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Abstract

The theory of material inhomogeneities, according to Noll’s approach, is revisited in detail and its interpretations in the
recent literature on material anelastic behaviors, growth and phase transition phenomena are critically discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The simulation of material inhomogeneities, growth phenomena and phase-transition or defect propaga-
tion in continuous bodies are presently an issue of increasing interest in the literature on mechanics and ther-
modynamics. Most contributions are based on mere rephrasing, in simplified form, of the theory of material
inhomogeneities developed by Walter Noll (see Truesdell and Noll, 1965; Noll, 1968) and, with a more deep
geometrical treatment, by Wang (1968). This theory was almost completely neglected until about 20 years later
when it was referred to by Epstein and Maugin (1990). The point of view exposed in Epstein and Maugin
(1990, 1996) and Maugin and Epstein (1998), is strictly related to the Kondo–Kröner–Lee decomposition
in finite plasticity, according to which the differential of the change of configuration at a point may be decom-
posed in a plastic and a subsequent elastic part. These papers were intended to contribute an extension of
Eshelby’s results concerning the continuum theory of lattice defects and the evaluation of the force acting
on defects in a nonlinear elastic medium (see Eshelby, 1951, 1956, 1975). The theory of inhomogeneities devel-
oped by Noll and Wang consists in fact in a comprehensive study of the differential geometric aspects of the
anelastic–elastic chain decomposition formerly envisaged by Kondo (1955) and Kröner (1960) and later
adopted in the context of finite plasticity by Lee (1969).

A major difficulty in detecting these analogies is the comparison between different notations and formal
expositions. In this respect we must notice that the term material inhomogeneities has been inadequately
adopted to denote anelastic transformations, while its usual meaning refers to a nonuniform constitutive
law. In recent treatments anelastic phenomena have been simulated by linear transformations (between tan-
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gent spaces) dubbed with picturesque names depending on the authors’ taste and the special physical motiva-
tion. In fact the uniform reference map (Noll, 1968; Epstein and Maugin, 1996; Maugin and Epstein, 1998;
Maugin, 2002), the plastic transformation (Lee, 1969), the transplant map (Epstein, 2002), and the relaxed

stance baptized in (Di Carlo and Quiligotti, 2002), are just nicknames for what engineers would simply refer
to as anelastic transformations, or their inverse. We shall not try to give up with the tradition and will adopt
the denomination transplant map which has a flavour of surgical operation towards a well improved beauty.

2. The transplant map

We summarize hereafter the essentials of Noll’s theory of inhomogeneities, a nice exercise in differential
geometry, by adopting a coordinate-free exposition which, in our opinion, simplifies the original formalism.
In a differential geometric description, the ambient space fS; gg is a differentiable manifold endowed with a
Riemannian metric and a path-independent parallel transport. Classically the ambient space is the Euclidean
space and the parallel transport is the translation. The body is identified with an embedded submanifold
M � S, dubbed the reference placement, having the same dimension as the ambient space. Then its tangent
bundle TM is the collection of the linear tangent spaces TmS whose elements are the vectors based at
m 2M and its cotangent bundle T�M, is the collection of the dual spaces T�mS whose elements are the co-vec-
tors (linear forms) based at m 2M. A map u 2 C1ðM; SÞ is called a C1-morphism of M into S. A C1-diffeo-

morphism is an invertible C1-morphism such that u�1 2 C1ðuðMÞ; MÞ. A configuration of the body in the
ambient space fS; gg is a diffeomorphism u 2 C1ðM; SÞ of the reference body manifold onto a space subman-
ifold uðMÞ � S, dubbed the placement of the body in the ambient space. The differential of the configuration
map is a smooth field of invertible tensors du 2 CðM; BLðTM; TuðMÞSÞÞ where TuðMÞS is the restriction to
uðMÞ of the tangent bundle TS. A transplant is a smooth field P 2 C1ðM; BLðTM; TMÞÞ of invertible tensors
PðmÞ 2 BLðTmM; TmMÞ. We recall that a tensor field lives at points which means that the scalar values taken
by a tensor field, over the argument vector fields, at a point depend only on the values of the vector fields at
that point (Spivak, 1979). The inverse transplant P�1 2 C1ðM; BLðTM; TMÞÞ is the field of inverse tensors
P�1ðmÞ 2 BLðTmM; TmMÞ.

2.1. Transplant induced connection

A transplant induces in the material manifold M a path-independent parallel transport defined by
Spðx; yÞ :¼ P�1ðxÞSðx; yÞPðyÞ; x; y 2M where S is the path-independent parallel transport in the space man-
ifold (the translation in the Euclidean space). The transplant P(y) pushes forward a referential material line-
element (a tangent vector) vðyÞ 2 TyM to the corresponding transplanted material line-element, which is then
translated to the base point x 2M by S(x,y). The inverse transplant P�1(x) pulls back this transplanted mate-
rial line-element at x 2M to the referential material line element Spðx; yÞvðyÞ 2 TxM which is the final result of
the parallel transport. This parallel transport induces in M a connection $ which can be computed as follows
(Marsden and Hughes, 1988). Let c 2 C1ðR; MÞ be a material curve thru the material point m = c(t) with tan-
gent t ¼ _cðtÞ ¼ dsjs¼tcðsÞ 2 TmM. The parallel transport Sp

t;sðcÞ 2 BLðTcðsÞM; TcðtÞMÞ, along the material curve
c 2 C1ðR; MÞ, from c(s) to c(t), is defined by
Sp
t;sðcÞ :¼ P�1ðcðtÞÞSðcðtÞ; cðsÞÞPðcðsÞÞ:
The covariant derivative measures the rate of variation of the parallel transported material line element as the
material point starts moving along a material direction and is then evaluated according to the formula:
rtvðmÞ ¼ dsjs¼tS
p
t;sðcÞvðcðsÞÞ ¼ P�1ðcðtÞÞdsjs¼tSðcðtÞ; cðsÞÞðPðcðsÞÞvðcðsÞÞÞ ¼ P�1ðmÞd tðPðmÞvðmÞÞ

¼ P�1ðmÞd tðPðmÞÞvðmÞ þ d tvðmÞ:

Here d denotes the covariant derivative according to the standard Riemannian connection in the space man-
ifold (i.e., the directional derivative if the material manifold is the Euclidean space). The covariant derivative
according to the material affine connection induced by the transplant map is then written as
rvðmÞ ¼ P�1ðmÞdðPðmÞvðmÞÞ () Prtv ¼ d tðPvÞ:
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A comparison of notations can be made with the treatment in (Noll, 1968), where P�1 is denoted by K and
dubbed the uniformity map, and with the component expression provided in (Epstein, 2002) where P is our
P�1 = K. In our opinion, the choice made in this paper is to be preferred. Indeed the connection defined
by our P is defined in the reference manifold and is related to the metric induced by the transplant in the ref-
erence manifold (see Section 2.2). The covariant derivative at a point depends only on the tangent vector to the
curve c at that point and is then well-defined even if parallel transports of a vector along different curves, join-
ing the base point to another point, provide different final vectors.

Remarkably, if the parallel transport is path-independent, the connection enjoys special properties,
described below. As is well-known, two tensor fields can be associated with an affine connection $, the Cartan
torsion and the Riemann-Christoffel curvature, respectively defined by:
torsða; bÞ :¼ rab�rba� ½a; b�;
curvða; b; cÞ :¼ rarbc�rbrac�r½a;b�c;
where a; b; c 2 TM and ½a; b� ¼Lab ¼ �½b; a� is the Lie bracket of the vector fields a; b 2 TM defined by,
[a,b] f :¼ (dadb � dbda) f, with f 2 C2ðM;RÞ scalar field (see Choquet-Bruhat, 1970; Abraham et al., 1988;
Romano, 2001). These tensor fields provide a measure of the lack of symmetry of the second covariant deriv-
ative of differentiable scalar and vector fields, being
ðr2
ba �r2

abÞf ¼ torsða; bÞf ;
ðr2

ab �r2
baÞc ¼ curvða; b; cÞ � rtorsða;bÞc:
The tensoriality of the curvature field implies that it vanishes identically if the parallel transport associated
with the connection is path-independent. Indeed, to compute the curvature at any point, by tensoriality we
may extend the vectors at that point to arbitrary vector fields on which the covariant derivatives may be com-
puted and the result is independent of the chosen extension. If the extension is performed by means of a path-
independent parallel transport, all the covariant derivatives vanish and the result follows. The same argument
shows that the torsion may be computed as the opposite of the Lie bracket of the parallel-transported vector
fields. The transplant-induced parallelism is path-independent, so that the associated curvature vanishes, i.e.,
CURV = 0.

Remark 1. According to Noll (1968), a body is locally homogeneous if the transplant map
P 2 C1ðM; BLðTM; TMÞÞ can be integrated to a transplant morphism gP 2 C1ðM; MÞ with differential
dgP 2 CðM; BLðTM; TMÞÞ equal to the transplant map, i.e., P = dgP. The transplanted body is dubbed
homogeneous if the transplant map is a C1-diffeomorphism. A necessary and sufficient condition for local
homogeneity is the vanishing of the torsion, i.e., TORS = 0. Indeed any pair of vectors a, b may be extended, by
translation, to a pair of vector fields in TM, still denoted by a, b so that [a,b] = 0. Hence, by the tensoriality of
the torsion, we have that
Ptorsða; bÞ ¼ daðPbÞ � dbðPaÞ ¼ ðdaPÞb� ðdbPÞa ¼ 0;
which is the integrability condition in a linear space. The above definitions, although rising interesting ques-
tions from a mathematical point of view, appear inadequate in a mechanical context since the customary
meaning of the term homogeneity has nothing to do with topological properties of a material body.
2.2. Transplant induced metric

A Riemannian metric may be defined in the transplanted body by setting:
gMða; bÞ :¼ gðPa;PbÞ; 8a; b 2 TM:
In the Riemannian manifold fM; gMg we may consider the associated Levi-Civita connection, denoted by rM,
uniquely defined by requiring the fulfilment of the following two conditions which mimic standard properties
of the Euclidean space (Petersen, 1998):
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ðiÞ tors
Mða; bÞ ¼ rM

a b�rM
b a� ½a; b� ¼ 0; 8a; b 2 TM;

ðiiÞ rMgM ¼ 0:
Condition (i) requires that the torsion of the connection vanishes, i.e., that the second covariant derivative of
any differentiable scalar field be symmetric. Condition (ii) requires that the covariant derivative of the metric
vanishes. The Riemannian manifold fM; gMg is flat if the corresponding Riemann-Christoffel curvature tensor
field vanishes, that is if:
curv
Mða; b; cÞ :¼ rM2

abc�rM2
bac ¼ rM

a rM
b c�rM

b rM
a c�rM

½a;b�c ¼ 0; 8a; b; c 2 TM:
The vanishing of the curvature curv
M ensures that there exists a (local) transplant configuration map

uM 2 C1ðfM; gMg; fS; ggÞ which is a (local) Riemannian isometry between the transplanted body fM; gMg
and a placement fuMðMÞ � S; gg of the body in the Euclidean ambient space. This amounts to require that
the transplant induced metric be equal to the pull-back of the space metric tensor according to the (local) con-
figuration map, defined by
ðu�MgÞða; bÞ :¼ gðduMa; duMbÞ ¼ gMða; bÞ; 8a; b 2 TM;
with duM 2 C1ðM; BLðTM; TSÞÞ differential of uM. If a transplant configuration map exists, it is unique to
within the left-composition with an isometric transformation in the ambient space fS; gg and the transplant
metric field gM is said to be (locally) kinematically compatible with the Euclidean ambient space metric g. In-
deed, if uM 2 C1ðM; SÞ and vM 2 C1ðM; SÞ are two transplant configuration maps, we have that
u�Mg ¼ v�Mg ¼ gM;
and hence uM � v�1
M 2 C1ðS; SÞ and vM � u�1

M 2 C1ðS; SÞ are isometric transformations in the ambient space
fS; gg. As proven in (Romano, 2001; Romano et al., 2006c), their differentials are constant fields of linear
isometries.

Theorem 2. Let M � S be a connected open set and u 2 C2ðM; SÞ be a diffeomorphic transformation such that

the associated GREEN strain tensor field 1
2 ðu�g� gÞ is constant on M. Then the differential

du 2 C1ðM; BLðTM; TSÞÞ is constant on M. In particular, if the transformation u 2 C2ðM; SÞ is isometric

(i.e., u*g = g) then the differential du is a constant linear isometry Q 2 BLðTM; TSÞ so that
uðxÞ � uðyÞ ¼ Qðx� yÞ; 8x; y 2M:
Proof. Let h1; h2; h 2 TM be arbitrary constant fields. By assumption:
ohgðoh1
uðxÞ; dh2

uðxÞÞ ¼ gðd2
hh1

uðxÞ; dh2
uðxÞÞ þ gðd2

hh2
uðxÞ; dh1

uðxÞÞ ¼ 0:
By exchanging h1 with h and h2 with h we get two more relations, so that
ðiÞ gðd2
hh1

uðxÞ; dh2
uðxÞÞ þ gðdh1

uðxÞ; d2
hh2

uðxÞÞ ¼ 0;

ðiiÞ gðd2
h1huðxÞ; dh2

uðxÞÞ þ gðdhuðxÞ; d2
h1h2

uðxÞÞ ¼ 0;

ðiiiÞ gðd2
h2h1

uðxÞ; dhuðxÞÞ þ gðdh1
uðxÞ; d2

h2huðxÞÞ ¼ 0:
Since the second directional derivative is symmetric, it follows that
gðd2
h1h2

uðxÞ; dhuðxÞÞ ¼ 0:
Hence by the nonsingularity of du(x) we have that
d2
h1h2

uðxÞ ¼ 0() d2uðxÞ ¼ 0 8x 2M;
and by the connectedness of M we infer that du is a constant field. h

To investigate about the relation between the two connections $ and rM, let us compute the Riemannian
covariant derivative by the Koszul formula:
2gMðrM
a b; cÞ ¼ daðgMðb; cÞÞ þ dbðgMðc; aÞÞ � dcðgMða; bÞÞ þ gMð½a; b�; cÞ � gMð½b; c�; aÞ þ gMð½c; a�; bÞ:
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If $ is any affine connection which preserves the metric gM, i.e., such that rgM ¼ 0, we have that
daðgMðb; cÞÞ ¼ gMðrab; cÞ þ gMðrac; bÞ:

Then, recalling that, by definition:
torsða; bÞ :¼ rab�rba� ½a; b�;

a direct substitution into Koszul formula reveals that:
2gMðrM
a b; cÞ ¼ 2gMðrab; cÞ þ gMðtorsðc; aÞ; bÞ þ gMðtorsðc; bÞ; aÞ þ gMðtorsðb; aÞ; cÞ:
This result, which is equivalent to the Formula 34.11 in Truesdell and Noll (1965), yields the following
implication:
tors ¼ 0) r ¼ rM;
and provides the proof of a well known result in Riemannian geometry: the uniqueness of the Levi-Civita con-
nection (which is torsionless and preserves the metric gM). It is easy to see that the connection defined by the
transplant map preserves the metric gM since (Truesdell and Noll, 1965, Formula 34.10)
gMðrab; cÞ þ gMðrac; bÞ ¼ gðPrab;PcÞ þ gðPrac;PbÞ ¼ gðdaðPbÞ;PcÞ þ gðdaðPcÞ;PbÞ ¼ dagðPb;PcÞ
¼ dagMðb; cÞ:
This property can also be inferred by checking that the parallel transport induced by the transplant preserves
the metric gM:
gMðSpðx; yÞa; Spðx; yÞbÞ ¼ gMðP�1ðxÞSðx; yÞPðyÞa;P�1ðxÞSðx; yÞPðyÞbÞ ¼ gðSðx; yÞPðyÞa; Sðx; yÞPðyÞbÞ
¼ gðPðyÞa;PðyÞbÞ ¼ gMða; bÞ:
From the properties tors
M ¼ 0 and CURV = 0 and the previous results, we get the following chain of

implications:
tors ¼ 0) r ¼ rM )
tors ¼ tors

M ¼ 0;

curv
M ¼ curv ¼ 0:

�

Since the torsion TORS is considered to be a measure of the dislocation density induced by the transplant (Nye,
1953), we may infer, with Davini (2001), that the vanishing of the dislocation density implies the local com-
patibility of the transplant metric. On the other hand the compatibility of the transplant metric does not imply
the vanishing of the dislocation density since the isometric (rotational) part of the transplant map provides a
nonvanishing torsion, unless the transplant is a constant field of rotations. To see this, we observe that, if the
torsion vanishes, the transplant map P 2 C1ðM; BLðTM; TMÞÞ will admit a potential gP 2 C1ðM; MÞ and the
compatibility of the transplant-induced metric implies by Theorem 2 that the transplant map is a constant iso-
metric field.

3. Conclusions

The comprehensive presentation of Noll’s theory of inhomogeneities developed in the paper suggests some
remarks about the way it has been referred to in the recent literature concerning anelastic material behavior,
phase transition and growth phenomena in continuum mechanics. As a first remark, the interpretation of the
torsion of the connection, defined by the transplant-induced parallel transport, as a measure of the density of
dislocations, is questionable since the transplant map is intended to describe anelastic transformations of any
kind, such as thermal effects, material growth or phase transition phenomena. Moreover the knowledge of the
torsion is not sufficient to recover the field of transplant maps itself which remains an undectable kinematic
descriptor of the material behavior. Indeed, in the framework of continuum mechanics, no experimental test
can be designed to accomplish this task. A second remark should be addressed to the very foundation of
the anelastic behavior of materials based on the assignment of linear transformations of tangent spaces
of the material manifold. Indeed all modern contributions, strongly influenced by Truesdell and Noll’s
impressive treatise on nonlinear field theories (Truesdell and Noll, 1965), follow the wake of the so-called
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Kondo–Kröner–Lee or Noll–Wang decomposition of the deformation gradient which envisages an unnatural
ordering of events in modeling plastic–elastic transformations. This geometrical picture of material behavior
appears, at first sight, elegant and fascinating on the mathematical side. However, the underlying model is
based on a chain decomposition which assumes an ordering of material responses that is physically unsound.
Moreover this model requires the introduction of an intermediate local state, commonly dubbed, with
misleading terminology, a configuration (intermediate, fictitious, conceptual, and so on). This is the source
of serious troubles, both conceptual and operational, as witnessed by the many, vain, attempts to get rid of
its undesirable collateral effects. But worse things are to come. Strange and unidentified mechanical objects
are flying into the theory: the plastic spin trouble has provoked may headaches to scholars and several inef-
fective remedies have been suggested. We underline that the denomination of the uniformity (or transplant)
map as elastic inhomogeneity has hidden its real significance of anelastic transformation (see Epstein and
Maugin, 1996; Maugin and Epstein, 1998). Anelastic phenomena in materials are best modeled by considering
the reference placement of the body as a Riemannian manifold endowed with two metric tensor fields. The
former simulates the changes in length of the material fibers of each tangent space due to the configuration
map describing the change of placement of the body in space. The latter takes account of the change of length
due to anelastic phenomena. According to this point of view, the metric approach to material behavior,
recently developed in (Romano et al., 2006a,b), provides a physically sound foundation for the theoretical
description of anelastic phenomena in continuum mechanics.
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