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Abstract Geometric Continuum Mechanics (GCM)
is a new formulation of Continuum Mechanics (CM)
based on the requirement of Geometric Naturality
(GN). According to GN, in introducing basic no-
tions, governing principles and constitutive relations,
the sole geometric entities of space-time to be involved
are the metric field and the motion along the trajectory.
The additional requirement that the theory should be
applicable to bodies of any dimensionality, leads to the
formulation of the Geometric Paradigm (GP) stating
that push-pull transformations are the natural compar-
ison tools for material fields. This basic rule implies
that rates of material tensors are Lie-derivatives and
not derivatives by parallel transport. The impact of the
GP on the present state of affairs in CM is decisive
in resolving questions still debated in literature and in
clarifying theoretical and computational issues. As a
consequence, the notion of Material Frame Indiffer-
ence (MFI) is corrected to the new Constitutive Frame
Invariance (CFI) and reasons are adduced for the re-
jection of chain decompositions of finite elasto-plastic
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strains. Geometrically consistent notions of Rate Elas-
ticity (RE) and Rate Elasto-Visco-Plasticity (REVP)
are formulated and consistent relevant computational
methods are designed.
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1 Introduction

The initial acceptance of the theory of relativity was
due to HILBERT, KLEIN, POINCARÉ and MINKOW-
SKI, knowledgeable and authoritative scientists, who
were intrigued by the new approach by EINSTEIN and
shared his enthusiasm. The definitive triumph of the
theory was sealed by the prediction and interpretation
of physical phenomena which the classical theory was
unable to explicate.

There are similarities between that situation and the
present one concerning Continuum Mechanics (CM).
In both cases one is faced with a well-consolidated the-
ory rich of implications and interpretations of experi-
mental facts, but with some unexplicable difficulties
and paradoxes. In both cases the right idea comes by
collecting hints and partial answers by earlier propos-
als made by valuable researchers.

Relativistic Mechanics (RM) is based on the as-
sessment that the light signal in vacuum is the speed-
iest communication tool to synchronize clocks of dif-
ferent observers. Geometric Continuum Mechanics
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(GCM) is based on the assessment that push-pull
transformations are the tool to compare material tensor
fields at displaced placements along the trajectory or at
the same placement as seen by different observers.

As RM collapses into classical mechanics when the
magnitudes of all velocities at play are much smaller
than the speed of light in vacuum, so the new GCM
reproduces the engineering linearized approximation
when geometric non-linearities are sufficiently small.

The need for a guideline is indeed especially felt
when the fully nonlinear theory is dealt with. The geo-
metric approach provides, however, proper definitions
of basic concepts also in the small displacement range,
as exemplified in Sect. 15 dealing with material homo-
geneity, and convenient coordinate-free treatments as
in [3–7, 13, 32–35, 37, 44].

Basic building blocks for the development of Non-
Linear Continuum Mechanics (NLCM) have been put
in place long time ago [54, 55]. This approach was
highly influential in drawing the track for subsequent
contributions [16, 24, 25, 47, 56]. Significant progress
was also made to fulfill the demanding requests of
Computational Mechanics [8, 11, 12, 20, 23].

In formulating the methodological framework illus-
trated in the present contribution, the book [21] should
be cited as especially significant. Although still adopt-
ing notions and methods taken from the essentially
algebraic treatment developed in [53, 54], that book
should rightly be considered a landmark turning point
towards a more genuinely geometric point of view.

A special mention is also deserved by computation-
ally oriented papers [26] and [49] which, at about the
same time, provided a clear hint towards the need for
a consistent geometric approach to constitutive theory.

Applications of differential geometry to CM, still
in the framework proposed in [53–55] and since then
followed in literature up to now, have recently been
contributed in [45, 46, 58] and in the book [14].

The ideas and the methods outlined in the sequel
are not intended to dress a fashionable suit over well-
known treatments and results. Rather they have been
developed under the pressing need of clarifying basic
issues, such as the notions of stress rate, of rate elastic
and inelastic constitutive laws, of conservativeness of
elastic models and the request of frame indifference
for material fields and constitutive relations.

Under this aspect, we have primarily followed the
fascination of what PIERO VILLAGGIO in [57] calls
the ineffable pleasure of free intellectual research.

Indeed any attempt to fulfill the demands posed by
the exigence of overcoming unclear statements and
unmotivated assumptions, readily leads to the conclu-
sion that a brand new theoretical and computational
framework is needed.

Previous contributions to NLCM can there be em-
bedded, adapted or corrected to fit into a consistent
geometrical scheme capable of answering in a sat-
isfactory way still pending questions and to formu-
late effective computational strategies, as delineated in
Sect. 3.

2 Motivation

The reason why a scholar in Continuum Mechanics,
who is wishing to face problems in the nonlinear geo-
metric range, should learn basic differential geometry,
is that linear algebra and linear calculus can only work
in the context of a (small displacements) linearized
theory.

If this simple observation is not deemed to be suf-
ficient to convince that the conceptual effort needed to
manage these fundamentals is worth to be sustained,
answering the following questions might help.

Consider an inflatable rubber balloon. The lower
dimensionality of this body makes the governing rules
for a non-linear analysis to follow in a natural way.

1. A first task is the comparison of stress fields before
and after the inflation, that is between displaced and
distorted configurations of the balloon. How to per-
form the comparison? How to evaluate the rate of
variation of the stress field?

2. A further question concerns the formulation of the
constitutive model of the rubber balloon, assumed
to be elastic. What are the state variables and what
the response? How to verify that the rubber is the
same in two points on the balloon?

3. A third issue of investigation is the comparison be-
tween constitutive relations detected by different
observers performing tests on the balloon’s rubber.

4. A last question concerns the proposal of an algo-
rithm for automatic computation of the dynamical
trajectory of the inflated rubber balloon, under the
thrust of the outgoing air.

Who is willing to give himself an answer, at least one
of a purely methodological character, to these ques-
tions might find interesting to compare his own con-
clusions with the ones provided below.
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3 New ideas and notions

A careful analysis of the motivating questions leads
to conclude that a new geometric approach to Non-
Linear Continuum Mechanics (NLCM) is required.

A main effort is to be directed in eliminating stan-
dard but otherwise arbitrary choices (such as paral-
lel transport by translation in EUCLID space). Unmo-
tivated special assumptions in adopted procedures is
a major obstacle in extending the treatment from the
usual 3D body model to include the 1D and 2D engi-
neering models of wires and membranes (the balloon
is a thin shell which is conveniently modeled by as
a 2D membrane). The simulation of changes of ob-
server needs also a complete revisitation of previous
incorrect treatments leading to negative conclusions
about feasibility of rate formulations in elasticity and
to unacceptable enunciations that rate-elastic materials
should necessarily be isotropic [54].

Constitutive relations require new rate formulations
in which the stress (and possibly other internal vari-
ables) is the state variable and the output is an addi-
tive list of various kind of stretching (elastic, plastic,
viscous, thermal). These innovative issues will be dis-
cussed in detail in Sects. 20, 21.

Leading new notions illustrated in this paper are the
following.

1. Definition of spatial and material tensor bundles
over the events manifold and corresponding fields.

2. Geometric Naturality (GN) according to which,
in introducing basic notions, governing principles
and constitutive relations, the metric properties of
space-time and the motion along the trajectory
should be the sole geometric entities involved.

3. Dimensionality Independence (DI) requiring that
all notions and results of the field theory should be
directly applicable to bodies of any dimensionality.

4. Geometric Paradigm (GP) stating that only mate-
rial tensors can be involved in constitutive relations
and that the rule for comparison between material
tensors is the push-pull according to the relevant
diffeomorphic transformation.

5. Constitutive Frame Invariance (CFI) which cor-
rects the principle of Material Frame Indifference
(MFI) enunciated in [22, 54]. The CFI states that
material tensors are EUCLID frame-invariant and
that constitutive relations must be EUCLID frame-
invariant.

The first item requires a kinematic framework for
GCM based on a space-time formulation and provides
a brand new definition of material fields on the tra-
jectory, with no recourse to reference placements, see
Remark 1.

The second item, although basic, has never been ex-
plicitly stated in a proper geometric form.

The third item is quite reasonable but its require-
ment has been not fulfilled in most treatments.

The fourth item is a logical consequence of the pre-
vious requirements. Its motivation is more subtle when
a dimensional coincidence between the body and the
ambient space occurs, but is self-proposing for lower
dimensional bodies. To grasp the motivation, it should
be observed that comparisons between material ten-
sors must be made in either one of the following cir-
cumstances.

A. Between material tensors based on two particles at
the same time instant, as seen by a single observer.

B. Between material tensors based on same particle at
two time instants, as seen by a single observer.

C. Between material tensors based on same particle
at the same time instant, as seen by observers in
relative motion.

In case A, which occurs for instance in the defini-
tion of homogeneous material properties in a body,
the comparison tool is an isometric invertible linear
transformation between the tangent spaces at the base
points. To see this, try to argue about how to compare
the stretching and the stress tensors at two points of
a curved membrane, at a given time instant, and then
consult Sect. 15 below.

In case B, the natural way to perform the compar-
ison consists in considering the evolution diffeomor-
phism between two placements of a body along a tra-
jectory (whether real or virtual), and in performing
the push-pull transformations according to the induced
isomorphism between corresponding tangent spaces.

In case C, the comparison is again performed in a
natural way by a push-pull transformation according
to the map relating the points of view of distinct ob-
servers.

The first adoption of the rule dictated by the GP
dates back to the mid of eighteenth century being im-
plicit in EULER’s notion of stretching and in his cele-
brated formula providing the expression in terms of the
velocity field [30]. The rule has been however often vi-
olated in more recent times, with the consequence that
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the development of CM has been brought out of the
right geometric track.

The fifth item is the consistent reformulation of the
geometrically and physically improper notion of Ma-
terial Frame Indifference (MFI), as thoroughly dis-
cussed in Sect. 19.

4 New results

The conceptual clarity of the geometric approach and
the effectiveness of its adoption become evident as
soon as it is applied to formulate constitutive rela-
tions, to discuss basic issues such as time indepen-
dence, time invariance, frame invariance, integrability
conditions and conservation of elastic energy, and to
design algorithms for the implementation of computa-
tional methods.

Fictitious difficulties faced with in the last decades
are eliminated by adopting the Geometric Paradigm
(GP) which leads to formulate rate constitutive rela-
tions for elasto-visco-plasticity (and similar models of
material behavior) in a direct and definite way and re-
solves the long lasting debate about rates of material
tensors by giving a unique, simple and well-defined
answer. A first exposure of this new approach was con-
tributed in [29] with explicit reference to a new model
of covariant hypo-elasticity, an issue playing a funda-
mental role in constitutive theory.

In fact, the statement about non-integrability of the
simplest non-covariant hypo-elastic law [50], based on
the analysis performed in [9] and credited in [54], led
to discard rate constitutive relations in computational
formulations and suggested to introduce a finite for-
mulation based on the multiplicative decomposition of
the deformation gradient into subsequent plastic and
elastic transformations [18, 19]. This decomposition
has gained an increasing favor notwithstanding many
debates and criticisms and the questionable physical
meaning and the geometric inconsistency of a finite
measure of plastic strain, discussed below in Sect. 9.
All these matters stem out of a purely algebraic treat-
ment in which geometric features of the non-linear
problem are not properly taken into account, since
involved tangent spaces at displaced material points
are treated as they were coincident or could be super-
posed by translation. Although the temptation to per-
form parallel transports by translation might be hard to
be resisted when dealing with 3D bodies (and in fact

such a translation is performed in [53, 54] and in sub-
sequent contributions), a quick look at the situation for
lower dimensional bodies, depicted in Fig. 6, reveals
that this track cannot be followed in the construction
of a theory embracing bodies of any dimensionality.

The geometric approach, with the ensuing Geo-
metric Paradigm, provides the natural framework for
Non-Linear Continuum Mechanics (NLCM), restores
to the models of rate-elasticity, of rate elasto-visco-
plasticity, and to rate models describing phase trans-
formations or growth phenomena in biomechanics, a
basic and effective role in the analysis of material be-
havior, in a full non-linear range and for bodies of
any dimensionality, and draws clear methodological
guidelines.

5 Preliminary notions

The investigation about transformations from a given
manifold M to another one N is a basic task in con-
tinuum mechanics. For instance, one is faced with this
task when dealing with motions, changes of observer
and computational schemes.

A manifold is a geometric object which generalizes
the notion of a curve, surface or ball in the EUCLID

space. It is characterized by a family of local charts
which are differentiable and invertible maps onto open
sets in model linear space, say Rn. Then n is the
manifold dimension. The inverse maps provide local
coordinate systems. Velocities of parametrized curves
through a point x ∈ M on a manifold, are tangent vec-
tors at that point and describe the tangent linear space
TxM. The dual space of real-valued linear maps on
TxM is denoted by T ∗

x M = (TxM)∗ and its elements
are called covectors at x ∈ M.

To a smooth transformation f : M �→ N it corre-
sponds, at each point x ∈ M, a linear infinitesimal
transformation Txf : TxM �→ Tf (x)N between the tan-
gent spaces, called the differential, whose action on
the tangent vector ux := ∂s=0c(s) ∈ TxM to a curve
c : R �→ M, at the point x = c(0), is defined by

Txf · ux = ∂s=0(f ◦ c)(s).

A dot · denotes linear dependence on subsequent ar-
guments belonging to linear spaces. A circle ◦ denotes
composition of maps. A chochét 〈, 〉 denotes the bilin-
ear, non-degenerate duality between pairs of dual lin-
ear spaces (TxM, T ∗

x M) or (Tf (x)N, T ∗
f (x)N). The dual
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linear map

(Txf )∗ : T ∗
f (x)N �→ T ∗

x M,

is defined by the identity

〈Txf · ux,wf (x)〉 = 〈
ux, (Txf )∗ · wf (x)

〉
,

for any ux ∈ TxM and wf (x) ∈ Tf (x)N.
The tangent bundle T M and the cotangent bundle

T ∗
M are disjoint unions respectively of the linear tan-

gent spaces and of the dual spaces based at points of
the manifold.

The global transformation between tangent bundles
Tf : T M �→ T N is called the tangent transformation.
The operator T , acting on manifolds and on maps be-
tween them, is named the tangent functor.

Zeroth order tensors are just real-valued functions.
Second order tensors at x ∈ M are bilinear maps on
pairs of vectors or covectors based at that point. They
are named covariant, contravariant or mixed depend-
ing on whether the arguments are both vectors, both
covectors or a vector and a covector.

The corresponding linear tensor spaces at x ∈ M

are denoted by FUN(TxM), COV(TxM), CON(TxM),
MIX(TxM). First order covariant tensors are covectors
and first order contravariant tensors are tangent vec-
tors. Second order tensors at x ∈ M are equivalently
defined as linear operators from a tangent or cotangent
space to another such space at that point:

(sCOV)x : TxM �→ T ∗
x M ∈ COV(TxM),

(sCON)x : T ∗
x M �→ TxM ∈ CON(TxM),

(sMIX)x : TxM �→ TxM ∈ MIX(TxM).

A covariant tensor gx ∈ COV(TxM) is non-degenerate:

gx(ux,wx) = 0 ∀wx ∈ TxM =⇒ ux = 0x.

The corresponding linear operator gx : TxM �→ T ∗
x M

is then invertible and provides a tool to change tenso-
rial type (alterations). The most important alterations
are those which transform covariant or contravariant
tensors into mixed ones and vice versa.

(sCOV)x ∈ COV(TxM) =⇒
g−1

x · (sCOV)x ∈ MIX(TxM),

(sCON)x ∈ CON(TxM) =⇒
(sCON)x · gx ∈ MIX(TxM).

Symmetry of covariant or contravariant tensors means
invariance of their values under an exchange of the
two arguments. A pseudo-metric tensor is a non-
degenerate covariant tensor which is symmetric, i.e.

gx(ux,wx) = g(wx,ux).

A metric tensor gx ∈ COV(TxM) is symmetric and
positive definite, i.e. such that

ux �= 0 =⇒ gx(ux,ux) > 0.

A tensor bundle TENS(T M) is the disjoint union of
tensor fibers which are linear tensor spaces based at
points of the manifold.

A bundle is characterized by the projection operator
π : TENS(T M) �→ M which assigns to each element
sx ∈ TENS(TxM) of the bundle the corresponding base
point x ∈ M. The fibers π−1(x) are the inverse images
of the projection and are assumed to be related each-
other by diffeomorphic transformations, so that they
are all of the same dimension.

A tensor field is a map s : M �→ TENS(T M) from
a manifold M to a tensor bundle TENS(T M) such that
a point x ∈ M is mapped to a tensor based at the same
point, i.e. such that π ◦ s is the identity map on M.
In geometrical terms it is said that a tensor field is a
section of a tensor bundle.

A transformation f : M �→ N maps a curve on
M into a curve in N and, under suitable assump-
tions, scalar, vector and covector fields from M onto
f (M) ⊂ N (push forward ↑) and vice versa (pull back
↓).1

A synopsis is provided below. Assumptions of dif-
ferentiability and of invertibility of the differential, are
claimed whenever needed by the formulae [27].

Push forward from M on f (M), f : M �→ N injec-
tive.

ψ : M �→ R, (f ↑ψ)f (x) = ψx,

v : M �→ T M, (f ↑v)f (x) = Txf · vx,

v∗ : M �→ T ∗
M,

〈
f ↑v∗,w

〉
f (x)

= 〈
v∗

x, (Txf )−1 · wf (x)

〉

1In differential geometry these are respectively denoted by low
and high asterisks ∗;∗ [51]. This standard notation leads how-
ever to consider too many similar stars in the geometric sky, i.e.
push, pull, duality, HODGE operator.
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Pull back from f (M) to M.

φ : N �→ R, (f ↓φ)x = φf (x),

w : N �→ T N, (f ↓w)x = (Txf )−1 · wf (x),

w∗ : N �→ T ∗
N,

〈
f ↓w∗,v

〉
x = 〈

w∗
f (x), Txf · vx

〉
.

Push-pull relations for second order covariant, con-
travariant and mixed tensors, are defined so that their
scalar values be invariant and are given by the formu-
lae

(f ↓sCOV)x = (Txf )∗ · (sCOV)f (x) · Txf ∈ COV(TxM),

(f ↑sCON)f (x)

= Txf · (sCON)x · (Txf )∗ ∈ CON(Tf (x)N),

(f ↑sMIX)f (x)

= Txf · (sMIX)x · (Txf )−1 ∈ MIX(Tf (x)N).

These transformation rules play an important role in
CM since, as recalled below in Sects. 11, 12, 13, the
metric tensor is covariant and the dual stress tensor
is contravariant. The transformation of mixed tensors
does not preserve symmetry with respect to a metric
tensor, unless the transformation is isometric, Sect. 17.

A morphism F over f is a pair of maps (F,f )

between tensor bundles and their base manifolds, that
preserve the tensorial fibers, as expressed by the com-
mutative diagram

TENS(T M)
F

πM

TENS(T N)

πN

M

f

N

⇐⇒

πN ◦ F = f ◦ πM.

Morphisms that are invertible and differentiable with
the inverse, are named diffeomorphisms. Important
instances of diffeomorphisms are the displacements
from a placement of a body to another one, changes
of observer, and straightening out maps, Sects. 6, 16,
18. On the other hand, differentiable maps which are
not diffeomorphisms are, for instance, immersions and
projections, Sect. 6.

6 Kinematics and observers

In introducing basic issues of Continuum Kinemat-
ics (CK) an emphasis is put on the essential geomet-

Fig. 1 Space-time splitting

rical ingredients of the theory and on the roles they
play. The container is the four dimensional events
manifold E which is connected and without bound-
ary.

Physical experience tells us that tests performed
by an observer are concerned with measurements
which, as time goes on, are performed on a trajec-
tory, detected as a set of events sharing some defi-
nite properties and fulfilling a characteristic conser-
vation law, such as mass or electric charge conserva-
tion.

An observer performs a double foliation of the
4D events manifold into complementary 3D spatial-
slices (isochronous events) and 1D time-lines (isotopic
events), Fig. 1.

Accordingly, the tangent space TeE at any event
e ∈ E is split into a complementary pair of a 3D time-
vertical subspace VeE (tangent to a spatial-slice) and a
1D time-horizontal subspace HeE (tangent to a time-
line) generated by a time arrow Ze ∈ TeE.

The time-vertical subbundle V E (horizontal H E)
of the tangent bundle T E is the disjoint union of all
time-vertical subspaces VeE (horizontal HeE). These
are respectively called spatial bundle and time bun-
dle.

The integral lines z ∈ C1(Z; E) of the field
Z : E �→ T E of time-arrows, are solutions of the dif-
ferential equation ∂λ=0z(λ) = Z. These lines define a
foliation whose disjoint 1D leaves are made of isotopic
events.

An observer is expressed in geometrical terms by
assigning a field of time-arrows Z : E �→ T E and a
real-valued time-function tE ∈ C1(E; Z) which assigns
to each event e ∈ E the corresponding time instant
t = tE(e) ∈ Z which is a real scalar having the phys-
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ical dimension of time (being Zeit the German for
Time).2

The projection according to the time-function
makes the events manifold E into the time-bundle
whose fibers are sets of isochronous (simultaneous)
events.

The action of an observer may be represented as a
rank-one linear projector defined by the tensor product

PZ := dtE ⊗ Z : T E �→ H E.

Without loss of generality we may assume tuning, i.e.
that

∂λ=0(tE ◦ z)(λ) = 〈dtE,Z〉 = 1.

Any tangent vector field X : E �→ T E is split into a
horizontal time-component

PZ · X = (dtE ⊗ Z) · X = 〈dtE,X〉Z ∈ H E,

and a (time-vertical) space-component

PS · X = X − PZ · X = X − 〈dtE,X〉Z ∈ V E.

Then PZ ·Z = Z. The characteristic properties PZ ·
PZ = PZ and PS ·PS = PS are easily verified. Spatial
vectors are in the kernel of the time-differential dtE
since

PS · X = X ⇐⇒ 〈dtE,X〉 = 0.

In classical mechanics, the events manifold E is as-
sumed to be an affine EUCLID 4D manifold.

The time-vertical subspaces detected by observers
are parallel one another and identified with a model
3D affine ambient space S . The time-arrows field is
also assumed to be generated by translation of a given
one so that time-horizontal 1D subspaces detected by
observers are parallel one another and the time param-
eter can be assumed to be the same for all observers,
Fig. 2.

An EUCLID observer defines a one-to-one corre-
spondence, in geometric terms a trivialization
γ ∈ C1(E; S × Z), between the events time-bundle
tE ∈ C1(E; Z) and the Cartesian product S × Z , with
Cartesian projector π Z ∈ C1(S × Z; Z), which is
fiber respecting, i.e. such that π Z ◦ γ = tE [14].

2The time-function tE ∈ C1(E; Z) is assumed to be a projection,
i.e. surjective with a surjective tangent map.

Fig. 2 Euclid space-time splitting

Fig. 3 Trajectory immersion map

In this way all spatial slices are identified with the
affine space S and all time-lines are identified with the
time axis Z . These identifications play a basic role in
the theory, allowing for definitions of parallel transport
in space-time and of spatial motion.

7 Trajectory, body and motion

An observer makes measurements on events belonging
to an immersed trajectory TE, which is a submanifold
(possibly lower dimensional) of the events manifold E.
Lower dimensional trajectories are considered in the
dynamics of 1D or 2D continuum engineering models
(wires or membranes).

It is convenient to think of the trajectory as a man-
ifold T which is the domain of an immersion map
iE,T ∈ C1(T ; E) whose image is the immersed trajec-
tory TE = iE,T (T ) ⊂ E,3 as sketched in Fig. 3.

This setting renders it clear that events in the tra-
jectory T may be detected by a number of free coor-

3An immersion is a injective map whose tangent map is injective
too.
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dinates equal to the dimension dim T ≤ dim TE, while
events in the immersed trajectory TE will be detected
by a number of coordinates equal to the dimension
dim TE but fulfilling suitable nonlinear constraints to
reduce dimensionality.

Our choice is to avoid the a priori introduction of
a physically undetectable body manifold B and rather
deduce the notions of body manifold and material par-
ticles from the testable ones of trajectory and motion,
as illustrated below.

By this approach, the treatment is more directly re-
lated to physical experience and to laboratory mea-
surements and has the mathematical advantage of de-
veloping the theory in the 4D space-time manifold.

The choice of space-time as container manifold
leads to the simple and general rule expressed by the
Geometric Paradigm (GP) governing transformations
of material tensor fields under the action of the motion
or under a change of observer. Significant examples
will be given in Sects. 10, 16, 17.

In the trajectory manifold T , the time-fibration
tT ∈ C1(T ; Z) defined by the composition

tT := tE ◦ iE,T ,

associates, with each trajectory-event, the time instant
pertaining to the immersed event.

The corresponding fibers t−1
T (t) with t ∈ Z , when

immersed in the events manifold, represent the body-
placements iE,T (t−1

T (t)).

The motion ϕα ∈ C1(T ; T ) is a one-parameter fam-
ily of transformations of the trajectory manifold in
itself, which preserves simultaneity of events. This
property is illustrated by the following commutative
diagram

TE

ϕE
α

TE

T
ϕα

iE,T

tT

T

iE,T

tT

Z
SHα

Z

⇐⇒

tT ◦ ϕα = SHα ◦ tT .

The time-shift SHα ∈ C1(Z; Z) is defined by

SHα(t) := t + α ∀α, t ∈ Z.

The description of a trajectory is conveniently made
by means of a parametric representation involving
a local system of coordinates in space-time. Hence
the submanifold TE and the immersed motion
ϕE

α ∈ C1(TE; TE) are the direct objects of investiga-
tions in mechanics, rather than the trajectory T itself
and the motion ϕα ∈ C1(T ; T ).

The trajectory velocity is the tangent vector field
given by v := ∂α=0ϕα ∈ C1(T ;T T ). Its immersion in
space-time vE = iE,T ↑v = ∂α=0ϕ

E
α ∈ C1(TE;T E) is

defined by the commutative diagram

TE

vE

T E

T

iE,T
v

T T

T iE,T ⇐⇒

vE ◦ iE,T = T iE,T ◦ v.

Accordingly the immersed trajectory velocity is split
into a spatial and a time component

vE = vS + vZ , with vS = PS · vE, vZ = PZ · vE.

Taking the time derivative of the simultaneity preserv-
ing property gives

〈dtE,vE〉 = 〈
dtE, ∂α=0ϕ

E
α

〉 = ∂α=0SHα ◦ tE = 1,

so that

vZ = PZ · vE = Z,

and thus the spatial component vS provides a complete
knowledge of the trajectory velocity.

The immersed trajectory velocity vE = iE,T ↑v is
the direct object of investigations in mechanics since
the immersed trajectory is evaluated as the integral
manifold of the vector field vE ∈ C1(TE;T E).

Events related by the motion are the elements of a
class of equivalence defined by the equivalence rela-
tion

e1, e2 ∈ E | ∃α ∈ Z : e2 = ϕα(e1),

which foliates the trajectory, as depicted in Fig. 4.

A material particle is a line (a one-dimensional man-
ifold) whose elements are evolution-related trajec-
tory events.

The body manifold is the quotient manifold (of di-
mension n = dim T − 1) induced by the foliation of
the trajectory manifold.
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Fig. 4 Trajectory, body and particles

A body placement is a fiber of simultaneous events
in the immersed trajectory.

8 Spatial and material fields

By definition of the time-projection in the trajectory
manifold tT := tE ◦ iE,T and by injectivity of the map
T iE,T ∈ C1(T T ;T E), being dtT := dtE ◦ T iE,T we
infer the equivalence

dtT = 0 ⇐⇒ dtE = 0,

i.e. the immersion iE,T : T �→ E preserves isochro-
nism.

The spatial bundle πE ∈ C1(V ETE ; TE) is the time-
vertical subbundle of the restriction of the tangent
bundle πE ∈ C1(T E; E), to the immersed trajectory
manifold TE. Time-vertical vectors uE ∈ V ETE are
characterized by the property

〈dtE,uE〉 = 0.

The trajectory bundle is the tangent bundle π T ∈
C1(T T ; T ) to the trajectory manifold.

The material bundle is the time-vertical subbundle
π T ∈ C1(V T ; T ) of the trajectory bundle. Time-
vertical vectors uT ∈ V T are characterized by the
property

〈dtT ,uT 〉 = 0.

Spatial vector fields sE ∈ C1(TE;V ETE ) are sections
of the spatial bundle πE ∈ C1(V ETE ; TE).

Spatial tensor fields are constructed over the spatial
bundle. At each event e ∈ TE of the immersed tra-
jectory, with t = tE(e), they act in a multi-linear way
on vectors tangent or cotangent to the spatial fiber
t−1
E (t).

Material vector fields sT ∈ C1(T ;V T ) are sections
of the material bundle π T ∈ C1(V T ; T ).

Material tensor fields are constructed over the mate-
rial bundle. At each event e ∈ T of the trajectory, with
t = tT (e), they act in a multi-linear way on vectors
tangent or cotangent to the body placement t−1

T (t).
Sections sTE ∈ C1(TE; TENS(V TE)) of the im-

mersed material bundle π TE ∈ C1(V TE; TE) will still
be called material tensor fields.

A volume form is a material tensor field of alternat-
ing n-order tensors, defined to within a scalar multiple,
with n dimension of the body manifold [27].

Material tensor fields are the main geometric issues
in Continuum Mechanics.

Remark 1 The geometric definition of spatial and ma-
terial tensor fields given above should be taken as
carefully distinct from the homonymic fields in litera-
ture. These latter are usually respectively defined to be
fields in the body manifold B (material fields) and in
the current placement (spatial fields), see e.g. [48]. Ac-
cording to the new approach, both material and spa-
tial fields are based on the immersed trajectory mani-
fold. These are the fields of direct interest in Contin-
uum Mechanics, susceptible of describing properties
related to the body motion. The difference between
them is that material vector fields are tangent to the
immersed trajectory at fixed time, i.e. to placements of
the body, while spatial fields are tangent to the events
manifold at fixed time, i.e. to spatial slices. Examples
of material fields are stress, stressing and stretching
tensor fields, the heat flux vector field and the scalar
fields of temperature and thermodynamical potentials.
Spatial fields are forces, virtual velocities and acceler-
ations. The space-time velocity field v ∈ C1(T ;T T )

and its immersion vE ∈ C1(TE;T E) are neither mate-
rial nor spatial, but the component vS ∈ C1(TE;V E),
which brings an equivalent information, is a spatial
field.

This new definition of spatial and material ten-
sor fields, is physically meaningful and geometrically
clear. Its evidence is shadowed by the practice of con-
sidering trajectory manifolds having the same dimen-
sionality of the events manifold. Anyway, when lower
dimensional trajectory manifolds, such as those per-
taining to wires or membranes, are investigated, the
need for a clear distinction between spatial and mate-
rial tensor fields based on the trajectory and between
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Fig. 5 Push and parallel transport of material vectors

the relevant comparison rules, respectively by paral-
lel transport4 and by push as dictated by the Geomet-
ric Paradigm (GP), becomes evident, as sketched in
Fig. 5. There, spatial vectors got by parallel transport
of immersed material vectors are black arrows, while
pushed material vectors are red arrows.

The new definition of material and spatial fields has
no relation with the so called EULER and LAGRANGE

descriptions in Mechanics. The discussion provided in
[28] points out that the former description amounts
in performing time-derivatives along the motion (LIE

derivative for material fields and parallel derivatives
for spatial fields) by splitting the space-time velocity
field into spatial and time components. This proce-
dure is feasible only in special fluid-dynamics prob-
lems with reference to which it was originally intro-
duced [15].

9 Material metric field

The change of geometric properties of a continu-
ous body, moving from a source placement to a
target placement in the trajectory, can be measured
by means of a space-time metric tensor field
gE ∈ C1(E; COV(T E)). It is the pointwise sum of
pull-back of metric tensors on the spatial bundle
gS ∈ C1(E; COV(V E)) and on the time bundle
gZ ∈ C1(E; COV(H E))

gE := PS ↓gS + PZ ↓gZ .

The explicit expression for a,b ∈ T E is

gE(a,b) = gS (PS a,PS b) + gS (PZ a,PZ b).

4The introduction of the geometric notions of connection and
parallel transport can be avoided by restricting oneself to trans-
port by translation in EUCLID space.

The spatial metric field g ∈ C1(TE; COV(V ETE )) is
the restriction of the space-time metric field
gE ∈ C1(E; COV(T E)) to the immersed trajectory
and to the time-vertical bundle V E.

The trajectory metric field is the pulled-back space-
time metric field iE,T ↓gE ∈ C1(T ; COV(T T )) to the
trajectory manifold, given for a,b ∈ T T by

(iE,T ↓gE)(a,b) = gE(T iE,T · a, T iE,T · b).

The material metric field is the restriction gT ∈
C1(T ; COV(V T )) of the trajectory metric to the
time-vertical bundle V T , defined by

gT := (iE,T ↓gE) = iE,T ↓ · gE · iE,T .

The material metric plays a basic role in Contin-
uum Mechanics since measurements of the length of
curves in body’s placements are based on it. The ma-
terial metric is deduced form the spatial metric by re-
stricting the argument tangent vectors to spatial im-
mersions of material tangent vectors.

To get a full metric information from experimental
data, the following geometric construction is adopted.
The EUCLID norm fulfills the parallelogram identity

2
(‖a‖2 + ‖b‖2) = ‖a + b‖2 + ‖a − b‖2,

with a,b ∈ V T material vectors. From the knowledge
of the lengths ‖a‖,‖b‖,‖a − b‖ of the sides of a trian-
gle the length of the sum ‖a + b‖ is inferred. Then the
polarization formula

gT (a,b) := 1

4

(‖a + b‖2 − ‖a − b‖2)

defines a symmetric, positive definite, twice covariant
material tensor.5 A description of the material metric
is provided by considering a non-degenerate simplex

0
d1

d3
d21

3
d1−d3

d2−d3

2

d1−d2

5The proof is due to FRÉCHET, VON NEUMANN, JORDAN,
see [59]. Validity of parallelogram identity is an assumption
stronger than the one of validity of PYTHAGORAS’ theorem.
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For a body dimension n = 1,2,3, the simplex is a
segment, a triangle or a tetrahedron, respectively with
Cn+1,2 = (n + 1)n/2 sides (C2,2 = 1 (n = 1), C3,2 =
3 (n = 2), C4,2 = 6 (n = 3)). The binomial coefficient
Cn+1,2 gives also the number of components of the
symmetric GRAM matrix Gij := gT (di ,dj ), i, j =
1, . . . , n of the metric tensor with respect to the ba-
sis of material vectors d1, . . . ,dn ∈ V T . The material
metric tensor is expressed in terms of the side-lengths
by the formula

gT (di ,dj ) := 1

2

(‖di‖2 + ‖dj‖2 − ‖di − dj‖2),

On each particle, in going from a source to a tar-
get placement along the evolution starting time t ∈ I

and ending at time τ = t + α ∈ I , the finite stretch
is experimentally evaluated by comparing the lengths
of the edges of a simplex in the tangent space to the
source placement with the lengths of the edges of the
transformed simplex in the tangent space to the target
placement, as depicted hereafter.

0′
d′

1

d′
3

d′
2

1′

3′d′
1−d′

3

d′
2−d′

3

2′

d′
1−d′

2

By definition, the vectors d′
1, . . . ,d′

n of the trans-
formed basis in the target placement are related to the
vectors d1, . . . ,dn of the basis in the source placement
by the tangent map T ϕα to the transformation. The
length measurements permit to evaluate the GRAM

matrix

gT
(
d′

i ,d′
j

) − gT (di ,dj )

= gT (T ϕα · di , T ϕα · dj ) − gT (di ,dj )

By linearity of the tangent map T ϕα and bilinearity of
the metric tensor, the notion of finite stretch is inde-
pendent of the choice of a particular simplex. Indeed,
introducing the pull-back of the material metric tensor

(ϕα↓gT )(di ,dj ) := gT (T ϕα · di , T ϕα · dj ),

the basis d1, . . . ,dn may be eliminated from the for-
mula to get the tensorial measure of the finite stretch

in passing from the placement at time t ∈ I to the one
at time τ = t + α ∈ I

ηα := 1

2
(ϕα↓gT − gT ).

with the factor 1
2 introduced for convenience, see

Sect. 13. This is the GREEN material strain (or stretch)
field.

10 Time-rates of material and spatial fields

The Geometric Paradigm (GP) leads to the follow-
ing new notions of time-rates for material and spatial
fields.

A material field sT ∈ C1(T ; TENS(V T )) has a time-
rate expressed by its LIE derivative along the motion

ṡT = LvsT := ∂α=0(ϕα↓sT ),

where

(ϕα↓sT ) := ϕα↓ · sT · ϕα,

with the operator ϕα↓ pointwise defined in Sect. 5
for the various kinds of tensors.

Accordingly, time invariance along the motion is ex-
pressed by the condition

LvsT = 0 ⇐⇒ sT = (ϕα↓sT ).

A spatial field sE ∈ C1(TE; TENS(V ETE )) has a time-
rate expressed by a parallel derivative along the mo-
tion

ṡE = ∇vE sE := ∂α=0
(
ϕE

α⇓sE
)
,

performed according to a given parallel transport ⇑
in the events manifold, where

(
ϕE

α⇓sE
) := ϕE

α⇓ · sE · ϕE
α .

Accordingly, time invariance along the motion is ex-
pressed by the condition

∇vsE = 0 ⇐⇒ sE = (
ϕE

α⇓sE
)
.
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Remark 2 In evaluating time-rates of material and
spatial fields defined on lower dimensional bodies it
is not allowed to split the velocity as sum of time and
spatial components to get the decompositions

LvE sTE = LZsTE + LvS sTE ,

∇vE sE = ∇ZsE + ∇vS sE.

Indeed the partial time derivative LZsTE = ∇ZsE or
the partial space-derivative LvS sTE and ∇vS sE are
performable when the vectors vS or vZ = Z are
transversal to the immersed trajectory. Previous treat-
ments of stress-rates [21] and definitions of accelera-
tion [16, 54] are instead based on this decomposition
and are therefore confined to 3D bodies.

Remark 3 The previous definition of time-rate of ma-
terial tensors is in accord with the proposal, made by
ARGYRIS in [2], of natural (or symplectic) stress com-
ponents. Indeed, the contravariant stress tensor is ex-
pressed in terms of the symplectic components by the
polarization formula

σ T (d∗
i ,d∗

j ) := 1

2

(
σ T

(
d∗

i

)+σ T
(
d∗

j

)−σ T
(
d∗

i −d∗
j

))
,

where σ T (d∗
i ) := σ T (d∗

i ,d∗
i ) and d∗

i := gT di with
i, j = 1, . . . , n, being n the body dimension and di the
sides of a non-degenerate symplex. Taking the time
derivative of the components, evaluated on a flying
symplex along the flow Flv we get

∂λ=0σ T
(
T Flvλ · d∗

i

) = ∂λ=0
(
Flvλ↓σ T

)(
d∗

i

)

= Lvσ T
(
d∗

i

) = σ̇ T
(
d∗

i

)
.

Remark 4 Time-invariance of a material tensor field
is a natural property, depending only on the motion
which is an essential ingredient of the theory. On the
contrary, time-invariance of a spatial tensor field is not
a natural property, being dependent on the choice of a
connection on the events manifold. For instance, time-
invariance of the trajectory velocity is not natural. Ac-
cordingly, the notion of acceleration is also not natural,
being connection dependent.

11 Stretching field

The material projector Π ∈ C1(V ETE ;V T ) from the
spatial bundle onto the material bundle is defined by

the identity

gT (Π · aE,b) = g(a, iE,T ↑b),

∀aE ∈ V ETE ,b ∈ V T .

Then ΠA = iE,T ↑ ∈ C1(V T ;V ETE ) is the space-time
immersion, (gT ,g)-adjoint, with Π · ΠA = IDV T .

Given a mixed tensor field L ∈ C1(V ETE ;V ETE )

and a pair of material vectors a,b ∈ V T , we have that

g
(
L · ΠA · a,ΠA · b

) = gT
(
Π · L · ΠA · a,b

)
,

with Π · L · ΠA ∈ C1(T ; MIX(V T )) mixed mate-
rial tensor field. According to EULER’s formula, the
stretching field in a placement of a body is determined
by the spatial velocity field at the evaluation time, the
material stretching tensor field being defined by [30]

ε(vS ) = 1

2
LvgT = iE,T ↓1

2
(Lvg)

= Π · 1

2
(Lvg) · ΠA = gT · Π · D(vS ) · ΠA,

where D(vS ) ∈ C1(TE; MIX(V E)) is expressed by the
extended EULER’s formula

D(vS ) := sym(∇vS ) + G(vS ) + A(vS )

with G(vS ),A(vS ) ∈ C1(TE; MIX(V E)) defined by

g ◦ G(vS ) := 1

2
∇vS g,

A(vS ) := sym
(
TORS(vS )

)
.

These terms are tensorial in vS and vanish when the
metric-compatible and torsion-free LEVI-CIVITA con-
nection associated with g is adopted [30].

A velocity field is isometric if the corresponding
stretching field vanishes. The same reasoning may be
applied to a virtual motion along a virtual trajectory
δT in a virtual events manifold δE := E(t) × Λ at a
fixed time instant, say t ∈ I , with Λ line of virtual-
time instants. The virtual stretching due to a virtual
velocity field δv ∈ C1(T ;V E) is then given by

ε(δv) = iE,T ↓1

2
(Lδvg) = gT · Π · D(δv) · ΠA.

12 Duality pairing

The duality between a contravariant material tensor
σ ∈ CON(V T ) and a covariant ε ∈ COV(V T ) ma-
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terial tensor is defined as the linear invariant of the
mixed tensor field σ · εA ∈ MIX(V T ), that is

〈σ ,ε〉 := J 1(σ · εA
)
,

with the adjoint εA ∈ CON(V T ) defined by the iden-
tity

ε(a,b) = εA(b,a),

for all a,b ∈ V T . The corresponding mixed tensors
are given by

Σ = σ · gT ∈ MIX(V T ),

E = g−1
T · ε ∈ MIX(V T )

with the gT -adjoint EA ∈ MIX(V T ) defined by the
identity

gT (Ea,b) = gT (EAb,a).

Hence εA = gT · EA and σ = Σ · g−1
T so that

σ · εA = Σ · g−1
T · gT · EA = Σ · EA.

By symmetry and positive definiteness of the bilinear
form

gMIX(Σ,E) = gMIX(E,Σ)

:= J 1(Σ · EA) = J 1(EA · Σ)
,

the duality pairing induces a metric tensor in
MIX(V T ).

13 Equilibrium

We denote by HΩ a linear space of virtual velocity
fields in the placement Ω , endowed with a suitable
HILBERT topology and by H∗

Ω the dual space [38, 43].
According to the original definition, enunciated by JO-
HANN BERNOULLI in a letter on 26 February 1715 to
PIERRE VARIGNON, the equilibrium of a force system
acting on a body, at a given time instant, is character-
ized by the property that there is no duality interaction
(virtual power) between the force system f ∈ H∗

Ω and
any virtual isometric velocity field

〈f, δv〉Ω = 0, ∀δv ∈ HΩ : D(δv) = 0.

Stress fields in the body are introduced by duality, as
LAGRANGE multipliers of the constraint defined by
the linear subspace of virtual isometric velocities.

The Virtual Power Principle (VPP) states that there
exists a material tensor field σ ∈ C1(T ; CON(V T )),
the KIRCHHOFF stress, such that

〈f, δv〉Ω =
∫

Ω

〈
σ ,ε(δv)

〉
m.

The virtual power performed, at time t ∈ I , by the
equilibrated force system f ∈ H∗

Ω interacting with any
virtual velocity field δv ∈ C1(T ;V E), is then equal
to the integral of the virtual power per unit mass
performed by the stress field interacting with the in-
duced virtual stretching field times the mass form
m ∈ C1(T ; VOL(V T )), the integral being extended
over the body placement Ω at that time. The KIRCH-
HOFF mixed stress field is given by

K := σ · gT ∈ C1(T ; MIX(V T )
)
.

Then

〈
σ ,ε(δv)

〉 := J 1(σ · ε(δv)A
)

= gMIX

(
K · g−1

T ,gT · Π · D(δv) · ΠA
)

= gMIX

(
K,Π · D(δv) · ΠA

)
.

Denoting by μ ∈ C1(T ; VOL(V T )) the material vol-
ume form associated with the material metric tensor
gT ∈ C1(T ; COV(V T )) and by ρ ∈ C1(T ; FUN(V T ))

the scalar mass density on the trajectory, so that
m = ρμ, the CAUCHY stress T is given by T := ρK.

Then, the inner products gMIX(K,Π · D(δv) · ΠA)

and gMIX(T,Π · D(δv) · ΠA) provide the internal vir-
tual power per unit mass and unit volume, respectively.

Symmetry of the covariant stretching tensor
ε(δv) ∈ COV(V T ) and gT -symmetry of the mixed
stretching tensor Π · D(δv) · ΠA ∈ MIX(V T ) en-
tail corresponding symmetries of the contravariant
stress σ ∈ CON(V T ) and of the mixed tensors ex-
pressing KIRCHHOFF K ∈ MIX(V T ) and CAUCHY

T ∈ MIX(V T ) stresses, the anti-symmetric part being
inessential in performing virtual power.

The equality in the statement of the VPP is the ex-
tension to functional spaces of the well-known orthog-
onality property concerning the kernel of a linear op-
erator and the image of its dual, in linear algebra. The
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extension requires however topological concepts and
results from Functional Analysis.6

14 Green’s formula

In getting GREEN formula the first item is STOKES

formula applied to a body placement Ω

∫

Ω
d(μΩ · h) =

∮

∂Ω
μΩ · h,

where μΩ ∈ C1(Ω; COV(V T )) is the material volume-
form on the trajectory, h ∈ C1(Ω;V T ) is a material
vector field and d is the exterior derivative on the
placement manifold.

The boundary integral may be rewritten by resort-
ing to the equality

μΩ · h = gT (h,n∂Ω)μΩ · n∂Ω = gT (h,n∂Ω)μ∂Ω ,

where μ∂Ω := μΩ · n∂Ω is the induced volume-form
on the boundary ∂Ω of Ω with n∂Ω ∈ C1(T ;V T )

time-vertical outward normal.
The second item is the differential homotopy for-

mula which, when applied to the material volume-
form μΩ ∈ C1(T ; COV(V T )), writes

LhμΩ = d(μΩ · h) + (dμΩ) · h.

Being dμΩ = 0 by maximality of the material volume-
form, the divergence of a material vector field in a
placement is defined, in terms of LIE derivative or of
exterior derivative, by

(div h)μΩ := LhμΩ = d(μΩ · h).

The output is the general expression of GAUSS diver-
gence theorem
∫

Ω
(div h)μΩ =

∮

∂Ω
gT (h,n∂Ω)μ∂Ω .

The third item is the definition of spatial divergence
of a material tensor field. With reference to a mixed
tensor field T ∈ C1(T ; MIX(V T )), the gT -adjoint
TA ∈ C1(T ; MIX(V T )) is defined by the identity for
all u,w ∈ C1(T ;V T )

gT (TA · w,u) = gT (T · u,w).

6For bodies of maximal dimension, the VPP is a proved theo-
rem [27].

The spatial divergence Div T ∈ C1(T ;V ETE ) is then
defined by a formal LEIBNIZ rule

g(−Div T, δv) := gMIX(T,Π · ∇δv · ΠA)

− div((TA · Π) · δv),

where δv ∈ C1(T ;V ETE ) is a virtual velocity field.
The definition is well-posed because the sum of

the two terms at the l.h.s. is tensorial in the field
δv ∈ C1(T ;V ETE ) as can be proven by a direct appli-
cation of the tensoriality criterion in [27, Lemma 1.2.1
p. 28].

Setting h = TA · Π · δv in GAUSS divergence theo-
rem, it follows that

∫

Ω
div((TA · Π) · δv)μΩ

=
∮

∂Ω
μΩ · (TA · Π · δv)

=
∮

∂Ω
gT (TA · Π · δv,n∂Ω)μ∂Ω

=
∮

∂Ω
gT (T · n∂Ω ,Π · δv)μ∂Ω .

By definition of spatial divergence Div T ∈
C1(T ;V ETE ) and assuming symmetry of T, we get
GREEN’s formula

∫

Ω
gMIX(T,Π · sym(∇δv) · ΠA)μΩ

= −
∫

Ω
g(Div T, δv)μΩ

+
∮

∂Ω
g(ΠA · T · n∂Ω , δv)μ∂Ω .

The virtual power principle then yields

〈f, δv〉Ω =
∫

Ω
gMIX(T,Π · D(δv) · ΠA)μΩ

= −
∫

Ω
g(Div T, δv)μΩ

+
∮

∂Ω
g(ΠA · T · n∂Ω , δv)μ∂Ω

+
∫

Ω
g((GA + AA) · ΠA · T · Π, δv)μΩ .
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Fig. 6 Push and translation of a material vector

15 Homogeneity

Although the notion of homogeneity of a material ten-
sor field is of clear theoretical and technical interest in
CM, a proper definition is not readily available in lit-
erature. According to the geometric point of view, the
comparison of material tensors at simultaneous events
on the trajectory, must be made by push. Motivated by
the fact that homogeneity and invariance under change
of EUCLID observers, in relative isometric motion,
should be related notions, we put the following defi-
nition.

A material field sT ∈ C1(T ; TENS(V T )) is two-point
homogeneous if there exist at least an isometric iso-
morphism between the tangent spaces at two points
in a body placement, such that the values of the ma-
terial field at the two points are related by push-pull
according to this isometry.

If this property holds for each pair of material points
in a body placement, the material field is called homo-
geneous. The temptation of comparing the values of a
material field, at two material points in a body place-
ment, by parallel transport in space, should readily be
abandoned, just by giving a look at Fig. 6.

16 Frame changes

A change of observer is a diffeomorphic transfor-
mation ζ E ∈ C1(E; E) of the events manifold onto
itself, i.e. a transformation which is differentiable
and invertible together with its tangent map
T ζ E ∈ C1(T E;T E).

The induced transformation ζ ∈ C1(T ; Tζ ) is a
time-bundle diffeomorphism between the trajectories
seen by different observers, as depicted in the commu-
tative diagram

E
ζ E

E
ζ−1

E

T
ζ

iE,T

Tζ

ζ−1

iE,Tζ

T
ζ

tT

Tζ

ζ−1
tTζ

Z
IDZ

Z

⇐⇒
{

ζ E ◦ iE,T = iE,Tζ
◦ ζ ,

tTζ
◦ ζ = tT .

A material tensor field sT ∈ C1(T ; TENS(V T )) is
frame invariant if, under the action of a transformation
ζ ∈ C1(T ; Tζ ), it transforms according to the push

sTζ
= ζ↑sT .

The pushed motion is defined by the commutative di-
agram

Tζ

(ζ↑ϕ)α
Tζ

T

ζ
ϕα

T

ζ
⇐⇒ (ζ↑ϕ)α = ζ ◦ϕα ◦ζ−1.

In a change of EUCLID observer the frame transforma-
tion is an isometry ζ ISO

E ∈ C1(E; E) i.e. gE = ζ ISO
E ↑gE.

The trajectory transformation ζ ISO ∈ C1(T ; Tζ ) is then
an isometry too. Indeed from the equality

iE,T ↑ζ ISO↓ = ζ ISO
E ↓iE,Tζ

↑,

it follows that

ζ ISO↑gT = ζ ISO↑(iE,T ↓gE) = iE,Tζ
↓(ζ ISO

E ↑gE)

= iE,Tζ
↓gE = gTζ

.

17 Frame-invariance

A trajectory tensor field sT ∈ C1(T ; TENS(V T )) is
frame-invariant under the action of a trajectory trans-
formation ζ ∈ C1(T ; Tζ ) if

sTζ
= ζ↑sT .
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The trajectory velocity v := ∂α=0ϕα ∈ C1(T ;T T )

is frame-invariant since the transformed velocity
vζ := ∂α=0(ζ↑ϕ)α ∈ C1(Tζ ;T Tζ ) fulfills the relation

vζ := ∂α=0(ζ↑ϕ)α = ∂α=0(ζ ◦ ϕα ◦ ζ−1)

= T ζ ◦ ∂α=0ϕα ◦ ζ−1 = ζ↑v.

Naturality of LIE derivative with respect to push

ζ↑(LvsT ) = Lζ↑v(ζ↑sT ),

and frame-invariance vζ = ζ↑v of the velocity, ensure
that invariance of a material tensor field sT with re-
spect to a trajectory transformation ζ ∈ C1(T ; Tζ ), im-
plies invariance of its LIE derivative

sTζ
= ζ↑sT =⇒ Lvζ sTζ

= ζ↑(LvsT ).

EUCLID frame-invariance of trajectory tensor fields is
invariance under transformations ζ ISO ∈ C1(T ; Tζ ISO

)

that are isometric, i.e. such that

gTζ ISO
= ζ ISO↑gT .

The material metric tensor is EUCLID frame-invariant
by definition. EUCLID frame-invariance of material
tensors is a basic axiom of GCM.

18 Straightening out

A straightening-out map is a diffeomorphism which
transforms the trajectory into a Cartesian product
Ω × Z , with Ω ⊂ Rm a domain. Moreover the motion
is transformed into a time-translation i.e. a degenerate
motion SHIFTα ∈ C1(Ω × Z;Ω × Z) defined by

SHIFTα(x, t) := (x, t + α), x ∈ Ω, t, α ∈ Z.

This procedure, which in the space-time framework
is the notion conceptually equivalent to the choice of
a reference domain Ω , plays a basic role in compu-
tational mechanics because it allows to perform lin-
ear operations, such as integration over a time inter-
val, by virtue of push to a straightened-out trajectory
segment and to get the result at the end time by pull
back of the computational outcome to the actual tra-
jectory.

19 Constitutive laws

Constitutive relations are here designed to model the
mechanical material response detected in laboratory
tests in such a way that the time evolution of the
stress tensor field, fulfilling equilibrium and consti-
tutive properties, is uniquely defined by the knowl-
edge of the evolution of the data (i.e. applied forces,
imposed displacements, thermal variations, etc.). The
constitutive behavior of material models is verified
by carefully designed laboratory experiments, and by
their theoretical interpretation. The mathematical ex-
pression, at each event along the trajectory, involves
the time-rate of the material metric tensor (the stretch-
ing), the stress tensor and the time-rate of the stress
(the stressing) and additional material tensors (inter-
nal variables), simulating micro-structural changes,
and their time-rates.

In accordance with the treatment exposed for the
material metric field, the time-rates of the stress tensor
and of internal tensorial variables must be evaluated
as LIE derivatives along the motion. At difference,
however, no expression in terms of parallel derivatives
is available, in general, because the parallel transport
along the trajectory does not preserve time-verticality,
for lower dimensional bodies. In fact EULER’s stretch-
ing formula finds the reasons of its validity in the fact
that the material metric tensor is the pull-back, to the
material bundle V T , of the spatial metric tensor which
is defined in the whole events manifold [30].

To consider a theoretical framework suitable for in-
vestigating a sufficiently large class of material behav-
iors for engineering applications, a constitutive law is
assumed to be a relation involving a constitutive oper-
ator C, according to the following definition [28].

Definition 1 (Constitutive operator) A constitutive
operator C is a fiber preserving (and possibly multival-
ued) correspondence between material tensor bundles,
whose domain and codomain are WHITNEY7 products
of material tensor bundles.

The property of fiber preservation means that the
constitutive relation is local, in the sense that mate-
rial tensor fields based at an event on the trajectory

7The WHITNEY product of tensor bundles with projection
πM,N ∈ C1(N;M) and πM,H ∈ C1(H;M) over the same base
manifold M, is the product bundle fulfilling the condition N×M

H := {(n,h) ∈ N × H | πM,N(n) = πM,H(h)} [27].
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are related to material tensor fields also based at that
same event on the trajectory. In this respect, we ob-
serve that non-local constitutive relations require to
perform linear operations (such as space-integration)
involving material tensors based at distinct simulta-
neous events on the trajectory. In non-local theories a
transport tool is then required to bring all material ten-
sors to be based at the same point. The result is how-
ever not natural since the choice of a transport tool is
non-uniquely defined, as evident in lower dimensional
continua.

To simplify, but without loss of generality, we will
consider a single material tensor field

sT ∈ C1(T ; TENS(V T )
)
,

in the domain of the constitutive operator. Since all
tensor fields and operators considered in the sequel are
material, the subscript T will be dropped, whenever
unnecessary.

Constitutive frame-invariance (CFI) is expressed
by the following property of the constitutive operator

CTζ ISO
= ζ ISO↑CT .

Explicitly the condition writes

CTζ ISO
(ζ ISO↑sT ) = (ζ ISO↑CT )(ζ ISO↑sT )

= ζ ISO↑(
CT (sT )

)
.

This means that material tensor fields, fulfilling the
constitutive relation, must be still related by the law
after an EUCLID frame-transformation.8

Constitutive time-invariance in a time interval
I ⊂ Z is expressed by the following property of the
constitutive operator

CT = ϕα↑CT , ∀α ∈ I.

Explicitly the condition writes

CT (ϕα↑sT ) = (ϕα↑CT )(ϕα↑sT ) = ϕα↑(
CT (sT )

)
.

This means that time-invariant material tensor fields,
fulfilling the constitutive relation at a time t ∈ Z , are
still related by the law at later times t + α ∈ Z .

8CFI substitutes the notion of Material Frame Indifference
stated in [54] by the equality CT = ζ ISO↑CT in which the
change of constitutive operator due to the change of observer
is not taken into account [31].

Constitutive homogeneity is expressed by the prop-
erty that, at distinct points x,y ∈ Ω in a body place-
ment, the constitutive operators are related by push-
pull according to an isometric isomorphism, i.e.

Cy = LISO
y,x ↑Cx.

Explicitly the condition writes

Cy
(
LISO

y,x ↑sx
) = (

LISO
y,x ↑Cx

)(
LISO

y,x ↑sx
)

= LISO
y,x ↑(

Cx(sx)
)
.

where sT ∈ C1(T ; TENS(V T )) denotes a list of mate-
rial tensor fields.

This means that material tensor fields, that are
(x,y)-homogeneous, will fulfill the constitutive rela-
tion at y ∈ Ω if they fulfill the law x ∈ Ω and vice
versa.

20 Rate-elasticity

A basic model of constitutive behavior is provided by
the rate-elastic law9 which expresses, at each event in
the trajectory, the elastic stretching tensor as a linear
response to a stressing tensor by means of a tangent
operator of elastic compliance H(σ ) which depends
non-linearly on the stress tensor

el = H(σ ) · σ̇ .

The elastic stretching tensor el has the physical dimen-
sion of the reciprocal of a time. It is not a LIE deriva-
tive along the motion, unless a purely rate-elastic be-
havior is assumed, so that el = 1

2 LvgT . The stressing
tensor field is the LIE derivative along the motion of
the stress field

σ̇ := Lvσ := ∂α=0(ϕα↓σ ).

By the results in Sect. 17, frame invariance of the
stress field implies that the stressing tensor field is
frame-invariant too.

If the rate-elastic operator is the fiber-derivative
(i.e. the derivative with respect to the stress at a
fixed event in the trajectory) of a stress-dependent

9An hypo-elastic model was introduced by TRUESDELL in [52]
with a different definition. The new formulation of rate elasticity
was first contributed in [29].
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and tensor-valued potential, dF Φ = H, the constitu-
tive relation is called CAUCHY integrable. If in addi-
tion the latter potential is the fiber-derivative of a stress
dependent and scalar-valued potential, dF E∗ = Φ ,
the model is called GREEN integrable and hence
d2
F E∗ = dF Φ = H. The CAUCHY integrability is

equivalent to the former of the following symmetry
conditions

〈
dF H(σ ) · δσ · δ1σ , δ2σ

〉 = 〈
dF H(σ ) · δσ · δ2σ , δ1σ

〉
,

〈
H(σ ) · δ1σ , δ2σ

〉 = 〈
H(σ ) · δ2σ , δ1σ

〉
,

and both are equivalent to GREEN integrability [29].
Let us now apply the definition given in Sect. 19 to

the new rate-elastic law.

Constitutive frame-invariance of the tangent opera-
tor of elastic compliance means that

HTζ ISO
= ζ ISO↑HT .

The condition assures that, if a stretching tensor is re-
lated to a stress and a stressing tensor, then an isomet-
rically pushed stretching tensor will be related to the
pushed stress and stressing tensors.

The simplest rate-elastic law, widely adopted in
early engineering computations in 3D isotropic elas-
ticity, is expressed, in terms of the KIRCHHOFF mixed
stress tensor K = σ ◦ gT , by

El := HMIX(K) · K̇,

with the elastic compliance tangent operator given by

HMIX(K) := 1

2μ
I − ν

E
I ⊗ I.

Here El = g−1
T ◦ el is the mixed elastic stretching,

and K̇ := σ̇ · gT is the mixed alteration of KIRCH-
HOFF stressing. The operators I and I denote the fiber-
wise linear transformations of the material bundles
MIX(V T ) and V T onto themselves, respectively de-
fined by the property of being the identity in each fiber.

We underline that, unlike σ̇ := Lvσ , the rate K̇
is not the LIE-derivative of the KIRCHHOFF stress
along the motion, since this would involve also the LIE

derivative of the material metric. Indeed

LvK = Lv(σ · gT ) = (Lvσ ) · gT + σ · (LvgT ).

The fulfillment of CAUCHY integrability condition
is assured since the fiber derivative vanishes iden-
tically, dF H(K) = O. The property of GREEN in-
tegrability then follows by gT -symmetry of H(K).
The frame-invariance property is also readily veri-
fied [31].

The GREEN integrability of the rate-elastic law ex-
pressed in terms of KIRCHHOFF stress tensor, and the
property of mass conservation, assure fulfillment of
conservation of elastic energy. This basic notion is
enunciated in terms of paths in the functional space of
stress fields along the motion. This is an important and
innovative procedure emerging from the new theory in
accord with the Geometric Paradigm (GP).

Conservation of elastic energy is expressed by the
condition
∫

TI

〈
σ ,H(σ ) · σ̇ 〉

m = 0,

with TI trajectory segment corresponding to a time
interval I = [t1, t2], for any stress path along the mo-
tion σ ◦ ϕ : I �→ C1(T ; CON(V T )) that is covari-
antly closed i.e. any stress path fulfilling the condi-
tion

σ = ϕt2−t1
↓σ = ϕt2−t1

↓ · σ · ϕt2−t1
.

This condition is equivalent to require that the stress
path along any particle, when pushed to a straightened-
out trajectory, becomes a cycle.

The result concerning conservativeness is of great
interest in computational mechanics, when dealing
with geometrically non-linear problems. It eventually
settles the many debates about the troublesome lack of
conservativeness of the simplest rate-elastic law.

Symmetry of contravariant and covariant mate-
rial tensors, such as the stress σ ∈ C1(T ; CON(V T ))

and the elastic stretching el ∈ C1(T ; COV(V T )), is
clearly preserved under push performed according to
a straightening out map or to a frame transformation.
On the contrary gT -symmetry of mixed material ten-
sors, such as the stress K ∈ C1(T ; MIX(V T )) is not
preserved under non-isometric transformations. It is
therefore advisable to transform symmetric material
tensors to their contravariant or covariant form prior
to push constitutive relations under frame transforma-
tions or finite displacements.
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21 Elasticity, hyper-elasticity and
elasto-visco-plasticity

The beauty and the power of the geometric approach
find a special evidence in the formulation of consti-
tutive equations and in the investigation about their
properties. These features are exemplified hereafter by
the formulation of the most usual laws of material be-
havior in the geometrically non-linear range to show
that their expressions are identical to the ones adopted
in the geometrically linearized theory [42]. Indeed,
the linearization assumptions amount to consider a
straightened-out trajectory and hence LIE derivatives
collapse into usual partial time-derivative.

We recall that a superimposed dot on material ten-
sor fields denotes a LIE derivative along the motion,
i.e. σ̇ := Lvσ := ∂α=0(ϕα↓σ ).

An elastic (hyper-elastic) constitutive model is a
rate-elastic model which is time-invariant and
CAUCHY (GREEN) integrable, with an invertible
CAUCHY potential Φ , so that

el = dF Φ(σ ) · σ̇ , (el = d2
F E∗(σ ) · σ̇ ),

with time-invariance expressed by

Φ = ϕα↑Φ, (E∗ = ϕα↑E∗).

An elasto-visco-plastic model of constitutive behav-
ior, which is of primary applicative interest in NLCM,
is described by the relations

⎧
⎪⎪⎨

⎪⎪⎩

ε(vS ) = el + vp, stretching additivity,

el = d2
F E∗(σ ) · σ̇ , elastic law,

vp ∈ ∂F F (σ ), visco-plastic flow rule,

where E∗ is the scalar stress elastic potential cor-
responding to GREEN integrability, ∂F is the fiber-
subdifferential of the extended real-valued convex
visco-plastic potential F (i.e. the subdifferential at
a fixed event in the trajectory) and vp is the visco-
plastic stretching tensor.
The visco-plastic flow rule may equivalently be ex-
pressed by the fiberwise variational inequality

F (σ ) − F (σ ) ≥ 〈vp,σ − σ 〉,
for any σ ∈ K, with K = dom F the elastic domain.
Neither the elastic stretching el nor the visco-plastic

stretching vp are defined as LIE derivatives of a mate-
rial tensor field along the motion. The superimposed
dot usually adopted in literature is therefore a mis-
leading notation.

An elasto-plastic model of constitutive behavior is
described by the law

⎧
⎪⎪⎨

⎪⎪⎩

ε(vS ) = el + pl, stretching additivity,

el = d2
F E∗(σ ) · σ̇ , elastic law,

pl ∈ ∂F �K (σ ) = NK(σ ), plastic flow rule,

where E∗ is the scalar stress elastic potential cor-
responding to GREEN integrability, ∂F is the fiber-
subdifferential of the convex indicator �K of the elas-
tic domain K at σ ∈ K and NK(σ ) is the outward
normal cone, with pl plastic stretching tensor. The
plastic flow rule may equivalently be expressed by
the fiberwise variational inequality

〈pl,σ − σ 〉 ≤ 0, σ ∈ K, ∀σ ∈ K.

An incremental elasto-plastic model is described by

⎧
⎪⎪⎨

⎪⎪⎩

ε(vS ) = el + pl, stretching additivity,

el = d2
F E∗(σ ) · σ̇ , elastic law,

pl ∈ NT K(σ )(σ̇ ), rate plastic flow rule.

The rate plastic flow rule, which is more stringent than
the plastic flow rule of the previous model, implies the
following fiberwise orthogonality condition, known as
PRAGER’s complementarity rule:

〈pl, σ̇ 〉 = 0, pl ∈ NK(σ ), σ̇ ∈ TK(σ ),

NK(σ )

σ
pl

σ̇

TK(σ )

K

Here NK(σ ), TK(σ ) are the normal and the tangent
cones to the elastic domain K at the stress point
σ ∈ K and NT K(σ )(σ̇ ) is the normal cone to TK(σ )

at the stress-rate point σ̇ ∈ TK(σ ).
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Frame indifference of these constitutive relations
may be assessed under conditions analogous of the one
expressed for the tangent operator of elastic compli-
ance.

Although computational issues will not be dis-
cussed in this treatment, we remark that the design
of computational procedures in the geometric nonlin-
ear range is conveniently performed by a suitable dis-
cretization of the trajectory manifold and by envisag-
ing iterative algorithms for the solution of the equi-
librium problem and of the constitutive relation. To
this end, at each event of the discretized trajectory,
the constitutive relation is pushed to a straightened-
out trajectory. Then, pushed LIE derivatives become
partial time derivatives and linear differential or inte-
gral operations may be carried out. The results of these
linear operations remain confined to this computation
chamber and only fields pertaining to the final time-
instant are physically meaningful, when pulled-back
to the trajectory manifold. This observation entails that
finite elastic and plastic strains cannot have any physi-
cal role in constitutive laws in the nonlinear geometric
range, contrary to widely adopted proposals in litera-
ture, such as the elasto-plasticity model based on the
multiplicative decomposition of the deformation gra-
dient.

It is remarkable that in the new theory no body
manifold B needs to be considered in formulating
constitutive relations. Reference configurations, more
properly named straightened-out trajectories in the
space-time context, are computational tools providing
a location for linear calculus. The ensuing theoretical
procedure is in fact analogous to the one adopted in
computational codes based on FEM (Finite Element
Method).

22 Dynamics

To underline the role of Geometric Naturality, as a
general rule pertaining to field theories, we briefly
describe here a formulation of Continuum Dynamics
(CD) which develops according to that rule [40, 41].

The foundations of CD are laid down in the most
general way by means of a variational principle con-
cerning the trajectory and the relevant evolution opera-
tor. The principle may be put in the following standard
geometric form.

The Action Principle is a variational principle to be
fulfilled by the action integral over the trajectory with
the variations made by displacing the trajectory in
the container manifold. To this end a lifted trajec-
tory is considered to be a submanifold of the state-
space manifold defined as the velocity-time (or the
covelocity-time) manifold and an action one-form on
the state-space is devised by lifting the LAGRANGE

scalar functional from the trajectory in the events
to the lifted trajectory into the state-space mani-
fold.

Under suitable assumptions, the Action Principle
may be localized to provide the EULER-LAGRANGE

differential equation and the ERDMANN-WEIE-
STRASS corner conditions at singular points. No ge-
ometric connection in the state-space manifold en-
ters into the theory until this stage and hence it can
be affirmed that CD may be founded in a natural
way in terms of the motion and of the LAGRANGE

functional, without any additional assumptions. An
equivalent principle can be formulated by imposing
that variations of trajectory leave the energy func-
tional invariant, to get a generalized form of MAU-
PERTUIS Least Action Principle, in which conserva-
tion of energy along the trajectory is not assumed
but recovered as a natural condition, as illustrated
in [39].

The introduction of a linear connection provides
a valuable tool of investigation about the proper-
ties of the trajectory evolution fulfilling the Action
Principle, the choice of a special connection being
a question of convenience. For instance, a curvilin-
ear coordinate system induces an associated path-
independent parallel transport and a corresponding lin-
ear connection which has vanishing torsion and cur-
vature forms. The adoption of a LEVI-CIVITA con-
nection induce a torsion-free and metric connection
with a non-vanishing curvature. In this respect, we
underline that only the torsion of the linear connec-
tion enters in the equations of Dynamics. An im-
portant example is provided by POINCARÉ’s law of
Dynamics which is the outcome of taking the path-
independent parallel transport induced by a mobile
reference system associated with curvilinear coordi-
nates. In this case, the torsion form is equal to the
opposite of the LIE bracket and hence the struc-
ture coefficients (components of the LIE brackets of
pairs of basis vector fields) appear into the equation
of Dynamics [41]. The LEVI-CIVITA connection on
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the trajectory and the LAGRANGE functional given
by the kinetic energy per unit mass, lead to gener-
alized EULER and D’ALEMBERT laws of Dynamics.
The standard formulations are recovered in the Euclid
space endowed with the parallel transport by transla-
tion.

23 Discussion

In NLCM, the evaluation of the strain tensor field in-
volves the determination of the tangent map T ϕα only
to within composition with transformations which are
linear and isometric in each tangent fiber.

Nonetheless, this map, denoted by F = T ϕα in [54]
and named deformation or transplacement gradient,
has been considered as the basic kinematic variable
entering in the elastic law in most treatments of CM.
A correction to eliminate inessential isometric trans-
formations is there performed by a reduction proce-
dure based on the principle of Material Frame Indif-
ference (MFI).

A critical analysis on the issue has recently been
carried out in [31]. It is there put into evidence that
MFI involves an improper equality between tensor
fields observed in different frames. The Geometric
Paradigm (GP) dictates instead that the correct geo-
metric tool for the comparison should be a push ac-
cording to the trajectory transformation. The geomet-
rically proper notion of Constitutive Frame Invariance
(CFI) was just introduced to substitute the untenable
notion of MFI, as illustrated in Sect. 19.

A major shortcoming of the approach followed in
[54] is that it leads to formulate rate constitutive laws
in terms of the time rate Ḟ = ∂α=0T ϕα of the tan-
gent map along the motion. This time-rate is evalu-
ated by performing a translation of a tangent vector
along a particle, a procedure which cannot be extended
to lower dimensional models of continua, see Fig. 6.
Moreover, this evaluation does not comply with the
Geometric Naturality (GN) principle because it in-
volves the choice of the parallel transport by transla-
tion as preferred one.

On the other hand, the natural procedure to be fol-
lowed in evaluating the time rate of the tangent map
should consist in performing a pull-back along the mo-
tion, of the material vector T ϕα · h tangent to the tar-
get placement, to the corresponding time-independent
vector h tangent to the source placement. This proce-
dure will clearly yield a vanishing result.

These considerations lead to the conclusion that the
time derivative Ḟ, requiring an unnatural choice of a
parallel transport and being inapplicable to lower di-
mensional bodies, does not fulfill the basic principles
of Geometric Naturality (GN) and Dimensionality In-
dependence (DI) and hence, contrary to common us-
age, cannot appear in constitutive relations.

It follows that the multiplicative decomposition of
the deformation gradient into the chain of an elastic
and an inelastic homomorphisms, which has gained
a vast popularity after his proposal in [18], is mis-
formulated from the physico-geometrical point of
view. This observation, together with known troubles
concerning the definition and the interpretation of nat-
ural and intermediate configurations [36], should con-
vince that this constitutive modeling must be aban-
doned.

24 Conclusions

The turning point in the development of NLCM
should be the ascertainment of the central role played
by notions and concepts from basic differential geom-
etry, which should be learned and put at the center of
any subsequent deepening of or special progress in the
matter.

The adoption of a natural conceptual procedure, ac-
cording to which principles and notions are introduced
on the sole basis of essential geometric ingredients of
the field theory, translates into simple general rules to
be followed. Sure guidelines are thus provided for the
statement of general principles, for the formulation of
constitutive relations, for the design of experimental
verifications and for the detection of suitable compu-
tational algorithms.

A main issue is that material tensor fields must
be compared by transformation according to push-
pull along diffeomorphic displacement maps. In the
ensuing theory of Geometric Continuum Mechanics
(GCM), a central role is played by the material metric
tensor field and by the theoretical notion of stretching
field.

This field is pointwise evaluated by measuring the
rate of elongation of the edges of a non-degenerate
simplex in a tangent material space, a definition sus-
ceptible of direct experimental measurements, for in-
stance by strain gauges. The geometric theory leads
to:
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new notions and proper definitions of

spatial and material fields
time-rates of material fields
time-invariance of material fields
frame-invariance of material fields

new consistent statements of

constitutive frame-invariance
conservation of elastic energy
rate elasticity
rate elasto-visco-plasticity

critical analysis and rejection of the notions of

material frame-indifference
multiplicative elasto-plastic decomposition
finite elastic stretch
finite visco-plastic stretch

new general formulations of

EULER’s stretching formula
Virtual Power Principle
Action Principle of Continuum Dynamics

making their expressions in terms of any linear con-
nection in the events manifold, available for applica-
tions.

From the computational point of view the geomet-
ric theory provides a firm ground to the formulation
of effective iterative algorithms based on push-pull
transformations between the actual trajectory and a
straightened out trajectory segment playing the role of
computation chamber. Therein linear operations can
be performed and time-integrals of elastic and plastic
stretching can be evaluated in finite step solution algo-
rithms.

The geometric theory provides a consistent frame-
work to deal with problems in Bio-Mechanics involv-
ing large deformations, growth and remodeling, as in
investigations on soft tissues [10, 17]. In these contexts
the new theory is self-proposing as valid replacement
of treatments affected by troublesome physical inter-
pretations related to the assumption of a multiplicative
decomposition of the deformation gradient [1].
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