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constitutive law, evaluated by convolution between the bending field and an averaging
kernel. Conflicting restrictions on the bending field are thus eliminated and existence and
uniqueness of the solution are assured under any data. Equivalence between integral and
differential constitutive relations is proven to hold for nonlocal laws with a special ker-
nel, under constitutive boundary conditions stemming naturally from the integral relation.
When compared with the local limit, a stiffer elastic response is evaluated by the stress-
driven nonlocal model, due to normalisation of the kernel. The theory provides an effective
methodology for investigating small scale effects in nanobeams, by well-posed problems.
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1. Introduction

Early ideas about nonlocal models were contributed in Kroner (1967), Krumhansl, (1968) and Kunin (1968). In literature,
the predominant and still basic reference for nonlocal elastic models is Eringen (1983). The strain-driven nonlocal elastic
law there proposed is described by the integral convolution’

a(x)=L¢A(x—§)~(E~se,)(§)dﬂ§, (1)

and was originally conceived in investigating screw dislocations and RAYLEIGH surface waves. In these nonlocal elasticity
problems with unbounded domains, the integral convolution was replaced with an equivalent differential equation under
boundary conditions of vanishing at infinity.

* Corresponding author.
E-mail addresses: romano@unina.it (G. Romano), rabarret@unina.it (R. Barretta).
1 Here E is the stiffness of local elasticity theory and ¢, is an averaging kernel, with the physical dimension of the inverse of a volume, depending on
a nonlocal parameter ). The elastic strain &, is the input and the stress o is the output.
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This differential formulation was later adopted to analyse simple beam models with standard boundary constraints of
structural mechanics (Aydogdu, 2009; Peddieson, Buchanan, & McNitt, 2003; Reddy, 2007; 2010; Reddy & El-Borgi, 2014;
Reddy, El-Borgi, & Romanoff, 2014; Reddy & Pang, 2008).

The analysis of statics, dynamics and buckling of elastic nanobeams performed by this approach, faced however serious
difficulties and unexpected outcomes even in simplest cases. The situation was actively debated, with recent attempts of
overcoming paradoxical results (Barretta, Feo, Luciano, & Marotti de Sciarra, 2016; Fernandez-Saez, Zaera, Loya, & Reddy,
2016; Tuna & Kirca, 2016; Wang & Liew, 2007; Xu, Deng, Zhang, & Xu, 2016).

In order to get well-posed problems, adjustments were proposed in Pisano and Fuschi (2003), Challamel and Wang
(2008), Benvenuti and Simone (2013) and Khodabakhshi and Reddy (2015) by following the idea of a local-nonlocal mixture
early contributed in Eringen (1972, 1987)

Further models, based on gradient and couple stress formulations, were also adopted in order to analyse size-dependent
behaviour of beam-like components in NEMS technologies (Akgoz and Civalek, 2015; Simsek, 2016; Simsek and Reddy, 2013;
Lam, Yang, Chong, Wanga, and Tonga, 2003; Sedighi, 2014; Sedighi, Keivani, and Abadyan, 2015; Tsiatas, 2009; Yang, Chong,
Lam, & Tong, 2002).

Collections of results on this topic can be found in recent review articles and books (Eltaher, Khater, & Emam, 2016;
Gopalakrishnan & Narendar, 2013; Rafiee & Moghadam, 2014; Wang, Wang, & Kitamura, 2016; Wang & Arash, 2014) and
references cited therein.

Strain and stress gradient models and their relationships with ERINGEN nonlocal law were discussed in Aifantis (2003,
2009, 2011) and further investigated in Polizzotto (2014, 2015, 2016).

In applying the nonlocal strain-driven integral elastic constitutive law to linearized plane and straight beam models ac-
cording to BERNOULLI-EULER theory, the bending interaction field? was assumed to be the output of an integral convolution
over the beam length, between an averaging kernel ¢, and the local response to the elastic curvature field x,:

b
M(x) = / G —y) - (K- xe) ) dy. )

where K =C-1 =1[; is the standard local elastic bending stiffness with Iz second moment of the field E of EULER elastic
moduli on the beam cross section, in the bending direction.

The many warnings indicating that something was not going in the right way did however not focus on the basic con-
tradiction existing between the strain-driven constitutive model and equilibrium requirements.

It was in Romano, Barretta, Diaco, and Marotti de Sciarra (2017) that the difficulties met in solving even simple beam
problems with a nonlocal elasticity governed by the strain-driven integral law (Eq. (2)), were clearly detected as due to
impossibility of reconciling the constitutive expression of the bending interaction field with the conditions imposed by
equilibrium.

The recent revision of elasticity theory contributed in Romano and Barretta (2013) and Romano, Barretta, and Diaco
(20144, 2014b) has played a decisive role in suggesting a natural way for escaping this concurrence of conflicting rules.

The starting point, in the new model there proposed, is the notion of geometric stretching as LIE derivative Ly, (g) of the
covariant metric tensor field g along a space-time motion ¢, with velocity vy = 9y ¢, (Romano et al., 2014a).

Constitutive laws generate incremental responses of the material which depend on the value of a set of state variables
(e.g. stress and temperature) and of their increments (LIE derivatives) along the motion.

Kinematic compatibility requires that all incremental responses sum up to the geometric stretching.

In geometrically linearized treatments LIE derivatives are replaced with time-derivatives. Essential to the definition of an
elastic model is the existence, of a convex GREEN’s stress-potential & such that?

e:=dd(o), (3)
a property graphically expressed by:

—0 dd o —— (4)

\/

The input field o is the natural stress state, a contravariant tensor field performing on the dual covariant geometric
stretching field, corresponding to any virtual motion, a virtual power per unit mass. According to the original idea attributed
to Piola (1833) by Truesdell and Toupin (1960), the natural stress state o is defined, in modern geometrical terms, as
LAGRANGE multiplier of the rigidity constraint expressed by vanishing of the geometric stretching.

The elastic state e of the material is the output of the elastic law, characterised by the nonlinear elastic response operator
do.

The stress-state increment ¢ is the corresponding Lie-derivative of the natural stress field:

& = Ly, (0). (5)

2 We adopt here the term bending interaction field or simply bending field instead of the usual term field of bending moments.
3 The symbol d denotes the fiber derivative, according to the time-fibration of the trajectory manifold, that is the derivative performed at a material
point while keeping the time fixed (Spivak, 1970).
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Taking the LIE time-derivative of Eq. (3), the property of time-invariance of the elastic response d® yields the following
constitutive scheme (Romano, Barretta, & Diaco, 2014b):

—>o C(o) o~ (6)

where the natural stress-state increment ¢ is the input and the elastic-state increment & := Ly, (e) is the output. By EULER-
ScHWARZ theorem, the incremental response is expressed by the stress-dependent linear, symmetric and positive definite
tangent compliance operator

C(o) = d*® (o). (7)
The formulation in Eq. (6) is the converse of the classical HOOKE’s law:
vt tensio sic vis

where the elastic stiffness operator E(6) = C'(0), acting on the input elastic-state increment é, yields the stress-state
increment ¢ as output:

é T~ &

— o E(o) o« (8)

The formulation in Eq. (6) is consistent with the requirement that in an explicit law the input variable should be an
otherwise defined notion while the output can well be defined by the constitutive law.

By appealing to the principle of conservation of mass it can then be shown (Romano et al., 2014b) that the elastic model
fulfils the basic property that the work of elastic deformation done along any stress-closed path vanishes, as expressed by
the implication

At
o=@, l0 :>f dt/ (0,)m=0. 9)
0 0:(R)

Here | denotes the pull-back operator and (,) is the duality pairing between contravariant and covariant tensor fields. In
geometrically linearized treatments the pull-back reduces to a time-translation and hence the l.h.s of Eq. (9) can be simply
expressed by the equality og =0 ;.

In this new formulation of elasticity theory, the convex stress-potential & assumes the role of primal potential while
the complementary elastic strain-potential is introduced by EULER-LEGENDRE transform.*

To better illustrate the new model, let us sketch its application to the formulation of the thermoelastic constitutive
model.

There, the incremental elastic state €, induced by stress and temperature increments, is defined as output of a bilinear
constitutive operator (o, 0), nonlinearly dependent on stress and temperature states and acting linearly on stress and
temperature increments (o ,6) as input.

The incremental law is depicted in diagram (10), where n denotes the entropy field and 7 the entropy increment:

o /\ é
p——y ) C(0,0) |

By integrability, the constitutive operator can be expressed as second derivative of GiBBs potential & :

C(0,0) =d*®(a.0). (11)

Analogous models are adopted for other material behaviours.

Along this line of thought, the newly proposed stress-driven nonlocal elastic law is formulated in the context of a geo-
metrically linearized theory at a placement £, under the assumption of a compliance operator C independent of the stress
state. The law is described by the integral convolution®

Aex) = [ g (x-8)- (€ Ao)(§) 2, (12)

where Ae and Ao are finite increments of elastic and stress states, possibly from a natural configuration where both are
assumed to vanish.

It is to be underlined that the new integral convolution law in Eq. (12) is by no means the inverse of ERINGEN’s law
(Eq. (1)).

(10)

4 This is to be compared with the terminology of complementary elastic potential commonly adopted in infinitesimal elasticity for the stress potential.

5 Here C=E! is the compliance of the local elasticity theory. The symbol dQE emphasises that integration is performed with respect to the variable
£ € @. In the nonlinear theory, the elastic strain is the increment of referential elastic states between two body placements. In the linearized theory the
elastic strain is expressed simply by the increment &, := Ae.
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By linearity of the convolution operator, the basic properties of the local elastic model translate into analogous proper-
ties of the nonlocal elastic model, provided that the nonlocal stress-potential is defined as convolution of the local stress
potential with the averaging kernel and all properties are expressed in terms of fields over & rather than in terms of their
local values.

According to the stress-driven nonlocal model of elasticity, in applications to geometrically linearized BERNOULLI-EULER
nanobeams, the key point consists in adopting a nonlocal elastic relation in which the bending interaction field is the input
variable while the elastic curvature field is defined as output of an integral convolution law between the bending interaction
field and an averaging kernel.

The new approach will be investigated in detail along the following lines.

By imposing linear kinematic boundary constraints, the variational condition of equilibrium defines an affine subspace of
equilibrated bending fields.

In beam’s theory, and hence in beams assemblies, this affine subspace is finite dimensional and can be described by
detecting a particular equilibrated bending field and a finite basis of self-equilibrated ones.

In the geometrically linearized theory, once the elastic curvature has been expressed by means of the integral nonlocal
constitutive law, kinematic compatibility is imposed by means of variational conditions expressing orthogonality, in the
mean square sense, to a basis of self-equilibrated bending fields.

The resulting system of linear equations is well-posed and provides the unique compatible elastic curvature field apt to
ensure existence of a displacement field conforming to the kinematic boundary constraints. Evaluation of the displacement
field is readily performed by integrating the curvature twice.

The widely discussed issue of equivalence between integral and differential formulations of nonlocal constitutive laws
and the explanation of paradoxical outcomes of nonlocal analyses of simple beams, based on the strain-driven model, are
then addressed.

It is shown that, assuming a special kernel, equivalence between integral and differential forms of the nonlocal consti-
tutive law holds under the imposition of constitutive boundary conditions deduced from the integral law and needed to
evaluate integration constants able to ensure fulfilment of the integral law. This differential problem provides an alternative
tool for evaluating the nonlocal elastic curvature field.

Ill-posedness of the elastostatic problem governed by the strain-driven nonlocal integral law is assessed and it is shown
that the claimed paradoxical outcomes of that theory are generated by management of solutions of elastostatic problems
that in fact do not admit solution, for any positive value of the nonlocal parameter.

On the contrary, well-posedness of elastostatic problems based on the stress-driven nonlocal model is assured. Absence
of conflicting conditions is evidenced by the solution of simple beam problems.

2. The stress-driven integral constitutive law

To illustrate the proposed nonlocal model of elastic beams, in view of applications to the analysis of nanobeams adopted
for realisation of actuators and sensors, we consider its specialisation to plane and straight simple beams.

In the sequel a dot - denotes linear dependence, and the crochét (., -) is the duality pairing.

The beam length is the difference of end-point abscissae L=b—a >0 and A > 0 is the nonlocal parameter with L. =
A - L characteristic length measuring the nonlocality effect.

As usual, &(x) denotes the DIRAC delta distribution at 0 € % (unit impulse) formally defined by

b
/ FO) -8 —y)dy = fx). (13)

for any continuous test function f < C%(a,b).

The standard local elastic curvature is C - M, where M e £2(a, b) is the bending interaction and C is the positive elastic
bending compliance.

In the geometrically linearized nonlocal theory, the elastic curvature field along a straight beam of length L=b—-a >0
is dependent on the whole square integrable bending field on [a, b] denoted by M € £%(a, b).

The elastic curvature is in fact defined by convolution between the local elastic curvature C - M induced by the bending
interaction and a scalar averaging kernel ¢, having the physical dimension of reciprocal of a length. The law is sketched in
diagram (14) below, where C is the flexural compliance and = denotes the convolution:

/\ e
e suc) et (14)

\/

and is expressed by

b
Xet(X) = (92 (C-M))(x) 1=/a $.(x—y) - (C-M)(y)dy. (15)

with M and y, finite increments of bending interaction and elastic curvature, possibly from a natural configuration where
both vanish.
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The kernel fulfils symmetry, positivity and limit impulsivity:

) g(x—y)=¢(y—x) =0,
i) 1im g (x. 1) = 8(x). (16)
Property i) assures that the quadratic form
)
| [ 2=+ (€M) Moy dy = 0. (17)

is vanishing only if M =0 identically. The distributional expression of the formal definition of limit impulsivity in item ii)
of Eq. (16) writes

lim [ x(x=9)- (€ M)G)dy = (€ M)(0), (18)

As apparent from the definitions, the kernel has the physical dimension of inverse of a length and when A — 0 it tends
to the DIRAC impulse at the origin. Consequently the nonlocal constitutive law tends to reproduce the local one, and so goes
for the solution of the elastostatic problem, except for boundary effects due to boundedness of the structural domain [a, b]
(Romano & Barretta, 2017).

3. Nonlocal elastostatic problem

Let us denote by H = H%(a, b) = £2(a, b) the linear HILBERT space of square integrable fields on [a, b] with the inner
product

b
(u,v):/ u-vdx, Vu,veH. (19)
a

The SoBoLEV space V =HZ2(a,b) c H%(a,b) is the linear subspace of those with square integrable first and second gener-
alised derivatives, so that being v, v/, v” € H# the inner product is given by

b
((u,v)):/ w-v+u - v+u" - v)dx, YuveV, (20)
a

where the apex ’ denotes derivative along the beam axis x.

Functions in V have well-defined boundary values of zeroth and first order derivatives.

We may thus consider a prescribed displacement field w € V and the closed affine manifold £ c V of admissible dis-
placements

L=W+L,CV, (21)

fulfilling kinematic boundary conditions imposed on displacement fields and on their first derivatives, at the end points q,
b € % of the beam.

The linear space of conforming displacements £, c V is parallel to £ and made of those fulfilling the corresponding
homogeneous kinematic boundary conditions.

Force systems acting on the beam are in the dual space V* of V. Constraint’s reactions are force systems vanishing on
conforming displacements. The reaction’s space is then R := £ c V*.

Effective loadings are in the HILBERT space £ dual to £, and are required to obey the equilibrium condition of vanishing
virtual work for any conforming and rigid virtual displacement

fecLinker(x)r < (f.dv)=0, VéveLl,: xs1=0, (22)
where y is the geometric curvature operator defined by
Xy = Sv”. (23)

The linear space £} can be identified with the quotient space V*/R of force systems in V* equivalent modulo reaction
systems in R.

Boundary kinematic conditions are characterised, among other possible kinematic conditions, by the property that indef-
initely continuously differentiable displacements with compact support in the open interval (a, b) (that is vanishing in a
boundary layer) are conforming, i.e. C3°(a,b) C L,.

This is the key property allowing for localisation of variational conditions to get equivalent differential equations and
boundary conditions, since the linear subspace C°(a, b) is dense in H%(a, b) = £%(a, b).

The nonlocal elastic problem is then characterised by the following items.

1. Equilibrium under a prescribed loading f e £} is imposed on bending fields M € H by the virtual work variational
condition

b
/a (M(x). x50 (0)) dx = (. 5) (24)
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for all conforming virtual displacements §v € £, and associated geometric virtual curvature xsg, .
Bending fields M € # in equilibrium with a prescribed loading f € £} belong to a linear variety
described by a particular bending field My € # fulfilling the equilibrium (Eq. (24)) with the loading f € £§ and by the
subspace %, of all self-equilibrated bending fields M,, characterised by the variational condition

/b (Mo(X), X5p (X)) dX =0, V8V e Lo. (26)

2. Kinematic compatibility is expressed by the requirement that the sum of the nonlocal elastic curvature x, € # and of
the anelastic curvature y, € # (thermal, plastic, etc.) must be equal to the geometric curvature

Xet + Xo = Xu- (27)
Here u € £ is an admissible displacement and
Xu:i=u", (28)
is the associated geometric curvature. To deal with linear problems it is expedient to write, according to Eq. (21)
u=v+w, verl,, weV. (29)
so that
Xet + Xo= Xu = Xv+ Xw- (30)

Kinematic compatibility (Eq. (27)) can then be implicitly expressed by the variational requirement of mean square or-
thogonality of the conforming curvature, defined by

Xel + Xo— Xw €M, (31)
to all self-equilibrated bending fields M, € X,.

b
[ (G + o = 300 (0. 8Mo(0)) dx = 0. (32)
a
This condition is in fact necessary and sufficient for the existence of a conforming displacement field v € £, such that
Xv=Xel + Xo— Xw € H. (33)

Substituting the expression for x, given by nonlocal elastic law (Eq. (15)), the variational condition of kinematic com-
patibility (Eq. (32)) writes

) b
| [ 1=+ (€M), Mo dyd = [ (ot = o, 8Mo(0) . (34)
a a a
for all M, € ¥,. Imposing equilibrium, we have that
M=M;+M, e X, M, € 3. (35)
Setting
b
X2 = [ i x=p)- €MD) dy. (36)
a
we define the curvature data x4 by
Xd = Xw— Xo— Xy € H. (37)

Elastic equilibrium is then expressed in terms of self-equilibrated trial bending fields M, € X, by the variational condi-
tion

b b b
/ / B(x—y) - ((C- Mo) (). SM,(x)) dy dx = / (Xa (%, 1), SMy(x)) dx (38)

for all M, € X,.

The elastostatic problem formulated by Eq. (38) is linear and well-posed. It admits a unique solution M, € X, for any
data x, € H, thatis for any {f,w, xo} € £5 x V x % and the solution depends in a continuous way on the data.

The bending field is evaluated by Eq. (35) as M = My + M, € X. The nonlocal elastic curvature x, evaluated by Eq.
(15) fulfils the condition of kinematic compatibility (Eq. (32)) and hence a double integration yields the unique® admissible
displacement u € £ at solution.

6 Rigid displacement fields are assumed to be non-conforming, that is not allowed by kinematic constraints, as mandatory in computational treatments.
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4. Computational method

In one-dimensional structures, such as assemblies of BERNOULLI-EULER beams, the linear subspace of self-equilibrated
bending interactions is of finite dimension, being the kernel of a system of ordinary differential equations with homogeneous
boundary conditions.

This finite dimension n is the degree of statical indeterminacy of the structural assembly.

The program described in §3 can be effectively carried out by detecting a particular equilibrated bending field My € #
and a finite basis

{My,1<k=<n}, (39)
of the linear subspace X, of all self-equilibrated bending fields. Any equilibrated bending field can then be represented as
an affine combination

n
M =M+ pi- M (40)
k=1
By the constitutive relation (Eq. (15)), the elastic curvature is described as

n
Xel = X5+ D Dk Xe» (41)

k=1
where

b
X (%) :=/ $(x—y) - (C-Mp)(y)dy.

b
K@) :=f B (x—y) - (C-M) ) dy.

The parameters p={p,, 1 <k<n} are detected by imposing kinematic compatibility through (Eq. (32)) to get the
linear system
A-p=b < Aypi=b;, 1=<ik<n, (43)

where, according to Eq. (38), we have
b
A= [ (M0, 300) de
b b
= [ [ #a6=9)-((C- M) @) My ) dxaly. (44)

b
by = / (Mi(x). xq (%)) dx.

By symmetry and positive definiteness of the matrix A, the linear system (Eq. (43)) admits a unique solution p for
any b. Substituting in Eq. (40) we get the bending field M e X;. Integrating the differential equation (Eq. (33)), with
homogeneous kinematic boundary constraints and with y,; given by Eq. (41), the conforming solution v € £, is found. The
admissible displacement field solution of the nonlocal elastic problem is got by adding the prescribed displacement field w
eV.

5. Averaging kernels

Averaging kernels usually adopted in one-dimensional formulations, with A > 0 nonlocal parameter and L. = A - L char-
acteristic length, are the following:

800 = 5 exp (1) (45)
1 X2
Uy (%) 1= Lcﬁ exp(— 2L2>' (46)

Both expressions in Eqs. (45) and (46) fulfil the properties in Eq. (16).

The kernel (Eq. (46)) is the normal distribution with zero mean and standard deviation equal to A. By setting A =t it
can be also described as the GREEN function associated with the diffusion differential equation with the DIRAC impulse §(x)
as initial condition (Eringen, 1983):

dl/f " _
W(x,t)—1// x,t) =0, 47)

limyr(x.£) = §(x).
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kernel kernel derivative

-1.0 -0.5 0.5 .0
-2

-4

0.5 1.0

Fig. 1. Special kernel, A =1/3: Left ¢, - Right ¢ .

The numerical results got by adopting the kernels ¢, and i, are technically indistinguishable in the local limit A —
0, but the kernel ¢, has peculiar properties, as illustrated below.

6. Special kernel and Green’s function

A peculiar result is consequent to the choice of the kernel ¢, of Eq. (45) which will therefore be referred to as the
special kernel, see Fig. 1. Symbolic and numerical computations and graphic visualisation have been carried out by the
software MATHEMATICA authored by Stephen WOLFRAM.

The kernel ¢, is described by the rule

wy (%), x<0,
0 =1" (48)
w, (=x), x>0,
where
1 X
w; (X) = 7L exp (L—C> (49)
The first and second derivatives of the map (Eq. (48)) evaluate to
1 1
L—~a),\(x)=L—~¢)\(X), x<0,
pro=1 . (50)
L cwy (—X) = L P (x), x>0,
1 , 1 0
E‘w;\(x)=é‘¢x(x)v x<0,
00 =1 . (51)
iz @ (—X) = z (%), x>0,
with
1
¢,.(0) = w, (0) = TLC (52)
The jump discontinuity in the first derivative of ¢, at x =0 is given by
1
[[d)&(O)]]:—L—Z. (53)
(o
Hence from Eq. (51) we get
1
;(X) = ﬁ(¢k (x) —3(x)). (54)
(o

The results in Egs. (50) and (51) lead to the following characterisation of the special kernel as a GREEN’s function.

Proposition 6.1. The special kernel ¢; is the GREEN function, solution of the differential problem Eq. (54) with the boundary
conditions at a < 0 < b given by

{(Pi(a) =1 ¢ (),

g (b) = 1 -, (). (53)
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The differential problem admits a unique solution, since the associated homogeneous problem, with a vanishing impulse, admits
only the trivial solution.

In nonlocal elasticity, on the contrary, the convolution integral is extended over the bounded domain of definition of the
input field, so that constitutive boundary conditions are naturally induced as an essential part of the constitutive differential
problem whose solution yields the relevant GREEN’s function, as explicated by Eqs. (54) and (55).

7. Differential formulation and constitutive boundary conditions

The convolution of the special kernel ¢, with the local elastic curvature C - M will be referred to as the special integral
law.

Proposition 7.1. The output of the special integral constitutive law

b
xa®) = [ ax=y)- €M) dy. (56)
a
provides the unique solution of the constitutive differential equation:
X cC-M
21 140 = S50, (57)

with the homogeneous constitutive boundary conditions

1
i@ = xa(@,
C

- (58)
~X4(b) = - - Xa (b).
C
Proof. Splitting the integral in Eq. (56) according to the partition
[a, b] = [a,x] N (x, b], (59)
we may set
Xet(X) = x1(%) + x2(x), (60)
with
X
00 = [ gx-y)- €M) dy
* 1 —X
= [ spee(YE) cmma.
a C C
b (61)
1200 = [ 1 x-y)- € M) dy
X
b1 X—y
=| ——exp(—)-(C-M dy.
s e () € mmay
Taking the first derivative of Eq. (61) we get
1 1
X1®) = 57 Xa ) = = (0,
C C
(62)
(%) = . Xel (%) + 1 X2(x)
X2 2L, Xe L ’

so that the first derivative of the nonlocal curvature is given by

X0 = Ll (e - 1), (63)

A further derivation gives (Eq. (57)). Evaluating the first derivative (Eq. (63)) at the boundary points and observing that

x2(a) = xa(@), xi(a) =0, (64)
x1(b) = xa(b), x2(b) =0,
yields the constitutive boundary conditions (Eq. (58)). Uniqueness of solution follows since it easily proven that the corre-
sponding homogeneous differential problem ( x,; = 0) with the homogeneous constitutive boundary conditions admits only
the trivial solution. The proof of Proposition 7.1 could also be got by taking the convolution of Eq. (54) with the elastic
curvature x, and observing that the constitutive boundary conditions in Eq. (55) are homogeneous, so that, by linearity,
they are preserved by the convolution. O
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As a direct consequence of Proposition 7.1, the curvature fields x; and xj in Eq. (42) can also be evaluated by solving
the differential problems got by setting M = My and M = M, in Eq. (57), with the boundary conditions (Eq. (58)).

Remark 7.1 (Differential and boundary conditions). The problem of nonlocal elastic equilibrium can be expressed as a differ-
ential equation in the unknown transversal displacement u: [a, b]~ 9. The differential conditions of kinematic compatibility
and equilibrium are imposed by setting x, =u” and M” =q, with q: [a, b]—~% intensity of the transversal loading. Un-
der a uniform bending stiffness, differentiating twice the constitutive differential expression (Eq. (57)) gives the sixth order
equation:

uv w C. q

12 T2
In addition to boundary conditions expressing kinematic and natural constraints, two more conditions are to be imposed to
get a unique solution of the nonlocal elastic problem. These are provided by the constitutive boundary conditions (Eq. (58)).
The problem is thus closed and existence and uniqueness of a solution are assured. In the limit A — 0, the differential

expression in Eq. (65) tends to the standard fourth order one of local elasticity where constitutive boundary conditions are
not needed.

(65)

8. Comparison with the strain-driven integral model

Let us now compare the new stress-driven model expressed by Eq. (56) with the strain-driven model adopted in litera-
ture, in the wake of the original formulation in Eringen (1983). In that model the bending field M was defined in terms of
the elastic curvature x, by the convolution

M(x) = («m (K- xe,)) ®). (66)

where K =C-1 =1 is the standard local elastic bending stiffness with Iz second moment of the field E of EULER elastic
moduli on the beam cross section, in the bending direction.
The curvature-driven law of Eq. (2) is depicted in the diagram

e /\ 1
_Xel_ o ok K-() o M. (67)

\/

which is to be compared with the diagram (14).

We see that the strain-driven convolution of Eq. (66) provides an implicit definition of the input elastic curvature, as
solutions of the FREDHOLM integral equation for given output bending interaction. The difficulty is that this integral equation
may have no solution at all for bending interactions fulfilling the equilibrium condition, as revealed by the next result.

By adopting in Eq. (2) the special kernel (Eq. (45)), a procedure formally analogous to the one adopted in
Proposition 7.1 leads to the following result.

Proposition 8.1. The output of the nonlocal integral constitutive law

b
M) = [ @1(x-) - (K- ) @) dy. (68)
a
with the special kernel Eq. (45), provides the unique solution of the constitutive differential problem:
M(x K-
L(z ) _ M//(X) — LZX(?I (X) , (69)
(o (o

with the homogeneous constitutive boundary conditions

M (a) = Ll M(@).
ok (70)
~M'(b) = - - M(b).

The differential equation Eq. (69) is still widely adopted in treatments of nonlocal elastic beams, without mention of con-
stitutive boundary conditions.” Necessity of these boundary conditions was evidenced in Polyanin and Manzhirov (2008) and
discussed in Benvenuti and Simone (2013). Failure of the strain-driven nonlocal elastic law was finally clarified by proving
non-existence of solutions for all elastic equilibrium problems of engineering interest (Romano et al., 2017).

A decisive difference emerges when the strain-driven integral model is confronted with the new stress-driven integral
model illustrated in Section 2.

7 In Gopalakrishnan and Narendar (2013, Eq. (4.26)) Eq. (69) is quoted as a simplified nonlocal constitutive relation and, dealing with wave propagation,
conditions of decay at infinity are assumed.
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Fig. 2. Simply supported beam (Section 9.1). Elastic curvature - maximum deflection.

1. The differential and boundary equilibrium conditions on the bending interaction field M are generally incompatible with
the constitutive law output of the integral convolution Eq. (2). In fact kinematic boundary equilibrium conditions are in
contrast with the constitutive boundary conditions of Eq. (70). This fact renders the model unsuitable for the formulation
of well-posed nonlocal elastic problems (Romano & Barretta, 2016; Romano et al., 2017).

2. On the contrary, in the new stress-driven model no conflict occurs between the constitutive requirement imposed by the
integral convolution (Eq. (56))and the condition of kinematic compatibility, either in the explicit formulation x, = u” (Eq.
(27)) or in the equivalent implicit variational formulation of Eq. (32).

This difference is the key motivation for replacing the strain-driven model with the stress-driven model.
8.1. Constitutive vs. kinematic boundary conditions

The constitutive boundary conditions (Eq. (70)) imposed on the bending field according to the strain-driven model, be-
ing intrinsic to the integral constitutive law, have no relation with the boundary conditions imposed by equilibrium. Ac-
cordingly, the GREEN’s function providing the averaging kernel of the convolution is independent of kinematic and static
boundary conditions imposed on the structural model, contrary to statements in literature (Challamel et al., 2014). This ba-
sic property is in line with the physical requirement of reproducibility® of a structural problem in continuum mechanics.
Reproducibility implies that constitutive properties should concern only the material which the body is made of and cannot
depend on the imposed kinematical constraints. In this respect it is to be underlined that in the new model the constitutive
boundary conditions (Eq. (58)) are imposed on the elastic curvature field x, while kinematic boundary constraints act on
the displacement field and its first derivative, and static boundary constraints are deducted by duality from the variational
condition of equilibrium, as illustrated in Section 3.

9. Examples

Three simple beam problems with the BERNOULLI-EULER kinematics have been investigated to illustrate effectiveness of
the new nonlocal theory:

1. A simply supported beam under uniform load.
2. A cantilever under end-point load.
3. A doubly clamped beam under uniform load.

Solutions are got by straightforward application of the theory described in Section 4. The evaluations of the involved
convolutions and the graphic output have been carried out with WOLFRAM’s software MATHEMATICA.
In all examples the length of the beam is L =1 and the nonlocal parameter A ranges in the list of values

{.0001, .02, .05, .07, .10, .15, .25, .50, .75,1.00 } .
9.1. Simply supported beam under uniform load

The bending field is parabolic and the corresponding nonlocal elastic curvature field and mid-point deflection are de-
picted in Fig. 2.

The nonlocal curvature is parabolic for A = 0 (i.e. in the local case) and becomes more and more smaller and uniform
as the nonlocal parameter A increases. The progressive reduction of the mid-span deflection versus the increase of A is
apparent from Fig. 2.

8 The axiom of reproducibility states that general laws of continuum physics, expressed with reference to a given body placement, must be applicable as
well to any sub-boby placement. A well-known instance is the EULER-CAUCHY principle of sectioning, concerning equilibrium of every part of a continuous
body (Romano, 2014).
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Fig. 3. Cantilever beam (Section 9.2). Elastic curvature - maximum deflection.
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Fig. 4. Clamped beam (Section 9.3). Elastic curvature - maximum deflection.

9.2. Cantilever under end-point load

The bending field is linear and the corresponding nonlocal elastic curvature field and end-point deflection are depicted
in Fig. 3. The nonlocal curvature is linear for A =0 (i.e. in the local case) and becomes lower and uniform as the nonlocal
parameter A increases, as shown in Fig. 3.

9.3. Doubly clamped beam under uniform load

For a doubly clamped beam the stiffening effect due to the increase of the nonlocal parameter is still greater, as depicted
in Fig. 4.

10. Concluding remarks

The new theory of nonlocal elasticity, illustrated above with special reference to elastostatics of simple beams, is a natural
outcome of the revised formulation of elasticity introduced in Romano and Barretta (2013), Romano et al. (2014a) and
Romano et al. (2014b) where the input state variable in the elastic constitutive law is the field of natural stress-state while
the elastic-state is the output. This means that, in the geometrically linearized BERNOULLI-EULER beam model, the elastic
curvature field is a pointwise linear function of the bending interaction field.

In the nonlocal elastic law, the elastic curvature field is expressed by an integral convolution between the local elastic
response to the bending interaction and an averaging kernel.

A careful investigation of the strain-driven approach to nonlocal elasticity revealed that there are basic points deserving
attention. These are summarised below.

1. The convolution in Eq. (2), which was intended to be an adaptation to BERNOULLI-EULER beam model of those proposed
for 2D and 3D continua in Eringen (1983), involves an intrinsic difficulty since the elastic curvature field x,;, appearing
under the integral sign, should in fact be defined in terms of the output bending interaction field M. The expression in
Eq. (2) is therefore an integral equation to be satisfied by the elastic curvature field. Solvability of this problem holds if
and only if the bending field meets the constitutive boundary conditions (Eq. (70)).

2. The requirements of the constitutive boundary conditions (Eq. (70)) are contrasted by the concurring equilibrium condi-
tions on the bending field, so that in general the nonlocal elastostatic problem does not admit solution, for any value A
> 0 of the nonlocal parameter.

A careful check of equilibrium reveals the failure of beam problems treated in literature according to the strain-driven
nonlocal elastic law.
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The new theory, based on the constitutive law (Eq. (15)) is free from these difficulties and generates well-posed non-
local elastic problems which admit a unique solution for any prescribed data, loading, imposed distortions and constraint
displacements.

We underline that the differential equation stemming from the new approach is identical to the one exposed in Aifantis
(2009, 2011) in the context of a strain-gradient model of elasticity. A significant innovation is that the required additional
boundary conditions, are directly and univocally provided by the new stress-driven model, as illustrated in Remark 7.1.

Numerical evaluations witness the effectiveness of the new model of nonlocal elastic behaviour in solving simple beam
problems of applicative interest.

Increasing values of the nonlocal parameter A correspond to stiffer responses, an effect due to the kernel normalisation
leading to the basic impulsivity property in Eq. (16). An increase of A lowers down the peak value of the scalar kernel and
enlarges its standard deviation from the mean point. Reduction of the peak is prevalent and hence the elastic compliance is
accordingly reduced.

This general feature implies that nanobeams, investigated by the new nonlocal elastic model, are stiffer that the standard
local ones.

The theory based on the stress-driven nonlocal constitutive law described by the convolution in Eq. (15) proposes itself
as an effective substitute to the analogous strain-driven model. A new road is thus opened to bypass ill-posed structural
problems.
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