 

we have to look at higher order differentials. 
Indeed, if: 

o r  

and 

a",/,(o) ,,,~ :~ 0 

a~¢,(o) u~ = o 

d,,/,(o) ,,~ < o 

then (i) holds true. 

Henceforth we shall consider for simplicity the case when 
the quadratic form (b(u, u) is positive definite. 
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In the alternative case we must look at the expression: 

2 
d4~b(O) u~ - -  3d~4~(0 ) u2 (4.4) 

where uz is any solution of the variational problem: 

v ) - - 2 t  O(u~, v ) =  d2t~(O)uzv=a(u~, * --da$(O) ulv k~v~ V 

which, by the existence theorem stated above, admits a 
one-dimensional linear variety of  solutions (indeed, the 

compatibility condition daft(0)ul s - - 0  is satisfied). 

Now, depending on whether (4.4) is positive or negative, 
respectively (s) or (i) holds true. 

The previous analysis yields then effective sufficient 
criteria of  stability (s) and instability (i) of a continuous 
elastic structural model, under the assumption of  the 
Fr&het differentiability of  ~b and the condition that the 
trajectories lie in a compact subset of the state space. 

A proper choice of the state space for the structural 
models under investigation is then the product Hilbert 
space: 

Hm(A) X L2(A) 

with the norm: 

II (", ~)II = (11.11#, + I1~11o~) ~ 

where 

is the usual norm in L2(A) (equivalent to the kinetic 
energy). 

With this choice we have that, if ~ is Fr~chet differ- 
entiable, the natural unloaded configuration is stable (in 

fact, by (4.3), we have stability for 0 ~< 2 < 2+). 

The explicit proof of the Fr~chet differentiability of  
and an interpretation of the compactness assumption on 
the trajectories, will be given in the next section with 
reference to a simplest structural model. 

5. A simplest example (Euler problem). 

Let us consider an inextensible simply supported elastic 
beam of constant cross section and length l, under a com- 
pressive loading N. 

The potential energy is given by: 

where E is the Young modulus, I is the lowest moment 
of inertia, ~z(s) is the rotation of  the cross section as a 

function of  the curvilinear abscissa s and a'(s) = da/ds is 
the curvature of  the beam axis. 

Denoting by w(s) the deflection, we get from (5.1) the 
approximate expression: 

¢)(w) = f l  w"2(1 + w'2 - -  w'a) ds - -  

- -  N 2 8 + ds 

which setting: 

I( .~--- - -]--  lP X = - 7 -  I 

NI~ l 
2 = sr2-------ET 9 = # zr E1  

may be expressed in adimensional form as: 

= u"~(1 + u'~-- u'4) d x - -  ~e(") -T  

__2 fno ( u '2 u '4 u'ex 2 8 + -i~-) d~ (5.2) 

where a prime denotes the differentiation with respect to x. 
The kinetic energy may be assumed to be given by: 

1 [lO 'v2 ds 

where 0 is the linear density, and setting: 

l 4 

oz~ EIT~ 

t 
T 

ztaT 2 
k = K - -  

Is ~o 

where T is a time factor and Oo is a reference linear density, 
we get the adimensional form: 

k = -~-  ta t;~ dx (5.3) 

Consider now the nonlinear structural model defined 
by the total energy: 

E(u, ;0 = ~(u) + k(,;) 

with q0 and k given by (5.2) and (5.3) respectively. 
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To prove that 90 is twice Fr6chet differentiable we must 
show that, setting: 

_ _  N t4  11¢'6 \ 

-g- + - f (  ) ,¢,¢ = ,o=(.) 

we have that: 

a s  

I~'~(u)l ~ 0  (5.4) 
I1t= 

½-~0 I1"!~ = [ h  (¢" -4- ='~ + -"~)d~-) 

Now by Sobolev's lemma (see, e.g., [7]) we have: 

max I.'(x) I ~<~ II.I1= 
z E f 0 , n l  

Hence, from (5.4) we get: 

s 4 6 4 6 
I,o=(u)l ~¢  (11.11= + 11=11= + ~(lull~ + I1.1=)) 

whence (5.4) follows. 

By the same procedure the indefinite Fr~chet differentia- 
bility of ~0 can be immediately proved. 

Moreover, we have that: 

dz~p(O) u ~" = u"U d x - -  2 u'U dx 

and, by the Poincar~ inequality: 

f~ ."= d~ >~ ~ li=lll 

which yields the coercitivity condition corresponding to 
(4.1). 

The results of  the previous section may then be applied 
to the present simplest structural case. 

Finally, a simple physical interpretation may be given 
in this context to the condition that the trajectories of the 
system remain in a compact subset of the state space. 

Indeed, from the "selection principle," we infer that 
otherwise the trajectories should be unbounded in H~(0,~r). 

Since the third derivatives of the deflection are related 
to the shear in the beam, this would imply an unbounded 
shear energy in the beam. 

This situation must be rejected as contradictory from 
the physical point of  view, because a purely flexural energy 
has been adopted in the beam model assuming the other 
contributions to be negligible and hence, afort iori ,  
bounded. 
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