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Nonlocal integral constitutive laws, for application to nano-beams, are investigated in a general setting. Both 

purely nonlocal and mixture models involving convolutions with averaging kernels are taken into account. Ev- 

idence of boundary effects is enlightened by theoretical analysis and numerical computations. Proposed com- 

pensation procedures are analyzed, relevant new results are evidenced and confirmed by computations. The 

strain-driven model and related local-nonlocal mixtures are addressed, with singular phenomena foreseen and 

numerically quantified. Effectiveness of the recently proposed stress-driven nonlocal elastic model is discussed 

and illustrated by description of a general solution procedure for nonlocal elastic beams. Comparisons between 

strain-driven models, stress-driven models and local/nonlocal mixtures are considered from theoretical and com- 

putational perspectives. Examples of statically determinate and indeterminate beams are elaborated to show that 

an effective simulation of scale effects in nano-structures, ensuring existence and uniqueness of solution for any 

data, is provided by the stress-driven model. 
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. Introduction 

Nano-structures such as carbon nanotubes (CNTs) exhibit size effects,

hose evaluation is conveniently simulated by a continuum mechanics

pproach in which nonlocal constitutive models are adopted. 

In a paper on screw dislocations and Rayleigh surface waves, Erin-

en [1] was the first to introduce strain-driven nonlocal elastic laws in

hich the stress field was expressed by convolution of the local elas-

ic stress with averaging kernels consisting in fundamental solutions of

ifferential problems. 

In dealing with unbounded domains, integral convolutions with

moothing kernels were replaced with equivalent differential equations

ith boundary condition of vanishing at infinity. 

Eringen ’s differential nonlocal elastic equations were improperly

ater applied in [2] for investigating size effects in bounded nano-beams.

ccordingly, in modelling cantilevers under end-point loading, used as

ctuators in nanotechnology, paradoxical results were detected in [3,4] .

This notwithstanding, differential formulations were thenceforth

dopted as reference constitutive schemes in simulating the structural

ehaviour of devices at nanoscale. Modifications of the differential for-

ulation were examined in [5,6] . 

It is to be underlined that, on a bounded interval, the integral convo-

ution problem, involved in Eringen ’s integral constitutive law with the

i-exponential kernel, implies the fulfilment of homogeneous boundary

onditions [7] . 
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What is more, equivalence between the integral constitutive law

nd the differential equation holds if and only if corresponding con-

titutive boundary conditions (see Eq. (9) ) are imposed. These topics

ere first addressed in [8] with reference to extensional behaviour of

ano-bars. 

A list of recent contributions can be found in [9] . 

A definite explanation of paradoxical result has been finally con-

ributed in [10] with reference to flexural behaviour of nano-beams.

he conclusion was that the strain-driven nonlocal integral elastic law

nd equilibrium requirements on the bending field are mutually incom-

atible for structural models of engineering interest, thus leading to for-

ulation of unsolvable elastostatic problems. 

To overcome ill-posedness of strain-driven nonlocal elastic problems,

 mixture of local-nonlocal elasticity was adopted in [8,11–15] on the

asis of the original proposal by Eringen [16–18] . 

Proposals originally made in [19–21] with reference to nonlocal

amage mechanics, were applied to nonlocal elasticity of nano-beams to

ompensate for boundary layer effects and adopted in numerical com-

utations [22] . 

Inconsistencies in nonlocal structural problems, formulated accord-

ng to the strain-driven integral elastic law, can be by-passed by the

roposal of a new nonlocal stress-driven integral elastic relation con-

ributed in [23,24] . 

As foreseen by a general reasoning, in applying the stress-driven

odel to bending of nano-beams and stretching of nano-bars, all
ina.it (M. Diaco). 
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1 The Hilbert space  

𝑘 ( 𝑎, 𝑏 ) for 𝑘 = 0 , 1 , … is made of square integrable fields with 

square integrable distributional derivatives up to order k [27] . 
2 
hortcomings, inherent to nonlocal models defined by a strain-driven

ntegral convolution, are eliminated from the root. 

The distinctive characteristic of the new theory consists in setting

he stress field as input of the integral nonlocal law, the nonlocal elastic

train being the output. 

A comparison with Eringen ’s strain-driven nonlocal law, reveals

hat input and output are swapped, the two integral laws being not one

he inverse of the other. 

This feature is decisive since, in elastostatic problems based on a

train-driven nonlocal convolution, the source of ill-posedness relies in

he fact that stress fields in the range of the constitutive law, are un-

ble to fulfil also boundary and differential conditions of equilibrium

10,23,25] . 

Obstruction against the strain-driven model is therefore of a general

haracter and applies to two- or three-dimensional structural models as

ell. 

The simpler discussion for one-dimensional problems is however en-

ightening and permits to reveal essential properties of the involved

odels. 

The possibility of another approach to nonlocal elasticity should not

e surprising. Indeed, contrary to the local theory in which the point-

ise constitutive relation is algebraic and invertible, the nonlocal theory

s formulated by a functional law relating source and output fields which

an be respectively identified with kinematic and static fields or vice

ersa. 

The former alternative, labeled strain-driven, was proposed by Erin-

en , while the latter, labeled stress-driven, was assumed in the new

pproach introduced in [23,24] . 

Whichever choice is made, discussion of nonlocal constitutive laws

equires, in general, tools and results of functional analysis which are

sually out of the range of interest of scholars in structural mechanics. 

The treatment is especially simplified when, in formulating a non-

ocal constitutive law for one-dimensional structural models, a bi-

xponential kernel is adopted, since then an explicit inversion of the

ntegral convolution is available. 

Clarification of basic facts became possible when the treatment of

ntegral equations in [7] was evidenced in [8,10] . 

The formulation of nonlocal integral constitutive laws, will be firstly

ddressed from an abstract point of view in terms of convolutions to in-

estigate on general features applicable both to strain-driven and stress-

riven models. 

Regularisation properties of mixture models are investigated and sin-

ular behaviours are discussed. 

Methods for compensating boundary effects by means of modified

ernels, proposed in [19–21] , are also addressed with further findings. 

Applications to simple schemes of bars and beams, even statically

ndeterminate ones are elaborated to provide examples of essential fea-

ures. 

Computational examples of simple bars and beams and relevant plots

re developed with the aid of the Mathematica software [26] to illus-

rate the theory. 

The plan of the treatment is the following: 

General properties of convolutions and special equivalence result are

rovided in Sections 2 and 3 . 

Boundary layer effects with the phenomenon of halved Dirac delta

re addressed in Section 4 . 

Equilibrium and kinematic compatibility conditions for bars and

eams are briefly recalled in Section 5 . 

Items from linear local elastic beam theory are recalled in

ection 6 and the strain-driven integral nonlocal model for Bernoulli -

uler nano-beams is discussed in Section 7 . 

Evidence and motivation of obstructions to the adoption of the

train-driven model is addressed in Section 8 . 

Computational issues are dealt with in Section 9 . 

The stress-driven integral nonlocal constitutive model is described

n Section 10 . 
491 
The elastic equilibrium problem for bars and beams is formulated in

ection 11 and an effective solution procedure is illustrated. 

Examples of nonlocal elastostatic problems for beams are exposed in

ection 12 . Concluding remarks are exposed in Section 15 . 

. Convolutions 

Convolution of a source field 𝑠 ∈  

2 ( 𝑎, 𝑏 ) 1 with a smooth averaging

ernel 𝜙𝜆 over an interval [ a, b ] ⊆ℜ is defined by 2 

( 𝜙𝜆 ∗ 𝑠 )( 𝑥 ) ∶= ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 . (1) 

In nonlocal models, the family 𝜙𝜆 of scalar averaging kernels de-

ends on a positive nonlocal parameter 𝜆> 0 and is assumed to fulfil

he following characteristic properties [1] : 

a) Positivity and symmetry on the whole real axis: 

𝜙𝜆( 𝑥 − 𝑦 ) = 𝜙𝜆( 𝑦 − 𝑥 ) ≥ 0 . (2)

b) Normalisation on the real axis: 

∫
+∞

−∞
𝜙𝜆( 𝑥 ) 𝑑𝑥 = 1 . (3)

c) Impulsivity: 

lim 

𝜆→0 ∫
∞

−∞
𝜙𝜆( 𝑥 − 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 = 𝑠 ( 𝑥 ) , (4)

for any continuous test field s on the real axis. 

.1. Averaging kernels 

In providing an analytical expression of the averaging kernel Eq.

1), it is convenient to fix a non-dimensional abscissa x ∈ [ a, b ] so that

 ∶= 𝑏 − 𝑎 = 1 . 
A common choice for the kernel is the error function depicted in

ig. 1 : 

𝑒𝑟𝑟 
𝜆

( 𝑥 ) ∶= 

1 
𝜆 ⋅

√
𝜋

exp (−( 𝑥 
𝜆
) 2 ) . (5)

For theoretical purposes and for the simplifying properties it enjoys,

he bi-exponential kernel depicted in Fig. 2 is especially valuable: 

𝜆( 𝑥 ) ∶= 

1 
2 𝜆

exp 
( 

− 

|𝑥 |
𝜆

) 

. (6)

Adoption of the bi-exponential kernel is enlightening since then dis-

ussion concerning existence and uniqueness of the integral equation

s direct and simple, due to the basic equivalence property proven in

10] and adapted hereafter in Lemma 1 to the adopted abstract context.

n apex denotes differentiation and ∗ stands for convolution, as in Eq.

1) . 

emma 1 (Convolution equivalence) . The relation between a source field

𝑠 ∈  

2 ( 𝑎, 𝑏 ) and an output field 𝑓 ∈  

2 ( 𝑎, 𝑏 ) , expressed for x ∈ [ a, b ] and

> 0 by the convolution: 

 = 𝜙𝜆 ∗ 𝑠 , (7)

s equivalent to the differential equation in [ a, b ] : 

𝑓 

𝜆2 
− 𝑓 ′′ = 

𝑠 

𝜆2 
, (8)
The dot · denotes linear dependence on the subsequent item. 
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Fig. 1. Error kernel 𝜙𝑒𝑟𝑟 
𝜆

Eq. (5) 𝜆 = 1∕4 : Up 𝜙err 
𝜆

- Down ( 𝜙err 
𝜆
) ′. 

Fig. 2. Bi-exponential kernel 𝜙𝜆 Eq. (6) 𝜆 = 1∕4 : Up 𝜙𝜆- Down 𝜙′
𝜆
. 
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ith the boundary conditions: 

 

 

 

 

 

𝑓 ′( 𝑎 ) = 

1 
𝜆
⋅ 𝑓 ( 𝑎 ) , 

− 𝑓 ′( 𝑏 ) = 

1 
𝜆
⋅ 𝑓 ( 𝑏 ) . 

(9) 

The relation in Eq. (7) for given f is a Fredholm integral equation

f the first kind in the unknown source field 𝑠 ∈  

2 ( 𝑎, 𝑏 ) and existence

nd uniqueness of a solution is assured for 𝜆> 0 if and only if the data

𝑓 ∈  

2 ( 𝑎, 𝑏 ) fulfil Eq. (9) . 

The choice of a compact domain [ a, b ] is preliminary to the for-

ulation of the nonlocal problem. Consequently, it is important to re-

ember that, the output field f in [ a, b ] , is generated only from the

ource field with domain in [ a, b ] itself. This leads to peculiar phenom-

na in a boundary layer, for any finite value of the nonlocal parameter

> 0 , and even in the limit of a vanishing nonlocal parameter, as will

e shown in Section 4 . 

. Local-nonlocal mixtures 

The proposal of considering local-nonlocal mixtures, made by Erin-

en [16,18] , was resorted to in [8,11–15] , with reference to nano-rods

nd nano-beams. 

A local-nonlocal mixture model consists in considering the nonlocal

esponse as generated by the convex combination of the local response

nd the convolution in Eq. (7) : 

( 𝑥 ) = 𝑚 ⋅ 𝑠 ( 𝑥 ) + (1 − 𝑚 ) ⋅ ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 , (10)

ith 0 ≤ m ≤ 1 mixture parameter. The discussion of the local-nonlocal

ixture problem with the bi-exponential kernel given by Eq. (6) , is

ased on the following result [10,14] . 

emma 2 (Mixture equivalence) . The relation between a source field 𝑠 ∈
 

2 ( 𝑎, 𝑏 ) and an output field 𝑓 ∈  

2 ( 𝑎, 𝑏 ) , expressed, for x ∈ [ a, b ] , 𝜆> 0

nd 0 ≤ m ≤ 1 , by the convex combination: 

 = 𝑚 ⋅ 𝑠 + (1 − 𝑚 ) ⋅ ( 𝜙𝜆 ∗ 𝑠 ) , (11)

s equivalent to the differential equation: 

𝑓 

𝜆2 
− 𝑓 ′′ = 

𝑠 

𝜆2 
− 𝑚 ⋅ 𝑠 ′′ , (12)

ith the boundary conditions: 

 

 

 

 

 

𝑓 ′( 𝑎 ) − 

1 
𝜆
⋅ 𝑓 ( 𝑎 ) = 𝑚 ⋅

(
𝑠 ′( 𝑎 ) − 

1 
𝜆
⋅ 𝑠 ( 𝑎 ) 

)
, 

𝑓 ′( 𝑏 ) + 

1 
𝜆
⋅ 𝑓 ( 𝑏 ) = 𝑚 ⋅

(
𝑠 ′( 𝑏 ) + 

1 
𝜆
⋅ 𝑠 ( 𝑏 ) 

)
. 

(13) 

Due to the presence of the term 𝑚 ⋅ 𝑠 ( 𝑥 ) , the relation in Eq. (11) for

iven f is a Fredholm integral equation of the second kind in the un-

nown source field s and existence and uniqueness of the solution is

ssured for any 1 ≥ m ≥ 0 and 𝜆> 0 . 

Existence and uniqueness do in fact hold for the differential problem

q. (12) with the boundary conditions Eq. (13) . 

The mixture model in Eq. (10) is named purely nonlocal when 𝑚 = 0 
nd purely local when 𝑚 = 1 . 

. Boundary layer effects 

Considerable attention was recently devoted to boundary layer ef-

ects consequent to the fact that averaging kernels are normalised by

ntegrating over a conventional unbounded domain, independently of

he special boundary value problem under investigation. 

This assumption is in accord with the physical requirement that the

veraging kernel, involved in the convolution expressing a nonlocal con-

titutive relation, is independent of the geometric features of the body

nder investigation, as any material property should be. 
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Table 1 

Limit behaviours. 

lim 𝜆→0 f lim 𝜆→+∞ 𝑓 

Pijaudier-Cabot & Bazánt s 1 ∗ s 

Polizzotto & Borino s s 

Convolution 𝑓 = 𝜙𝜆 ∗ 𝑠 Θ · s 0 
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In most applications, the problem at hand is defined on a bounded

omain and therefore integral of the averaging kernels will not be still

nitary when the intersection between the kernel support and the com-

lement of the bounded structural domain is not empty. 

As a consequence, nonlocal responses expressed by convolution of

 source field and an averaging kernel, will manifest peculiar effects in

roximity of the boundary of the structural domain under investigation.

For specific problems this feature was deemed to be undesirable and

ence proposals to compensate boundary layer effects were made. 

Methods for compensation were introduced in [19–21] with refer-

nce to nonlocal models of plasticity and of damage mechanics to avoid

evelopment of singular bands causing softening of the constitutive law

nd pathological mesh dependence in computations with finite element

odes. 

.1. Compensation of boundary effects 

As told above, proposals were made in order to modify the kernel

𝜆 so that the normalisation to a probability density with a unit in-

egral over the relevant bounded domain was recovered. To illustrate

he treatment, in the contest of one-dimensional structural models of

traight beams, it is useful to introduce the function: 

( 𝑥 ) ∶= 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 , 𝑥 ∈ ( 𝑎, 𝑏 ) , 
1 
2 
, 𝑥 = 𝑎, 𝑏 . 

(14)

The limit boundary layer effect, arising for vanishing values of the

onlocal parameter 𝜆> 0 of a family of convolutions involving averag-

ng kernels 𝜙𝜆 , is the object of Lemma 3 . 

A hint for the proof is given hereafter. 

emma 3 (Halved Dirac unit impulse at boundaries) . The convolution

etween a family of kernels 𝜙𝜆 and a test field s , tends for 𝜆→0 to the

alue of the field or to the halved value, depending on whether the point of

valuation belongs to the interior or to the boundary of [ a, b ] . 

lim 

→0 ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 = (Θ ⋅ 𝑠 )( 𝑥 ) . (15)

roof. In a bounded domain the convolutions of the family can be

efinitively approximated to any extent in the limit 𝜆→0 by consid-

ring test functions with a compact support contained in a sphere of

uitably small radius. At regular boundary points only one-half of this

phere will be definitely included in the integration domain and there-

ore the limit generates an halved Dirac impulse. □

The following notation for simple functions is convenient: 

𝟎 ( 𝑥 ) = 0 , 𝑥 ∈ [ 𝑎, 𝑏 ] , 

𝟏 ( 𝑥 ) = 1 , 𝑥 ∈ [ 𝑎, 𝑏 ] , 

𝐱( 𝑥 ) = 𝑥 , 𝑥 ∈ [ 𝑎, 𝑏 ] . 

(16) 

From Eq. (15) , we get that on [ a, b ] : 

lim 

→0 ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) 𝑑𝑦 = Θ( 𝑥 ) . (17)

In the context of nonlocal damage theory a proposal to compensate

he boundary effects was made in [19] . According to our abstract treat-

ent this proposal amount in assuming the modified kernel: 

 𝜆( 𝑥, 𝑦 ) ∶= 

𝜙𝜆( 𝑥 − 𝑦 ) 
( 𝜙𝜆 ∗ 𝟏 )( 𝑥 ) 

, (18)

here 

 𝜙𝜆 ∗ 𝟏 )( 𝑥 ) = ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) 𝑑𝑦 ≤ 1 . (19)

The nonlocal law proposed in [19] is expressed by the convolution:

( 𝑥 ) = ∫
𝑏 

𝑎 

𝜓 𝜆( 𝑥, 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 . (20)
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According to Eq. (20) , a constant source field s will generate a con-

tant nonlocal field equal to s since: 

𝑏 

𝑎 

𝜓 𝜆( 𝑥, 𝑦 ) 𝑑𝑦 = 

( 𝜙𝜆 ∗ 𝟏 )( 𝑥 ) 
( 𝜙𝜆 ∗ 𝟏 )( 𝑥 ) 

= 1 . (21)

Lack of symmetry of the modified kernel Eq. (18) was noticed in

21,28,29] and there expressed by the statement that 

 𝜆( 𝑥, 𝑦 ) ≠ 𝜓 𝜆( 𝑦, 𝑥 ) . (22)

The modification proposed in [19] can be conveniently interpreted

s a convolution, still governed by the symmetric kernel 𝜙𝜆 , multiplied

y a field not less than unity: 

 = 

1 
𝜙𝜆 ∗ 𝟏 

⋅ ( 𝜙𝜆 ∗ 𝑠 ) . (23)

Taking the lim 𝜆→0 in Eq. (23) , from Eqs. (15) and (17) , we infer

alidity of the impulsivity property: 

lim 

→0 
𝑓 = lim 

𝜆→0 
1 

𝜙𝜆 ∗ 𝟏 
⋅ ( 𝜙𝜆 ∗ 𝑠 ) = 

(Θ ⋅ 𝑠 ) 
Θ

= 𝑠 , (24)

hich states that the nonlocal response Eq. (23) collapses for 𝜆→0 to

he local response. 

A different strategy for compensation of boundary layer effects was

roposed in [21] with the output field defined by 

𝑓 ( 𝑥 ) = 

(
1 − ( 𝜙𝜆 ∗ 𝟏 )( 𝑥 ) 

)
⋅ 𝑠 ( 𝑥 ) + ∫

𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ 𝑠 ( 𝑦 ) 𝑑𝑦 , (25) 

hich can be synthetically expressed as 

 = 

(
1 − ( 𝜙𝜆 ∗ 𝟏 ) 

)
⋅ 𝑠 + ( 𝜙𝜆 ∗ 𝑠 ) . (26)

A formulation equivalent to Eq. (25) was independently proposed in

20] by expressing the nonlocal response as sum of the local response

nd of a convolution between the averaging kernel and the excess of

ource field over the evaluation-point value, according to the formula:

 ) = 𝑠 ( 𝑥 ) + ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅
(
𝑠 ( 𝑦 ) − 𝑠 ( 𝑥 ) 

)
𝑑𝑦 . (27)

Equivalence between Eqs. (25) and (27) is evident. 

Table 1 displays a comparison between limit behaviours of modified

onlocal expressions proposed to compensate boundary effects and of

he convolution 

 = 𝜙𝜆 ∗ 𝑠. (28)

The mean value of the field s over the unit interval [ a, b ] is by

efinition equal to 1 ∗ s . 

Proof of Table 1 is inferred from Lemma 3 , from the sketch in Fig. 3 ,

hich is typical of all averaging kernels, and from a direct inspection of

he involved formulae Eqs. (23) , (26) and (28) . The results are indepen-

ent of the choice of a kernel. 

A comparison between the proposals for compensation of boundary

ffects is further discussed in Sections 11 and 12 . The properties dis-

layed in Table 1 are confirmed by significant examples in Table 2 , as

llustrated in Section 14.2 . 

. Bernoulli–Euler beams: kinematics and equilibrium 

The kinematics of a straight, plane Bernoulli –Euler beam is de-

cribed by the axial displacement field 𝑢 ∈  

1 ( 𝑎, 𝑏 ) and the transversal

isplacement field 𝑣 ∈  

2 ( 𝑎, 𝑏 ) of the beam axis. 
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Table 2 

Stress-driven. Top row: Left: source field 𝑠 = 𝟏 . Center: output f for source 𝑠 = 𝟏 ; 𝜆 = 0 . 001 , 0 . 10 , 0 . 50 , 100 . Right: source field 𝑠 = 𝟏 − 𝐱 . Bottom row: output fields f for the source 

𝑠 = 𝟏 − 𝐱; 𝜆 = 0 . 001 , 0 . 10 , 0 . 50 , 100 . Left: Eq. (7) , center: Eq. (20) , right: Eq. (27) . 

Fig. 3. Kernel 𝜙𝜆 Eq. (6) . 𝜆 = 0 . 001 , 0 . 10 , 0 . 50 , 100 . 
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In the geometrically linearised theory, the geometric extension 𝜀 ∈
 

0 ( 𝑎, 𝑏 ) and the geometric bending curvature 𝜒 ∈  

0 ( 𝑎, 𝑏 ) are related

o axial and transversal displacement fields by differential conditions of

inematic compatibility: 

𝜀 𝑢 = 𝑢 ′ , 𝜒𝑣 = 𝑣 ′′ . (29)

Kinematic boundary conditions prescribe boundary values of the ax-

al displacement and of the transversal displacement and its derivative.

Rigid body displacements are assumed to be controlled by these con-

itions. 

Equilibrium is imposed by the virtual work principle expressed in

erms of axial interaction field 𝑁 ∈  

0 ( 𝑎, 𝑏 ) and bending interaction

eld 𝑀 ∈  

0 ( 𝑎, 𝑏 ) : 

∫
𝑏 

𝑎 

𝑁 ⋅ 𝜀 𝛿𝑢 ⋅ 𝑑𝑥 = ⟨𝓁 𝑎𝑥 , 𝛿𝑢 ⟩, 
∫
𝑏 

𝑎 

𝑀 ⋅ 𝜒𝛿𝑣 ⋅ 𝑑𝑥 = ⟨𝓁 𝑡𝑟 , 𝛿𝑣 ⟩, 
(30)

or any virtual axial and transversal displacement fields 𝛿𝑢 ∈  

1 ( 𝑎, 𝑏 ) 
nd 𝛿𝑣 ∈  

2 ( 𝑎, 𝑏 ) fulfiling homogeneous kinematic boundary condi-

ions. 
494 
The loading system 𝓁 is defined by a field 𝑝 ∈  

0 ( 𝑎, 𝑏 ) of axial loads,

 field 𝑞 ∈  

0 ( 𝑎, 𝑏 ) of transverse loads and by prescribed axial forces 𝔑 ,

hearing forces 𝔉 and couples 𝔐 at the boundary (end points) of the

eam: 

⟨𝓁 𝑎𝑥 , 𝛿𝑢 ⟩ + ⟨𝓁 𝑡𝑟 , 𝛿𝑣 ⟩ = ∫
𝑏 

𝑎 

𝑝 ⋅ 𝛿𝑢 ⋅ 𝑑𝑥 + ∮
𝑏 

𝑎 

𝔑 ⋅ 𝛿𝑢 

+ ∫
𝑏 

𝑎 

𝑞 ⋅ 𝛿𝑣 ⋅ 𝑑𝑥 + ∮
𝑏 

𝑎 

𝔉 ⋅ 𝛿𝑣 + ∮
𝑏 

𝑎 

𝔐 ⋅ 𝛿𝑣 ′ . 

(31) 

Integration by parts yields differential and boundary conditions: 
 

𝑁 

′( 𝑥 ) = − 𝑝 ( 𝑥 ) , for 𝑥 ∈ [ 𝑎, 𝑏 ] , 
𝑁( 𝑥 ) ⋅ 𝛿𝑢 ( 𝑥 ) = 𝔑 ( 𝑥 ) ⋅ 𝛿𝑢 ( 𝑥 ) , at 𝑥 = 𝑎 and 𝑥 = 𝑏 , 

(32) 

nd 

 

 

 

 

 

𝑀 

′′( 𝑥 ) = 𝑞( 𝑥 ) , for 𝑥 ∈ [ 𝑎, 𝑏 ] , 
𝑀 

′( 𝑥 ) ⋅ 𝛿𝑣 ( 𝑥 ) = − 𝔉 ( 𝑥 ) ⋅ 𝛿𝑣 ( 𝑥 ) , at 𝑥 = 𝑎 and 𝑥 = 𝑏 , 

𝑀( 𝑥 ) ⋅ 𝛿𝑣 ′( 𝑥 ) = 𝔐 ( 𝑥 ) ⋅ 𝛿𝑣 ′( 𝑥 ) , at 𝑥 = 𝑎 and 𝑥 = 𝑏 . 

(33) 

. Local elasticity 

A straight beam is assumed to undergo extension and inflection in a

lane, with a ≤ x ≤ b non-dimensional axial abscissa, and 𝐿 = 𝑏 − 𝑎 = 1 .
The field of elastic moduli of longitudinal fibers is denoted by E :

↦ ℜ and assumed to be square integrable in the cross-section Ω . 

Positive definite extensional and flexural stiffnesses are evaluated by

he zeroth and second moments of the elasticity modulus field E : Ω↦ℜ ,

ccording to the position vector r ∈Ω of the longitudinal fibre from the

lastic barycentric origin: 

𝐴 𝐸 ∶= ∫Ω 𝐸 ( 𝐫 ) 𝑑 𝐴 , 

𝐼 𝐸 ∶= ∫Ω 𝐸 ( 𝐫 ) ⋅ ( 𝐫 ⊗ 𝐫 ) 𝑑 𝐴 . 
(34) 

For definiteness, reference will be made mainly to flexural behaviour

f beams. 

The field of principal stiffness in the bending direction is denoted

y 𝐾 ∈  

0 ( 𝑎, 𝑏 ) and, by local inversion, the field 𝐶 = 𝐾 

−1 ∈  

0 ( 𝑎, 𝑏 ) is
he positive definite elastic bending compliance. 
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Acting on the bending field 𝑀 ∈  

0 ( 𝑎, 𝑏 ) , the elastic compliance

rovides the local elastic curvature 𝐶 ⋅𝑀 ∈  

0 ( 𝑎, 𝑏 ) . 

. Strain-driven nonlocal elasticity 

In the purely nonlocal strain-driven integral elastic law [1] , it is as-

umed that the bending interaction field is the outcome of an integral

onvolution, over the beam length, between an averaging kernel 𝜙𝜆 and

he local bending 𝐾 ⋅ 𝜒𝑒𝑙 ∈  

0 ( 𝑎, 𝑏 ) associated with the elastic curvature

eld 𝜒𝑒𝑙 ∈  

0 ( 𝑎, 𝑏 ) : 

𝑀( 𝑥 ) = ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ ( 𝐾 ⋅ 𝜒𝑒𝑙 )( 𝑦 ) 𝑑𝑦 . (35) 

The purely nonlocal strain-driven model in Eq. (35) can be deduced

rom the abstract relation Eq. (7) by setting 

 = 𝑀 , 𝑠 = 𝐾 ⋅ 𝜒𝑒𝑙 . (36)

emark 1. Let us recall from Lemma 1 that, if the relation Eq. (7) is

ormulated as a Fredholm integral equation of the first kind in the

nknown source field 𝑠 ∈  

2 ( 𝑎, 𝑏 ) , convoluted with the bi-exponential

ernel for given 𝑓 ∈  

2 ( 𝑎, 𝑏 ) , the solution can be computed by means

f Eq. (8) if and only if the boundary conditions Eq. (9) are met by the

utput field 𝑓 ∈  

2 ( 𝑎, 𝑏 ) . In the nonlocal strain-driven integral elastic

aw, f is the bending field M and is therefore subject to the equilibrium

onditions. For this reason a solution to the problem fails to exist. 

emark 2. From Lemma 2 , we infer that, if the local-nonlocal mixture

n Eq. (11) is formulated as a Fredholm integral equation of the sec-

nd kind in the unknown source field 𝑠 ∈  

2 ( 𝑎, 𝑏 ) , convoluted with the

i-exponential kernel for given 𝑓 ∈  

2 ( 𝑎, 𝑏 ) , the solution can be com-

uted for any m > 0 by means of Eq. (12) with the boundary conditions

q. (13) . Singularities will occur for m →0 since the case of Remark 1 is

ecovered. The family of solutions for m > 0 will have no limit as m →0 .

. Obstruction to a purely nonlocal strain-driven model 

Motivation of obstruction of the purely nonlocal strain-driven model

s of a general nature, not limited to one-dimensional structures and is

ndependent of the choice of a kernel. 

To see why, let us denote by Σ𝓁 the affine variety of stress fields

ulfiling equilibrium with the loading 𝓁 and by Σel the range of stress

elds generated, through the nonlocal elastic law, by square integrable

inematically compatible elastic strain fields. 

The obstruction is due to occurrence of an empty intersection: 

𝓁 ∩ Σ𝑒𝑙 = ∅ . (37)

This means that no solution of the elastostatic problem exists. A di-

ect check of this occurrence is available for one-dimensional problems

hen the bi-exponential kernel Eq. (6) is adopted, since an explicit in-

ersion of the convolution operator is provided by an equivalent differ-

ntial problem, as stated by Lemmas 1 and 2 . 

Evidence of obstruction in applying Eringen ’s integral law to nano-

ars was first reported in [8] . 

There reference was made to treatment of Fredholm integral equa-

ions of the first kind in [7] and adoption of a local/nonlocal mixture,

arly contributed in [16,17] , was proposed to overcome the obstacle. 

Further investigations about applicability of Eringen ’s integral

odel to nano-beams were recently contributed in [10,23,24] where

he stress-driven model for nonlocal elasticity was first proposed. 

Evaluation of the elastic curvature by Eq. (35) requires the solution

f a Fredholm integral equation of the first kind. 

It is known [30] that this task is challenging, that it leads generally

o ill-posed problems and that, more than often, it is simply impossible

o be fulfiled. 

Properties (most often bad properties) of existence and uniqueness

f the solution of the integral equation (35) are highly dependent on the

dopted kernel and on the functional spaces in which solution is sought.
495 
Adoption of the bi-exponential kernel is enlightening since it leads

o a Fredholm integral equation of the first kind whose discussion con-

erning existence and uniqueness is direct and simple, as illustrated in

ection 2.1 . 

Existence of a solution 𝜒𝑒𝑙 ∈  

0 ( 𝑎, 𝑏 ) of Eq. (35) , with the bi-

xponential kernel Eq. (6) , by virtue of Lemma 1 , is equivalent to fulfil-

ent of the constitutive differential equation: 

𝑀 

𝜆2 
− 𝑀 

′′ = 

𝐾 ⋅ 𝜒𝑒𝑙 
𝜆2 

, (38)

nd of the homogeneous constitutive boundary conditions: 

 

 

 

 

 

𝑀 

′( 𝑎 ) = 

1 
𝜆
⋅𝑀( 𝑎 ) , 

− 𝑀 

′( 𝑏 ) = 

1 
𝜆
⋅𝑀( 𝑏 ) . 

(39) 

The elastic curvature 𝜒el , associated with an equilibrated bending

eld M according to Eq. (35) , can then be computed by means of

q. (38) if (and only if) the boundary conditions Eq. (39) are met by

he field M . 

In other words, the following alternative must be faced: 

1. either the equilibrated bending field fulfils the constitutive boundary

conditions Eq. (39) for any value of the nonlocal parameter 𝜆> 0 ,

so that a unique solution of the integral equation (1) is provided by

Eq. (38) , 

2. or, on the contrary, the constitutive boundary conditions are in con-

trast with the equilibrium boundary conditions on bending fields and

so no solution to Eq. (1) exists. 

The second unfavourable realisation occurs as a rule in applications.

ailure was witnessed by simple beam problems in [8,10,24] and will

e exemplified in Section 12 . 

The obstruction involved in adopting the strain-driven purely non-

ocal model persists also when the compensation of boundary layer ef-

ects is performed according to the proposal made in [19] and expressed

y Eq. (23) . Indeed, adopting in Eq. (23) the bi-exponential kernel 𝜙𝜆
q. (6) , failure of the homogeneous constitutive boundary conditions

q. (9) with 𝑓 = ( 𝜙𝜆 ∗ 𝟏 ) ⋅𝑀 is directly checked. 

. Computational issues 

To get around the obstruction encountered in solving even simplest

roblems, formulated by the strain-driven nonlocal elastic model, nu-

erical approaches were proposed in [9,13] . 

Although computational methods are most often the only effective

ool for complex problems in structural mechanics, the recourse to this

trategy is not expedient for the matter at hand. 

Existence or non existence of a solution are in fact highly dependent

n the functional spaces in which solutions are sought. In numerical

ethods discrete spaces, isomorphic to some ℜ 

n , for suitable 𝑛 ∈ ℕ ,

re considered but finite dimensionality of involved spaces generates

y duality large classes of equivalent stress fields and loadings. 

As a consequence, equilibrium problems impossible to be fulfilled

n the continuum context may become solvable in the discrete context

ut the interpolating field so found may well have no relation with the

olution of the original problem (possibly non-existent) and the data

merging from the discrete solution may be quite different from the

riginal ones, when measured in an appropriate norm. 

Prior to perform numerical computations, it is therefore compelling

o get evidence of existence and uniqueness of the continuum solution

n order to consider the resulting discrete field as an approximation for

he continuum field, in a suitable functional sense. 

Moreover, when no solution exists for the continuum problem, nu-

erical computations are likely to manifest ill-posedness and singular

ehaviours. 
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(i  
0. Well-posedness: stress-driven nonlocal elasticity 

According to the stress-driven nonlocal model, non-local elastic con-

titutive laws are expressed, by assuming that the elastic curvature field

𝜒𝑒𝑙 ∈  

0 ( 𝑎, 𝑏 ) is the output of a convolution. 

The local elastic curvature field is the source 𝐶 ⋅𝑀 ∈  

0 ( 𝑎, 𝑏 ) while

he convolution with an averaging kernel 𝜙𝜆 ∈  

0 ( 𝑎, 𝑏 ) depending on

 nonlocal scalar parameter 𝜆> 0 , yields the nonlocal elastic curvature

eld as output: 

𝜒𝑒𝑙 ( 𝑥 ) = ∫
𝑏 

𝑎 

𝜙𝜆( 𝑥 − 𝑦 ) ⋅ ( 𝐶 ⋅𝑀)( 𝑦 ) 𝑑𝑦 . (40)

The stress-driven model in Eq. (40) can be deduced from Fredholm

ntegral Eq. (7) by setting 

 = 𝜒𝑒𝑙 , 𝑠 = 𝐶 ⋅𝑀 . (41)

From Lemma 1 , it follows that, adopting the bi-exponential kernel

q. (6) , the integral relation Eq. (40) is equivalent to the constitutive

ifferential equation: 

𝜒𝑒𝑙 

𝜆2 
− 𝜒 ′′

𝑒𝑙 
= 

𝐶 ⋅𝑀 

𝜆2 
, (42)

ith the homogeneous constitutive boundary conditions: 

 

 

 

 

 

𝜒 ′
𝑒𝑙 
( 𝑎 ) = 

1 
𝜆
⋅ 𝜒𝑒𝑙 ( 𝑎 ) , 

− 𝜒 ′
𝑒𝑙 
( 𝑏 ) = 

1 
𝜆
⋅ 𝜒𝑒𝑙 ( 𝑏 ) . 

(43)

Contrary to what occurs for the strain-driven model, equilibrium

onditions are now imposed on the source field and hence no conflict

rises with the output of the integral convolution. This key property as-

ures well-posedness of elastostatic problems formulated with the stress-

riven model. 

1. Solution procedure 

The following procedure can be adopted for the solution of the nonlo-

al elastic problem for bars or beams. Reference will be made to beams,

ust for definiteness. 

In the general case of a statically indeterminate beam assembly, the

inear space Σ of self-equilibrated bending interactions will be of di-

ension n , degree of statical indeterminacy. 

Kinematic compatibility requires that the total curvature, sum of the

lastic curvature 𝜒𝑒𝑙 ∈  

0 ( 𝑎, 𝑏 ) and of the non-elastic (i.e. thermal) cur-

ature 𝜒𝑡ℎ ∈  

0 ( 𝑎, 𝑏 ) : 

𝑡𝑜𝑡 = 𝜒𝑒𝑙 + 𝜒𝑡ℎ , (44)

ust be equal to the geometric curvature defined by 

( 𝑣 ) ∶= 𝑣 ′′ . (45)

 fundamental theorem of structural analysis assures that the kinematic

ompatibility requirement 

𝑡𝑜𝑡 = 𝜒( 𝑣 ) , (46)

s equivalent to fulfilment of the variational condition: 

𝑏 

𝑎 

𝛿𝑀 ⋅ 𝜒𝑡𝑜𝑡 𝑑𝑥 = ⟨𝛿 , 𝑤 ⟩, ∀ 𝛿𝑀 ∈ Σ . (47)

Here, 𝑤 ∈  

2 ( 𝑎, 𝑏 ) is an imposed displacement field and 𝛿 is the

eaction force in equilibrium with the bending field 𝛿𝑀 ∈  

0 ( 𝑎, 𝑏 ) , so
hat: 

𝛿 , 𝑤 ⟩ = ∫
𝑏 

𝑎 

𝛿𝑀 ⋅ 𝜒( 𝑤 ) 𝑑𝑥 (48)

If the set 

 , 𝑖 = 1 , … , 𝑛 , (49)
𝑖 

496 
s a basis of Σ , the variational condition Eq. (47) can be written as a

nite set of n linear conditions: 
𝑏 

𝑎 

𝑀 𝑖 ⋅ 𝜒𝑡𝑜𝑡 𝑑𝑥 = ⟨ 𝑖 , 𝑤 ⟩, 𝑖 = 1 , … , 𝑛 . (50)

In linear elasticity (local or nonlocal), the elastic curvature 𝜒el in

q. (44) is a linear function of the bending field M . 

Denoting by M 0 ∈Σ𝓁 a bending field in equilibrium with the loading

 , any equilibrated bending field M ∈Σ𝓁 will be expressed by the affine

ombination: 

 = 𝑀 0 + 

𝑛 ∑
𝑖 =1 
𝛼𝑖 ⋅𝑀 𝑖 . (51)

The bending fields 𝑀 𝑘 , 𝑘 = 0 , 1 , … , 𝑛 will generate, by means of

he assumed nonlocal constitutive law, elastic curvature fields 𝜒𝑘 
𝑒𝑙 
, 𝑘 =

 , 1 , … , 𝑛 , and the total curvature will then be expressed by the affine

ombination: 

𝑡𝑜𝑡 = 𝜒0 
𝑒𝑙 
+ 

𝑛 ∑
𝑖 =1 
𝛼𝑖 ⋅ 𝜒

𝑖 
𝑒𝑙 
+ 𝜒𝑡ℎ . (52)

Kinematic compatibility is imposed by Eq. (50) and is expressed by

 linear system of n equations for 𝑗 = 1 , … , 𝑛 , in the n unknowns pa-

ameters 𝛼𝑖 , 𝑖 = 1 , … , 𝑛 : 

∫
𝑏 

𝑎 

𝑀 𝑗 ⋅
( 

𝜒0 
𝑒𝑙 
+ 

𝑛 ∑
𝑖 =1 
𝛼𝑖 ⋅ 𝜒

𝑖 
𝑒𝑙 
+ 𝜒𝑡ℎ − 𝜒( 𝑤 ) 

) 

𝑑𝑥 = 0 . (53) 

The unique solution of this system provides the kinematically com-

atible curvature 𝜒 tot by means of Eq. (52) . 

The unique transversal displacement field 𝑣 ∈  

2 ( 𝑎, 𝑏 ) , solution of

he elastostatic problem, is got by solving the differential problem 𝜒𝑡𝑜𝑡 =
 

′′ with the prescribed kinematic boundary conditions. 

Let us now consider the distinctive features of the nonlocal elastic

odels at hand. 

i) If a purely nonlocal strain-driven elastic model is assumed, the elastic

curvature fields 𝜒𝑘 
𝑒𝑙 
, 𝑘 = 0 , 1 , … , 𝑛 should be evaluated by solving a

family of 𝑛 + 1 Fredholm integral equations of the first kind with

the data output fields given by the bending fields 𝑀 𝑘 , 𝑘 = 0 , 1 , … , 𝑛 .
This procedure leads to unsolvable problems due to conflicting re-

quirements between constitutive and equilibrium conditions. The

same conclusion is got if the modified expression Eq. (23) , proposed

in [19] for compensating boundary effects, is assumed in a strain-

driven elastic model. 

ii) On the contrary, the proposal made in [20,21] to compensate bound-

ary effects, expressed by Eq. (26) , leads to well-posed elastostatic

problems. In the nonlocal response so evaluated, the modification

induced by nonlocality appears however to be significantly reduced

with respect to the purely nonlocal case if the stress-driven model is

assumed, as exemplified in Fig. 7 (bottom plot). 

ii) If the mixture strain-driven elastic model is assumed, the elastic

curvature fields 𝜒𝑘 
𝑒𝑙 
, 𝑘 = 0 , 1 , … , 𝑛 can be evaluated either by solv-

ing a set of 𝑛 + 1 Fredholm integral equations of the second kind

as in Eq. (10) or differential problems as in Eqs. (12) and (13) ,

with data output fields f given by the set of 𝑛 + 1 bending fields

𝑀 𝑘 , 𝑘 = 0 , 1 , … , 𝑛 . 
This procedure leads to solvable problems if m > 0 , with unique solu-

tions for the source field [14] . Singularities are however experienced

for m →0 . This occurrence is evaluable by means of an asymptotic

formula which provides the ratio of boundary values of input and

output fields of the convolution Eq. (7) as 𝜆→ +∞ : 

lim 

𝜆→+∞

𝑠 ( 𝑎 ) 
𝑓 ( 𝑎 ) 

= lim 

𝜆→+∞

𝑠 ( 𝑏 ) 
𝑓 ( 𝑏 ) 

= 

1 
𝑚 
. (54)

In evaluating the elastic curvature by Eq. (35) , a divergence occurs

as m →0 . An example is provided in Fig. 4 . 

v) The solution of the purely nonlocal stress-driven elastic model can be

evaluated in terms of the elastic curvature fields 𝜒𝑘 
𝑒𝑙 
, 𝑘 = 0 , 1 , … , 𝑛 
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Fig. 4. Strain-driven mixture. Free bar under uniform tension 𝑓 = 𝑁 = 𝟏 . Top: s from 

Eqs. (12) and (13) for 𝜆 = 0 . 10 , 𝑚 = 0 . 01 → 1 . Middle: 𝑢 = 𝜖 from 𝑢 ′ = 𝑠, 𝑢 (0) = 0 . 
𝑚 = 0 . 10 , 𝜆 = 0 . 001 → 1000 . Bottom: 𝑢 = 𝜖 from 𝑢 ′ = 𝑠, 𝑢 (0) = 0 . 𝑚 = 0 . 001 , 𝜆 = 0 . 01 →
100 . 
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𝐱

either by computing a family of 𝑛 + 1 convolutions Eq. (40) with M

given by Eq. (51) or by solving the corresponding differential prob-

lems Eqs. (42) and (43) . No Fredholm integral equation is involved.

The procedure for solving the nonlocal extensional elastostatic prob-

em follows the same lines, in evaluating the total axial dilation 𝜀 tot . 

The axial displacement 𝑢 ∈  

1 ( 𝑎, 𝑏 ) at solution is got by solving the

ifferential problem 𝜀 𝑡𝑜𝑡 = 𝑢 ′ with the prescribed kinematic boundary

onditions. 

In general, for structural two- or three-dimensional models, a para-

etric representation (either continuous or discrete) of the variety of

quilibrated stress fields is usually not available. 

For this reason, treatments in literature addressed a displacement

olution by discretising the affine variety of admissible displacements

13,22,31] . 

The equilibrium condition is there imposed on the elastically corre-

ponding stress fields, thus leading to variational formulations akin to

he standard displacement principle in linear local elasticity. 

This procedure might hide essential difficulties that arise when a

urely nonlocal strain-driven model is assumed to express the stress

elds in terms of elastic strain fields, since equilibrium is then impossi-

le at the continuum level. 
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On the other hand, when a stress-driven model is assumed, the in-

erse constitutive expression of stress-fields in terms of elastic strain

elds is not available. 

A variational approach must then be necessarily formulated in mixed

orm, by assuming displacement-stress pairs as basic unknowns, with

nly kinematic compatibility of displacements imposed a priori . This

opic will be addressed in detail in a forthcoming study. 

Examples are developed by expressing the source field s and the

utput field f in terms of the functions 0, 1, x introduced in Eq. (16) . 

2. Examples 

All examples displayed below were programmed by the procedure

llustrated in Section 11 and put into operation by means of the Math-

matica software due to Stephen Wolfram [26] . 

Analytical expressions of the solutions are not displayed since the

esulting lengthy formulae would just be copies from the outputs of the

athematica notebook. 

We collect hereafter simple schemes to provide evidence of general

eatures of the methods described above. 

3. Mixture strain-driven elasticity 

We consider a local-nonlocal strain-driven mixture model Eq.

10) for various values of the mixture parameter 0 < m ≤ 1 and of the

onlocal parameter 𝜆> 0 . The value 𝑚 = 0 corresponding to a purely

onlocal model is not achievable since no solution to the elastostatic

roblem exists in this case. 

This occurrence is confirmed by computational evaluations since the

ymbolic software gives no answer to the required solution. 

3.1. Free bar under uniform tension 

Fig. 4 reports, for a unitary output field 𝑓 = 𝑁 = 1 , the source field

𝑠 = 𝐴 𝐸 ⋅ 𝜖 evaluated by the differential problem Eqs. (12) and (13) .

ere, 𝐿 = 1 with 𝑎 = 0 , 𝑏 = 1 . Also 𝐴 𝐸 = 1 . 
The top plot shows a singular behaviour in a boundary layer for 𝜆 =

 . 1 and small values of the mixture parameter 𝑚 = 0 . 01 , 0 . 2 , 0 . 5 , 1 . 0 . 
Middle and bottom plots display the integral u of the source field

 for small values of the mixture parameter m and the wide range of

𝜆 = 0 . 001 , 1 , 2 , 3 , 4 , 5 , 6 , 10 , 15 , 1000 . 
The asymptotic estimate of Eq. (54) is confirmed by the slope of the

iagram for 𝜆 = 1000 in the middle plot where 𝑚 = 0 . 1 . 
In the bottom plot, where 𝑚 = 0 . 001 the maximum value at 𝑥 = 1 

ould be 𝑢 = 1000 . These evaluations provide evidence of a singular

ehaviour as m →0 . 

3.2. Cantilever under uniform bending 

The results in Fig. 4 could as well be expressive of the nonlocal elas-

ic curvature and of cross sectional rotation fields in an elastic can-

ilever under unitary bending interaction by setting 𝑓 = 𝑀 = 𝟏 and

𝑠 = 𝐾 ⋅ 𝜒el . A further integration yields the deflection of the cantilever

f Fig. 5 . Again a singular behaviour as m →0 is detected. 

4. Stress-driven elasticity 

4.1. Uniformly loaded clamped beam 

The first application of the stress-driven model is to the scheme of

 straight beam of length 𝐿 = 1 with a unitary axial stiffness 𝐾 = 1 ,
lamped at the ends and subject to a unitary transversal loading. Setting

𝑎 = 0 and 𝑏 = 𝐿 , an equilibrated bending field is given by 𝑀 0 = 𝐱 ⋅ ( 𝟏 −
)∕2 and self-equilibrated bending fields are proportional to 𝑀 = 𝟏 . 
1 
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Fig. 5. Mixture strain-driven. Cantilever under uniform bending. 𝜆 = 0 . 001 , 
1 , 2 , 3 , 4 , 5 , 6 , 10 , 15 , 50 , 1000 . Up: elastic deflection for 𝑚 = 0 . 1 . Down: elastic deflec- 

tion for 𝑚 = 0 . 001 . 

Fig. 6. Stress-driven Eq. (7) . Clamped beam under constant loading. Up: elastic curva- 

ture for 𝜆 = 0 . 0001 , 0 . 03 , 0 . 05 , 0 . 07 , 0 . 10 , 0 . 15 , 0 . 25 , 0 . 50 , 0 . 75 , 1 . 00 . Down: max deflection for 

0 ≤ 𝜆≤ 1 . 
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e

Fig. 7. Stress driven. Clamped beam with transversal end displacement. Top: convolu- 

tion: no compensation Eq. (7) . Middle: boundary effects compensated Eq. (20) . Bottom: 

boundary effects compensated Eq. (27) . 
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Diagrams of elastic curvature and of the max deflection are plotted

n Fig. 6 for nonlocal parameter 𝜆 ranging in the list 

 0 . 0001 , 0 . 03 , 0 . 05 , 0 . 07 , 0 . 10 , 0 . 15 , 0 . 25 , 0 . 50 , 0 . 75 , 1 . 00 } . 

A progressive vanishing of the elastic curvature and of the maximal

eflection is clearly shown for increasing values of the nonlocal param-

ter. 
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4.2. Cantilever beam: end point loading 

The curvature field of a cantilever under end point loading are de-

icted in Table 2 . This scheme is useful in simulating for NEMS actua-

ors. 

Adopting the stress-driven nonlocal model, contrary to outcomes of

ifferential formulations based on the strain-driven integral model no

aradoxical behaviour is detected. 

In Table 2 , (top row) left and centre figures show the input uni-

ary function 𝑠 = 𝐶 ⋅𝑀 = 𝟏 and the output field 𝑓 = 𝜒𝑒𝑙 for 𝜆 =
 . 001 , 0 . 10 , 0 . 50 , 100 . The progressive vanishing of 𝜒el under increasing

alues of the nonlocal parameter 𝜆 is evident. The right figure repro-

uce the input field 𝐶 ⋅𝑀 = 𝟏 − 𝐱 . 
In Table 2 , (bottom row) output fields 𝑓 = 𝜒𝑒𝑙 corresponding to the

odels of Eqs. (7) , (20) and (27) are plotted and show a perfect agree-

ent with the limit theoretical results in Table 1 . 

In particular, the compensated response of Eq. (27) confirms that the

ocal response is recovered both for 𝜆→0 and for 𝜆→ +∞ . The possi-

ility of swaying from the local behaviour is accordingly quite limited. 
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4.3. Clamped beam subject to transversal end displacements 

A straight beam of length 𝐿 = 1 , with clamped ends at 𝑎 = − 𝐿 ∕2 
nd 𝑏 = 𝐿 ∕2 , unitary bending stiffness 𝐾 = 1 subject to a unitary rela-

ive transversal displacement between the end cross-sections is consid-

red. 

The curvature field associated according to the stress-driven models

qs. (7) , (20) and (27) are depicted in Fig. 7 . 

In agreement with the theoretical results in Table 2 , middle and bot-

om plots reveal that compensation of boundary effects is achieved at

he cost of rendering the nonlocal behaviour less significant, as was ob-

erved also from the plots in Table 2 . 

emark 3. The peculiar boundary behaviour of dilation and curvature

olutions at the end-points in Figs. 6 and 7 is a consequence of the result

n Lemma 3 . 

5. Conclusions 

Contributed discussions and results may be summarised as follows: 

1. Nonlocal elasticity is formulated in two ways, declared as strain-

driven and stress-driven laws. Both stem from an abstract convolu-

tion law by swapping the interpretation of source and output fields

and lead to distinct constitutive laws with distinct features. 

2. Obstructions to adoption of a purely strain-driven model are evi-

denced, motivated by general considerations about elastostatic prob-

lems, and confirmed by computations. Well-posedness of problems

based on the stress-driven model is illustrated and tested by compu-

tations. 

3. Boundary effects are examined with an abstract approach and a com-

parison between proposed compensations is performed, with new

statements. 

4. Mixtures of local and strain-driven nonlocal laws and modified laws

proposed to compensate boundary effects are revisited and involved

computational issues are discussed. 

5. New results concerning the evaluation of limit behaviours for ex-

treme values of the nonlocal parameter are provided and shown to

be helpful in interpreting computational outcomes. 

6. A general solution procedure for nonlocal elastic beams is described

and its application to the various nonlocal laws is discussed. 

7. The stress-driven nonlocal integral elastic model is illustrated by

showing that resulting elastostatic problems are well-posed and pro-

vide efficient simulations of small-scale effects in Bernoulli –Euler

nano-beams. An increasing elastic stiffness is predicted by the theory

for increasing values of the nonlocal parameter and this behaviour is

confirmed by computations. This statement should however be suit-

ably modified in cases where both larger and smaller curvatures may

be exhibited at different points along the beam axis, such as in the

left-bottom plot of Table 2 . 

8. A sampling of simple beam problems, including both statically de-

terminate and indeterminate schemes, modelled by the illustrated

nonlocal laws, is displayed and discussed by comparison with the

theoretical results contributed in the paper. 
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