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A new statement of Maupertuis principle of extremal action is contributed on the basis
of a constrained action principle in the velocity phase-space in which the condition of energy
conservation is imposed on virtual velocities. Dynamical systems governed by time-dependent
Lagrangians on nonlinear configuration manifolds and subject to the action of time-dependent
forces are considered. In time-independent systems, and in particular in conservative systems, the
constrained action principle specializes to a formulation of the original Maupertuis least action
principle in which however conservation of energy along the trajectory is a natural consequence
of the variational principle and not an a priori assumption as in classical statements.
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1. Introduction

The long lasting controversy about the principle of least action in dynamics was
initiated in 1751 by the ugly dispute between Pierre Louis Moreau de Maupertuis and
Samuel Konig who claimed that Maupertuis had plagiarized a result due to Leibniz
who communicated it to Jacob Hermann in a letter dated 1707. Voltaire, in support
of Konig, on one hand, and d' Alembert, Euler and the king of Prussia Frederick the
Great, in support of Maupertuis, where involved at the center of the dispute, but the
original of the incriminating letter was never found. The least action principle was
enunciated by Maupertuis on 15 April 1744 [I] and in the same year by Euler in [2].
The principle appears to have been persecuted by a curse and its very formulation has
longly been problematic and up to now appears to be still unsatisfactorily grown up.

In [3], footnote on page 243, Arnold quotes: "In almost all textbooks, even the
best, this principle is presented so that it is impossible to understand" (C. Jacobi,
Lectures on Dynamics). I do not choose to break with tradiction. A very interesting
"proof" of Maupertuis principle is in Section 44 of the mechanics textbook of
Landau and Lifshits (Mechanics, Oxford, Pergamon 1960). In [4], footnote on p.
249, Abraham and Marsden write: We thank M. Spivak for helping us to formulate
this theorem correctly. The authors, like many others (we were happy to learn), were
confused by the standard textbook statements. For instance the misterious variation
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"A" in Goldstein [1950, p. 228] corresponds to our enlargement of the variables
by c --+ (r, c).

The difficulties faced in providing a proper formulation of Maupertuis principle
are imputable to two drawbacks which may affect treatments of dynamics. A first
issue concerns the formulation of action principles which should most suitably be
developed in the phase-space (the tangent bundle to the configuration manifold)
and not in the configuration manifold itself. Although less direct, the formulation
in the phase-space is natural in dynamics and is in fact compelling if constraints
involving velocities are considered. The Maupertuis principle is in this respect rather
paradigmatic since the constraint of energy conservation is such. A second issue
deals with the fact that it should be recognized that, in the extremality conditions
of the geometric action principle, only virtual velocities in the phase-space do play
a role. As a consequence, linear constraints on the variations have only be imposed
on virtual velocities and must not necessarily be defined in the large, that is, on
finitely varied trajectories [5].

The formulation of the Maupertuis principle contributed in the present paper is
based on the action principle of dynamics in the velocity phase-space. No a priori
assumption of energy conservation along the trajectory is needed and hence the
new statement of the principle is not confined to conservative dynamical systems
as its standard version [3, 4, 6-8]. Impulsive forces are not explicitly considered
for brevity but could be easily accounted for. This formulation should end the long
track followed by this extremality principle, still often referred to as Maupertuis
least action principle for historical reasons.

The plan of the paper is the following. Preliminarily some tools and definitions of
calculus on manifolds are recalled to clarify the notation adopted in the main body
of the paper. On the basis of the functional analytic version of Lagrange's multipliers
method based on Banach's closed range theorem, we provide a direct and clear
mathematical proof of the equivalence between the geometric action principle in the
velocity-time manifold and a constrained action principle in which the condition of
energy conservation is imposed on virtual velocities in this manifold. When energy
and force systems are time-independent, i.e. they do not depend directly on time,
this principle specializes to an action principle in the velocity phase-space, with the
time playing no role. This result provides an extended formulation of Maupertuis
principle. In conservative systems the constraint of energy conservation becomes
condition of vanishing energy variation and Maupertuis principle takes the classical
form but still retaining a more general formulation since constancy of the energy
along the trajectory is deduced as a natural consequence of the principle, rather than
being assumed a priori as in previous statements and no fixed-ends condition is
imposed on the variations. This result is a direct consequence of the new approach
developed in this paper. Classical as it stands, Maupertuis principle is playing an
active role in formulations of dynamics and related fields, still in recent times (see
e.g. [9, 10]). Among general variational principles in science, Maupertuis least action
principle shares the spotlights with Fermat principle in optics.
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2. Calculus on manifolds and action principle

In the sequel a dot . denotes linear dependence. A basic tool of calculus on
manifolds is Stokes' formula stating that the integral of a (k - I)-form ui-1 on the
boundary 3b of a k-chain b in a manifold M, with dim M > k, is equal to the
integral of its exterior derivative dWk- 1, a k-form, on b, i.e.

[ dWk- 1 = J Wk- I •

11; i;
This equality can be assumed to be the very definition of exterior derivative of
a k-form. Denoting by -} the pull back (t the push forward), the Lie's derivative
of a vector field W E C1(M; 1I'M) along a flow CPA E C1(b ; M), with velocity
v = 3A=oCPA E c' (b ; 1I'M), is given by

LyW = 3A=o (CPA-}w) = 3A=o (TCPA 0 W 0 CPA)'

and is equal to the antisymmetric Lie-bracket LyW = [v, w] = -[w, v]. The Lie
derivative, of a field wk(x) E Ak(1I'xM) of k-forms on b, is given by LyWk =
3A=o (CPA -}wk

) with the pull back defined by invariance. Reynolds' transport formula,
Stokes' formula and Fubini's theorem lead to the integral extrusion formula [5]:

3A=o 1 wk = [(dwk).
V + [ Wk. v,

!p!-(1;) 11; 101;

and to the related differential Henri Cartan's magic formula [5, 11, 12] (also called
homotopy formula [3]),

L y wk = (dwk) . V + d(wk . v),

where Wk. v denotes the (k - I)-form which is the contraction performed by taking
v as the first argument of wk. The homotopy formula is readily inverted to get
Palais formula for the exterior derivative of a l-form, By Leibniz rule for the Lie
derivative, for any two vector fields v, W E CI (M; 1I'M),

dto' . v· w= (LyW 1
) . W - d(w l

. v)· W

= d; (WI. w) - WI . [v, w] - dw (WI. v).

The expression at the r.h.s. of Palais formula fulfills the tensoriality criterion, see
e.g. [5, 12]. The exterior derivative of a differential one-form is thus well defined
as a differential two-form, since its value at a point depends only on the values
of the argument vector fields at that point. The same algebra may be repeatedly
applied to deduce the formula for the exterior derivative of a k-form [13].

The geometric point of view is underlying all the classical variational principles
of mathematical physics which were inspired by the early discoveries by Heron of
Alexandria, at the beginning of the Christian era, about the shortest path followed by
reflected light-rays. The extension to refraction of light is due, about one thousand
years later, to the muslim scientist Ibn al-Haytham, the father of optics, in his book
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Kitab al Manazir (Book of Optics). The principle of minimum optical length was
enunciated by Fermat on January 1, 1662 in a letter to Cureau de la Chambre.

We will consider piecewise regular trajectories. Discontinuities may occur due to
abrupt changes in time of the system properties (e.g. mass loss or impulsive actions)
or to abrupt changes in the configuration space properties (e.g. collisions between
bodies or change of refraction properties in optical media). In abstract terms, the
extremality condition for an action integral along a path (a l-chain) in a manifold
M is enunciated as follows [5].

DEFINITION 1. (Action principle) A trajectory of a system governed by a
piecewise regular action one-form WI with a ID kernel on M, is a piecewise regular
path r E CI(l; M) with I' := r(l) fulfilling the variational condition

0),,=0 r WI = 1. WI. v,
lFII<r) far

for all virtual flows FIr E cl (T ; M), with FI~ the identity map and virtual velocity
field v = 0),,=0 Fir E cl (I' ; 1I'M) fulfilling, at singular interfaces, conditions apt to
ensure that duality with covectors is well defined.

Since the action one-form WI has a ID kernel, the trajectory is detected by the action
principle to within an arbitrary reparametrization and thus the variational principle
is purely geometrical. The local characterization of a trajectory is performed by the
following result (see e.g. [5, 14]) which translates in geometric differential terms the
original idea due to the genius of Leonhard Euler [2] and is a direct consequence
of the extrusion formula and of the fundamental lemma of calculus of variations.

THEOREM 1. (Euler's conditions) A path r E CI(l ; M) fulfills the action prin­
ciple if and only if the tangent vector field Vr E CI (I' ; 1I'f) fulfils the homogeneous
differential condition

dw l
. Vr . v = 0,

and, at the singularity interfaces, the jump conditions [WI]. V = °for all virtual
tangent vector fields v E CI(T ; 1I'M).

3. Kinematics of continua

The kinematics of continua deals with the placements of a continuous body,
a compact connected manifold Jill with boundary, in an ambient space assumed to be
a Riemannian manifold {S, g} (classically the Euclidean space) with metric tensor
field g. Configurations X E CI(Jill; S) are injective maps which are diffeomorphic
transformations onto their ranges (embeddings). Given a set X and a Banach space Y,
the Banach space of bounded linear maps from X to Y is denoted by BL (X; Y). The
Whitney product of two vector bundles (IE, p, M) and (JH[, Jr ,M), over the same base
M, is the vector bundle defined by [15]: IE XMI JH[ := {(e, h) E IE x JH[ I pee) = Jr(h)}.
The configuration-space C := CI(Jill; S) is a differentiable manifold of maps modelled
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Yu" E 'IT'**( *)q.TiC v

on a Banach space. Tangent and cotangent bundles are denoted by 'IT'C and rc
and respectively called velocity and covelocity phase-space.

The velocity-time and covelocity-time spaces are the cartesian products 'IT'C x I
and rc x I with a compact time interval I. These state-spaces are respectively
adopted in Lagrangian and Hamiltonian descriptions of dynamics. Vectors tangent
to the state-space 'IT'C x I are in the bundle 'IT''IT'C x 'IT'I whose elements are pairs
rx.. (~,} E 'IT'v'IT'C x 'IT',l.

The tangent map T cP E CO ('IT'M ; 'IT'N) of a morphism cp Eel (M ; N) between
manifolds is the linear vector bundle homomorphism, i.e. the fiber preserving and
fiber-linear map which transforms tangent vectors Vx E 'IT'xM into the differentials
Txcp . Vx E 'IT'cp(x)N. The tangent bundle is fibred by the surjective submersion
TC E C1('IT'C; C) and the tangent of the fibration TTc E CO('IT''IT'C; 'IT'C) maps
a vector X, E 'IT'vr, tangent to a line r c 'IT'C, into the velocity of the projected
line y = Tdf) c C at Tdv) E y.

A vector X, E 'IT'v 'IT'C such that T1l'dXv) = TvTC . X, is second order. Vectors
X, E 'IT'v 'IT'C such that TvTC' X, = 0 are vertical. The vertical lift at v E 'IT'C is the
linear map vl1l'dv) E CI('IT'TiC(V)C;'IT'v'IT'C) defined by v1]'dv),w:= a),,=O(v + AW)
with (v , w) E 'IT'C Xc 'IT'C

The fiber derivative of a Lagrangian functional L E C2('IT'C ; ffi) is the morphism
dFL Eel ('IT'C; rC) defined by

dFL(v) . W := a),,=o L(v + AW) = (T L(v), vlJrdv) . w),

for all (v, w) E 'IT'C Xc 'IT'C
The Fenchel-Legendre transform relates fiberwise convex Hamiltonians H :

rc ~ ffi U +00 and fiberwise convex Lagrangians L : 'IT'C ~ ffi U +00 according
to the conjugacy relations [16], [17]:

H(v*) = L*(v*) := sup {(v*, v) - L(v)},
vE1l'",* (v*jCc

L(v)= H*(v):= sup {(v*, v) - H(v*)}.
V*E1l'* CTiC(V)

The involutive property L ** = Land H** = H holds under the assumption that the
functionals are fiber-subdifferentiable. Then the Fenchel-Legendre transform is the
maximal monotone and conservative [18] (i.e. cyclically monotone) graph associated
with the multivalued subdifferential maps

v* E aFL(v) {:=::} v E aFH(v*),

defined by the convex sets:

aFL(v):= {v* E 'IT'~iC(V)C : (v*, u - v) ::: L(u) - L(v),

aFH(v*):= {v E 'IT'TC(V*)C : (v, u" - v*) ::: H(u*) - H(v*),

For fiber-differentiable Lagrangians, the subdifferetial aFL(v) is the singleton dFL(v)
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and Legendre transform yields the relation: E(v) := H(dFL(v)) = (dFL(v), v) - L(v)
for all v E 11'C

An interesting revisitation of Legendre transformation has been recently provided
in [19]. A form on 11'C (11'*iC) is horizontal if it vanishes when any of its arguments
is a vertical tangent vector to 11'C (1I'*iC) [12]. This concept is independent of the
choice of a connection. The Liouville one-form on the cotangent bundle is the
horizontal form intrinsically defined in variational terms,

(O(v*), Yv*) = (v", Tv*TC' Yv*) = (Tv~TC' v", Y,«), VYv* E 11'v*11'*C

A basic property is that the exterior derivative dO(v*) is a two-form with a trivial
kernel [11]. The counterpart in the tangent bundle is the horizontal Poincare-Cartan
one-form OLE C I (11'C ; 1I'*11'iC), defined in variational terms by

(O[(v), Yv) = (dFL(v), TvTe' Yv) = (Tv*Te' dFL(v), Yv), VYv E 11'v11'C.

The Lagrange's action one-form w1 E CI(r /; 1I'*(11'C x I)) in the velocity-time
state-space is defined by w1(v,t):= OLley) - Et(v)dt where Et(v) = Ht(dFLt(v)),
with v E 11'C, is the energy functional. The subscript t denotes a direct dependence
on time.

A trajectory in the velocity-time state-space is denoted by r I E CI(I; 11'C x I)
with cartesian projection on the velocity phase-space given by r E CI(I; 11'iC), so
that r/(t) = (I'(r) , t). The trajectory in the configuration space is then y = Te a r
and the trajectory images are denoted by y := y (I), I' := r (I) and I' I := I' x I.
We set r = v a y = T y . 1 where 1 E CI (I ; 11' I) with T I a 1 = id I the unit section.
For brevity we set Vt = v(Yt).

A virtual flow Fir E c' (y ; C) in the configuration manifold and a virtual
flow FI~ E c' (I; ffi) along the time axis define altogether an asynchronous flow
FI~ x FI~ E CI (y x I ; C x ffi) in the configuration-time manifold. A vanishing time­
velocity e at every time t e I defines a synchronous flow FI~ x id I E C1(y x I; C x ffi)
in the configuration-time manifold.

Virtual velocity fields along the lifted trajectory I' c 11'C in the velocity phase­
space are vector fields Y E c' (T ; 11'11'iC) which project onto virtual velocity fields
vtp E C2 (y ; 11'iC) in the configuration manifold. We will refer to this vector fields
as bi-velocities, A suitable extension of Y E c' (T ; 11'11'iC) outside the trajectory
I' c 11'C defines a virtual flow Fir E c' (I' ; 11'iC) which projects to a virtual flow
((J).. E C2(y ; C) with initial velocity vtp E C2(y ; 11'iC), so that rc a Fir = ({J).. a rc and
TTe a Y = vtp o rr-.

4. Force systems

Nonpotential forces acting on the mechanical system along a trajectory in the
configuration manifold are represented by a time-dependent field of one-forms
ft E Cl (y ; 1I'*iC), so that f t (Yt) E 11';/ C To formulate the law of dynamics on the
tangent bundle, forces must be expressed as one-forms on this bundle. Physical
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consistency requires that force forms be represented by horizontal forms on the
tangent bundle since their virtual work must vanish for vanishing velocities of
the base point in the configuration manifold. The correspondence between force
one-forms f t E C' (y ; 1I'*C) acting along the trajectory in the configuration manifold
and horizontal one-forms F, E C l (T ; 1I'*1rC) acting along the lifted trajectory in the
tangent bundle is the linear isomorphism defined by

(Ft(vt), Y(vt») = (ftCrc(vt», TvtTC' Y(vt»)

In the velocity-time state-space, forces are represented by force two-forms (F 1\

dt)(vt, t) defined by

(F 1\ dt)(vt,t) . (Y, 8) . (X, 1) = Ft(vt) . Y(vt) - (Ft(vt) . X(vt» 8 t,

which, for synchronous virtual velocities, gives

(F 1\ dt)(vt,1) . (Y, 0) . (X, 1) = Ft(vt) . Y(vt ) .

5. Dynamics

We may now state the geometric action principle in the velocity-time space. In
this respect we notice that the kinetic energy of a dynamical system is defined
along the trajectory in the velocity phase-space, where the instantaneous mass-form
pertaining to the body is well defined. Accordingly also the Lagrangian functional
is defined only along the trajectory. To state the law of dynamics as a extremality
principle for the action integral associated with the Lagrange one-form, the Lagrangian
functional must be suitably extended outside the trajectory, more precisely it is to
be defined in any 2D sheet spanned by a virtual flow dragging the trajectory in
the velocity phase-space. This issue is a distinctive feature of action principles in
dynamics, compared with Fermat's principle in optics which deals with rays in the
physical ambient space and their variations.

The extension is performed by pushing along the flow the velocity of the
trajectory and the mass form, which means that conservation of mass is assumed
in varying the trajectory [S, 20].

PROPOSITION 1. (Geometrical action principle) A trajectory in velocity-time
state-space is a piecewise regular path r I : I ---+ 1I'C x I such that the Lagrangian
one-form wL E c'rr I; 1I'*(1I'C x 1) fulfils the asynchronous action principle,

aA=o [ wL - 1. wL· (Y, 8) = - [ (F 1\ dt) . (Y, 8),
iFI(Y·H)(r ) hr irA I I I

for any time-flow Flf E C1(I; ffi), with velocity field 8 E C1(I; 11'1) and for any
fiber preserving flow Fir E c1(T ; 1rC) projecting on a flow ({JA E C2(y ; C). Here
aI' I is the boundary O-chain.



338 G. ROMANO, R. BARRETTA and A. BARRETTA

The extrusion formula

aA=o [ w1 - J w1· (Y, 8) = 1dw1· (Y, 8),
JFI(Y,0))(r ) far r

A I I I

and a direct computation of the exterior derivative show that the variational statement
of Proposition 1 is equivalent to the one in which only synchronous variations are
considered, by setting 8 = 0 identically, and to the following Euler's condition of
extremality [5],

dlht(vt)· X(vt)· Y(vt) = (F, - dEt)(vt) . Y(vt),

with the jump conditions at singular points on the trajectory given by

{

[dFLt(vt)] = 0,

[Et(vt)] = O.

By the skew-symmetry of the exterior derivative dOLt (v.) we infer that

dOLt (vt) . X(vt)· X(Vt) = (F, - dEt)(vt) . X(Vt) = 0,

which expresses conservation of energy: the rate of change along the trajectory of
the energy functional, considered as not explicitly dependent on time, must be equal
to the power expended by the external forces, i.e.

(dEt(vt), X(Vt») = (Ft(vt), xo,»,
which, being dEt(vt)· X(Vt) = ar=t Et(vr), may be written in terms of total and
partial time derivatives as

ar=t Er(vr) = (ft(rdvt», vt) + ar=t Er(vt).

The virtual bi-velocity Y E C1(T ; 1I'1I'C) and the bi-velocity VT<p E C1(I' ; 1I'1I'C) of
the lifted flow T (/JA E C1(T ; 1I'C) project both to the same virtual velocity field
v<p E C2(y ; 1I'C) according to the relation Tre 0 Y = Tre 0 VT<p = v<p 0 re. It
follows that Y = VT<p + V with V E C1(I' ; 1I'1I'C) vertical vector field. The next
lemma shows the role of the vertical virtual bi-velocity field in Euler's condition
of extremality [5].

LEMMA 1. If the linear map diLt(v) E BL (1I'riC(Y)C; 1I';iC(Y)C) is invertible, the
fulfillment of the variational condition

dO L, (v) . XCv) . V(v) = - (dEt(v), V(v»),

for any vertical vector V(v) E 1I'y1I'riC(Y)C :::::: 1I'riC(Yt)C, is equivalent to require that
X E C1(T ; 1I'1I'C) is second order: Tre 0 X = id t«:

Lemma 1 ensures that the integral curve of the vector field X E C1(T ; 1I'1I'C), solution
of Euler's differential equation in the velocity phase-space, is indeed the time derivative
of the trajectory speed in the configuration manifold, that is X(Vt) = Vt = ar=t Vr .

Hence ar=t Yr = ar=t (re 0 vr ) = TYtre . ar=t v, = TYtre . X(Vt) = v.. Then Euler's
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condition of extremality writes [5]

dfht(vt) 0 vt 0 VTrp(Vt) = (Ft(vt) - dEt(vt), VTrp(Vt»)

= (ft(rdvt»,vrp(rdvt») - (dEt(vt), VTqJ(Vt»)o

From this formula it is apparent that the condition to be fulfilled by the virtual
velocity field vqJ E C2(y ; 'TI'iC), in order that the r.h.s. of Euler's condition vanish,
involves also the map VTrp E C1(I' ; 'TI''TI'iC) which is related to the tangent map
TVqJ E C1(T ; 'TI''TI'iC) by the relation VTqJ = k 0 TVqJ with k E C1('TI''TI'C; 'TI''TI'iC) the
canonical flip [12]. This fact may explain the difficulties faced by treatments of
Maupertuis principle developed in the configuration manifold.

6. The constrained action principle

To the authors knowledge, a first satisfactory proof of the classical Maupertuis
principle was given in [4], Theorem 3.8.5 at page 249, already cited in the
introduction. The variational principle in [4] considers a trajectory in the configuration
manifold and its asynchronous variations by means of transformations in which the
end-points and the value of the energy function are held fixed while varying the
trajectory and the start and end-time instants. Asynchronous variations are needed
since there could be no path joining the end-points with the same constant energy
and the same start and end-time, other than the given trajectory. The treatment is
developed in terms of coordinates and the variational principle imposes a extremality
condition on the action functional defined as the integral of the action function
along the varied paths in the configuration-time manifold.

The treatment in [4] shares with other classical ones (see e.g. [3, 6-8]) the
assumption that the dynamical system is time independent and conservative and that
variations of the action functional are made between trajectories lying in a constant
energy leaf. This assumption is not in agreement with the fact that extremality
of the geometric action functional requires only bi-velocities as test functions and
not finite displacements of the trajectory. The classical assumption of variations in
a constant energy leaf, is more stringent than needed. As we will see, it includes
among the geometric conditions also a natural one.

The approach developed in this paper is based on the formulation of the
geometric action principle in the velocity-time manifold and on the corresponding
Euler's extremality condition, illustrated in the previous section. The formulation
in terms of the lifted trajectory in the velocity-time manifold is a key tool since
variations of the trajectory in the velocity phase-space are virtual bi-velocities and
there is no need for asynchronous variations. Moreover, the condition to be imposed
on the virtual bi-velocities is apparent from the relevant Euler's extremality condition
expressed in variational terms.

The main step towards the formulation of a generalized Maupertuis principle is
the result concerning the equivalence between the Geometric Action Principle of
Proposition I (GAP) and a Constrained Action Principle (CAP) in the velocity-time
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state-space. No asynchronous variations are needed since the CAP is formulated
as a geometric action principle in the velocity-time state-space. Moreover, the
condition of energy conservation is imposed pointwise on the virtual velocities, but
not along the varied trajectories.

The idea underlying the proof is the following. It is straightforward to see that
a trajectory fulfilling the GAP is also solution of the CAP. Not trivial is the converse
implication, that the geometric trajectory provided by the CAP is also solution of
the GAP. The basic tool is Lagrange's multipliers method which in tum relies upon
Banach's closed range theorem in functional analysis. We formulate a variational
statement of the CAP valid for any dynamical system, including time-dependent
lagrangians and nonpotential or time-dependent forces. The classical Maupertuis least
action principle will be later directly recovered under the special assumption of
conservativity. A more general principle which we still call Maupertuis principle is
got under the assumption that the energy functional and the force system do not
depend directly on time.

The Poincare-Canan one-form OL E CI(f /; 1I'*(lI'C x I)), along the trajectory
in the velocity-time state-space, is defined by: (0 L, (Y, 8) )(vt, t) := (0u, Y) (Vt)
and the energy functional E E CI(f /; m) is given by E(vr, t) := Et(vt) with
(vt , t) = f/(t). The next lemma provides a preliminary result.

LEMMA 2. (Energy form) Let the energy one-form YJE E CI(f /; 1I'*(lI'C x I))
be defined by YJE(Vt, t) := Etv., t) dt. Then we have that

[dYJE . (Y, 0) . (X, l)](vr, t) = dEt(vt) . Y(vt).

Proof: The computation may be performed by Palais formula by extending the
vector (X(Vt), It) E 1I'(vt,t)f l to a field FE C I (lI'C x I; 1I'(lI'C x I)) by pushing it

along the flow FliY'O) E C I (f I ; lI'C x I), according to the relation:

F(FliY'O)(vr, t)) := (Fir tX(Vt), It)(F1r(Vt),t)'

Then Palais formula tells us that

dYJE(vr, t)· (Y(vt), Ot) . (X(vt), It) = d(Y(vtl,Otl(YJE, F)

-d(X(vt),ltl(YJE' (Y,O)) - (YJE,L(Y,o)F)(vr,t).

Since, by the chosen extension, the Lie derivative L(Y,o)F vanishes, we may evaluate
as follows:

d(x(vt),ltl(YJE, (Y, 0)) = a,=t (YJE(V" r), (Y(v,), 0)) = a,=t E,(v,)( dx, 0) = 0,

d(Y(vtl ,Otl(YJE, F) = a).=o Et(Flr (vt)) (dt, It) = a).=o Et(Flr (vt))·

Summing up and recalling that a).=o Et(Flr (vt)) = dEt(vt)' Y(vt), we get the result.
o

THEOREM 2. (Constrained action principle) A trajectory I' I in the velocity­
time state-space lI'C x I of a dynamical system, governed by a time-dependent
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energy E, E C' (T ; Dt) and subject to time-dependent forces f, E c 1(y ; rC), with
y = rdf), is a s-chain fulfilling the geometric action principle

ih=o [ fh = 1. fh· (Y, 0),
iFliY,O)crl) far,

for any virtual bi-velocity field fulfilling the condition of energy conservation

Y(v,) E ker((F, - dE,)(v,)) C lI'v,lI'C

Proof: Let us prove that the above statement, denoted CAP, is equivalent to the
action principle in Proposition 1, denoted GAP. Indeed, in the synchronous case,
being w~ = fh - 1/ E' applying the extrusion formula to the energy form, the GAP
may be written as

OA=O [ fh-1. (h·(Y,O)= [(d1/E-F/\dt).(Y,O),
iFICY,O)(r ) far irA' I I

for any field Y E cO(r ; 1I'1I'C).
Along a time-parametrized trajectory, by Lemma 2 we have that

(d1/E - F /\ dt)Cv/,1) . (Y, 0) . (X, 1) = td E, - F,)(v,) . Y(v,).

Hence the GAP implies the CAP. The converse implication is proved by comparing
Euler's conditions for both action principles. By the extrusion formula, the expression
of the GAP becomes

[ (dfh - d1/E + F /\ dt) . (Y, 0) = 0,
ir/

and the expression of the CAP may be written as

Being

[ dfh· (Y, 0) = 0,ir, 'v' (Y ,0) E ker((d1/E - F /\ dt) . (X, 1)).

and
[(dOdcv/,1)' (Y, 0)· (X, 1)] = dOL/(v,)· Y(v,)· XCv,),

the GAP and the CAP are respectively equivalent to the Euler's conditions:

dOL,(v,)· X(v,)· Y(v,) = 0, 'v'Y(v,) E ker((F, - dE,)(v,)).

By the nondegeneracy of the two-form dOLI (v,) the former equation admits a unique
solution X(v l ) E 11'VI lI'C

The solution of the latter homogeneous equation is instead definite to within
a scalar factor. The former condition clearly implies the latter one, in the sense that
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the solution of the former is also a solution of the latter. The converse implication,
that there is a solution of the latter which is also solution of the former, is
proved by Lagrange's multiplier method. The argument is as follows. Setting
FEt (vt) := (F, - d Et)(vt) E 1I'~t 1I'<C = BL (1I'Vt 1I'<C ; ffi), the subspace im (FEt (Vt)) = ffi

is trivially closed and hence ker(FEt(vt))o = im (Fe, (Vt)*) by Banach closed range
theorem [21]. Here FEt(vt)* E BL(ffi; 1I'~t1I'C) is the dual operator. The latter

condition writes dOLt (vt) . X(Vt) E ker(FEt(vt))o and hence the equality above
assures the existence of a f../.,(vt) E ffi such that

dOLt (vt) . X(vt)· Y(vt) = (FEt(Vt)*' f../.,(Vt) , Y(vt)), VY(vt) E 1I'Vt 1I'<C,

equivalent to dOLt (vt) ,X(Vt) = f../.,(vt)FEt(vt). Then the field X(Vt)/f../.,(Vt) is solution
of both Euler's conditions. The Lagrange's multipliers provide a field of scaling
factors to get the right time schedule along the trajectory. 0

According to Lemma 1, Euler's differential condition ensures that the trajectory
r E C1(I; 1I'C) is the lifting to the tangent bundle of the trajectory y E C2(I ; <C),
so that Vt = ret) = Br=t y(r).

The virtual flow may then be defined as Fir = Ttp, E C1(T ; 1I'<C) with epA E

C2(y ; C) and the virtual bi-velocity is given by Y = VTqJ = BA=o TepA E CO(f; 1I'1I'<C).
Accordingly, the variational condition of the constrained action principle of Theorem 2
can be written explicitly, in terms of the action functional At(vt) := (dFLt(vt), Vt)
associated with the Lagrangian and of the virtual flow in the configuration manifold

as BA=o f Ata»,(vt)) dt = j (dFLt(vt), VqJ(ic(Vt))) dt,
I ~I

with virtual velocities fulfilling conservation of energy, i.e. such that

dEt(vt) . VTqJ(Vt) = ft(ic(Vt)) . VqJ(ic(Vt)).

The action functional is also referred to in the literature as the reduced action
functional, to stress that the energy term is missing in comparison with Hamilton's
extremality principle for the Lagrangian L, := At - Et.

We underline that, in spite of the explicit appearance of virtual flows and tangent
flows in the expression of the principle, only the virtual velocity VqJ(ic(Vt)) along
the trajectory y = ic(f) is influential in the formulation of the law of dynamics. In
fact tha virtual flows with coincident initial velocities provide the same test condition.
This basic property is here hidden by the imposition of the constraint of energy
conservation, but may be proven by considering the equivalent geometric action
principle. The proof requires the introduction of a connection in the configuration
manifold to get a generalized formulation of Lagrange's law of dynamics [5, 14, 20].

The next theorem shows that the CAP may be stated with an equivalent formulation
in which the constraint of energy conservation on the virtual bi-velocities is imposed
in integral form along the trajectory.

THEOREM 3. (Constrained Action Principle: equivalent form) A trajectory f I

of a dynamical system in the velocity-time state-space 1I'<C x I is a path fulfilling
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the geometric action principle

OA=O r () L = 1. () L . Y,
IF{v,o)<r ) far

A I I
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for any tangent field Y E CO(f ; l!'1!\C) such that

j dEt(vt) . Y(vt) dt = j (Ft(vt), Y(vt)} dt.

Proof: A trajectory fulfils the action principle of Proposition I and hence a fortiori
the constrained principle of Theorem 3 and then again a fortiori the weaker condition
of the principle in Theorem 2. Since this latter is equivalent to the action principle
of Proposition I, the circle of implications is closed and the assertion is proven. D

7. Time independent and conservative systems

When the Lagrangian L E C2(l!'C ; ffi) is time-independent and the system is
subject to a time-independent force system f E C' (y ; 1I'*C), the constraint of energy
conservation on the virtual velocity field is independent of time. Then the projected
trajectory in the velocity phase-space can be arbitrarily parametrized and the CAP
directly yields an extended version of Maupertuis principle in which the dynamical
system is not necessarily conservative.

THEOREM 4. (Maupertuis principle) In a dynamical system governed by a time­
independent Lagrangian functional L E C2(l!'C ; ffi) and subject to time-independent
forces fECi (y ; 1I'*C), the trajectories are I-chains I' c l!'C in the velocity phase­
space with tangent vectors X(vA) := 0/l=A f(/L) E l!'vAI', with VA := r(),,), fulfilling
the homogeneous Euler's condition

d()dv)· X(v)· Y(v) = 0, X(v) E l!'vl!'c,

for any virtual bi-velocity field fulfilling the energy conservation condition Y(v) E

ker(F(v)-dE(v)) c l!'vl!'c. The associated geometric action principle in the velocity
phase-space l!'C is expressed by the variational condition:

OA=O [ eL = J () L . Y,
lFly<r) far

stating the extremality of the action integral of the Poincare-Carton one-form () L

for all virtual flows Fir E c' (T ; 1!'C) with an energy conserving virtual bi-velocity
Y(v) E ker(F(v) - dE(v».

An alternative statement can be deduced from the result in Theorem 3. The Maupertuis
principle of Theorem 4 is a geometric action principle whose solutions are determined
to within an arbitrary reparametrization. The relevant Euler condition is homogeneous
in the trajectory speed and hence provides the geometry of the trajectory but not
the time law according to which it is travelled by the dynamical system. Anyway,
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if the dynamical trajectory in the velocity-time state space is projected on the
velocity phase-space, both Maupertuis principle and the energy conservation are
fulfilled. Therefore, the time schedule is recoverable from the initial condition on
the velocity by imposing conservation of energy along the geometrical trajectory
evaluated by the Maupertuis principle. For conservative systems the statement in
Theorem 4 specializes into the classical formulation of the least action principle due
to Maupertuis [1, 22, 23], Euler [2], Lagrange [24], Jacobi [25, 26] which has been
reproduced without exceptions in the literature, see e.g. [3, 4, 8, 11]. The principle
deduced from Theorem 4 is however more general than the classical one because
it is formulated without making the standard assumption of fixed end-points of the
base trajectory in the configuration manifold and also without assuming that the
trajectory developes in a constant energy leaf. Indeed the new statement underlines
that a condition of energy conservation is imposed on virtual bi-velocities in the
velocity phase-space but no energy conservation along the trajectory is assumed.

REMARK 1. In the papers [27] and [28] the authors claim that the classical
Maupertuis principle for conservative systems can be given an equivalent formulation
by assuming that the trajectory is varied under the assumption of an invariant mean
value of the energy (they call this statement the general Maupertuis principle GMP).
The sketched proof provided in these papers is however inficiated by the misstatement
that the fulfilment of the original Maupertuis principle (MP), in which the energy
is constant under the variations, implies the fulfilment of the GMP. But this last
variational condition has more variational test fields and hence the converse is true.
The implication proved in [27] and [28], that GMP implies MP, is then trivial and
the nontrivial converse implication is missing. Theorem 3 shows that the pointwise
condition (d E: Y)(vt ) = 0, and the integral condition

ih=o f E(Flf (Vt» dt = f (dE· Y)(vt> dt = 0,

on the virtual bi-velocity field lead to equivalent formulations of the classical
Maupertuis principle.

REMARK 2. When dealing with finite dimensional (say nD) dynamical systems,
it is of common (if not universal) usage to denote by the numerical vector q E mn

the coordinates on the configuration manifold tC and by the pair {q, p} E mn x mn

the induced coordinates on the cotangent bundle with respect to the natural basis
dq. Moreover, the Liouville one-form is written in components as () = pdq and
its exterior derivative as dO = dp 1\ dq, [11] p. 545, [4] p. 179, [3] p. 199, [29] p.
268. We claim that this erroneous notation should lead to the wrong conclusion that
e is a one-form and dO a two-form on C. Moreover, an unpleasant coincidence of
notations arises since the action one-form ()(v*) - Ht(v*) dt and the exact one-form
v* - Ht(v*) dt = dJ(TC(V*), t), where J E C1(tC x I; m) is the eikonal functional
in the Hamilton-Jacobi theory, are both denoted by pdq - H dt, [3] p. 233 and p.
250. We cannot explain why the notation came in use.
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8. Conclusions

At a first sight, the constrained action principle of Theorem 2 could look like
a nonholonomic principle under the linear constraint of energy conservation on the
bi-velocity fields. In fact it is not so, because this constraint is imposed only on
virtual bi-velocities and not on the speed of the trajectory in the phase space. As
we have proved, the property of energy conservation along the trajectory is a result
and not an assumption of the principle. If the force-forms and the energy functional
are time independent, the constraint of energy conservation on virtual bi-velocities is
independent of time and the constrained action principle directly leads to Maupertuis
principle for the trajectory in the velocity phase-space. The time schedule can be
fixed by imposing that the rate of change of the energy along the trajectory be
equal to the power expended by the force system. For conservative systems the
constraint of energy conservation is described by an integrable distribution on the
tangent bundle over the configuration manifold and becomes the classical constraint
of constant energy. Anyway, according to our statement of the Maupertuis principle,
the constraint of energy conservation is imposed only on the virtual bi-velocity field,
while conservation of energy is a natural consequence of the variational principle. This
result modifies the usual statement, concerning the standard Maupertuis principle in
the configuration manifold and for conservative systems, that conservation of energy
along the trajectory must be assumed a priori, see e.g. [3, 4, 8, 28]. Indeed, to get
rid of the energy term, the assumption that the dynamical evolution takes place in
a leaf of constant energy is self-proposing in the classical context. The formulation
in the velocity phase-space has the merit of revealing that, to get a homogeneous
Euler equation, it suffices to consider virtual bi-velocities which fulfil the constraint
of energy conservation, thus leading to the general statement of Maupertuis principle
contributed in this paper.
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