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Summary. The theory of continuous dynamical systems, undergoing motions in a
nonlinear configuration manifold, is formulated and developed with a coordinate-
free variational approach. The starting point is a new formulation of Hamilton’s
action principle in the velocity-time phase-space in which piecewise regularity of
the trajectory is assumed and testing variations which are infinitesimal isometries
of the trajectory are allowed for. It is shown that localization yields a new general
differential law of dynamics and the related jump conditions at singular points. An
extended version of Noether’s theorem follows as a simple corollary. The Lagrange’s
law is recovered by assuming a torsion-free connection on the configuration manifold.

1 Introduction

Calculus on manifolds is the suitable mathematical tool in the dynamics of
continuous systems undergoing motions in a nonlinear configuration mani-
fold. The basic concepts, due to Marius Sophus Lie, Henri Poincaré and
Elie Cartan, are extension of the theory originated by Euler, Legendre,
Lagrange, Poisson, Hamilton and Jacobi, inspired by earlier ideas of
Fermat and Huygens in optics. We premise an abstract general statement
of the action principle on a manifold and the relevant basic localization re-
sults, in which Reynolds transport theorem, the Ampère-Hankel-Kelvin
transform, usually dubbed Stokes’s formula, and its expression in terms of
differential forms due to Poincaré, Cartan’s magic formula and Palais’ for-
mula for the exterior derivative of a differential one-form, are the playmates.
Attention is then turned towards continuum dynamics, according to the la-
grangian description, in the velocity-time phase-space. The starting point is
a new statement of Hamilton’s action principle in which arbitrary infinitesi-
mal isometries of the trajectory are allowed for. On this basis, the localization
result provided for the abstract action principle is applied to get the differ-
ential condition in terms of the exterior derivative of the lagrangian one-form
and the related jump conditions at singular points on the trajectory. The dif-
ferential law of dynamics in a nonlinear configuration manifold is derived by
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specializing to the dynamical context the abstract result which provides the
explicit expression of the exterior derivative of the one-form. The key prop-
erty is Palais’ formula [2] which, by the tensoriality of the exterior derivative
of a differential form, may be applied by envisaging an expedient extension
of the time-speed of the trajectory at the actual configuration-velocity point
in the velocity phase-space. The differential law of dynamics stated here is
not quoted in the literature and provides the most general formulation of the
governing law in terms of the lagrangian of the system. A generalized version
of Emmy Noether’s theorem [1] on symmetry of the Lagrangian and invari-
ance along the trajectory is implied as a simple corollary. The references, on
dynamics of abstract systems in nonlinear manifolds, most strictly related to
the present approach, are the books [4], [7], [9], [10] and the article [6]. In
all these treatments the subject is developed in modern geometrical form but
in the spirit of classical rigid-body dynamics, the context in which the basic
principles where originarily developed by the old masters, and recourse to co-
ordinates is always made in the decisive steps. A main innovative feature of
the analysis developed in the present paper is the explicit introduction of the
rigidity constraint from the very beginning. This is in the spirit of the defini-
tion of dynamical equilibrium as stated by Johann Bernoulli in 1717 in
a famous letter to Varignon. To take account of the rigidity constraint, it is
compelling to state principles and laws of dynamics in variational form and
this leads, in addition, to develop a completely general and coordinate-free
theory. We consider continuous systems under potential force systems so that
the dynamics is completely described in terms the Lagrangian functional.

2 Calculus on manifolds

Let us consider a differentiable manifold M modeled on a Banach’s space
E . The basic theory can be found in [5], [7], [8], [9], [10], [13], [15]. The
collection of tangent spaces TxM is the tangent bundle TM to M . The
cotangent bundle T∗M to M is the collection of the dual cotangent spaces
T∗

xM . An exterior k-form is an alternating k-linear scalar-valued function
defined on a tangent space to a nD manifold, with n > k . Differential k-
forms are differentiable fields of exterior k-forms Volume-forms are n-forms
on a nD manifold. On a differentiable manifold integrals of n-forms over
compact nD submanifolds can be performed. The contraction of a k -form
ωk with a vector v is the (k−1) -form ωkv defined by taking v as the first
argument of the form ωk . Vectors in distinct tangent spaces can be compared
if a connection and the related parallel transport is defined. We denote by ϕ↑
and ϕ↓ the push-forward and its inverse, the pull-back, of scalar, vector and
tensor fields due to a diffeomorphism ϕ ∈ C1(M ; M) . A dot · and a crochet
〈 , 〉 denote respectively linear dependence on the subsequent argument and
the duality pairing. The variational analysis performed in this paper is based
on the following tools of calculus on manifolds. The first tool is the Poincaré-
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Stokes’ formula which states that the integral of a differential (k − 1)-form
ωk−1 on the boundary chain ∂Σ of a kD submanifold Σ of M is equal to
the integral of its exterior derivative dωk−1 , a differential k-form, on Σ i.e.∫

Σ

dωk−1 =
∮

∂Σ

ωk−1 .

The second tool is Lie’s derivative of a vector field w ∈ C1(M ; TM) along a
flow ϕλ ∈ C1(M ; M) with velocity v = ∂λ=0ϕλ ∈ C1(M ; TM) :

Lvw = ∂λ=0 (ϕλ↓w) ,

which is equal to the antisymmetric Lie-bracket: Lvw = [v,w] = −[w,v]
defined by: d[v,w]f = dvdwf − dwdvf , for any f ∈ C2(M ;R) . The Lie

derivative of a differential form ωk ∈ C1(M ;Λk(TM)) is similarly defined by
Lvω

k = ∂λ=0 (ϕλ↓ωk) . The third tool is the extrusion formula

∂λ=0

∫
ϕλ(Σ)

ωk =
∫

Σ

(dωk)v +
∫

∂Σ

ωkv ,

which by Reynolds’ transport formula:∫
ϕλ(Σ)

ωk =
∫

Σ

ϕλ↓ωk =⇒ ∂λ=0

∫
ϕλ(Σ)

ωk =
∫

Σ

Lv ω
k ,

yields Cartan’s magic formula (or homotopy formula): Lv ω
k = (dωk)v +

d(ωkv) . The homotopy formula may be readily inverted to get Palais formula
for the exterior derivative. Indeed, by Leibniz rule for the Lie derivative, we
have that, for any two vector fields v,w ∈ C1(M ; TM) :

dω1 · v ·w = (Lv ω
1) ·w − d(ω1v) ·w = dv (ω1w)− ω1 · [v,w]− dw (ω1v) .

The expression at the r.h.s. of Palais formula fulfills the tensoriality crite-
rion, as quoted in [8], [15] and thus its value at a point depends only on the
values of the argument vector fields at that point. The exterior derivative of
a differential one-form is thus a differential two-form. The same algebra may
be repeatedly applied to deduce Palais formula for a k-form.

3 The abstract action principle

Let a status of the system be described by a point of the phase space M , a
differentiable manifold. According to Hamilton’s point of view, the evolution
of the system is governed by a variational condition on the signed-length of
the trajectory Γ ∈ C1(I ; M) , evaluated according to a differential one-form
ω1 ∈ C1(M ; T∗M) dubbed the action one-form.
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The signed-length
∫
Γ
ω1 is called the action integral at Γ . To provide

a general statement of the action principle, we call virtual flows in M the
elements of a suitably defined one-parameter subfamily of C1(M ; M) . Vector
fields which are velocities of virtual flows are dubbed virtual velocities. The
test-subbundle Vrig ⊂ TM is a subbundle of the bundle of virtual velocities,
and Vrig(Γ ) denotes the restriction of the test-subbundle to Γ .

Proposition 1 (Action principle). At a trajectory Γ ⊂ M of the system
the action integral meets the variational condition:

∂λ=0

∫
ϕλ(Γ )

ω1 =
∫

∂Γ

ω1 · v ,

for all virtual flows ϕλ ∈ C1(M ; M) with initial velocity v ∈ C1(Γ ;Vrig(Γ )) .

This means that the initial rate of increase of the ω1-length of the trajec-
tory Γ along a rigid virtual flow is equal to the outward flux of the virtual
velocities at the end points. Denoting by x1 and x2 the initial and final end
points of Γ , we have that ∂Γ = x2 − x1 (a 0-chain) and the boundary
integral may be written as

∫
∂Γ
ω1 · v = (ω1 · v)(x2) − (ω1 · v)(x1) . The

stationarity of the action integral is a problem of calculus of variations on a
nonlinear manifold. Necessary and sufficient local conditions for a path to be
a trajectory are provided by the next proposition which considers piecewise
regular paths with non-fixed end points on a nonlinear manifold and is stated
in coordinate-free terms. The classical local result of Euler and Lagrange
is formulated in coordinates and considers regular paths with fixed end points.
We will denote by T (Γ ) an open regularity partition of Γ and by I(Γ ) the
corresponding set of singularity interfaces.

Proposition 2 (Local conditions). A path Γ ⊂ M is a trajectory if and
only if the tangent vector field vΓ ∈ C1(T (Γ ) ; TΓ ) meets, in each element
of a regularity partition T (Γ ) , the pointwise differential condition

dω1 · vΓ · v = 0 , ∀v ∈ C0(Γ ;Vrig(Γ )) ,

and, at the singularity interfaces I(Γ ) , the jump conditions

[[ω1v]] = 0 , ∀v ∈ C0(Γ ;Vrig(Γ )) .

Proof. By applying the extrusion formula to each element of the regularity
partition, we get

∂λ=0

∫
ϕλ(Γ )

ω1 −
∫

∂Γ

ω1v =
∫
T (Γ )

(dωk)v −
∫
I(Γ )

[[ω1v]] ,

so that the action principle writes∫
T (Γ )

(dω1)v =
∫
I(Γ )

[[ω1v]] , ∀v ∈ C0(Γ ;Vrig(Γ )) .



Dynamics in nonlinear manifolds 5

Let the path Γ be parametrized by s ∈ I and vΓ ∈ C1(Γ ; TΓ ) be the
velocity field along the path. Then:∫

T (Γ )

(dω1)v −
∫
I(Γ )

[[ω1v]] =
∫
T (I)

dω1 · v · vΓ ds−
∫
I(Γ )

[[ω1v]] .

If the differential and jump conditions are fulfilled, the action principle holds.
Conversely, if dω1 · vΓ · v 6= 0 at a point inside an element of the regularity
partition, by continuity of dω1 · vΓ · v , we could take v ∈ C0(Γ ;Vrig(Γ ))
such that dω1 · v · vΓ > 0 on an open segment UΓ around that point
and dω1 · v · vΓ = 0 on Γ \UΓ . Hence

∫
T (Γ )

(dω1)v > 0 , contrary to the
assumption. The vanishing of the jumps follows by a simple argument.

The next two results are due to the first author.

Proposition 3 (Palais-Romano condition). The differential condition ful-
filled by a trajectory Γ ⊂ M may equivalently be written as

dvΓ (ω1 · v) = dv(ω1 · vΓ ) , ∀v ∈ C0(Γ ;Vrig(Γ )) ,

where v ∈ C0(M ; M) is an extension of the virtual velocity v ∈ C0(Γ ;Vrig(Γ ))
and vΓ ∈ C0(M ; M) is the extension of vΓ ∈ C0(Γ ;Vrig(Γ )) performed by
pushing it along the flow ϕλ ∈ C1(M ; M) generated by v ∈ C0(M ; M) .

Proof. The result follows from proposition 2 by a direct application of Palais
formula: dω1 · v · vΓ = dv (ω1 · vΓ )− dvΓ (ω1 · v)− ω1 · [v,vΓ ] . Indeed, by
tensoriality, the r.h.s. is independent of the extensions of v and vΓ . Moreover
the special extension of vΓ implies that [v,vΓ ] = 0 .

As a simple corollary we infer that:

Proposition 4 (Abstract Noether’s theorem). If the action one-form
ω1 ∈ C1(M ; T∗M) enjoys the property: dv (ω1 · vΓ ) = 0 , then the functional
ω1 · v is constant along the trajectory Γ ⊂ M .

4 Continuum vs rigid-body dynamics

The theory developed for the abstract action principle, may be applied to
continuum mechanics by envisaging a suitable phase-space. A continuous body
is identified with an open, connected, reference manifold B ⊂ S embedded in
the euclidean space {S ,g} with metric tensor g ∈ BL (TS2 ;R) and canonical
connection ∇ .

The configurations χ ∈ C1(B; S) of the continuous body B ⊂ S are
injective maps with the property of being diffeomorphic transformations onto
their ranges. The configuration-space C is assumed to be a differentiable
manifold endowed with the topology inherited by a model Banach space.
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The velocity phase-space is the tangent bundle TC and the momentum
phase-space is the cotangent bundle T∗C . The velocity-time phase-space is
TC× I , is the cartesian product of the velocity-space TC and an open time
interval I , and the momentum-time phase-space is T∗C×I . These two phase-
spaces are respectively adopted in the Lagrangian and Hamiltonian descrip-
tions of dynamics. Vectors tangent to the velocity-time phase-space TC×I are
in the bundle TTC×TI whose elements are pairs {δv , δt} ∈ TvTC×TtI . De-
noting by π ∈ C1(TC ; C) the projector on the base manifold, the velocity of
the configuration π(v) ∈ C , corresponding to the tangent vector δv ∈ TvTC
is provided by the tangent to the projector: π↑δv := dπ(v) · δv ∈ Tπ(v)C .

Rigidity constraint

Two configurations χ1 ∈ C1(B; S) and χ2 ∈ C1(B; S) are metric-equivalent
if χ2↓g = χ1↓g . Here χ↓g is the pull back along χ ∈ C1(χ(B) ; S) of the
metric tensor: (χ↓g)(a,b) = g(χ↑a,χλ↑b) for all a,b ∈ TS .

Then the diffeomorphic map χ2 ◦ χ−1
1 ∈ C1(χ1(B) ;χ2(B)) is a metric-

preserving (or rigid) transformation of the configuration χ1 ∈ C1(B; S) into
the configuration χ2 ∈ C1(B; S) . By the metric-equivalence relation so in-
troduced, the manifold C is partitioned into a family of disjoint connected
rigidity-classes CR which are submanifolds of C .

The elements of the tangent space TχCR to a rigidity-class CR at χ ∈
CR are the infinitesimal isometries, that is, the vector fields v ∈ C1(χ(B) ; S)
fulfilling the Euler-Killing condition [15]: Lvg = 2g (sym∇v) = 0 .

The Lie derivative of the metric tensor is defined by: Lvg := ∂λ=0 χλ↓g
where χλ ∈ C1(χ(B) ; S) is the flow generated by v = ∂λ=0 χλ . In rigid-body
dynamics the body is assumed to evolve in a fixed rigidity-class CR so that
at each configurarion test vector fields and trajectory velocities belong to the
same tangent space TχCR .

5 Hamilton’s action principle

In the lagrangian description, the phase-space is the velocity phase space, that
is, the tangent bundle TC to the configuration manifold. The state variables
are then pairs formed by a configuration and a velocity vector based at that
configuration. The projector π ∈ C1(TC ; C) maps the velocity phase space
onto the configuration space so that v = {χ ,vχ} ∈ TC and π(v) = χ ∈ C .
The Lagrangian of the system is a time-dependent functional Lt ∈ C1(TC ;R)
on the velocity phase space.

The usual expression of the Lagrangian is Lt = Kt ◦ diag + Pt ◦π where
diag ∈ C1(TC ; TC2) is the diagonal map, defined by diag(v) := {v ,v} ,
Kt(v,v) ∈ C1(TC2 ;R) is the positive definite quadratic kinetic energy and
Pt(π(v)) ∈ C1(C ;R) is the force potential.
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The fiber-derivative dfLt ∈ C1(TC ; T∗C) of the Lagrangian associates
to any velocity v ∈ TC the one-form dfLt(v) := ∂λ=0Lt(ψλ(v)) where
ψλ ∈ C1(TC ; TC) is a configuration-preserving flow, that is such that
π(ψλ(v)) = π(v) , ∀λ ∈ R . In the the tangent bundle TC to the config-
uration manifold, the fiber-derivative plays the role of the partial derivative
with respect to the base point due to the linearity of the tangent fiber. No
analogue of the partial derivative with respect to the vectorial part of tangent
vectors is available in a nonlinear configuration manifold, unless a connec-
tion is defined. Being Lt(v) = Kt(v,v) + Pt(π(v)) , the fiber-derivative of
the Lagrangian and of the kinetic energy are equal and have the mechanical
meaning of kinetic momentum. Let us now consider an open time interval
I , a time-parametrized path γ ∈ C1(I ; C) in the configuration space. The
velocity vt = {γ(t) , ∂τ=tγ(τ)} ∈ Tγ(t)γ along γ at time t ∈ I spans a lifted
trajectory Γ ∈ C1(I ; TC) in the phase-space. To provide the classical state-
ment of Hamilton’s principle, the kinetic energy Kt ∈ C1(TC ;R) , which
makes sense only on the trajectory Γ ∈ C1(I ; TC) , must be extended to a
functional on the velocity phase space TC , at least in a neighbourhood of
the trajectory. In continuum dynamics, although never stated explicitly, the
extension is performed by assuming that the mass-form be dragged by the
virtual flow. Let us denote by m = ρµ the mass-form, with ρ the density
and µ the volume-form in {S ,g} . Under the action of a flow ϕλ ∈ C1(C ; C) ,
a configuration χt ∈ C is changed into ϕλ ◦ χt ∈ C and the kinetic energy
Kt ∈ C1(TC ;R) at the point vt ∈ Tχt

C on the trajectory is transformed
into

Kt(ϕλ↑vt) :=
1
2

∫
(ϕλ◦χt)(B)

‖ϕλ↑vt‖2ϕλ↑m ,

where (ϕλ↑m)(ϕλ↑a1,ϕλ↑a2,ϕλ↑a3) = m(a1,a2,a3) for all ai ∈ TxB .
Accordingly, the standard statement of Hamilton’s principle in the dy-

namics of continuous bodies is the following.

Proposition 5 (Standard form of Hamilton’s principle). A dynamical
trajectory of a continuous mechanical system in the configuration manifold is
a time-parametrized path γ ∈ C1(I ; C) fulfilling the stationarity condition

∂λ=0

∫
I

Lt(ϕλ↑vt) dt = 0 .

for any flow ϕλ ∈ C1(C ; C) in the configuration manifold whose velocity field
vϕ = ∂λ=0ϕλ ∈ C1(C ; TC) is an infinitesimal isometry at each point of γ
and vanishes at the end points of the path.

In the literature Hamilton’s principle is usually stated in the special
context of rigid body dynamics [7], [10], [12]. Then the stationarity condition is
required to hold for any flow ϕλ ∈ C1(CR ; CR) , in a rigidity class CR ⊂ C of
the configuration manifold, whose velocity field vϕ ∈ C1(CR ; TCR) vanishes
at the end points of the path.
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The basic step towards the formulation of a general law of dynamics con-
sists in a suitable modification of the statement of Hamilton’s principle to
drop out the condition that the virtual velocity fields vanish at the end points
of the path. The proper way to perform the modification is suggested by the
discussion of the action principle illustrated in section 3, when specialized to
velocity phase space of lagrangian dynamics.

6 The action one-form

A new formulation of Hamilton’s action principle is inferred from the ab-
stract theory of section 3. To this end we have to express Hamilton’s prin-
ciple in terms of the integral of an action one-form over the trajectory Γ I

in the velocity-time phase-space, the cartesian product TC × I . Let us con-
sider a time-parametrized path γ ∈ C1(I ; C) in the configuration mani-
fold C and the corresponding lifted path Γ := Tγ ∈ C1(I ; TC) in the
velocity phase-space, setting vt = {γ(t) , γ̇(t)} ∈ Tγ ⊂ TC . We denote by
ψλ := ϕλ↑ = dϕλ ◦ π ∈ C1(TC ; TC) the tangent flow induced, in the veloc-
ity phase-space, by the flow ϕλ ∈ C1(C ; C) in the configuration manifold, so
that π ◦ψλ = ϕλ ◦ π and

ψλ(v) := dϕλ(π(v)) · v , ∀v ∈ TC .

Denoting by dπ(v) ∈ BL (TvTC ; Tπ(v)C) the differential of the projector
π ∈ C1(TC ; C) and setting vψ = ∂λ=0ψλ we have that

dπ(v) · vψ(v) = dπ(v) · ∂λ=0ψλ(v) = ∂λ=0 (π ◦ψλ)(v)

= ∂λ=0 (ϕλ ◦ π)(v) = vϕ(π(v)) , ∀v ∈ TC .

Taking the time-derivative of π(vt) = γ(t) and denoting by {v̇t , 1} ∈
Tvt

TC×TtI the time-speed along of the trajectory Γ I at the point {vt , t} ∈
Γ I , we get the relation: dπ(vt) · v̇t = vt which is a special case of the one re-
ported above. The basic tool to reach the goal is Legendre transform which
defines the energy of the system Et ∈ C1(TC ;R) as the conjugate of the
Lagrangian, according to the relation:

Lt(vt) + Et(vt) = 〈dfLt(vt),vt 〉 = 〈dfLt(vt), dπ(vt) · v̇t 〉 ,

and the differential one-form θLt
∈ C1(TC× I ; TTC× TI) by the identity

θLt
({v , t}) · {δv , δt} := 〈dfLt(v), dπ(v) · δv〉 ,

for all {δv , δt} ∈ TvTC× TtI . Then, noting that

Et(v)dt · {δv , δt} = Et(v)〈dt, δt〉 ,

and defining the differential one-form ω1
L ∈ C1(TC× I ; TTC× TI) by
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ω1
L({v , t}) = θLt

({v , t})− E(v, t)dt ,

we have that

ω1
L({vt , t}) · {v̇t , 1} = 〈dfLt(vt),vt 〉 − Et(vt)〈dt, 1〉 = Lt(vt) ,

and also

ω1
L({ϕλ↑vt , t}) · {ψλ↑v̇t , 1}= Lt(ϕλ↑vt)

ω1
L({vt , t}) · {vψ(vt) , 0}= 〈dfLt(v), dπ(vt) · vψ(vt)〉

= 〈dfLt(v),vϕ(π(vt))〉 .

We may thus conclude that∫
ϕλ↑Γ I

ω1
L =

∫
I

ω1
L({ϕλ↑vt , t}) · {ψλ↑v̇t , 1} dt =

∫
I

Lt(ϕλ↑vt) dt ,

and ∫
∂Γ I

ω1
L({vt , t}) · {vψ(vt) , 0} =

∫
∂I

〈dfLt(v),vϕ(π(vt))〉 dt .

The action principle for the action one-form ω1
L ∈ C1(TC× I ; TTC×TI) in

the velocity-time phase-space is then expressed by the variational condition:

∂λ=0

∫
ϕλ↑Γ I

ω1
L =

∫
∂Γ I

ω1
L · {vψ , 0} ,

for any flow ϕλ ∈ C1(γ ; C) in the configuration manifold whose velocity
field vϕ = ∂λ=0ϕλ ∈ C1(γ ; TC) is an infinitesimal isometry at each point of
γ . The boundary term vanishes if vϕ(π(vt)) = 0 at the end points of Γ I ,
which means that the initial and final configurations are hold fixed by the
flow. This is the assumption made in all the previous literature on dynamics
in formulating the action principle (see e.g. [7]). The abstract action principle
for the action one-form ω1

L ∈ C1(TC × I ; TTC × TI) leads to the following
statement of Hamilton’s principle.

Proposition 6 (New statement of Hamilton’s principle). A dynamical
trajectory of a continuous mechanical system in the configuration manifold is
a time-parametrized path γ ∈ C1(I ; C) fulfilling the variational condition

∂λ=0

∫
I

Lt(ϕλ↑vt) dt =
∫

∂I

〈dfLt(vt),vϕ(π(vt))〉 dt .

for any flow ϕλ ∈ C1(C ; C) in the configuration manifold whose velocity field
vϕ = ∂λ=0ϕλ ∈ C1(C ; TC) is an infinitesimal isometry at each point of γ .

This general statement of Hamilton’s principle is equivalent to the stan-
dard one (proposition 5) in the case of regular motions. Indeed both principles
are equivalent to the same differential law of dynamics.
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6.1 Differential and jump conditions

By theorem 2, the action principle in the velocity-time phase-space is equiva-
lent to the differential condition:

dω1
Lt

(vt, t) · { v̇t, 1 } · {vψ(vt) , 0} = 0 ,

at regular points and to the jump condition

[[ω1
Lt

(vt, t)]] · {vψ(vt) , 0} = 0 ,

at singular points along the trajectory. Recalling the definition of the one-
form ω1

Lt
, the jump condition writes: 〈 [[dfLt(vt)]],vϕ(π(vt))〉 = 0 and the

differential condition takes the expression:

dθLt(vt, t) · v̇t · vψ(vt) = d(E(vt, t) dt) · { v̇t, 1 } · {vψ(vt) , 0} .

To perform the exterior derivatives we apply Palais’s formula, extending the
vector v̇t ∈ Tvt

Γ to a vector field v̇ ∈ C1(TC ; TTC) by pushing it along the
phase-flow ψλ ∈ C1(TC ; TC) , so that v̇(ψλ(vt)) := ψλ↑v̇t . Then the r.h.s.
becomes

d(Et(vt) dt) · {v̇t , 1} · {vψ(vt) , 0}= d{v̇t ,1}〈Et(vt) dt, {vψ(vt) , 0}〉

− d{vψ(vt) ,0}〈Et(vt) dt, { v̇t, 1 }〉

+ 〈Et(vt) dt, {(Lvψ v̇)(vt) , 0}〉

= −dvψ(vt)Et(vt) .

Accordingly, the differential condition writes:

dθLt
(vt, t) · v̇t · vψ(vt) = −dvψ(vt)Et(vt) .

Applying again Palais formula and taking into account that the Lie deriva-
tive Lvψ v̇ vanishes identically, the l.h.s. becomes:

dθLt(vt, t) · v̇t · vψ(vt) = dv̇t(θLt · vψ)(vt)− dvψ(vt)(θLt · v̇)(vt)

+(θLt
· Lvψ v̇)(vt)

= dv̇t
(θLt

· vψ)(vt)− dvψ(vt)(θLt
· v̇)(vt) ,

with
dv̇t(θLt · vψ)(vt) = ∂τ=t 〈dfLτ (vτ ), dπ(vτ ) · vψ(vτ )〉

= ∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 ,
and

dvψ(vt)(θLt · v̇)(vt) = dvψ(vt)〈dfLt(v), dπ(v) · v̇〉 = dvψ(vt)〈dfLt(v),v〉

= dvψ(vt)Lt(vt) + dvψ(vt)Et(vt) .
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Hence we get the general expression of the law of dynamics. The differen-
tial part is a specialization to mechanical systems of the abstract condition
provided in proposition 3.

Theorem 1 (The law of dynamics). A trajectory of the system is a time-
parametrized path γ ∈ C1(I ; C) in the configuration manifold C , fulfilling
the differential condition:

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉= dvψ(vt)Lt(vt) ,

and the jump conditions

〈 [[dfLt(vt)]],vϕ(π(vt))〉 = 0 ,

for all flows ϕλ ∈ C1(C ; C) whose velocity vϕ(π(vt)) at the actual config-
uration π(vt) ∈ C is an admissible infinitesimal isometry. The r.h.s. of the
differential condition may also be written as

LvψLt(vt) = ∂λ=0 Lt(ψλ(vt))

= ∂λ=0 〈dfLt(ψλ(vt)),ψλ(vt)〉 − dvψ(vt)Et(vt) .

The differential law of dynamics states that the time-rate of increase of
the virtual power of the momentum along the trajectory is equal to the rate
of variation of the Lagrangian along any flow whose velocity at the actual
configuration fulfils the rigidity property. In the authors’ knowledge, the dif-
ferential and jump laws of dynamics in a non-linear configuration manifold
contributed above, are not quoted in the literature. They provide the most
general formulation of the rules of dynamics in terms of the Lagrangian.

Remark 1. In expressing the differential law of dynamics, it is compelling to
assign the flows ϕλ ∈ C1(C ; C) at least in a neighborhood of π(vt) ∈ γ and
not just the initial velocity vϕ(π(vt)) at the actual configuration π(vt) ∈
γ . By tensoriality, the flows ϕλ ∈ C1(C ; C) leading to the same value of
vψ(vt) ∈ Tvt

TC are equivalent.

Remark 2. The new statement of Hamilton’s principle of proposition 6,
which takes into account arbitrary variations, permits a direct derivation of
the differential and jump law of dynamics. Indeed, by applying the fundamen-
tal theorem of integral calculus, the principle may be rewritten as∫

I

∂λ=0 Lt(ϕλ↑vt) dt =
∫
T (I)

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 dt .

Then, the arbitrarity of the flow ϕλ ∈ C1(C ; C) and the piecewise continuity
of the integrands, yield the result.



12 Giovanni Romano, Marina Diaco, Raffaele Barretta

Remark 3. In the variational expression of the law of dynamics the test fields
vϕ ∈ C1(γ ; TC) are assumed to be infinitesimal isometries at each point of
the trajectory γ . This rigidity constraint has a basic physical meaning since it
reveals that the dynamical equilibrium at a given configuration is independent
of the material properties of the body.

The evaluation of the equilibrium configuration requires in general to take
into account the constitutive properties of the material and hence to get rid of
the rigidity constraint. This task can be accomplished in complete generality
by the method of Lagrange multipliers, which, in continuum mechanics,
provide the stress field in the body [14].

Remark 4. In analogy to the abstract result of proposition 4, the general ex-
pression of the law of dynamics implies, as a trivial corollary, a statement
which extends to continuum dynamics Emmy Noether’s theorem as formu-
lated in [1], [7], [9] in the context of rigid-body dinamics and finite dimensional
configuration spaces. Indeed from the law of dynamics we infer that

∂λ=0 Lt(ϕλ↑vt) = 0 =⇒ ∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 = 0 ,

while Noether’s theorem consists in the weaker statement:

Lt(ϕλ↑vt) = Lt(vt) =⇒ ∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 = 0 ,

for all flows ϕλ ∈ C1(C ; C) whose velocity vϕ := ∂λ=0ϕλ is an infinitesimal
isometry at each point of γ .

7 Dynamics in a manifold with a connection

Let us assume that the configuration manifold C be endowed with an affine
connection ∇ and with the associated parallel transport. We denote by cτ,t⇑
the parallel transport along a curve c ∈ C1(I ; C) from the point c(t) ∈ C
to the point c(τ) ∈ C , setting ct,τ⇓ := cτ,t⇑ . The covariant derivative of a
vector field v ∈ C1(C ; TC) is expressed in terms of parallel transport as:

∇ċt
v = ∂τ=t cτ,t⇓v(c(τ)) .

The parallel transport of a covector field ω ∈ C1(C ; T∗C) is defined so that
the duality-pairing be invariant:

〈cτ,t⇑ω(c(t)),v(c(τ))〉 = 〈ω(c(t)), cτ,t⇓v(c(τ))〉 , ∀v(c(τ)) ∈ Tc(τ)C .

Accordingly, the covariant derivative of a covector field ω ∈ C1(C ; T∗C) is
given by

〈∇ċt
ω,vt 〉= ∂τ=t 〈cτ,t⇓ω(c(τ)),vt 〉

= ∂τ=t 〈ω(c(τ)), cτ,t⇑vt 〉 , ∀vt ∈ Tc(t)C .

Let us then consider the vector field vγ ∈ C1(C ; TC) , extension of the velocity
vt := ∂t=0γ(t) of the trajectory by dragging it along the flow ϕλ ∈ C2(C ; C) :
vγ(ϕλ(π(vt))) := ϕλ↑vt so that vγ(π(vt)) = vt .
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We observe that

ϕλ↑vt = ϕλ⇑ϕλ⇓ϕλ↑vt = ϕλ⇑ϕλ⇓vγ(ϕλ(π(vt))) .

The base derivative of a functional f ∈ C1(TC ;R) at v ∈ TC along a vector
vϕ(π(v)) ∈ Tπ(v)C is then defined by:

〈dbf(v),vϕ(π(v))〉 := ∂λ=0 f(ϕλ⇑v) ,

where vϕ = ∂λ=0ϕλ . The definition is well-posed since the r.h.s. depends
linearly on vϕ(π(v)) ∈ Tπ(v)C for any fixed v ∈ TC . The base derivative
provides the rate of change of the functional f ∈ C1(TC ;R) when the base
point π(v) ∈ C is dragged by the flow while the velocity v ∈ TC is parallel
transported along the flow. Let Tors ∈ BL (TC ;BL (TC ; TC)) be the linear
operator defined by

Tors(v) · u = tors(v,u) , ∀u,v ∈ TxC ,

where tors(v,u) = ∇vu−∇uv− [v,u] ∈ TC is the evaluation of the torsion
tensor in the connection ∇ . The definition is well-posed by tensoriality of the
torsion. The next result provides the special form taken by the differential law
of dynamics when the configuration manifold is endowed with a connection.

Proposition 7 (Special form of the law of dynamics). In a configura-
tion manifold C endowed with an affine connection ∇ the differential law of
dynamics takes the special form

〈∂τ=t dfLτ (vt) +∇vtdfLt + dfLt(vt)Tors(vt)− dbLt(vt),vϕ(π(vt))〉= 0 ,

for any virtual velocity field vϕ = ∂λ=0ϕλ ∈ C1(γ ; TC) which is an admis-
sible infinitesimal isometry at the configuration π(vt) . If the connection ∇
is torsion-free, we get Lagrange’s differential condition:

〈∂τ=t dfLτ (vt) +∇vt
dfLt − dbLt(vt),vϕ(π(vt))〉 = 0 .

Proof. Being ∂λ=0 Lt(ϕλ↑vt) = ∂λ=0 Lt(ϕλ⇑ϕλ⇓vγ(ϕλ(π(vt)))) , by the
Leibniz rule we get:

∂λ=0 Lt(ϕλ↑vt) = ∂λ=0 Lt(ϕλ⇑vt) + ∂λ=0 Lt(ϕλ⇓vγ(ϕλ(vt))) ,

and, by definition of the covariant derivative in terms of the parallel transport:

∇vϕvγ(π(vt)) := ∂λ=0ϕλ⇓vγ(ϕλ(π(vt))) ,

being ϕλ⇓vγ(ϕλ(π(vt))) ∈ Tπ(vt)C , we have that

∂λ=0 Lt(ϕλ⇓vγ(ϕλ(π(vt)))) = 〈dfLt(vt),∇vϕvγ(π(vt))〉 .

Hence, by definition of the base derivative dbLt(vt) ∈ C1(TC ; T∗C) , we get



14 Giovanni Romano, Marina Diaco, Raffaele Barretta

∂λ=0 Lt(vγ(ϕλ(π(vt)))) = 〈dbLt(vt),vϕ(π(vt))〉+ 〈dfLt(vt),∇vϕvγ(π(vt))〉 .

On the other hand, denoting by χτ,t := γτ ◦ γ−1
t ∈ C1(C ; C) the flow along

the trajectory, we may write

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 = ∂τ=t 〈dfLτ (vτ ),χτ,t⇑χτ,t⇓vϕ(π(vτ ))〉 ,

and applying the Leibniz rule:

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉= 〈dfLt(vt), ∂τ=t χτ,t⇓vϕ(π(vτ ))〉

+∂τ=t 〈dfLτ (vτ ),χτ,t⇑vϕ(π(vt))〉 .

Finally, by definition of the covariant derivatives, we have:

〈dfLt(vt), ∂τ=t χτ,t⇓vϕ(π(vτ ))〉= 〈dfLt(vt),∇vγvϕ(π(vt))〉 ,

∂τ=t 〈dfLτ (vτ ),χτ,t⇑vϕ(π(vt))〉= 〈∂τ=t dfLτ (vt),vϕ(π(vt))〉

+ 〈∇vt
dfLt,vϕ(π(vt))〉 .

The general law of dynamics may then be written as

〈∂τ=t dfLτ (vt) +∇vt
dfLt,vϕ(π(vt))〉+ 〈dfLt(vt),∇vγ

vϕ(π(vt))〉

= 〈dbLt(vt),vϕ(π(vt))〉+ 〈dfLt(vt),∇vϕvγ(π(vt))〉 .

From the expression: tors(vϕ,vγ) := ∇vϕvγ − ∇vγvϕ − [vϕ,vγ ] being
[vϕ,vγ ] = 0 by definition of the vector field vγ ∈ C1(C ; TC) , we infer that
∇vϕvγ = ∇vγ

vϕ if the torsion vanishes, and the statements are proven.

The standard connection associated with the distant parallel transport
by translation in the model Banach space is torsion-free. Indeed any pair
of vector fields generated by translation of a given pair of tangent vectors
at a point, has a vanishing Lie bracket and vanishing covariant derivatives
of each of them with respect to the other one. Since the torsion tensor is
natural with respect to diffeomorphic transformations, the connection induced
on the manifold C by a system of coordinates is still torsion-free. It follows
that the differential law of dynamics takes Lagrange’s form when written
in coordinates. In rigid body dynamics, all virtual velocities being rigid, the
differential law reduces to Lagrange’s equation of dynamics:

∂τ=t dfLτ (vτ ) = dbLt(vt) .

The special forms of the differential law of dynamics hide however the direct
implication of Emmy Noether’s theorem.
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8 Conclusions

About two centuries have passed away since Lagrange’s and Hamilton’s
genial discoveries, while an extended formulation of Hamilton’s action prin-
ciple was at hand to provide a general form of the differential law of dynamics
and of the jump conditions at singular points of the trajectory. One century
after the publication of Emmy Noether’s celebrated theorem, the extension
of Hamilton’s principle contributed in this paper reveals that Noether’s
theorem follows, as a direct corollary from the differential law of dynamics.
In short Noether’s theorem states that if a = 0 then b = 0 , while the
differential law of dynamics states that a = b . It should be noted that the
translation of Hamilton’s action principle in geometrical differential terms,
gave us the idea of how to rewrite it and opened the way for the direct proof
of the general law of dynamics. Remarkably, the proof of this more general
result is definitely simpler than the classical one of the special Lagrange’s
law of dynamics in coordinates.
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