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We present an abstract formulation of the mechanics of continuous bodies in which the kinematic
description is given as basic and the statics is derived by duality. A proper definition of the functional
spaces based on finite decompositions of the reference domain allows to include in the theory all
the powerful tools usually adopted in the analysis of engineering structures. In this respect general
proofs are provided for the Virtual Work Theorem, the abstract CaAucnY’s theorem and the theorem
of kinematic compatibility. A decomposition formula of special relevance in homogenization theory is
derived as adirect application of the previous results.

1 Structural model

L et us consider abounded domain 2 of an n-dimensional Euclidean space with boundary
212 and closure 2 = 2 U 912 and the space L?(£2;V) of square integrable functionsin
2 with values in the finite dimensional inner product space V. The LEBESGUE measures
in 2 and on 02 will be denoted by du and do.

To provide an abstract definition of a continuous structural model let us preliminarily
define some basic mathematical tools.

e The pivot HILBERT spaces ( spaces identified with their dual ) H(2) = L?*(2; W)
and H(2) = L?*(2;V) of square integrable tensor and vector fieldsin 2 with inner
products ( -, - ) and (-, ).

e The SOBOLEV space of order H"({2;V) of vector fields with square integrable dis-
tributional derivatives of order upto m (seee.g. [2], [8]):

H™(2;V) = {v e L*(2;V) | D'v € L*(2;V), V|p|<m, m integer >0}
where the derivatives
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are taken in the sense of distributions.

e Thelinear space D(£2;V) = C°(§2;V) of test vector fieldswhich areinfinitely diffe-
rentiablein (2 and have compact support in (2. The support of afield u € C(2;V),
denoted by supp(u) , isthesmallest closed subset of (2 outsidewhichthefield vanishes.



The space D(§2; V) isendowed with the pseudo-topol ogy induced by the following defini-
tion of convergence.

B A sequence {u,} € D(£2;V) issaid to convergeto u € D(£2;V) if there exists a
compact subset K C {2 such that supp(u,,) C K and DPu, — DPu uniformly
in 2 for any vectoria multiindex p . The vectorial multiindex p isalist of p scalar
multiindices each formed by n non negative integers to denote the order of partial
differentiation with respect to the corresponding coordinate. The symbol | p | denotes
the sum of the integersin p.

B Thedua of D(§2;V) isthelinear space I'(£2;V) of p-distributionson 2, formed by
the linear functionals which are continuouson D(£2; V). Thevalueof T € I'(2;V)
a ¢ €D(2;V) isdenoted by ( T, ¢ ). Thespace I'(£2;V) isin turn endowed with
the pseudo-topol ogy induced by the following definition of convergence.

e A sequence of distributions {T,} € D'(£2;V) is said to converge to a distribution
TeD'(2;V)if (T,,¢)— (T, ¢) forany testfield ¢ € D(2;V).

A continuous structural model is characterized by the definition of akinematic operator
B whichisalinear differential operator of order m . The general form of an m th-order
differential operator B : H(2) — D/'(£2; W) is

Bwe = T fl Al (x) DPu;(x), x €2,
plsm 1=

where A;(x) isaregular field of n x n matricesin {2.

Any m-times differentiable kinematic field u in (2 is transformed by B into the
corresponding strain rate field. The characteristic property of the kinematic operator is
that the strain rate field vanishes if and only if the parent kinematic field isrigid. In the
linearized theory of structural models, displacement fields are treated as kinematic fields
and the corresponding strain rate fields are called linearized strain fields (or for shorthand
simply strain fields).

In structural mechanics it is however compelling to consider more general kinematic
fields. The motivation is twofold. The first request is a technical one and consists in the
need for the complection of the kinematic space, with respect to the mean square norm,
to render the nice properties of HILBERT spaces available. The second request is that
discontinuous kinematic fields must be allowed to be dealt with in the analysis of structural
models. This latter demand stems from the mechanical principle which we refer to as the
axiom of reproducibility. The basic idea is the one expressed by the classical principle
of sectioning due to EULER and CAucHY. The axiom of reproducibility states that the
kinematic space must include discontinuous fields capable of describing regular relative
motions between the elements of an arbitrary finite subdivision of the base domain (2.

Generalized functions (distributions) are needed sincethe mathematical modelling leads
to analyzevector fieldsthat, being discontinuous, are not differentiablein the classical sense.
Here regularity means that the strain rate field associated with a kinematic field must be a
distribution representable by a square integrable field in each element of the subdivision.



A continuous structural model is characterized by a distributional differential operator
B : H(£2) — D'(£2; W) which providesthedistributional strainratefield Bv € D'(£2; W)
corresponding to a square integrable kinematic field v € H({2;V).

A kinematic field v € H({2) is piecewise regular if the corresponding distributional
strainratefield Bv € D' (£2; W) ispiecewise squareintegrablein (2. It isthen convenient
to consider theregular kinematic fieldsto be defined on asubdivision of 2 into subdomains
‘P on each of which they belongto H"(P; V).

Let us then consider adecompositions 7 (§2) of (2 into afinite family of non-overlap-
ping subdomains 2, C 2 with boundary 02, (e =1,...,n) which realize a covering
of 2. Theclosure 2, = 912, U 12, is caled an element of 7'(£2) and the following
properties are assumed to be fulfilled:

n
0,N2=0 for a#p ad [J2,=0
e=1

A field v on {2 issaid to be piecewise H™(£2;V) if itsrestriction v|, to each element
02, of asuitable decomposition 7 (£2) belongto H™(£2,;V).
The kinematic space V, C H({2) of piecewise GREEN-regular kinematic fields on
(2 isthen defined by assuming that for any v € V, , there exists adecomposition 7, ({2)
such that the distributional strain (Bv)|, , restriction of Bv € D'(2; W) to (2, defined
as:
(Bv)|.(¢) := (Bv)(¢), V¢ e D(2;W) : suppep C £2,,

is square integrable over the element 2, of 7, (2). Then
Vo i={veH2)|3T(2) : Bv)|, € H(2,)}.

The regular part of the strain distribution Bv € D(£2; W), denoted by Bv € H((2), is
defined to be the list of square integrable strain fields (Bv)|, € H(£2,) (e=1,...,n).
The space V, isapre-HILBERT space when endowed with the inner product

(qu)VQ ::/u-vdu +/Bu:Bvdp:(u,v)+((Bu,Bv)),
(0 (0}

and the induced norm
lull, = [(u, u)+(Bu, Bu)]/?.
which is equivalent to the sum of the norms, since
lally < lully g+ I Bully o) < V2l ull,.

Thekinematicoperator B € BL {V,, H(2) } isaboundedlinear mapfromV, into H(f2)
which provides the regular part Bv € H({2) of the distributional strain Bv € D/ (£2; W)
corresponding to the kinematic field u € V, .



The space F, of force systems is the topological dua of V,. The kinematic and
the equilibrium operators B € BL{V,,H(£2)} and B’ € BL{H({2),F,} are dua
counterparts associated with thefundamental bilinear form b which describesthekinematic
properties of the model:

b(v,o) :=(o,Bv)=(Bo,v), ocH(2),veV,.

The formal adjoint of B € BL{V,, H(12)} is the distributional differential operator
B/, : H(2) — D' (£2) of order m defined by the identity

(Blo,v):=(o,Bv), VveD(2;V), VoeH().

The space S, of piecewise GREEN-regular stress fields on (2 is then defined as the
linear space of stressfields o € H({2) such that the corresponding body force distribution
B/ o € D'(£2;V) isrepresentable by a piecewice square integrable field on 2:

S i={c e H(2)|3ITx(2) : (B,o)|, € H(2,)}.
Theregular part of the body force B,,o € D’(£2; V), denoted by B/Oa € H((2),isdefined

to be the list of square integrable fields (B),o)|, € H(£2,) (e =1,...,n).
The space S, isapre-HILBERT space when endowed with the inner product

(O’,T)S::/U:Td,qu/B,OO"B,OTd,u, Vo, 7€S8,
N (0}

and the induced norm
! 1/
lolls = 110 o)+ 1Boo o] -
which is equivalent to the sum of the norms:
I lls < Ul + 1 Boo g < V2o g

The body equilibrium operator B, € BL {Sp,H(£2)} isabounded linear map of the

stressfields o € S, into the regular part B,o € H(f2) of the distributional body force
Blo € D' (2;V).

2 Green'sformula

In mathematical physics, and in particular in continuum mechanics, a fundamental role is
played by the classic GREEN's formula which is the fundamental tool for the formulation
of Boundary Values Problems.



Let us consider a kinematic field v € V, and the stress field o € S, and let
T oo (2) =Ty (2) V 15 (£2) beadecomposition finer than 7, (£2) and 7 .(12).
The GREEN's formulafor the operator B € BL {V;, H(£2)} can be written

(o,Bv)=(B,o,v)+(No,Iv), VveV, Voecs,,

where by definition

((tJ',BV))::/o':Bvdu7 (B,OO',V):Z/B’OO"Vd/J,,
N N

and the duality pairing ( No , I'v )) isthe extension by continuity of the following sum of

boundary integralsover 07, (2) =U082,, e=1,...,n:

No -I'vdo.
OT 4 (22)

Theoperators T and N aredifferential operators of order ranging from 0 to m—1 defined
by the rule of integration by parts.

3 Bilateral constraints

A basic constraint in mechanicsisthe requirement of piecewise regularity of kinematic
fields. Let V =V(7(£2)) CV, and S = S(7(2)) C Sy, bethe closed linear spaces of
kinematic and stress fields which are GREEN-regular in correspondence to agiven subdivi-
sion 7(£2). Thespaces ¥V and S are HILBERT spaces when endowed with the topology
inherited by V, and S(,. We shall further denote by F = F(7(£2)) the space of force
systems in duality with V(7 (£2)).

Oncearegularity subdivision 7 (£2) hasbeeen fixed, theboundary operators appearing
in GREEN'sformulacan bequalified asbounded linear operatorsbetween suitablefunctional
spaces. Letusdenoteby 0V = 9V(7 (2)) thelinear space of boundary fieldsthat aretraces
of fieldsin V, sothat 9V :=T'V. The space 9V isan HILBERT space when endowed
with the topology of the isomorphic quotient space V/KerT' [8]. The flux boundary
operator N € BL {S,9F} takesitsvaluesin the dual HILBERT space of boundary forces
OF = 0F(T(£2)). The operator N yields the boundary tractions No € 9F due to
the stress fields o € S. The operator T yields the boundary traces T'v € 9V of the
displacement fields v € V.

Theoperators T € BL{V,0V} and N € BL{S,0F} aresurjective: ImI' = 9V
and ImMN = 9F . Moreover KerT" isdensein H and KerN isdensein H [8].

Since ImT = 9V, by the closed range theorem the dual operator I’ € BL {6]—", ]—'}
isinjectivebeing KerI’ = [ImT]* = {o}.



Affine constraints are usually considered in mechanics so that admissible kinematic
fields belong to a closed linear variety V, = V(7 (£2)) C V(7 (£2)) defined by V, :
=w+ L where w € V(7(2)) and £ = L(T(£2)) C V(7 (£2)) isthe closed linear
subspace of conforming kinematisms.

The linear space F, = F (7 (2)) of active forces is the topological dual of the
HiLBERT space £ C V endowed with the topology inherited by V.

It can be proved that there exists an isometric isomorphism between the space F . and
the quotient space /L [8].

To derive the main result concerning the existence of a stress field, it is convenient to
introduce the following pair of dual operators:

e the conforming kinematic operator B, € BL {E, H } , defined as the restriction of
BeBL{V,H} to L,
e the conforming equilibrium operator B/ﬁ € BL{S,F/L"*}, defined by the position
B.o :=Blo+L".
The kernels and the images of these operators are given by

KerB, = KeeBNL, KerB,=(B) 't =(Br)",

ImB, =BL, ImB,=(ImB' +£%)/c".

The mechanical property of firm, bilateral and smooth constraints is modeled by re-
quiring that the constraint reactions must be orthogonal to conforming kinematisms:

R=L'={reF|(r,v)=0 VvecLl}.

The closed linear subspace Vg, : = KerB, C V of conforming rigid kinematisms has
a special relevance in structural mechanics since its elements appear as test fields in the
equilibrium condition of a system of active forces:

(eVi, — (f,v)=0 VveEVpq.

The elimination of the rigidity constraint is the central issue of continuum mechanics and
is performed by atechnique of LAGRANGE multipliers originarily envisaged by GABRIO
P1ora in 1833 [1]. Theissue will be discussed in the next sections.

4 Korn’sinequality

I'n continuum mechanics the fundamental theorems concerning the variational formulations
of equilibrium and compatibility are founded on the property that, for any closed linear
subspace of conforming kinematisms, the corresponding conforming kinematic operator
has a closed range and afinite dimensional kernel.



It can be proved [7] that this property is fulfilled if and only if the kinematic operator
B € BL{V, H} meetsaninequality of KORN’s type:

IBv [l +lvig=alvl] Vv eH™(T(2)V),

m’

where H™ (7 (£2)) isaSoBOLEV spaceof order m subordinated to the subdivision 7 (12) .
If KOorN’sinequality holds, the space V(7 (£2)) endowed with the norm

Ivllg o= [IvIZ +1Bv|2]2,
isisomorphic and isometricto H" (7 (£2);V).
KornN’sinequality is equivalent to state that for any conforming subspace £ C V the
reduced kinematic operator B, € BL {£,H} fulfilsthe conditions:

{dim KerB, < + o0,

BV, VveLl < ImB, closdin H,

Zcp ”V”ﬁ/Kech

where cg isapositive constant [7].

The well-posedness of the structural model requires that for any conforming subspace
L C V thefundamenta form b be closed on S x V. This property is expressed by the
inf-sup condition [6]

b(v,0o) b (v,o)

>0.

inf sup inf sup
ocH vel H UHH/KerB’HV”/;/KerB vel ocH ||0' ”H/KerB’HV”L/KerB

The reduced kinematic operator B, € BL {C, H} and the dual reduced equilibrium oper-
ator B’c € BL{H,F,} haveboth closed ranges and meet the equivalent inequalities

1BVl 2 eg IVl kap YVEL < [Bol,, 2 cpllolhap

foral o e H.

5 Basic theorems

Making appeal to BANACH's closed range theorem [2] we get the proof of the following
basic theorem [8] which provides a rigorous basis to the LAGRANGE multipliers method
applied by ProLa in[1].

Proposition 5.1. Theorem of Virtual Powers.  Given a system of active forces ¢ €
[KerBL}L in equilibrium on the constrained structure M{(2, £, B} thereexists at least

a stress state o € H such that the virtual power performed by ¢ € [Ker Bl:]L for any
conforming kinematic field v € £ be equal to the virtual power performed by the stress
state o € H for the corresponding tangent strain field Bv € H, i,e.

(e[KeB " CF, < JocH: ({,v)=(0o,Bv), VveL.



Proof. Since the kinematic operator B € BL{V;H} meets KORN's inequality, we

infer from BANACH'S closed range theorem that ImBlﬁ = (KerBL)l where B’E €
BL{H;F,} isthedua of B, € BL{L;H}. The equilibrium condition reads then
¢ € ImB, and this ensures the existence of astressstate o € M suchthat B.o = ¢, i.e.

(o,Bv) =<B/£O',V):(€,V>, VvedL.

The statement has been thus proved. O

According to this approach a stress state isintroduced as afield of LAGRANGE multi-
pliers suitable to eliminate the rigidity constraint on the conforming virtual kinematisms.

Uniqueness of the stress field in equilibrium holds to within elements of the closed
linear subspace of self-stresses, defined by

Sspr :={0€H : (0,Bv)=0, VveLl}=(BL)=
—{occKerB, : (No,Tv) =0, VveLl}=
—{0eS:Bo=o0,Noc[lL'}=KeB,NZ,

where )
Y:={oeS: (Bo,v)=(0o,Bv) VveL}=

:{0'68 : (No, T'vy)y=0 VVEE}7

is the space of conforming stress fields, a closed linear subspace of S .

6 Boundary value problems

Boundary value problems are characterized by the fact that constraints are imposed
only on the boundary trace of 7 (2)-regular kinematic fields v € V(7 ({2)). Hencein
boundary valueproblemsall the 7 (£2)-regular kinematismswith vanishingtraceon 907 (12)
are conforming, a property expressed by the inclusion

KeI' C L.

Aswe shall see hereafter in proving an abstract version of CAuchy theorem, this property
is essential in order that variational and differential formulations of equilibrium condition
be equivalent one another.

The presence of rigid frictionless bilateral constraints on the boundary 07 (£2) can
be described by considering the pairs of dual HiLBERT spaces {4, A’} and {P,P’} and
the bounded linear operators L € BL {0V, A’} and IT € BL {P,9V} . The operators L
and IT provide respectively implicit and explicit descriptions of the boundary constraints.
We assumethat L and IT have closed ranges so that, denoting by L € BL {4, F} and



II' € BL {0F,P'} the dual operators, BaNAcH's theorem tell usthat ImL/ = (KerL)*
and ImII = (Ker IT)* [8].
The closed linear subspace of conforming displacement fields is then characterized by
L={veV|Ive ImIIl= KeL},
In boundary value problems the orthogonality property R = £+ vyields the condition
R C (KerT)* = ImI’ where I € BL{9F,F} isthedud of T € BL{V,dV}.
Hence there exists a boundary reaction p € F suchthat I''p = r thatis

(r,v)=(p,Tv), VveV.

Thismeansthat constraint reactions consists only of boundary reactionswhich are el ements
of the subspace

R={pecdF|(p,Tv)=0 VveLl}=(TL)"=ImL = KerIl'.
Uniqueness of the parametric representations of £ and OR requiresthat KerII = {o}
and KerL/ = {o} respectively.

It is now possible to provide a ssmple proof of an abstract version of CAuCHY's fun-
damental theorem for boundary value problemsin the statics of continua.

Proposition 6.1. CAucHY'sTheorem. Letusconsider aconstrained model M{(2, £, B}
with kinematic constraint conditions imposed on the boundary 97 (f2) of a subdivision
7 (£2). Then a system of body and contact forces {b,t} € H x 0F and a stress state
o € 'H meet the variational condition of equilibrium

(b,v)+(t, I'v)y=(o,Bv), o€H, Vvel

if and only if they satisfy the CAucHY equilibrium equations

B,oc =b, body equilibrium,

No =t+ p boundary equilibrium,
where o € S and p € [T £]- isareactive sysemacting on 97 (£2).
Proof. Let the variational condition of equilibrium be met and assume as test fields the
kinematisms ¢ € D(7(£2);V) C KerI' C £ C V. From the distributional definition of
the operator B/, : H — /(7 (£2);V) we get the relation

(b,@)=(0,Bp)=(Byo,¢), VYeeDT(2);V).
It followsthat o € S and B,o = b and GREEN's formula can be applied to prove that
(0,Bv)=(B,o,v)+(No,Iv), YveLl, oc€S.
From the variational condition of equilibrium we finally get
(t, I'vy=(No,I'v), oS VveL,
or equivaently
No -t e [[ L] =0R.
On the other hand, if CAucHY's equilibrium conditions are met, observing that
(p,Tvy=0, VpellLt, VYvecL,

the variational condition of equilibrium isreadily inferred from GReEN's formula. O



Theclosednessof ImB, = BL andthedefinition Sgpir : = (Bﬁ)L yieldtheequal-
ity BL = (BL)*+ = Sg,,.» Which provides another basic existence result in structural
mechanics and leads to the variational method for kinematic compatibility stated below.

Proposition 6.2. Let M{{2, £, B} beaconstrained structureandlet {e,w} € H xV be
a kinematic system formed by an imposed distorsion € € H and an impressed kinematism
w € V. Then we have the equivalence

(og,e—Bw)=0 Vo €Ssgr < Jucew+L : e=Bu.

Proof. By BANACH's closed range theorem we havethat ImB, = (KerB'E)L. Hence
e — Bw € Sgpp isequivaentto e - Bw € ImB. O

Theresult in proposition 6.2 leads al so to the following decomposition property.

Decomposition of the space H .

B The linear subspace BL of tangent strains which are compatible with conforming
kinematisms and the linear subspace Ssgrr Of Self stresses provide a decomposition
of the HILBERT space H of square integrable tangent strain fields into the direct sum
of two orthogona complements

Ssowr = [BL] T,

H = SSELF + BE W|th N
BL = [SSELF}

i

where the symbol + denotes the direct sum and orthogonality has to be taken in the
mean square sensein {2, that is according to the hilbertian topology of the space H .

The theory developed above allows us to establish a number of useful results which could
not be deduced if a more naive analysis were performed.

Among these we quote several new representation formulas which are relevant in the
complementary formulationsof equilibrium and compatibility and in the statement of primal
and complementary mixed and hybrid variational principlesin elastostatics [3], [4], [7].

From the basic orthogonal decomposition of the space H another decomposition for-
mulawhich plays abasic role in homogenization theory (see e.g. [5] and reference therein)
can be directly inferred.

Tothisendlet M, € BL {H; W} be the averaging operator which provides the mean
value in {2 of fields e € H. Itiseasy to seethat ImM,, = W and that the adjoint
operator M, € BL {W;H} maps D € W into the constant field e(x) =D Vx € £2.
By the closed range theorem we have that

ImM,, = (KerM}))", ImM, = (KerM,,)".

We have the following result.



Proposition 6.3.  Let M{f2, £,B} be a structural model such that the space BL of
conforming strains includes the constant fields:

ImM’QCBﬁ.

Then the following decomposition into the direct sum of orthogonal complements holds:

H = ImM/, + BLN Ker M, + (BL)*.

where

ImM, congtant fields,
BL N KerM, zeromean conforming strain fields,

(BL)*+ zero mean selfequilibrated stress fields.

Proof. The result follows from the formula

BL = ImM/, + BLN (ImM/))* = ImM/, + BLN Ker M, ,

and from the equivalence ImMM{, C BL <= (BL)* C KerM,,. O

In periodic homogenization theory the closed linear subspace of conforming kinema-

tismsis defined to be £(C) := ImM{, 4 L., (C) . Here C isthe periodicity cell and
L, (C) istheclosed linear subspace of GREEN-regular periodic kinematisms defined by
Lopr(C) := {v € V(C) | Bv; € L*(K;V)} being K any compact neighborhood of
the periodicity cell C' and vy the extension by periodicity of the kinematism v € V(C).
Itiseasy toseethat L,,,(C) C KerM,. Hence £(C) is closed being the sum of two
orthogonal closed linear subspaces.
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