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1. - Introduction

A detailed discussion on the stability of an equilibrium state of an elastic structure under conser-
vative loading and on the uniqueness of the incremental solution of the corresponding nonlinear equili -
brium problem, has been presented in the first part of this paper [1].

A new method of investigation of the postcritical behaviour is presented in this second part: a per
turbative analysis of the nonlinear equilibrium equation and of the associated critical eigenproblem yield
a systematic information on the subsequent derivatives of the postcritical equilibrium path and on its
statibility . ;

The geometric aspects of the model problem are especially emphasized by the use of a compact no
tation,

The followed approach isthus formally simple and open to a direct mechanical insight in the single
steps of the analysis.

Both stationary (limitj and bifurcation critical states are investigated and the condition under which
one or the other does occur is formulated in simple mechanical terms.

These features of the proposed analysis are comparative merits with respect to previous treatments
of the subject [ 2 - 9 ].

The effect of a slight imperfection on an initially perfect system, which reaches a bifurcation criti
cal state is also investigated.

The well-known imperfection sensitivity of structural systems, whose primary critical state is an

unstable bifurcation state, is discussed in detail.

This work has been sponsored by C.N.R. and partly presented at the International [UTAM Congress, Moscow 1972,



2. PRIMARY SIMPLE CRITICAL STATE

Let us consider a discrete model of an elastic structure under a conservative
load defined by the potential AL(u), where A is a load multiplier. The beha -
viour of the structure is then completely described by the potential energy func-

tional
E(u,\) = W(u) +ANL(u)

with W(u) internal elastic energy.

At a primary simple critical state (u.. XC) the stiffness operator

Kieu s, ho)izsdiB(ugsrky)
has the lowest, simple eigenvalue T vanishing and all the others positive.

The postcritical behaviour may then be effectively investigated by means of a
perturbative analysis of the nonlinear equilibrium equation and of the associated
‘critlcal eigenproblem.

Indeed any equilibrium path u(t), A(t) emerging from the critical state

(uC‘ KC) will identically satisfy the nonlinear equilibrium equation

A (uet) SN =0 (2.1)
where A = d E and u(0) = u. . A(0) = KC ~ and the nonlinear critical eigenpro -
blem

K (u(ty, N(t)) e(t) =T (L) e(t) 62.2)
with e(0) = e and = T(0) = 0
By performing a perturbative analysis of the nonlinear equations (2.1) and

(2.2) we may investigate respectively the behaviour of the equilibrium path u(t),

A(t) about the critical state G, Kc)and the stability of the corresponding

states. -
We shall need the following explicit expansions

Kio hD : €2:3)



Kn=Xp—(zXKL{1+th2) » (2.9

K +Xp- [3NKpa + 3A (K +dk, 8°) +3daKid+ a®Ka’] (2.5)
and

Ke=Te=0 (t ="0) (2.6)

Ké=%e-(XKLe+dKeh) (2.17)

Be =% e - 286 ~0AK o7 2R (K &+ dk o)+

el s dKew boa Kem (2.8)

where the superimposed dot denotes differentiation with respect to a suitable evolu
tion parameter. All the functions above are intended to be evaluated at the pri -
mary simple critical state (u., A.).

Since K is singular, the linear equations (2.3)-(2.8) will admit solutions if
and only if the second members are orthogonal to the critical direction e (compa-
tibility condition).

The solution set will then be a one-dimensional linear variety parallel to the

critical direction e

For the incremental equilibrium equation @253) the compatibility condition is

given by
Nop - ie =0 €25:9)
and the solution set is the ray
i1=>\up+be (25103
where
n
i i§2 == (p-e;) e;

is the unique solution of the linear equation

Ku =p - (p-e) e under the orthogonality condition - cnen=10

and p(t) ==u(t). e is the orthogonal projection of the displacement vector along
the critical direction.
Taking into account the expression (2.10) of U , the equations (2.4) and (2.7)

become




o . 2 ol o
K- Ap- (A (aKu + 2K u) + 2Nhp(dKue +Ke) + 0% dKe”] (2.11)

.

. & - 2
Ké = te - [N(dKue +Kpe) + 0 dKke’] - : (2412)

and the corresponding compatibility conditions may be written

s 02 v -2
N p-e =Ah +2Ap i a0 (2139
Tk e (2.14)
where
h d.‘ x :
= Kupe + 2 KLupe (2:015)
= 2 2
Tp = dh.upe + Kyte (2-:16))

T = dKe® : (2.17)

In the analysis of the postcritical ibehaviour we shall distinguish two situations

a) DEictel JR0) stationary state

b) D ele =0 bifurcation state

according to whether the external load works or doesn’t work for the buckling mode

3. POSTCRITICAL BEFAVIOUR

Let us consider the expansions

o . 2 !
Ay =R vk bRt e : (3. 1)
c 2
% 1 - >
pt)a= p-t + E—Q TR L (assuming u_ = 0) (3:2)
- e
T(t)=Tt+E’Et Fas (t(o) = 0) 3. 3)

of the load multiplier A(t), the critical displacement p(t) = u(t) - e and the

critical stiffness T (t).



a) Stationary state : p-e #£0
From the compatibility condition (2.9) we have : X =) (3:4)
and from (2.10) : u=206e (3.5)

Further on, from the compatibility conditions (2.13) and (2.14) we get

Aot (3.6)

T (O (8510
Since A = 0, from (3.1)-(3.3) we obtain the approximate expressions

£2N T2 A=)

N 1 Lo 2
I =N — 0 (3..8)
25 pre e
T e 0 @3- 95
which are sketched in fige. ~l-and 2, respectively in the case where S a i 0 and

T o> 0 , assuming that the critical vector e is oriented so that p-e>0, i.e there
is a positive work of the external load p for the buckling mode e.

As shown in figg.1 and 2 the equilibrium states corresponding to the pairs(%,o)
are stable or unstable depending on whether the associated minimal stiffness, T ,1i$
positive or negative
According to the stability criterion (sect.40f part I of this paper) the criti-

cal state itself is unstable in the case of fig 1 and stable in the case of fig.2.

EE T = 0 Erom- (2.13), (2.14) and (3.4) we have that
T =0 (3.10)
Re=-N =10 (3.11)

and the perturbations (2.4) and (2.7) become



Kif= 20" gke @ 12)
Ké=_padKe® €351
whence we get
. .« 0 .
U=10pn=t+ope (3. 14)
e =pn (ere=0 since fe(t)l = 1) (3.15)
where n is the unique solution of the linear problem:
K== d e 2
under the orthogonality condition n* e = 0
A % 2
N %
1 INST. "~ —_—’/////Q;AB
C S
S1Aj>/////———— S NSt Ac
\\
3 4
= Te <O = Te>0
0 e
: (3.16)
fipg. 1 fig. 2
Substituting the expressions (3.14) and (3.15) into (2.5) and (2.8) we get
K < Np - p-(dKe *5:4Ken) (3.17)
R =
Ke=7e-0 (a°Ke’+3 dKen) (3.18)

The corresponding compatibility conditions yield



S (3.19) "
s s
T DA (3.20)
| Ihei‘e we have set

ik ot e3dke
Note that, by (3.16) we have also

(35 2108)
i P et aln,
From (3».1)-—(3.3) we have the approximate expressions
3". ~
te N = 6()\—)\c)
t 0¥ o
¢t T 21
and hence by (3.19) and (3.20) we get the asymptotic relations
a 3
N (3.22)
6(p-e)
[ o
T =—p (3.23)
2
which are sketched in figg. 3 and 4, respertively for a > 0: and . ai< 0 assuming
that p-e > 0 . 2 y
s, | .
AN
—/ \\
STAB. i STAB. NSV s . INST
, / =
Phanale S o TRt e
| 5 5
%‘ T a>0 T a<0

(=]




According to the stability criterior the critical state itself is sabilile SN g 10

and unstable if a < 0

If a =0 the analysis must be continued further, by the same procedure

REMARK
The situations more relevant in the applications are those sketched in fig 1 and

In the case of fig 1 a limit value of the load parameter is reached in corri -
spondence of the critical state. If the load is increased the system will jump dyna
mically to a stable equilibrium state (snapping)

In the case of fig 2 the critical state is isolated since all the equilibrium

states in a neighbourhood are stable
b) Bifurcation state : p-e=20

In this case the compatibility condition (2.9) is met for every A and the

condition (2.13) gives
ko 2hpT, + 07 T, =0 (3.24)

Assuming that the discriminant

D= 7 hg (3.25)

of the quadratic form (3.24) is positive(O) we have the solutions

et 8 (on ¥ (3.26)

or equivalently

Wb = or it D) (3.27)

and hence, from (2.14), we get

T D

From the expansions (3.1)-(3.3) we have then the asymptotic relations

(o) Ehie Teiasie = DS =08 s niot revlevant in the applications and will not be dealt with

here



B0

A= EVD) = pis (3.28)

= (AR (3.29)

which are sketched in fig 5, assuming T, # 0

The so called "phenomenon of exchange of stabilities", first pointed out by

Poincaré, is apparent.

A A

Big 5

The critical state itself is unstable and will be called an exchanging bifurcation

state.
eE =050 (3.24) becomes
X?h+zibrp=o (3. 30)
which has the solutions
A =0 (3.31)
e oo (3.32)
and from (2.14) we have
f:)(rp (3.33)

From the solution (3.32) and from (3.33) we get the asymptotic relations




=100 =

(N=A,) h=-paz, (3.34)

TSI Y (3.35)

In corrispondence of the solution (3.31) we have

and the perturbations (2.4) and (2.7) become

Eh s e (3.36)
‘Ké=—édKe2 (3.37)
whence we get
oy up +62 n +5 e with up-e =i Aee =) (3.38)
¢ =pn (6-e = 0) (3.39)

Substituting in (2.5) and (2.7) we have

e (4Ku e + K o) - p°(a®K e’ + 3dKen) (3. 40)

K& =7 e-X(aK ue+ Ke -0 (d°Ke’+ 3dKen) (3.41)

The corresponding compatibility conditions yield
3i s wiptg (3.42)
T=ATp +0 a (3.43)

Hence, by means of the approximate expressions

s Ta (A=)

Tt

We get the asymptotic relations



a
N e (3.44)
6T
P
e 2
= k) ofitr — (3.45)

By substituting (3.44) into (3.45) we get further

a 2 ;
Tt (3.46)
3

A
1"

(=27) (A=) (3.47)

which yield respectively the dependence of the minimal stiffness T upon the cri-

tical displacement @ and the load parameter A

Moreover, by setting T = 0 into (3.45) 6we obtain the equation of the "stabi-

lity boundary" in the plane A, 0

o] (3.48)

The situation is sketched in the figg. 6, 7 and 8, where we have taken Tp< 0,
which corresponds to the usual situation in the structural applications.

The asymptotic relations (3.34) and (3.35) are sketched in fig. 6.

INST.

STAB.




g

and the asymptotic relations (3.44), (3.486), (3.47) and the stability boundary (da-

shed curve) are sketched in figg 7 and 8 respectively in the case

A

a > 0 and a<0.

A
> ’
\\\ //
o i
~, //
STAB. = = STAB
Ac
a>0
[
T
e
fig. q
A
Ac
INST = R INST
I‘ \\
/’, \\
- N
Z; N
a<0
4
T
/ \ (4
tig. 8

The critical state is stable if

a > 0 and unstable if a < 0.




TR e

REMARK

411 the situation sketched in the figg 5,6,7 and 8 are relevant in the applications.

4. IMPERFECTION SENSITIVITY

To analyze the different postcritical behaviour of a structural system at a
<table or at an unstable bifurcation critical state, we consider an "imperfect' sy-

stem, whose potential energy may be written
E(u,h,e) = W(u) + AL (u) + £Q (u) (4.1)

with € = 0 at the critical state u.. A

c c

This system may be considered as a slightly imperfect version of the corresponding sy

stem with € = 0

Any equilibrium path emer ing from the critical state (u_ . N 0D wrild satisfy
ging c c

identically the nonlinear equilibrium equation

Alu(t), N(t), €(t)) =0 ah2)
where A = du B,E 0i(0) = uts, N(E0) = %C , €(0) = 0, and the nonlinear critical eigen
problem :

K (u(t), M(t), €(t) = e(t) e(t) (4.3)

& . ) - ¢ and 3(0) =0
A description of the asymptotic behaviour of the imperfect system in a neighbour
hood of a critical state, which is a bifurcation critical state for the corresponding

perfect system (e = 0) may be obtained by means of a perturbative analysis of the

nonlinear equations (4.2) and (4.3).

Setting : qiuyE=t d Q(u) (4.4)

the incremental equilibrium equation will be given by

Ku = A p + ¢ q (4.5)




s

The introduced imperfection is then equivalent to an additional
load, with the imperfection parameter € as the load multiplier.

The qualifying assumption on the imperfection is that

a-:-e#0
isiel the equivalent load works for the buckling mode.

On the other hand, since the critical state is, by assumption, a

state, we have

yields

Accordingly we have

u= A u,+ P e

The second order perturbation of (4.2) will then be
SAER GRS e R e

while the corresponding perturbation of (4.3) is exactly (2.7)

The compatibility conditions give

Slac ol =Vin ane L 0’ e

From the expansions (3.1)-(3.3) and the analogous for €(t)
5 Toon g
Sl) o B e Gt (@)= 0)
2
we get the asymptotic relations

2(q +e) € = (7\—>\c)2h+ 2()\—7\6)pr s+ 00 %

e

= (N Ac) T, e

conservative

(

4.86)

bifurcation

(4.7)

(4.8)

(4.9)

(4.

(4.

(4.

10)

5 ALIE)

.12)

SR

14)
15)



r———

2.

The relation (4.14), under the assumption D =T, - hT > 0, represents an hy-

p
perbola in the plane A,p which degenerates in the asymptotes when

fect system).
The points (XM. OM) corresponding to extremal values of A are

by the condition

e =20 (per—

characterized

(RNt i p 2ot (4.16 )
which, by (4.15), yields also the stability boundary
Substituting (4.16) into (4.14) we obtain the relation between XM and €
L (4.17)
The situation is sketched in fig.9.
A INST. Am
Tg 0 Ac MR\
e fig. 9 e* 3
¥F = - 0 let us look for the asymptotic expression of the stability boundary

e
T (b)) = 0.
Setting T = 0 and v =0 from (4 12)Wesizet (28N =00 and hence
£ =0
Moreover from (4.9) we have : u = b e

The second order perturbation of the nonlinear equilibrium equation

Ki=Npop dik e

from (4:11)

will then be:



e il

which yields

The third order pertubation of the nonlinear equilibrium equation becomes
KW=MXp+%€aq+ 3AD(dK u, e+K; e) ~6%(a"K e+ 3dK en) (4.18)
and the corresponding perturbation of the nonlinear critical eingenproblem is exac
iy (3:41).
The compatibility condition give
Sl o O :3)\6Tp+af)3
T = AN Tp + 0% a

which yield the asymptotic relations

6-(d ) 8:61:p(}\—?\c)o+a03 (4.19)
o= 20N s (4.20)

P

The equation of the stability boundary will then be

Ni=ihe == (4.21)

Substituting (4.21) into (4.19) we get the dependence of the extremal load

multiplier ,\M upon the imperfection parameter €

1 1/3 2/3 :
A= = a [3¢a-e)el (4.22)
26T
P
The situation is sketched in figg 10 and 11 respectively for a >0 and

a <0



g

q9>0

e - €* [+&% €

fig: 10

-g% |+ " €

The dashed curve reproduces the stability boundary




Remark

The basic role played by the postbuckling behaviour of an elastic structure in esthablishing its load

carrying capacity, is apparent from the analysis above.

Indeed at a stable bifurcation state (fig.10) the load parameter may be increased above the critical

value and the actual carrying capacity of the structure is certainly above the critical load.

At an unstable bifurcation state (fig. 11) we have conversely that the collapse load of the actual,

slightly imperfect structure, can be quite below the critical value (imperfection sensitivity).

A yet more drastic reduction of the carrying capacity of the structure with respect to the «iritical

load may occur a* an'exchanging bifurcaiion state (fig.9).
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