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The algorithmic, or consistent, tangent stiffness was introduced to improve the asymptotic convergence
rate of the iterative correction algorithm for the evolutive analysis of elastoplastic structures. The original
approach is based on a formulation of the elastoplastic law in terms of a plastic multiplier with an anal-
ysis which, in general, requires an operator inversion. A geometric description of the method, based on
hypersurface theory, is proposed here to provide a clear picture of the algorithmic properties. An estimate
of the tangent stiffness associated with finite step elastoplastic and elastoviscoplastic constitutive models
is given. It is based on the properties of the projection operator on the elastic domain and avoids operator
inversions retaining the beneficial properties of the original one.
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1. Introduction

The evolution of solids and structures characterized by an elas-
tic behavior and by an inelastic flow provides a highly nonlinear
structural problem due to the constitutive law. The solution algo-
rithm is based on an initial linear elastic guess followed by an iter-
ative correction devoted to the annihilation of the residual of the
structural response by evaluating, in an suitable fashion, the tan-
gent behavior of the nonlinear constitutive response (see e.g. Ortiz
and Popov, 1985; Simo and Taylor, 1985, 1986; Simo et al., 1985;
Ortiz and Simo, 1986; Auricchio et al., 1992; Hofstetter et al.,
1993; Ristinmaa and Tryding, 1993; Matzenmiller and Taylor,
1994; Simo, 1998; Simo and Hughes, 1998; Han and Reddy,
1999; Armero and Pérez-Foguet, 2002a,b). The process of reduc-
tion, below a given tolerance, of an appropriate norm of the resid-
ual could be performed either by assuming a purely elastic
behavior or by evaluating the tangent stiffness according to the
rate inelastic problem. The former assumption leads to an uncon-
ditionally stable iterative algorithm but it could be affected by an
unacceptably low convergence rate. The latter choice has a better
performance in terms of convergence but still does not enjoy the
asymptotic convergence rate of Newton-like iterative schemes
(Luenberger, 1984). To overcome these shortcomings a different
approach was proposed by Simo and Taylor (1985). The algorith-
mic tangent stiffness there introduced takes into account the fact
that the stress field violates the yield condition in correspondence
ll rights reserved.
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of the algorithmic trials. The problem is here analyzed from a geo-
metric point of view by endowing the stress space with the inner
product provided by the complementary elastic strain energy. Ex-
act and approximate expressions of the algorithmic tangent stiff-
ness in associative elastoplasticity are discussed in terms of the
geometric properties of the convex elastic domains described by
piecewise smooth yield functions. The analysis is extended to
elastoviscoplastic models in which the threshold stress is evalu-
ated according to the projection on the convex elastic domain.
2. Constitutive models and algorithms

Let us consider a continuous body whose material behavior is
described by an elastoplastic or elastoviscoplastic model. The
ambient euclidean space is E and V is the associated affine space
of translations. In a geometrically linearized theory, strains and
strain rates at a point of the body belong to the linear space D of
twice covariant symmetric tensors on V. Stresses are in the dual
linear space S of twice contravariant symmetric tensors. The rele-
vant virtual work is provided by the duality pairing hr; ei between
r 2 S and e 2 D. The elastic response of the material is described
by linear symmetric and positive definite operators C 2 BLðS; DÞ
and E ¼ C�1 2 BLðD; SÞ, respectively the elastic compliance and
the elastic stiffness. The symbol BLðÞ stands for bounded linear
map. The linear elastic compliance induces in S a metric tensor
gCðr1;r2Þ :¼ hCr1;r2i and the associated norm krkC :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gCðr;rÞ

p
.

A piecewise regular convex yield function u : S! R defines with
its zero-level set K :¼ fr 2 SjuðrÞ 6 0g the convex elastic domain
in the stress space S. The outward normal cone at r 2K is the
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convex set NKðrÞ :¼ fe 2 D : he; s� ri 6 0; 8s 2Kg. At points
internal to K, the normal cone NKðrÞ degenerates to the null
set. The reader is referenced to Rockafellar (1975) for an exhaustive
exposition about Convex Analysis.

2.1. Constitutive laws

In the realm of geometrically linearized theories of elastovisco-
plastic material behavior, the total strain is additively decomposed
as the sum of an elastic and an anelastic part. The former is related
to the stress by the linear elastic compliance tensor, while the lat-
ter may be represented as an element of the subdifferential of a
convex potential at the stress point (Romano et al., 1993):

_e 2 Crþ @uðrÞ:

The perfectly plastic behavior is modeled by setting u ¼ tK the
convex indicator of the convex elastic domain K:

tKðrÞ ¼
0 if r 2K;

þ1 if r R K;

�

so that @uðrÞ ¼NKðrÞ. To model the viscoplastic behavior, the
convex potential is defined as the composition of a Young function
m : R! R, which takes account of the relaxation time s, with a
convex interdiction function g : S! R [ þ1. Perzyna’s model is
got setting mðxÞ ¼ 0 for x < 0 and mðxÞ ¼ 1

2s x2 for x P 0 and the
interdiction function given by the difference between a yield func-
tion and the plastic threshold (Perzyna, 1963). By assuming that the
function g at a point r 2 S is the distance in complementary elastic
energy of r from the elastic domain:

gðrÞ :¼ kr� PKðrÞkC;

the constitutive model proposed by Duvaut and Lions (1972) is
obtained.

Remark 2.1. Hardening behaviors may be taken into account by
considering a model of generalized standard elastoplastic or
elastoviscoplastic material. According to the original proposal in
Halphen and Nguyen (1975), the elastic domain K is a convex set
in the product space of stresses and thermodynamical affinities.
The flow rule is expressed by the normality, of the plastic flow and
of the rate of change of internal variables, to the elastic domain
(see e.g. Halphen and Nguyen, 1975; Nguyen, 1977; Martin, 1975,
1981; Eve et al., 1990; Martin and Nappi, 1990; Romano et al.,
1992). A treatment of generalized standard materials in the
framework of Convex Analysis may be found in Romano et al.
(1993).
Fig. 1. Geometric scheme of the discrete elastoplastic constitutive law.
2.2. Elastoplastic algorithmic constitutive law

We consider a discrete time integration scheme, denoting by
e0; p0 2 D the total and the plastic strain and by r0 2 S the stress
tensor provided by the approximate solution of the structural
problem at the end of a time-step. In the subsequent time-step,
the iterative algorithm for the solution of the nonlinear elastoplas-
tic or elastoviscoplastic problem provides a sequence of total
strains, starting with a purely elastic initial guess of the structural
response. We denote by e 2 D the total strain predicted at the cur-
rent iteration and by the pair p 2 D; r 2 S the corresponding
approximate solution of the constitutive law in terms of plastic
strain and stress tensor. Let us set: De ¼ e� e0; Dp ¼ p� p0;

Dr ¼ r� r0 and rTR :¼ ro þ EDe the trial stress. By integrating
the flow rule according to a fully implicit scheme, the elastoplastic
algorithmic constitutive law writes as:

EDe ¼ Drþ EDp;
Dp 2NKðrÞ;

�
() rTR 2 rþNC

KðrÞ;
where NC
KðrÞ :¼ fr 2 S : gCðr; s� rÞ 6 0; 8s 2Kg is the normal

cone according to the metric gC. We set SC :¼ fS;gCg. To obtain the
expression of the elastoplastic algorithmic tangent stiffness it is
expedient to rewrite the constitutive law in terms of the orthogonal
projector PK in SC onto the elastic domain K (Fig. 1):
r ¼ PKðrTRÞ; Dp ¼ CðrTR � PKðrTRÞÞ.

By taking the derivative with respect to the evolution parame-
ter, the formula r ¼ PKðrTRÞ yields the incremental law
_r ¼ ðdPKðrTRÞÞE _e. The linear operator

KEPðrTRÞ :¼ ðdPKðrTRÞÞE

is the elastoplastic algorithmic tangent stiffness. The evaluation of
the elastoplastic algorithmic tangent stiffness contributed in Simo
and Taylor (1985) is based on the formulation of the discrete elas-
toplastic constitutive law: r0 þ EDe ¼ rþ EDp, with Dp ¼ kruðrÞ,
in terms of a plastic multiplier k. The algebraic reasoning is summa-
rized hereafter. Rewriting the discrete elastoplastic constitutive law
as: Cr� Cr0 þ kruðrÞ ¼ De and taking the derivative with respect
to the evolution parameter, the incremental law:
C _rþ _kruðrÞ þ kr2uðrÞ _r ¼ _e, is got, where r2uðrÞ is the Hessian
of the yield function u. Under plastic loading, the stress point r is
bound to move along the boundary of the elastic domain, so that:
gð _r;ruðrÞÞ ¼ 0 and this gives the expression of the plastic
multiplier rate: _k ¼ gðHðrÞ _e;ruðrÞÞ

gðHðrÞruðrÞ;ruðrÞÞ, with HðrÞ :¼ ½Cþ kr2uðrÞ��1.

Let us set bðrTRÞ :¼ gðHðPKðrTRÞÞruðPKðrTRÞÞ;ruðPKðrTRÞÞÞ and
NHðrTRÞ :¼ HðPKðrTRÞÞruðPKðrTRÞÞ. Substituting the expression of
_k in the incremental law above, and observing that r ¼ PKðrTRÞ,
with rTR the trial stress point, the elastoplastic algorithmic tangent
stiffness, defined by _r ¼ KEPðrTRÞ _e, is expressed as

KEPðrTRÞ :¼ HðPKðrTRÞÞ �
NHðrTRÞ � NHðrTRÞ

bðrTRÞ
:

2.3. Elastoviscoplastic algorithmic constitutive law

By a time integration according to a fully implicit scheme, the
flow rule proposed by Duvaut and Lions (1972) writes:

r0 þ EDe ¼ rþ EDp;
EDp ¼ Dt

s ðr� PKðrÞÞ;

(
() rTR ¼ rþ Dt

s
ðr� PKðrÞÞ;

where rTR :¼ ro þ EDe is the trial stress and s is the relaxation time
of the material. To get the elastoviscoplastic algorithmic tangent
stiffness we note that PKðrÞ ¼ PKðrTRÞ, see Fig. 2. Then, by taking
the derivative with respect to the evolution parameter, the formula

r ¼ 1þ Dt
s

� ��1
rTR þ Dt

s PKðrTRÞ
� �

yields the incremental law
_r ¼ KEVPðrTRÞ _�. The linear operator KEVPðrTRÞ :¼ ð1þ Dt

s Þ
�1ðIþ

Dt
s dPKðrTRÞÞE is the elastoviscoplastic algorithmic tangent stiffness.

Remark 2.2. By integrating according to a fully implicit scheme
the flow rule introduced in Perzyna (1963), the elastoviscoplastic
algorithmic constitutive law writes:

r0 þ EDe ¼ rþ EDp;
Dp ¼ Dt

s hgðrÞirgðrÞ;

(
() rTR ¼ rþ Dt

s
hgðrÞiErgðrÞ;



Fig. 2. Geometric scheme of the Duvaut and Lions discrete elastoviscoplastic
constitutive law.
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where hgðrÞi :¼ 1
2 ðgðrÞ þ jgðrÞjÞ is Macaulay’s bracket. Outside the

elastic range the function g is positive so that Perzyna’s algorithmic
constitutive law becomes rTR ¼ rþ Dt

s gðrÞErgðrÞ. Taking the
derivative with respect to the evolution parameter, the incremental
law is then given by:

E _e ¼ _rþ Dt
s
ðrgðrÞ � rgðrÞÞ _rþ Dt

s
gðrÞEr2gðrÞ _r:

For sufficiently small values of the ratio Dt
s , the linear operator

Iþ Dt
s
ðrgðrÞ � rgðrÞÞ þ Dt

s
gðrÞEr2gðrÞ

� ��1

E;

is Perzyna’s algorithmic tangent stiffness at the stress point solution
of the nonlinear equation wðrÞ :¼ rþ Dt

s gðrÞErgðrÞ ¼ rTR. The geo-
metric approach proposed in this paper may be applied if the solu-
tion of the nonlinear equation wðrÞ ¼ rTR is expressible in terms of
the projection in SC of the trial stress rTR onto the elastic domain.
3. A geometric formula

As shown above, the evaluation of the algorithmic tangent stiff-
ness, in elastoplasticity: KEPðrTRÞ :¼ ðdPKðrTRÞÞE and in Duvaut

and Lions elastoviscoplasticity: KEVPðrTRÞ :¼ 1þ Dt
s

� ��1ðIþ
Dt
s dPKðrTRÞÞE, requires the knowledge of the derivative of the non-
linear projector dPKðrTRÞ in complementary elastic energy norm,
on the elastic domain K. To evaluate the expression of dPKðrTRÞ
we consider a special foliation of the space SC induced by the
boundary @K of the convex elastic domain K. Each folium of the
foliation is a hypersurface parallel to @K, obtained by shifting its
points outward in the normal direction of a fixed amount. In
Fig. 3, @Kr is the folium passing through rTR. Such a foliation is
said to be generated by the level sets of the distance function
r 2 C2ðSC;RÞ from @K, with the property that (see e.g. Petersen,
1998): krCrðsÞkC ¼ 1 for any s 2 SC. The unit normal in SC to a fo-
lium is the gradient, in complementary elastic energy, of the dis-
tance function: nðsÞ ¼ rCrðsÞ. The derivative of the projector PK

is conveniently computed by considering only tangent directions
Fig. 3. Parallel hypersurface and projectors.
to the relevant folium since the derivative vanishes along the nor-
mal direction. To this end we denote by rðsÞ :¼ ks� PKðsÞkC, the
distance in complementary elastic energy between a stress point
s 2 SC and its projection on K, and by @Kr the folium passing
through s. Hence we have that s ¼ PKðsÞ þ rðsÞnðsÞ; s 2 @Kr ,
where n(s) is the outward unit normal in SC to the folium @Kr .
Denoting by T@Kr ðsÞ the tangent hyperplane to the folium @Kr at
the point s 2 @Kr , taking the derivative along tangents vectors to
the folium and observing that rðsÞ is a constant function on @Kr ,
we get h ¼ dPKðsÞhþ rðsÞSðsÞh, for any h 2 T@Kr ðsÞ, where S(s) is
the shape operator of the folium passing through s 2 SC, defined
as the gC-symmetric Hessian S :¼ rCn ¼ r2

Cr of the distance func-
tion in SC. From the equality gCðSn;hÞ ¼ gCðSh;nÞ ¼
gCðrCn � h;nÞ ¼ 1

2 dhgCðn;nÞ ¼ 0, for any h 2 SC, it follows that
SðsÞnðsÞ ¼ 0. Let us denote by PðsÞ the linear orthogonal projector
in SC on T@Kr ðsÞ, so that PðsÞh ¼ ðI� nðsÞ�gC

nðsÞÞh ¼
h� gCðh;nðsÞÞnðsÞ ¼ h, for any h 2 SC, with �gC

the tensor product
in SC. Then, given that dPKðsÞnðsÞ ¼ 0 and SðsÞnðsÞ ¼ 0, the rela-
tion h ¼ dPKðsÞhþ rðsÞSðsÞh, for any h 2 T@Kr ðsÞ, may be rewritten
as:

dPKðsÞ ¼ PðsÞ � rðsÞSðsÞ:

The application of this formula requires the knowledge of the
implicit analytical expression of the folium @Kr in terms of the
yield function u : S! R which describes the elastic domain. A
simple and effective approximation may be got by replacing the
hypersurface @Kr with the uðrTRÞ-level set of the yield function
as depicted in Fig. 4. This procedure leads to the exact evaluation
of the derivative of the nonlinear projector when the level sets of
the yield function are homothetic hypersurfaces, as in Von Mises
criterion.

3.1. Approximate algorithmic tangent stiffness

Let us recall that, if dhuðrTRÞ is the directional derivative at
rTR 2 SC along the vector h 2 SC, the gradient rCuðrTRÞ 2 SC at
rTR 2 SC is defined by gCðrCuðrTRÞ;hÞ ¼ dhuðrTRÞ, for any h 2 SC.
The shape operator SuðrTRÞ of the uðrTRÞ-level set of the yield func-
tion is given by: SuðrTRÞ ¼ rCnuðrTRÞ, where nuðrTRÞ :¼ rCuðrTRÞ

krCuðrTRÞkC

is the unit normal in SC. Denoting by
PuðrTRÞ :¼ I� nuðrTRÞ�gC

nuðrTRÞ the linear orthogonal projector
in SC on the tangent hyperplane to the level set of u at rTR 2 SC,
the directional derivative of nuðrTRÞ along a tangent direction
PuðrTRÞh is given by:

SuðrTRÞh¼rCnuðrTRÞ �PuðrTRÞh

¼ r2
CuðrTRÞ �PuðrTRÞh
krCuðrTRÞkC

�gðrCuðrTRÞ;r2
CuðrTRÞ �PuðrTRÞhÞ

krCuðrTRÞk3
C

rCuðrTRÞ
 !

¼ 1
krCuðrTRÞkC

ðI�nuðrTRÞ�gC
nuðrTRÞÞr2

CuðrTRÞ �PuðrTRÞh

¼ 1
krCuðrTRÞkC

PuðrTRÞr2
CuðrTRÞPuðrTRÞh;

where r2
CuðrTRÞ is the Hessian in SC of u:

gCðr2
CuðrTRÞh1;h2Þ :¼ dh2 gCðrCuðrTRÞ;h1Þ, for any h1; h2 2 SC.

The approximate algorithmic tangent stiffness in elastoplasticity
Fig. 4. Approximation of the parallel hypersurface.
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and in Duvaut and Lions elastoviscoplasticity are respectively given
by:

KEP
u ðrTRÞ ¼ ðPuðrTRÞ � rðrTRÞSuðrTRÞÞE;

KEVP
u ðrTRÞ ¼ 1þ Dt

s

� ��1

Iþ Dt
s
ðPuðrTRÞ � rðrTRÞSuðrTRÞÞ

� �
E:

Their symmetry is a consequence of the symmetry of PuE and
SuE. Indeed, due to the symmetry of E and to the gC-symmetry
of Pu and Su, we may write that:

hPuEe1; e2i ¼ hECPuEe1; e2i ¼ hCPuEe1;Ee2i ¼ hCPuEe2;Ee1i
¼ hPuEe2; e1i;

so that the linear operator PuE is symmetric. Analogously, the sym-
metry of SuE is proven.

4. Conclusions

A simple geometrical approach has been proposed to evaluate
the elastoplastic algorithmic tangent stiffness in the evolutive
analysis of structural problems based on the elastic prediction/
plastic correction method. The analysis extends to the elastovisco-
plastic model in which the threshold stress is evaluated according
to the projection on the convex elastic domain. Indeed a crucial
role is played by the evaluation of the derivative of the nonlinear
projector on the elastic domain: dPKðrTRÞ ¼ PðrTRÞ � rðrTRÞ
SðrTRÞ. This formula naturally leads to the following observations.
At flat points of the yield surface the shape operator vanishes so
that dPKðrTRÞ ¼ PðrTRÞ. The elastoplastic algorithmic tangent stiff-
ness is then equal to the continuous tangent stiffness: KEPðrTRÞ ¼
ðPðrTRÞ � rðrTRÞSðrTRÞÞE ¼ PðrTRÞE ¼ KEP

RATEðrTRÞ. At non-flat points
the convexity of the elastic domain implies that the elastoplastic
algorithmic tangent stiffness is smaller than the continuous one
(the shape operator is positive definite) leading to improved con-
vergence rates. This considerations provide a direct and simple
motivation of why and when a better convergence is got by adopt-
ing the elastoplastic algorithmic tangent stiffness instead of the
rate tangent stiffness. An effective estimate is got by substituting
the uðrTRÞ-level set of the yield function in place of the folium
@Kr , thus leading to an expression which can be computationally
convenient. For yield functions with homothetically expanding le-
vel sets (for instance Von Mises criterion) the new formula gives
the exact algorithmic tangent stiffness. Numerical evidence by
implementations in a computer code will be provided in a forth-
coming paper.
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