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SOMMARIO: Si applica la teoria degli operatori potengiali
negli spagi di Hilbert per formulare una definizione rigorosa
di carico conservativo,

Cid consente di dimostrare in modo corretto una ben nota con-
dizione di conservativitd usualmente introdotta con wna argo-
mentagione inesatta.

I risultati generali ottenuti sono applicati al caso particolare
di carico-pressione.

Llanalisi & condotta nel campo delle grandi deformazioni ot-
tenendo una condigione generale, necessaria e sufficiente, affinché
#l carico-pressione sia conservativo.

SUMMARY: The theory of potential operators in Hilbert
Spaces is applied to a rigorous definition of conservative loading.

This approach allows correct proof of a well-known condition
of conservativeness, wusually introduced with a misleading argu-
ment. The special case of pressure loading is then examined as
an application of the previous results. The analysis is performed
in the large (finite deformations) getting a general condition for
the conservativeness of pressare loading, not previously found to
the anthor’s knowledge.

Introduction.

Conservative systems play a specially important role
among mechanical systems in general and the energetic
approach provides a simple and fascinating interpretation
of their behaviour. However, in spite of its basic interest,
the notion of conservativeness has been often introduced
in an intuitive form in the context of continuum mechanics.

This circumstance has often caused the related topics
to be treated in a restrictive and sometimes misleading way.
A rigorous approach to the subject is presented in this
paper.

It is founded upon the mathematical theory of potential
operators that is the natural extension to the continuum
of the well-known theory of differential forms of ordinary
calculus. The basic definitions and results of the theory
of potential operators are reported in the special case of
real Hilbert spaces that suffices for the usual purposes
and allows us to simplify the exposition. The usual definition
of potential operator is slightly generalized to include the
important case of non-homogeneous boundary conditions.
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The general theory is then applied to the definition of
conservative loading.

A necessary and sufficient condition is found to be the
selfadjointness of the Fréchet differential of the load ope-
rator. It is worth noting that this condition has often been
referred to in the literature on the linear theory of elastic
stability but its proof has been attributed, with a misleading
argument, to a recourse to the well-known Betti reciprocity
theorem of classical elasticity [2].

The special case of pressure loading is then examined
in full generality getting, as an application of the previous
results, a necessary and sufficient condition for its conser-
vativeness.

It is the first example, to the author’s knowledge, of
such an analysis performed “in the large” (finite deforma-
tions). For the sake of completeness an appendix provides
some results of surface deformation theory that are used
in the paper.

1. Potential Operators.

In this section we shall briefly present the fundamental
results of potential operators theory in real Hilbert spaces.

We would point out that an analogous theory can be
developed in (more general) Banach spaces, but restriction
to the special case of real Hilbert spaces suffices for our
purposes and greatly simplifies the presentation.

It may be noticed moreover that from a rigorous point
of view some of our assumptions could here and there be
relaxed to some extent but again this would result in a
formally more involved treatment of the subject. However,
this paper is not addressed to mathematicians, who may
find elsewhere [1] a more general and thoroughly deve-
loped theory, but is intended to carry over into the engi-
neering field some useful concepts and results of the ma-
thematical theory of potential operators.

a) Basic Definitions.

Let H be a real Hilbert space. The scalar product of two
elements will be denoted by:

u, we H

{u, w)

Let A be an operator defined on a subset D& H.
We shall assume that D is a coset of a subspace Hp of
H, i e.:

VuwebD = u—we Hp.
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In the sequel we shall denote by:

A'(u)h ue D he Hp
the Fréchet differential () of .4 at the point u with incre-
ment h.

We give the following:

Definition.

An operator A is said to be potential on D if there exists
a Frechet differentiable functional ¢ on D such that:

¢'(w)h = {A(u), b)

We shall briefly write A = grad ¢.

A will be called the gradient of ¢ and ¢ the potential
of A on D.

This definition is 2 slight generalization of the usual one
which requires the linearity of D.

Allowance for the nonlinearity of D is basic in most
applications to include the case of non homogeneous
boundary conditions.

YueD, he Hp.

b) Basic Theorems.

If the domain D of the operator A4 is simply connected
the following theorem gives a necessary and sufficient
condition for the operator A to be potential on D.

Theorem 1.1,

Let A be a continuous operator defined on an simply
connected domain D< H. In order that .4 be a potential
operator on D it is necessary and sufficient that the curvi-
linear integral

§ CA), dud 1.2"

be equal to zero around any closed curve which lies in D.
Evidently this last condition is equivalent to saying that
the curvilipear integral:

f (Aw), du (1.2%

is path independent, i. e. for any curve L lying in D, it
does not depend on the shape of the curve but only on
its endpoints.

If each of the conditions (1.2) is satisfied the potential
¢ of A is uniquely determined, to within an additive con-
stant, and is given by:

B(u) = $(uo) «Lf; {A(ug + #H{u— o)), (u—ug)p 4. (1.3)

(1) We recall that an operator A is said to be Fréchet
differentiable at u & D if there exists a linear operator A'(u)
such that

Al + h)— A{u) = A'(u)h + Qu, h)
with
| 2, n|
im —————
wi-o Bl

there || « || is the norm induced by the scalar product.

=0 Vh EHD
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If the domain D is linear, taking uo = 0, (1.3) may be
simplified to:

Hw) = 4O + [ CArw), wy . (1.4)

If operator A is supposed to be Fréchet differentiable
on D a convenient test for the potentialness of A4 is given
by the following:

Theorem 1.2.

Let A be a Fréchet differentiable operator on the simply
conpected domain D& H. For A to be potential on D
it is necessary and sufficient that:

(A'(why, hed ={A'(whs, b (1.5)
ue D h), 3 h: Hp

i. e. that its Fréchet derivative be a symmetric operator.

It is worth noting that a linear operator is potential
if and only if it is selfadjoint, since it coincides with its
Fréchet derivative. If L is a linear selfadjoint operator on
Dc H its potential will then be given by:

(ﬁ(u)-.:: (;S(uo) + f: {L{up + #{(u— uo), (u—up)) df =
= (o) + *;— {L{a—up), (u—ug)) + {Luo, u—uo)

which, if D is linear, may be simplified to:

$) = $(0) + 5~ (Lu, w>. (16)

It is interesting to show how the condition (1.5) reduces
to a familiar form when the space is Euclidean (finite
dimensional).

In fact let {eg} i=1, 2, ..., # be an orthonormal basis
in the Euclidean vector space E,, and set(?):

hy = oy )
Ei=1,2,..,n
he = aspey
then condition (1.5) may be written as:

(A'(u)aueg 3 ag;,-t:;.-) == <A'(u)€(2k€;- > aue,-> . (1.7)

By the arbitrariness of the components o1 and car
condition (1.7) reduces to:

(A'(u)er, e = (A'(uex, €. (1.8)

Now setting .A(u) = .4;(u)e; and u= u;e; and noting that:

0A
Al(u)e = —a:-f}l—) €;
we have:
: A | 0A)
(A'(a)er, ery =< —a‘;;_ej, k) == —5’7—

(2) We adopt the usual summation convention with respect
to repeated indices (Einstein convention).
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so that condition (1.5) becomes:

9Aw) _ 9Axw) ik=1.2 n
Ouy Oy ’ e

that is the usual condition of zero rotation of the vector
field A(u).

2. Conservative loading.

We shall now apply the previous theory to give an
appropriate definition of conservative loading and to
formulate the necessary and sufficient condition for a
load to be conservative. To this end let us first introduce
some background notions.

Let us consider a body B embedded in the Euclidean
point space and denote by B, the domain occupied by
B in the configuration y and by 9B, its boundary.

Let us choose a reference configuration k and denote
by x and X respectively the position vectors of the same
particle of B in the configurations y and k (Fig. 1).

configuration k

configuration %

Fig. 1.

The displacement vector from k is then defined by:

u=x—X,

If we denote by #, the tractions in the configuration ¥
we define the equivalent tractions t; per unit area in the
reference configuration by:

fapx txt{.f == fapk tids

where JP is the boundary of an arbitrary part P of B.

Now let {9Bkp, 0Bru} be a partition of the boundary
of B. Mixed boundary conditions of place and traction
are defined if we assign the traction tx on dBi, and the
displacement u on B i. e. (Fig. 2):

ty = p,,(X, t)
u=nX, /)

X Eaka
Xe 8Bku .

In the sequel we shall be interested in the special case
in which the tractions on 9B;p depend directly only on
the displacements (positional loading):

i = pi[u(X, #)]
u=y(X, 5

X €9Bip .11
X €dBp. (217
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Y OBy,
/ fk assigned

aﬂku

u  assigned

Fig. 2.

Now if we denote by:
vew

the scalar product between two vectors of the 3-dimensional
Euclidean vector space, we may introduce an Hilbert
space on the set La(@B,p) of square integrable vector
functions on JB,p defined by:

v = »(X) X €dBswp
with the scalar product:
v, wy= f v.ewds. 2.2)
OBkp

Let us now introduce the load operator p defined on
the set D of admissible displacement functions, i. e. sa-
tisfying (2.1")

Pi = p(v).

Since it is trivially verified that the condition of linearity
of the set Hp is satisfied, we may give the following:

Definition 2.1.

A load distribution p(u) is said to be conservative if the
work done by the load distribution vanishes around any
closed curve in the space of admissible configurations (de-
fined by the displacement function u). In mathematical
terms this condition is written as:

$ <pu), duy =0 2.3)

where the curvilinear integral can be taken around any
closed curve in the domain of p, i. e. in the set D of ad-
missible displacement functions.

Condition (2.3) may alternatively expressed stating that
the operator p(u) is potential on D.

The functional P (defined to within an additive constant)
such that:

p=grad P
will be called the load potential.
If we assume p(u) to be Fréchet differentiable, a necessary

and sufficient condition for the existence of the load po-
tential will be:

[ p'(whi - hads= J 2'(Whs - hyds (2.4
8Bkp oBkp

ueD hi, hoe Hp.
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If the symmetry condition (2.4) is satisfied the potential
will be:

P(u) = P(uo) + f: ar | oy P00 T 1@ — 10)) « (— o)
(2.5)

which in the case of linearity of D may be simplified to:
1
P)=PO) + [ dt |  plw)-uds. (2.6)
0 oBkp

It is apparent here that the equivalence between the sym-
metry condition (2.4) and the defining condition (2.3)
is a general mathematical result.

And yet surprisingly in the literature on the theory
of linear elastic stability this equivalence has been attri-
buted to the same atgument that proves the well-known
Betti reciprocity theorem of classical elasticity [2]. This
seems to be a major shortcoming of the lack of a rigorous
approach to the theory of conservative systems.

3. A special case: Pressure loading.

As an example of application of the previous theory
we shall now derive the necessary and sufficient condition
for the conservativeness of a special, interesting case of
loading, i. e. pressure loading.

Let us first state:

Definition 3.1.

A surface load distribution is said to be a pressure loading
if its intensity is constant during the deformation of the
body while its direction remains parallel to the unit normal
to the boundary surface (assumed to be regular).

Let us consider a closed curve C on 9By, and denote
its interior by dByyc (Fig.3). We shall consider the pressure
loading defined, in the generic configuration y by:

X € 9By pe

b = anp—" anpc

Px(x) = pny(x)
Px(x) =0

(3.1)

where n,(x) is the unit normal to @B,y at x and p is a con-
stant that measures the intensity of the load distribution.

Now by a formula of surface deformation theory (for-
mula (4.7) of the appendix):

j oo, = fm Or det F nuds (3.2)

where the tensor F is the deformation gradient from k
to ¥ and ny the unit normal to the surface @B: in the
reference configuration k.

By (3.2) the load distribution in the reference confi-
guration k equivalent to (3.1) on 9Bap. will be:

px = p(u) = pdpdet F n,. .
Let us now evaluate the Fréchet differential of p(u)
along a direction u* € Hp . If we choose an orthonormal

basis {e:} in the Euclidean space by formula (4.5) of the
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appendix we have:

33) &

* *
p'(0)u = plerjueper Firtty,anp)e:

where:

Ng == Np€p .

Fig. 3.

The symmetry condition (2.4) may now be written as:

1 " " i
f eigxlpar Fretty gtitipds = f ets:Epar F uetty, gitinpds
2Bkp 3Bkp

u’, uweHp

and hence:

f tijibpgrF kr(”;ﬂ:l),q npds=20. 3.4
OBkp

Now since epgrFirq = epgr(Orr + #1,r),e = 0 condition
(3.4) becomes:

i o#u
f e.-jkepq,(Pmu;u;),q ip d'.f = O
aBkp
and in vector notation:
f rot [FT(u’ X u")] - npds=0
8Bkp

where u’ X u” denotes the vector product of u’ by u”.
Hence by Stokes’ formula:

35 FT(u' x u") < dl=0 (3.5)
C

where 7t is the unit vector tangent to the closed curve C.

The simplest case in which (3.5) is satisfied is when
on the closed curve C the displacement u is assigned and
hence u’' =u"=0.

Condition (3.5) is quite general and to the author’s
knowledge has not been found before. Two special cases
of (3.5) have been given by Pearson [3] and Bolotin [2],
the former for infinitesimal deformations and the latter
for pressure loading on shells.

If we consider the case of hydrostatic pressure, i. e.
pressure loading on the whole surface dBx with constant
intensity, the load potential assumes a particularly simple
form.

(3) The comma (,) as usual, denotes the derivative operator.
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1
Pu) = jo &t fm 0 det Ffu)ny + u ds =
= [Lar [ plor dec F(ru))ra - nuds =
[1] OBk
1
=p jo dt jm ¥ - {(9r det F)Tu} dv =
1
—» J’o dt [ [, TR{@rdet Feu))r Vu}do+

+ f (V- Ordet F(a)} - uds. (3.6) (4)

Now the last integral in (3.6) is equal to zero since:

1

V - Opdet F=— eispe” (FLFY), pe' =0

by the symmetry of the second derivatives of the displa-
cement components. Finally noting that:

d
Vu = 7 F(tu)

we have:
TR { [Or det F(zu)]7T —w-d F(tu)} = —d det F(su)
dt dt

and hence:

1 d
P(u)=p jo dt jm‘ - det F(ru) dv =

=5 ka {det F(u)— det F(0)} dv = p{Vy— Vi}

where 1/, and /i denote respectively the volume occupied
in the current and in the reference configurations.

Appendix.

Surface Deformation.

Let us consider 2 body B in the Euclidean space and
choose an arbitrary regular surface Sk in the reference
configuration k. Let the parametric equations of S be:

X =X(p -

In an arbitrary configuration ) of B the deformed
surface will be represented by:

x = x(nt, n?).

(%) The V denotes the symbolic derivative operator defined
with reference to the basis e¥ by:

‘—"-':,kek'

where , is the covariant derivative operator.

Hence V a denotes the gradient of vector a as a function
of X and ¥ +a and V - T the divergence of the vector a
and tensor T respectively. The symbol TR {A} denotes the
trace of the tensor A and AT the transpose of A,
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Now if we set:

oX Ox

X, = X g = s
.. " o,

a,pBf=12

by the chain rule of differential calculus we have:

x. = FX, (4.1)

where F is the deformation gradient from k to .
The area of the surface Si will be given by:

[, de= [[ 1aee k. - X)) drpas =
= [ x Xoljdprae “2)

where a dot (- ) is the symbol for the scalar product in
the Euclidean vector space, ||v{| is the norm of the vector
v and the vector product has been denoted by X. Moreover
we have explicitly:

XX

det(X. - Xp) =
X, . X,

XX,
X, - X,

i. e. the Gram determinant of the vectors X; and Xs.
and the equality in (4.2) follows from the well-known
formula:

det (Xa . Xﬂ) ES ”Xl » X2”2.
Now the unit normal to S is given by

X; x X,

T XX *3

ng =

If we set V=X; X Xo, v=2x; X X2 and choose
an arbitrary basis in the Euclidean space we have:

1

Vy=—enart™ XiX} (4.4)

where ¢, is the alternating tensor on the surface [4].
From (4.4) it follows that:

r
XXy =
Now we have:

o= eyt ooy = 5 ey FrgFu XX, =

1 .
= et UL FRY, (4.5)
and
1 "
F-ipl/! = —2— eiij.prqufre“ﬂXzX; £

= —-%—— epore? X: X, det F = X det F
and in vector notation:
FT(XL X Xz) == (X] X Xg) det F
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whence, by (4.2) and (4.3): 9 det F = (det F)F-T, (4.6)
Lx n,ds = .fs,, (det F)F-Tnzds fsx nyds = f5k (O det F)n,ds (4.7)

or, noting that (5):

(%) A proof of (4.6) may be found in Ref. [5]. Received 29 December 1971,
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