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Abstract Nonlocal elasticity models are tackled

with a general formulation in terms of source and

target fields belonging to dual Hilbert spaces. The

analysis is declaredly focused on small movements, so

that a geometrically linearised approximation is

assumed to be feasible. A linear, symmetric and

positive definite relation between dual fields, with the

physical interpretation of stress and elastic states, is

assumed for the local elastic law which is thus

governed by a strictly convex, quadratic energy

functional. Genesis and developments of most refer-

enced theoretical models of nonlocal elasticity are

then illustrated and commented upon. The purpose is

to enlighten main assumptions, to detect comparative

merits and limitations of the nonlocal models and to

focus on still open problems. Integral convolutions

with symmetric averaging kernels, according to both

strain-driven and stress-driven perspectives, homoge-

neous and non-homogeneous elasticity models,

together with stress gradient, strain gradient, peridy-

namic models and nonlocal interactions between

beams and elastic foundations, are included in the

analysis.

Keywords Nonlocal elasticity � Integral

convolution � Stress-driven � Strain-driven � Stress

gradient � Strain gradient � Peridynamics � Elastic

foundations

1 Introduction

Nonlocal elastic models were early proposed in

literature as a viable alternative for investigating

problems involving dynamical properties of atomic

lattices.

In the 2002 review article by Bazant and Jirasek [1]

motivations for nonlocal constitutive theories of

continua were so summarised:

1. the need to capture small-scale deviations from

local continuum models caused by material

heterogeneity;

2. the need to achieve objective and properly

convergent numerical solutions for localised

damage;

3. the need to regularise the boundary value problem

to prevent ill posedness.

4. the need to capture size effects observed in

experiments and in discrete simulations.
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An early proposal of a nonlocal model was made in

[2, 3] by Rogula who later provided in [4] an

exposition of the theory up to that time, together with

a comprehensive list of references.

Today, widely referenced is a paper by Eringen [5]

where integral convolutions were investigated in

connection with spatial acoustic dispersion and

dynamical properties of dislocations.

Nonlocal models were there formulated according

to the strain-driven constitutive perspective, a nomen-

clature recently introduced by the author and cowork-

ers in [6, 7] to label constitutive laws in which the

stress is the output of an integral convolution between

an averaging kernel and the elastic strain field.

Equivalence to a differential formulation was

illustrated in [5] by taking into account linearity of

the convolution operator, under the further assumption

that the kernel appearing in the convolution is the

fundamental solution of a differential equation. This

equivalence is a well-known result of potential theory

in linear spaces, for problems in unbounded domains

where the involved fields are rapidly vanishing

towards infinity. For problems in Rn fundamental

solutions of differential operators are available [8]. On

the other hand, for bounded domains fundamental

solutions are not available, in general.

In more recent times, the differential equation

associated with a strain-driven model formulated

according to an integral convolution with an Helm-

holtz kernel, has been diffusely applied in static and

dynamic investigations of nano-structures, as exposed

in the reviews [9, 10]. The starting point was the

treatment by Peddieson et al. [11]. These authors were

however not aware of the fact that, for bounded

domains, to close the constitutive problem, constitu-

tive boundary conditions must be imposed to the

differential formulation. In this way equivalence of the

differential constitutive law to the integral convolution

constitutive law is assured [6, 12, 13, 15].

A paradoxical result, was detected in [11], by

observing that, for simple beams with a strain-driven

integral nonlocal elasticity model, equilibrium

requirements impose that the the bending field is

coincident with the one of the standard local elastic

problem, in evident contrast with the constitutive

requirements of the integral convolution law.

This phenomenon was eventually explained in [16]

by observing that stress fields, output by the strain-

driven nonlocal models, are not able to fulfil also the

equilibrium conditions, so that in fact the elastostatic

problem admits no solution.

For simple beams when constitutive boundary

conditions are compared with the requirements of

equilibrium, the conflict between equilibrium and

constitutive requirements is manifest.

This unexpected failure emerges as an essential

difficulty of nonlocal constitutive problems where a

relation between fields of state variables, and not just

between their point values as in local constitutive

cases, is involved.

The literature pertinent to the differential formula-

tion associated with strain-driven nonlocal models,

see e.g. [32], amounts nowadays to a huge collection

and is ever more increasing, notwithstanding the

serious obstructions outlined above and evidenced by

recent contributions [6, 7, 14–19].

Several skilful modifications have been proposed to

overcome the inherent ill-posedness of nonlocal

elastic beam problems based on strain-driven convo-

lution models.

A first expedient was the formulation of a mixture

of local-nonlocal elastic behaviour [15, 21–26].

This modification, although effectively able to

ensure existence of a solution to the structural

problem, leads to singularities when the percentage

of local elasticity tends to vanish.

In [27] Pijaudier-Cabot and Bazant set forth another

proposal by introducing a normalisation of the kernel

to get a compensation of boundary effects. The

ensuing response operator is however non-symmetric,

cannot be derived a potential and therefore could

hardly be considered an elastic stiffness.

An alternative proposal was contributed by Poliz-

zotto [28] and Borino [29] where a modified response

operator was designed to attain locality recovery in the

case of a homogeneous local elasticity.

This means that the response to a uniform input

field generates a local target field. In fact a trivial

modification of the nonlocal response yields the

proposed design by subtracting the response pertain-

ing to a uniform source field and adding a term equal to

the local response. The former term trivially vanishes

for uniform input fields. The corresponding response

operator is symmetric, as linear combination of

symmetric terms, and existence of a potential is

assured.

Another approach was undertaken in the papers by

Khodabakhshi and Reddy [30] and in the subsequent
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one by Fernández Sáez et al. [31]. There discrete

formulations according to the finite element method

(FEM) were adopted to transform continuum mechan-

ics problems into solvable algebraic ones.

An overview of theories of continuum mechanics

with nonlocal elastic response prior to 2017 has been

contributed by Reddy and Srinivasa [33].

In discrete formulations of nonlocal elastic prob-

lems, the difficulties inherent to nonlocal strain-driven

continuum formulations of beam models are hidden

since equilibrium requirements are drastically relaxed

by discretisation.

Moreover equilibrium properties of stress distribu-

tions emerging from numerical computations are

difficult to be checked. Most often the stress distribu-

tion is simply not checked at all, with only displace-

ment solutions explicitly displayed and commented

upon.

This is an interesting situation in which, while the

continuous problem does not admit solution, all

interpolating discrete problems are solvable.

What is then the meaning of an approximation?

A merging of nonlocal elasticity and strain gradient

model was proposed by Lim et al. [34] and developed

by Barretta and Marotti de Sciarra [35, 36].

Computational costs for the discrete solution of

nonlocal elastic beams, according to Eringen local/

nonlocal mixture have been recently compared in [37].

The finite element (FEM), element-free Galerkin

(EFG) and finite point methods (FPM), were chosen

for the comparison.

In order to get a consistent theory, a different

nonlocal model for elastic beams was contributed by

Romano and Barretta in [18] by envisaging a stress-

driven nonlocal elastic model.

The peculiar obstruction of strain-driven nonlocal

models previously evidenced was thus overcome.

The idea underlying the proposal consists in

swapping the roles of the involved constitutive fields,

with the stress as input and the elastic strain as output.

This new nonlocal model follows the track paved

by a general revisitation of elasticity theory which led

to a stress-driven theory of elasticity based on an

integrable incremental formulation [38–40].

While in local models the elasticity law is invert-

ible, in nonlocal models the response operator is not

such. Consequently strain-driven and stress-driven

formulations lead to well distinct constitutive and

structural problems [6, 7].

The elastic stiffness operator is positive definite in

the local elastic model, but persistence of this property

in the nonlocal model is presently an open problem.

In the sequel several proposals of nonlocal elastic-

ity models will be critically revisited and compared.

The treatment includes local/nonlocal mixtures,

peridynamics, and stress and strain gradient models,

with a general formulation which, avoiding needless

repetitions, puts into evidence comparative merits,

limitations and also severe incongruences.

In this respect basic geometric notions are worth to

be put into evidence, as discussed in the sequel.

All nonlocal constitutive models are based either on

operations of differentiation or on integrations to be

performed in the body manifold.

The former operation requires that a parallel

transport is defined to perform the derivatives while

the latter needs in addition that the parallel transport is

distant. This means that the point-values of the tensor

field to be integrated are parallel transported to a fixed

evaluation point in a way independent of the path

tracked to join the base-points.

The choice of a parallel transport is usually passed

under silence, due to existence of an obvious candi-

date: the metric preserving and distant transport

induced in the body manifold by the translation in

Euclid space.

When dealing with non flat body manifolds whose

geometric dimension is lower than the one of the

container Euclid space, such as in the case of curved

beams and shells, the practical adoption of the

translation induced parallel transport is however

challenging.

A feasible and convenient choice is provided by the

parallel transport associated with a system of coordi-

nates in the body manifold, by imposing invariance of

the components with respect to the corresponding

frame, with or without normalisation of base vectors.

Ultimately, the choice of a parallel transport in the

body manifold is rather a matter of convenience which

enters in the very definition of the nonlocal constitu-

tive relation.

Nonlocal constitutive relations are therefore not

natural, in the sense that knowledge of the metric field

in the Euclid space is a geometric tool not sufficient for

developing the theory [41].

Consequently, nonlocal constitutive laws cannot

assurge to the role of properly defined material

descriptions. Indeed they include in an essential way
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the distant parallel transport (that is one independent

of the curve chosen to join start and target points)

needed to perform linear operations between tensors

based at distinct points, but the choice of a parallel

transport is a geometric affair which the material is not

aware of.

For this reason nonlocal relations are to be intended

as simulations whose validity can only be assessed on

the basis of their mathematical and physical consis-

tency and of the purported usefulness in predicting

experimental evidence.

Although in last instance this feature is common to

any constitutive law, arbitrariness of the involved

parallel transport is a feature, seemingly not clearly

evidenced before, which is peculiar to nonlocal

models.

2 Preliminaries

Given a normed linear space ðX ; k � kXÞ and the dual

space X0 , the right polar (or annihilator) A� � X0 of

a set A � X , is the linear subspace of the elements in

the dual space which have a null duality interaction

with all elements of A � X :1

A� :¼ fx0 2 X0 : hx0; xi ¼ 0 ; 8 x 2 Ag : ð1Þ

Similarly, the left polar �B � X of B � X0 is defined

by:

�B :¼ fx 2 X : hx0; xi ¼ 0 ; 8 x0 2 Bg : ð2Þ

The quotient X=A is the linear space whose elements

are the cosets xþA � X with x 2 X , normed by:

kxþAkX=A :¼ inf
y2A

kx� ykX : ð3Þ

If ðX ; k � kXÞ is complete (a Banach space) and A is

closed in X , then X=A is Banach too.

If X is Hilbert2 with inner product hx; yi for any

x; y 2 X , and A is closed in X , then X=A is Hilbert

too, with inner product hxþA; yþAi ¼ hPx;Pyi
where P : X 7!X is the projector on the orthogonal

complement A? .

3 Structural problems

Let us consider a geometrically linearised structural

model consisting of a body occupying a configuration

X in the Euclid space E at a given time t 2 Z .

The kinematic space V of spatial velocity fields

v : X 7!TXE is assumed to be Hilbert with dual force

space F ¼ V0 , so that the pairing hf ; vi evaluates the

virtual power performed by the force f 2 F for the

velocity v 2 V .

The kinematic operator B : V7!D , linear and

continuous, evaluates the straining BðvÞ 2 D , a

tensor-valued field on X , corresponding to the

velocity field v 2 V .

Classical 3D continuum mechanics considers

motions in the Euclid space-time. The metric tensor

field g : TXE 7!ðTXEÞ� is time independepent and the

kinematic operator is the mixed alteration of its Lie-

derivative along the spatial velocity field:

g � BðvÞ ¼ LvðgÞ : ð4Þ

The kinematic operator B : V7!D is a differential

operator and its kernel KerðBÞ � V is exactly the

subspace of spatial velocities that are infinitesimal

isometries, that is the ones along which the Lie

derivatives of the metric field do vanish.

The stress space R and the stretching space D are

dual Hilbert spaces, with R ¼ D0 .

In a geometrically linearised theory, the configura-

tion X is assumed to be invariant during the involved

mechanical processes. Accordingly, a small displace-

ment is treated as a velocity field and a small strain as a

straining.

In the same way, a small stress variation is treated

as a stressing, that is as a Lie derivatives of the stress

field along the motion.

The dual operator B0 : R 7!F yields the force

B0ðrÞ 2 F in equilibrium with the stress field r 2
R and is uniquely defined by the virtual power

identity:

hr;BðuÞi ¼ hB0ðrÞ; ui ; 8 r 2 R ; 8 u 2 V :

ð5Þ

1 The dual space X0 of a normed linear space X is composed

of the continuous linear functionals f : X 7!R . Their values are

denoted by means of the duality pairing hf ; vi with v 2 X . In

this context, continuity is equivalent to boundedness:

jhf ; vij � c kvkX .
2 A Hilbert space is Banach with norm fulfilling the parallel-

ogram law and therefore derivable from a symmetric, positive

definite bilinear form [39, 42].
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The body is subject to linear kinematic constraints,

that are assumed firm and smooth.

The mathematical representation of these con-

straints consists in assuming that conforming (con-

straint respecting) kinematic fields v : X7!E , belong

to a closed linear subspace L � V .

The multivalued constitutive relation of firm and

smooth constraints is expressed by a graph in the

product space V � F composed by the pairs fv ; rg 2
V � F such that:

v 2 L ; r 2 L� : ð6Þ

This amounts to state that reactions of smooth

constrains and conforming small displacements do

have a null mutual interaction. Elastic constraints will

be dealt with in Sect. 4.

In the geometrically linearised theory the assigned

data are:

– a prescribed small displacement field w 2 V ,

– a prescribed small strain field g 2 D ,

– a load (also named active force) functional:

‘ 2 L0 	 F=L� : ð7Þ

The linear subspace of reactive force functionals is

in duality with the quotient space V=L of

constraint velocity fields:

L� 	 ðV=LÞ0 : ð8Þ

Reactive forces r 2 L� perform no virtual power

for any conforming virtual velocity field:

r 2 L� � F () hr; dvi ¼ 0 ; 8 dv 2 L :

ð9Þ

Small displacement fields belonging to the coset wþ
L 2 V=L are said to be admissible.

The kinematic operator BL : L7!D , restriction of

the operator B : V7!D to the conformity subspace

L � V , is related to the dual static operator B0
L :

R7!L0 by the virtual power identity:

hr;BLðvÞi ¼ hB0
LðrÞ; vi ; 8r 2 R ; 8v 2 L :

ð10Þ

Structural analysis is based on the assumption that, for

any given subspace L � V of conforming kinematic

fields, the kinematic operator BL : L7!D has a closed

range [39], as expressed by the inequality:

kBLðvÞkD 
 c kvþ LkV=KerðBLÞ ; 8 v 2 L : ð11Þ

If dimðKerðBÞÞ\1 , being:

KerðBLÞ ¼ KerðBÞ \ L ; ð12Þ

fulfilment of the inequality Eq. (11), for any closed

subspace L � V of conforming displacements, may

be inferred form an inequality of Korn’s type [43–45]:

kBLðvÞkD þ kGðvÞkG 
 ckvkV ; 8 v 2 L ; ð13Þ

with G : V7!G continuous and compact linear oper-

ator with codomain in a Hilbert space G .

From the duality relation in Eq. (10), two polarity

properties are directly deduced:

KerðBLÞ ¼ �ImðB0
LÞ ;

KerðB0
LÞ ¼ ImðBLÞ� :

(
ð14Þ

By Banach closed range theorem [42, 46], closedness

of the range ImðBLÞ ¼ BL of the kinematic operator

BL : L7!D , Eq. (11), implies that the equilibrium

operator B0
L : R 7!L0 ¼ F=L� has closed range too, as

expressed by the inequality:

kB0
LðrÞkF=L� 
 c krkS=ðBLÞ� ; 8 r 2 S : ð15Þ

and that the following complementary polarity prop-

erties hold true:

ImðB0
LÞ ¼ KerðBLÞ� ;

ImðBLÞ ¼ �KerðB0
LÞ :

(
ð16Þ

The polarity relations in Eq. (16) provide the basic

existence results in continuum mechanics [39].

Let a load functional ‘ 2 L0 be in equilibrium:

‘ 2 KerðBLÞ� : ð17Þ

The virtual power principle states that there exists a

stressing field r 2 R such that:

hr;BðdvÞi ¼ h‘; dvi ; 8 dv 2 L : ð18Þ

The basic equality in Eq. (16)1 assures that the affine

variety R‘ � R of stressing fields statically compat-

ible with an equilibrated applied load fulfilling

Eq. (18), is not empty.

Then we can write
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R‘ ¼ r‘ þ R0 ; ð19Þ

with R0 linear subspace of self-equilibrated stressing

fields:

R0 :¼ KerðB0
LÞ ¼

�
ImðBLÞ

��
¼ ðBLÞ� : ð20Þ

If R0 ¼ f0g , the structural problem is qualified as

statically determinate.

Denoting by w 2 V a prescribed small displace-

ment field, with the meaning of a constraint small

displacement, the solution of the structural problem

will be an admissible small displacement field

u 2 wþ L .

Let us now introduce the dual operators:

�B : V=L7!D=ðBLÞ ;
�B
0
: ðBLÞ�7!L� ;

ð21Þ

with the former defined by:

�Bðwþ LÞ :¼ Bðwþ LÞ ¼ BðwÞ þ BL ; ð22Þ

so that Kerð �BÞ ¼ L , and the latter by:

h �B0ðr0Þ;wþ Li ¼ hr0; �Bðwþ LÞi

¼ hr0;Bðwþ LÞi ¼ hr;wi :
ð23Þ

The internal virtual power of self-stress fields, for the

small strain corresponding to a constraint velocity

field, is then equal to the external virtual power of the

emerging constraint reactions, for the constraint

velocity field.

4 Local elastostatic problems

The standard local elastic relation is governed by an

invertible, linear, symmetric and positive definite

stiffness operator E : D7!R with inverse compliance

E�1 : R7!D :

e ¼ E�1ðrÞ () r ¼ EðeÞ : ð24Þ

Here e 2 D is the elastic state, a notion recently

introduced in [38, 39] in the general context of

nonlinear elastic processes involving large

movements.

In the small movements framework, considered in

the present paper, by virtue of geometric linearisation

and relying upon linearity of the constitutive law, the

elastic relation can be expressed in terms of stress state

variations and elastic state variations, usually referred

to as elastic strains.

For its relevance in applications, we consider also

elastic contact interactions, between the body under

investigation and external elastic constraints, such as

the supporting elastic medium in a foundation prob-

lem, whose stiffness operator K : L7!L0 , denoting by

w 2 V a given small displacement, is defined by:

�f ¼ Kðu� wÞ ; u 2 wþ L ; f 2 F : ð25Þ

The stiffness of the elastic constraints is a continuous,

symmetric and positive semidefinite linear operator

K : L7!L0 , so that:

kKðuÞkF � c kukV ; c[ 0 ; 8 u 2 V ;

hKðu1Þ; u2i ¼ hKðu2Þ; u1i ; 8 u1; u2 2 V ;

hKðuÞ; ui
 0 ; 8 u 2 V :

8>><
>>:

ð26Þ

In terms of the adjoint stiffness operator KA : L7!L0 :

hKAðu1Þ; u2i ¼ hKðu2Þ; u1i ; 8u1; u2 2 L ; ð27Þ

symmetry is conveniently expressed by the equality:

KA ¼ K : ð28Þ

The subspace of elastic interactions ImðKÞ � L0 is

assumed to be closed in F .

Consequently, by virtue of the polarity relations

Eqs. (14) and (16), the subspace of elastic interactions:

ImðKÞ � L0 ; ð29Þ

fulfils, with the subspace of elastically ineffective and

conforming small displacements:

KerðKÞ � L ; ð30Þ

the annihilation rules:

KerðKÞ ¼ KerðKAÞ ¼ �ImðKÞ ;

ImðKÞ ¼ ImðKAÞ ¼ KerðKÞ� :

(
ð31Þ

In local elasticity, the data set is made of:

1. an imposed small displacement w 2 V ,

2. an impressed small strain g 2 D ,
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3. a prescribed load functional ‘ 2 F in

equilibrium:

‘ 2
�

KerðBLÞ \ KerðKÞ
��

: ð32Þ

The linear elastostatic problem is a set of three

variational conditions expressing equilibrium, kine-

matic compatibility and constitutive relation:

hr;BðdvÞi ¼ h‘; dvi � hKðu� wÞ; dvi ;

hBðuÞ; dri � he; dri ¼ hg; dri ;

� hr; dei þ hEðeÞ; dei ¼ 0 :

8>><
>>: ð33Þ

Trial fields are:

1. admissible small displacements u 2 wþ L ,

2. stress variations r 2 S ,

3. elastic states variations e 2 D .

and test fields are:

1. conforming small displacements dv 2 L ,

2. stress variations dr 2 S ,

3. elastic states variations de 2 D .

For computational purposes it is expedient to formu-

late the linear elastostatic problem in terms of

conforming displacement fields v 2 L by expressing

the displacement field as:

u ¼ vþ w ; v 2 L ; w 2 V ; ð34Þ

Test and trial fields have thus the same linear domain

spaces. It is convenient to introduce the datum strain:

d :¼ g� BðwÞ 2 D ; ð35Þ

so that the linear elastostatic problem writes as

follows:

hKðvÞ; dvi þ hr;BðdvÞi ¼ h‘; dvi ;

hBðvÞ; dri � he; dri ¼ hd; dri ;

� hr; dei þ hEðeÞ; dei ¼ 0 ;

8>><
>>: ð36Þ

and, in block-matrix form with ID : D7!D and IS :

S7!S identity maps:

K B0 0

B 0 � ID

0 � IS E

2
64

3
75

v

r

e

2
64

3
75 ¼

‘

d

0

2
64

3
75 ð37Þ

References [55, 56] provide a discussion about

existence and uniqueness of the solution:

ðv; r; eÞ 2 L � R�D ; ð38Þ

and about continuous dependence on the data:

ðw; g; ‘Þ 2 ðV;D;FÞ : ð39Þ

A solution of the local elastic problem Eq. (33) is a

stationary point for the three-field functional

N : L � R�D7!R :3

Nðv; r; eÞ :¼ 1

2
hKðvÞ; vi þ 1

2
hEðeÞ; ei

þ hr;BðvÞ � e� di � h‘; vi :
ð40Þ

By imposing a priori fulfilment of the constitutive law

Eq. (33)3 we get the two-field functional:4

Nðv ; rÞ :¼ 1

2
hKðvÞ; vi � 1

2
hE�1ðrÞ; ri

þ hr;BðvÞ � di � h‘; vi :
ð41Þ

whose saddle point is solution of the problem:

K B0
L

BL � E�1

� �
v

r

� �
¼

‘

d

� �
ð42Þ

Mathematical well-posedness results are available for

the two-field formulation, due to symmetry and

coerciveness of the linear operators K : V7!F and

E�1 : R7!D .5

By imposing fulfilment a priori of the kinematic

compatibility law Eq. (33)2 , we get the one-field

functional:6

NðvÞ :¼ 1

2
hKðvÞ; vi

þ 1

2
hEðBðvÞ � dÞ;BðvÞ � di

� h‘; vi ;

ð43Þ

whose minimum point is solution of the variational

problem:

3 Hu-Washizu-Fraeijs de Veubeke functional [57–59].
4 Hellinger-Prange-Reissner functional [61–63].
5 In non-finite dimensional Hilbert spaces, positive definiteness

is to be replaced by the stronger assumption of coerciveness.

Existence proofs in local elasticity are based on closedness of

the kinematic operator [55].
6 The displacement functional N : L7!R is customarily named

total potential energy, with an improper and misleading

terminology, since no potential of the load ‘ is required to

exist and the term h‘; dvi is a virtual work.
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hKðvÞ; dvi þ hEBðvÞ;BðdvÞi

¼ h‘; dvi þ hEðdÞ;BðdvÞi ;
ð44Þ

for all dv 2 L , equivalent to the linear problem in L :�
B0
LEBL þ K

�
ðvÞ ¼ ‘þ B0

LEðdÞ : ð45Þ

Well-posedness of the problem Eq. (45) is a standard

result of the linear theory of local elastostatics [60].

Existence of a solution of the elastic problem

Eq. (45) is directly inferred from the property that the

continuous governing operator:

AL :¼
�
B0
LEBL þ K

�
: L7!L0 ; ð46Þ

fulfils the coerciveness inequality:

hALðvÞ; vi
 c kvk2
V=KerðALÞ ; 8 v 2 L : ð47Þ

Then the range of AL ¼ A0
L : L7!L0 is closed and

ImðALÞ ¼ KerðA0
LÞ� ;

KerðALÞ ¼ �ImðALÞ :

(
ð48Þ

Uniqueness holds to within rigid, conforming and

elastically ineffective displacements,7 since by sym-

metry and positive definiteness of E : D7!R : and

K : L7!L0 :

KerðALÞ ¼ KerðBLÞ \ KerðKÞ : ð49Þ

Existence holds for any load in equilibrium under firm

and elastic constraints, that is fulfilling the condition in

Eq. (32).

5 Nonlocal constitutive response

A nonlocal constitutive relation is expressed by a

variational rule involving a source field s 2 S , an

output field f 2 F over the domain X , a continuous

response operator R : S7!F and a class of test fields

ds 2 dS belonging to a suitable linear test space

dS � S :8

hf ; dsi ¼ hRðsÞ; dsi ; 8 ds 2 dS : ð50Þ

The response operator R : S7!F is an injective

mapping between Hilbert spaces S and F ¼ S0 in

topological duality.

The fields in S are square integrable from X to a

target finite dimensional Hilbert space H .

Denoting by l the standard volume form in X and

by ð�; �ÞH the inner product in H , the induced inner

product in the source space S :¼ L2ðX ;HÞ reads:

ðs1; s2ÞS :¼
Z
X

ðs1x; s2xÞH � lx : ð51Þ

The response operator R : S7!F is not required to be

invertible. Even when the inverse R�1 : F 7!S exists,

it may not be explicitly available.

By Riesz-Fréchet theorem, between an Hilbert

space S and its topological dual F ¼ S0 there exists a

symmetric and positive definite isometric isomor-

phism J : S7!F defined by:

hJðs1Þ; s2i ¼ hJðs2Þ; s1i ¼ ðs1; s2ÞS ;

s 6¼ 0)hJðsÞ; si[ 0 :
ð52Þ

When the space S is formed by square integrable

fields on X , the dual Hilbert spaces S and F are

usually both identified with a pivot space and the

isometric isomorphism J : S7!F is treated as if it

were the identity.

In continuum mechanics this identification is

however neither feasible nor advisable due to distinct

physical dimensions of source and target fields, s 2 S
and f 2 F , which should then be kept well separated.

If the injection dS,!S is continuous and dense, the

variational condition Eq. (50) can be written as an

equality:

f ¼ RðsÞ : ð53Þ

For applications to nonlocal elasticity, the response

operator R : S7!F is required to be the (Gâteaux)

gradient of a scalar potential U : S7!R :

hRðsÞ; dsi ¼ hdUðsÞ; dsi ; 8 ds 2 dS ; ð54Þ

where the operator d is the Gâteaux directional

derivative:
7 Here elastically ineffective means that no interaction with the

elastic constraint is activated.
8 In this paper the symbol d has no special meaning by itself.

Adopted as a prefix, it denotes test fields belonging to linear test

spaces.
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hdUðsÞ; dsi ¼ lim
k!0

Uðsþ k � dsÞ � UðsÞ
k

¼ ok¼0 Uðsþ k � dsÞ :
ð55Þ

Necessary and sufficient for potentiality Eq. (54) to

hold for every ds 2 S is that the Gâteaux derivative of

R : S7!F be linear and symmetric [64]:9

hdRðsÞ � s1; s2i ¼ hdRðsÞ � s2; s1i : ð56Þ

In particular, if the response operator R : S7!F is

linear, we have that:

dRðsÞ ¼ R ; ð57Þ

and the symmetry condition Eq. (56) is tantamount to

symmetry of the linear operator R : S7!F :

hRðs1Þ; s2i ¼ hRðs2Þ; s1i ; ð58Þ

which admits then the quadratic potential U : S7!R :

UðsÞ ¼ 1

2
hRðsÞ; si : ð59Þ

Under validity of Eq. (54) with the potential in Eq. (59)

the law in Eq. (50) is equivalent to:

hf ; dsi ¼ hdUðsÞ; dsi ; 8 ds 2 dS : ð60Þ

In this general framework, the treatments exposed in

the sequel may be applied to all models of nonlocal

elasticity proposed in literature.

6 Integral convolution

Nonlocal elasticity involving an integral convolution

with a smoothing kernel was first proposed in [2, 5] by

adopting the strain-driven bias of Sect. 11.

This choice leads however to non-solvable nonlocal

elastic problems, as pointed out in [16].

An innovative method has been recently proposed

in [6, 7] by adopting the stress-driven bias of Sect. 11.

The new paradigm has the merit that, by its

adoption, the drawbacks of the strain-driven model

are manifestly overcome.

To properly describe integral convolutions, we

consider a source space S of tensor fields s : X 7!H ,

so that sx ¼ sðxÞ 2 Hx , the finite dimensional linear

space of tensors based at x 2 X .10

The dual tensor space of H is denoted by H0 .11

In nonlocal constitutive relations the point value at

x 2 X of the output field f : X 7!H0 is got by an

integral convolution, on the domain X , between the

source field s : X 7!H and a smooth kernel operator:

/ðx; yÞ : Hy 7!H0
x : ð61Þ

The law in Eq. (53) may then be written as:

fx ¼ RðsÞx ¼ ð/ � sÞðxÞ

:¼
Z
X

/ðx; yÞ � sðyÞ � ly :
ð62Þ

Here l is the involved volume form and the lower

index in ly specifies that integration is performed

with respect to the y variable. Moreover, the asterisk

� denotes an integral convolution and the dot � means

linear dependence. Accordingly, the source field is a

density per unit volume.

We also emphasise that integration is intended to be

performed by means of an assumed distant parallel

transport.

This is a peculiar and delicate conceptual point in

the theory of nonlocal continua, never enlightened in

the relevant literature.

Symmetry of linear response operator R : S7!F ,

expressed by Eq. (58), is implied by following

symmetry properties of the kernel field [1]:

/ðx; yÞ ¼ /ðy; xÞ ; 8 x; y 2 X ;

/ðx; yÞ ¼ /Aðx; yÞ ;

(
ð63Þ

where the adjoint

/Aðx; yÞ : Hx 7!H0
y ; ð64Þ

is intended with respect to duality between H and

H0 :

9 This result is a direct corollary of Volterra’s theorem [65]

usually improperly attributed and quoted in literature as

Poincaré lemma [66].

10 The choice of the compact manifold X is a challenging point

in the theory of nonlocal elasticity since it plays a basic role in

the whole treatment.
11 Strictly speaking, H is a tensor bundle over the manifold X

and H0 is the dual bundle, with the fiber H0
x dual to the fiber

Hx , for all x 2 X .
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h/ðx; yÞ � s1y; s2xi ¼ h/Aðx; yÞ � s2x; s1yi : ð65Þ

Under fulfilment of the symmetry in Eq. (58), the

linear response R : S7!F can be expressed as a

gradient by Eq. (54) with the scalar quadratic potential

U : S7!R given by Eq. (59), and explicitly [1]:

UðsÞ :¼ 1

2

Z
X

Z
X

h/ðx; yÞ � sðyÞ; sðxÞi � ly � lx : ð66Þ

To prove existence of a quadratic elastic potential U :

S7!R and to detect its expression Eq. (66), we rely on

the symmetry properties Eq. (63) and on Fubini’s

theorem on exchange of iterated integrals [42, p.18]:

hRðs1Þ; s2i ¼
Z
X

h/ � s1; s2ix � lx

¼
Z
X

Z
X

h/ðx; yÞ � s1y; s2xi � ly � lx

¼
Z
X

Z
X

h/Aðx; yÞ � s2x; s1yi � ly � lx

¼
Z
X

Z
X

h/ðy; xÞ � s2y; s1xi � lx � ly

¼
Z
X

Z
X

h/ðy; xÞ � s2y; s1xi � ly � lx

¼
Z
X

Z
X

h/ðx; yÞ � s2y; s1xi � ly � lx

¼
Z
X

h/ � s2; s1ix � lx ¼ hRðs2Þ; s1i :

ð67Þ

7 Nonlocal homogeneous elasticity

In local elasticity the constitutive operator C : S7!F ,

is pointwise defined:

Cx : Sx 7!F x ; ð68Þ

and is symmetric and positive definite:

C ¼ CA () hCðs1xÞ; s2xi ¼ hCðs2xÞ; s1xi ;

sx 6¼ 0)hCðsxÞ; sxi[ 0 :

(

ð69Þ

Elasticity is termed homogeneous if the constitutive

operator C : S7!F is uniform in X :

Cx ¼ Cy ¼ C ; 8 x; y 2 X ; ð70Þ

where equality is meant to be evaluated by means of

the chosen distant parallel transport from x 2 X to

y 2 X or vice versa.

In integral convolution models of homogeneous

nonlocal elasticity, the kernel is taken to be given by

the composition:

/ðx; yÞ ¼ C � uðx; yÞ ; ð71Þ

of the constitutive operator C : S7!F with a scalar

kernel u : X�X 7!R , symmetric and positive:

uðx; yÞ ¼ uðy; xÞ[ 0 ; 8 x; y 2 X : ð72Þ

The nonlocal response operator R : S7!F takes then

the expression:

R :¼ u � C : ð73Þ

and explicitly

RðsÞ :¼ u � CðsÞ : ð74Þ

The standard local elasticity model can be included as

an asymptotic trend by assuming that the kernel

depends on a scale parameter k[ 0 and that the

following impulsivity condition (IC) holds for any

source field s 2 S which is continuous at x 2 X :12

lim
k!0þ

ðuk � sÞx ¼ lim
k!0þ

Z
X

ukðx; yÞ � sy � ly

¼ H sx ; 8 x 2 X :

ð76Þ

A direct investigation on boundary effects [6, 19]

reveals that at inner points in X :

• H ¼ 1 ;

while on the boundary oX of X :

• H ¼ 1=2 at regular points,

• and H\1=2 and equal to the fraction of inward

solid angle at singular points.

This means that for k ! 0þ the response operator

tends to a Dirac impulse at interior points and to a

12 The limit property in Eq. (76) provides the correct formu-

lation of the usual kernel normalising condition in which

integration is improperly extended over a phantom reference

unbounded domain X1 , with the output equalled to sx :Z
X1

uðx; yÞ � sy � ly ¼ sx : ð75Þ
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fraction of it at boundary points, with a reduction

factor at least one half.

The symmetry conditions Eq. (69) and Eq. (72)

imply symmetry of the nonlocal response, according

to Eq. (58).

Indeed the local response at x 2 X is given by:

RðsÞx ¼
Z
X

uðx; yÞ � CðsyÞ � ly : ð77Þ

By Fubini’s theorem for iterated integrals, we get:

hRðs1Þ; s2i :¼
Z
X

hu � Cðs1Þ; s2ix � lx

¼
Z
X

Z
X

uðx; yÞ � hCðs1yÞ; s2xi � ly � lx

¼
Z
X

Z
X

uðx; yÞ � hCðs2xÞ; s1yi � ly � lx

¼
Z
X

Z
X

uðy; xÞ � hCðs2yÞ; s1xi � lx � ly

¼
Z
X

Z
X

uðy; xÞ � hCðs2yÞ; s1xi � ly � lx

¼
Z
X

Z
X

uðx; yÞ � hCðs2yÞ; s1xi � ly � lx

¼
Z
X

hu � Cðs2Þ; s1ix � lx ¼ hRðs2Þ; s1i :

ð78Þ

The uniform constitutive operator C : S7!F is taken

equal to the appropriate symmetric and positive

definite operator of the classical local theory of

elasticity, depending on whether the strain-driven or

the stress-driven model is adopted:

– strain-driven : f ¼ r , s ¼ e so that:

C ¼ E : D7!R ; ð79Þ

local elastic stiffness,

– stress-driven : f ¼ e , s ¼ r so that:

C ¼ E�1 : R 7!D ; ð80Þ

local elastic compliance.

Existence of a quadratic elastic potential

U : S7!R ; ð81Þ

given by Eq. (59) is assured by symmetry of the

bounded linear response operator R : S7!F , proven

by Eq. (78) under fulfilment of properties in Eqs. (71),

(72), (69).

No general result is however available, to our

knowledge, to detect positive definiteness of the

elastic potential. Uniformity in X of the constitutive

operator:

C : S7!F ; ð82Þ

expressed by Eq. (70) , is an essential property for

carrying out the symmetry proof exposed in Eq. (78).

Therefore the nonlocal model set forth in Eq. (77)

can only be applied to homogeneous elasticity prob-

lems if existence of a scalar potential is to be ensured.

For what concerns the impulsivity condition

Eq. (76), we put the following observation.

Let n : X 7!E be a transformation whose co-

restriction n : X 7!nðXÞ is a diffeomorphism.

The theory of integral transformation and the notion

of push-forward n" by n : X 7!nðXÞ , give:13

Z
X

/ðx; yÞ � sðyÞ � ly

¼
Z
nðXÞ

ðn"/ÞðnðxÞ; nðyÞÞ � ðn"sÞðnðyÞÞ � ðn"lÞnðyÞ :

ð83Þ

By the transformation formula in Eq. (84), we infer

that, for the impulsivity condition Eq. (76) to hold in a

distorted domain, it is necessary that all involved fields

are pushed forward.

8 Locality recovery

The assumption that, in homogeneous elastic bodies,

the nonlocal response to a uniform source field should

be equal to the output of the standard local model, was

set forth in [27–29, 49, 50] in the context of a strain-

13 The push forward of a vector field from X to nðXÞ is its

image through the tangent map, i.e. if vx is the velocity of a

curve through x 2 X , the push forward is the velocity of the

pushed curve at nðxÞ 2 nðXÞ :

ðn"vÞnðxÞ ¼ ðTxnÞ � vx ; 8 x 2 X : ð84Þ

The push-forward of a scalar field is defined by invariance and all
other tensor fields are pushed accordingly.
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driven perspective, and referred to as locality recovery

(LR).14

Let us provide a synthetic abstract formulation of

the proposals exposed in literature to get fulfilment of

the LR property, expressed by the condition:

s0 2 S uniform in X)Rðs0Þ ¼ Cðs0Þ : ð85Þ

Preliminarily it is expedient to observe that, for a

kernel fulfilling Eq. (71), the integral U : X 7!R

defined by:

UkðxÞ :¼
Z
X

ukðx; yÞ � ly ; ð86Þ

is not uniform in the whole bounded domain X , due

boundary effects.

Indeed, even when the kernel ukðx; yÞ depends

only on the distance ky� xk and is rapidly decreasing

to zero for y 2 X away from the evaluation point

x 2 X , nearby to the boundary a part of the effective

domain is lost in the integration.

Moreover, the impulsivity condition Eq. (76)

implies that:

lim
k!0þ

Z
X

ukðx; yÞ � ly ¼ lim
k!0þ

UkðxÞ ¼ H : ð87Þ

From Eq. (76) we infer that H ¼ 1 at inner points of

X , while on the boundary H ¼ 1=2 at regular points,

and H\1=2 and equal to the fraction of inward solid

angle at singular points [19].

By positivity of uk , assumed in Eq. (72), we have

that:

0\UkðxÞ� 1 ; 8 k[ 0 ; 8 x 2 X : ð88Þ

1. Modified kernel: A first proposal was set forth in

[27] by assuming that:

RðsÞ ¼ wk � s ; ð89Þ

with the modified kernel wðx; yÞ : H7!H0 given

by:

wkðx; yÞ :¼
/kðx; yÞ
UkðxÞ

¼ ukðx; yÞ
UkðxÞ

� C : ð90Þ

The LR condition in Eq. (85) is checked by

observing that, for any uniform source field

s0 2 S , Eq. (86) gives:

AwðsÞx ¼
Z
X

wkðx; yÞ � s0 � ly

¼
Z
X

ukðx; yÞ
UkðxÞ

� Cðs0Þ � ly

¼ Cðs0Þ :

ð91Þ

The modified kernel proposed in [27], expressed

by Eqs. (86) and (90), does not fulfil the symmetry

property:

wðx; yÞ ¼ wðy; xÞ : ð92Þ

We confirm here the concern expressed in [1, 29],

since this lack of symmetry breaks also the

symmetry of the response operator.

Indeed:

hRðs1Þ; s2i ¼
Z
X

hAwðs1Þ; s2ix � lx

¼
Z
X

Z
X

h/ðx; yÞ � s1y;
s2x

UðxÞi � ly � lx

¼
Z
X

Z
X

h/Aðx; yÞ � s2x

UðxÞ ; s1yi � ly � lx

¼
Z
X

Z
X

h/ðy; xÞ � s2y

UðyÞ ; s1xi � lx � ly

¼
Z
X

Z
X

h/ðy; xÞ � s2y

UðyÞ ; s1xi � ly � lx

¼
Z
X

Z
X

h/ðx; yÞ � s2y;
s1x

UðyÞi � ly � lx :

ð93Þ

Symmetry would instead require equality to:

hRðs2Þ; s1i ¼
Z
X

hRðs2Þ; s1ix � lx

¼
Z
X

Z
X

h/ðx; yÞ � s2y;
s1x

UðxÞi � ly � lx :
ð94Þ

Consequently, the response in Eq. (89) cannot be

expressed as gradient of a potential.

2. Modified response: Another proposal to attain

fulfilment of the LR condition of Eq. (85), orig-

inally set forth in [28, 29], consists in evaluating

14 The locality recovery considered in [50] includes also the

condition of a vanishing energy residual, see also [48, Eq. (4)].

We do not comment on this modification of the first principle of

thermodynamics but just observe that the additional term therein

is rather a power residual.

123

Meccanica



the special expression taken by the nonlocal

response operator when acting on a uniform

source field:

Rnlocðs0Þx ¼
Z
X

ukðx; yÞ � Cðs0Þ � ly

¼ UkðxÞ � Cðs0Þ :
ð95Þ

where we put /ðx; yÞ ¼ C � ukðx; yÞ . It follows

that the LR property may be fulfilled by setting,

for any s 2 S :15

RðsÞ ¼ ð1 � UkÞ � CðsÞ þ RnlocðsÞ : ð96Þ

In fact, substituting Eq. (95) into Eq. (96) we get:

Rðs0Þ ¼ ð1 � UkÞ � Cðs0Þ þ Rnlocðs0Þ ¼ Cðs0Þ :
ð97Þ

The modified response Eq. (96) fulfils the

symmetry property Eq. (58) since the component

operators C and R are both symmetric. Accord-

ingly, the response may be expressed in terms of a

potential, as in Eqs. (54), (59).

As claimed in [1, 28, 29, 49, 50], this is an

improvement over the one based on Eq. (89).

The formulation in Eq. (96) is confined to

homogeneous elastic bodies and consists in

expressing the nonlocal response as sum of the

local response plus a term vanishing when the

source is uniform.

Therefore it is no more than a trivial escamotage.

Moreover, the general scheme that will be exposed

in Eq. (107) reveals that the model in Eq. (96) is

essentially undetermined.

Strain-driven and stress-driven perspectives lead to

two alternative models with well-distinct features also

for the response modified to ensure fulfilment of the

LR condition of Eq. (85) for homogeneous elastic

problems.

As will be detailedly discussed in Sects. 15.1 and

15.2, when k ! 0þ the modified strain-driven model

leads to ill-posed beam problems, while the modified

stress-driven model leads to well-posed ones.

9 Combinations and mixtures

A combination of local/nonlocal responses, with

positive parameters 0� a;b : X 7!R , is generated

by setting:

R ¼ a � Rloc þ b � Rnloc : ð98Þ

In Sect. 9.3 a special combination will be considered

by leaving the former parameter to be free to vary in

X so that 0� a : X 7!R , while requiring the latter to

be uniform in X so that 0� b : X 7!A 2 R . A

mixture is a convex combination with uniform

parameters 0� a : X 7!m 2 R and 0� b : X 7!1 �
m 2 R so that:

0� a ¼ m� 1 ;

0� b ¼ 1 � m� 1 :
ð99Þ

For m ¼ 0 or m ¼ 1 , the nonlocal integral convolu-

tion of Eq. (62) or the local law Eq. (24) are

respectively recovered.

Usefulness of local/nonlocal combination or mix-

tures consists in the fact that well-posedness of the

elastic equilibrium problem for strain-driven models is

assured for a[ 0 and b ¼ 1 .

On the contrary, pure strain-driven models as a rule

admit no solution, as discussed in [6, 7] and Sect. 15.1.

Weakness of mixture strain-driven models is that in

nonlocal elastic problems singular behaviours are

detected when the local fraction is quite small.

9.1 Local/nonlocal combination

A general combination of local/nonlocal responses is

got by setting:

R ¼ a � Rloc þ b � Rnloc ; a; b 2 R ;

RlocðsÞ :¼ CðsÞ ;

RnlocðsÞ :¼ / � s :

ð100Þ

9.2 Local/nonlocal mixture

A mixture is a convex combination of local/nonlocal

models and is got by setting a ¼ m and b ¼ 1 � m ,

with 0�m� 1 , so that the response is given by:

15 This proposal was set forth in [28, 29] for a pure strain-driven

model.
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R ¼ m � Rloc þ ð1 � mÞ � Rnloc ;

RlocðsÞ :¼ CðsÞ ;

RnlocðsÞ :¼ / � s :

ð101Þ

9.3 A special combination

In view of the model that will be discussed in Eq. (96),

let us consider a more general combination charac-

terised, as in Sect. 9, by a variable parameter:

0� a : X 7!R ; ð102Þ

and a uniform one:

0� b : X 7!A 2 R ; ð103Þ

so that:

R ¼ a � Rloc þ b � Rnloc ;

RlocðsÞ :¼ CðsÞ ;

RnlocðsÞ :¼ / � s ¼ Cðu � sÞ :

ð104Þ

The modified response, envisaged in Eq. (96) to fulfil

the LR condition of Eq. (85), can be got from the

special combination in Eq. (104) by setting:

a ¼ 1 � Uk ;

b ¼ 1 ;

Rloc ¼ C ;

Rnloc ¼ /k � s :

8>>>>><
>>>>>:

ð105Þ

The model in Eq. (96) is essentially undetermined

since the LR condition of Eq. (85) can be still fulfilled

by amplifying the nonlocal component with any

uniform real factor A 2 R :

a ¼ 1 � AUk ;

b ¼ A ;

Rloc ¼ C ;

Rnloc ¼ /k � s ;

8>>>>><
>>>>>:

ð106Þ

so that:

RðsÞ ¼ CðsÞ þ A

�
/k � s� Uk � CðsÞ

�
: ð107Þ

For instance, setting:

A ¼ 0 ; A ¼ 1 and A ¼ �1 ; ð108Þ

the local elastic law, the nonlocal positively and the

negatively modified response, are respectively

recovered.

10 Nonlocal non-homogeneous elasticity

Nonlocal non-homogeneous elasticity problems can-

not be properly treated by the model set forth in

Eq. (71) since, as is clear from the symmetry proof

exposed in Eq. (78), the non-uniformity of the

constitutive operator C : S7!F destroys symmetry

of the response operator R : S7!F of Eq. (77).16

The obstruction can be circumvented by a proper

definition of averaging kernel in the non-homoge-

neous case, according to the following original

proposal set forth here by the author.

In order to introduce the new model, we prelimi-

narily observe that the symmetric and positive definite

local constitutive operator C , has a square-root
ffiffiffiffi
C

p

still symmetric and positive definite.

In the integral convolution models of nonlocal non-

homogeneous elasticity, the kernel operator can be

taken to be given by the composition of the symmetric

and positive scalar kernel:

u : X�X 7!R ; ð109Þ

and of square roots of the constitutive operator

C : S7!F , as described below:17

/ðx; yÞ ¼
ffiffiffiffi
C

p
x � uðx; yÞ �

ffiffiffiffi
C

p
y : ð110Þ

This expression extends Eq. (71), relevant to homo-

geneity, and reduces to it when Eq. (70) holds true.

Accordingly, the response operator is given by:

R :¼
ffiffiffiffi
C

p
�
�
u �

ffiffiffiffi
C

p �
; ð111Þ

and explicitly:

16 This fact is likely to motivate the choice in [1] where it is

said: ‘‘For simplicity, we will restrict our attention to macro-

scopically homogeneous bodies’’.
17 After having independently envisaged this way of getting a

symmetric kernel, the authors became aware of the fact that a

similar trick, involving the non-uniform mass density of a

rotating shaft, was adopted by Tricomi in [12, p.3, Eq. (4)].
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RðsÞx ¼
Z
X

� ffiffiffiffi
C

p
x � uðx; yÞ �

ffiffiffiffi
C

p
y

�
� sy � ly :

ð112Þ

An evaluation similar to the one in Eq. (78) yields

symmetry of the nonlocal response Eq. (111) :

hRðs1Þ; s2i ¼
Z
X

hRðs1Þ; s2ix � lx

¼
Z
X

Z
X

uðx; yÞ � h
ffiffiffiffi
C

p
yðs1yÞ;

ffiffiffiffi
C

p
xðs2xÞi � ly � lx

¼
Z
X

Z
X

uðx; yÞ � h
ffiffiffiffi
C

p
xðs2xÞ;

ffiffiffiffi
C

p
yðs1yÞi � ly � lx

¼
Z
X

Z
X

uðy; xÞ � h
ffiffiffiffi
C

p
yðs2yÞ;

ffiffiffiffi
C

p
xðs1xÞi � lx � ly

¼
Z
X

Z
X

uðy; xÞ � h
ffiffiffiffi
C

p
yðs2yÞ;

ffiffiffiffi
C

p
xðs1xÞi � ly � lx

¼
Z
X

Z
X

uðx; yÞ � h
ffiffiffiffi
C

p
yðs2yÞ;

ffiffiffiffi
C

p
xðs1xÞi � ly � lx

¼
Z
X

hRðs2Þ; s1ix � lx ¼ hRðs2Þ; s1i ;

ð113Þ

so that existence of a quadratic elastic potential is

assured:

UðsÞ :¼ 1

2
hRðsÞ; si : ð114Þ

When the constitutive operator is uniform, the formu-

lae in Eqs. (112) and (113) boil down to the usual ones

in Eqs. (77) and (78) valid for the homogeneous case.

The locality recovery condition cannot be extended

to non-homogeneous nonlocal elastic models.

10.1 Another nonlocal non-homogeneous model

To deal with non-homogeneous nonlocal elasticity

problems, the proposal in [49, 50] consists in express-

ing the total elastic potential U : S7!R as sum of two

positive definite contributions, a local and a nonlocal

quadratic potential Uloc : S7!R and a nonlocal

quadratic potential:

Uloc :S7!R ;

Unloc :S7!R ;
ð115Þ

generated by the symmetric bilinear forms:

E :S � S7!R ;

W :F � F 7!R ;
ð116Þ

according to the laws:

UðsÞ :¼ UlocðsÞ þ UnlocðsÞ ;

UlocðsÞ :¼ 1

2
E
�
s; s

�
;

UnlocðsÞ :¼ 1

2
W

�
RðsÞ;RðsÞ

�
:

ð117Þ

The gradient of the potential Unloc : S7!R in

Eq. (117)3 is expressed by:

hdUnlocðsÞ; dsi ¼ hdWðRðsÞÞ; dRðsÞ � dsi

¼ hdWðRðsÞÞ;RðdsÞi :
ð118Þ

Then, by symmetry of the linear response R : S7!F
stated in Eq. (67), we have that RA ¼ R and hence:

RðsÞ ¼ dUðsÞ ¼ RA � dWðRðsÞÞ

¼
�
R � dW � R

�
ðsÞ :

ð119Þ

This expression is in agreement with the one given in

[49, Eq. (18)] and [50, Eq. (13)] in the context of

strain-driven models of nonlocal elasticity.

The nonlocal elasticity operator:

ðR � dW � RÞ : S7!F ; ð120Þ

is able to describe non-homogeneous problems, since

the fields E and dW are not required to be uniform in

the configuration X .

11 Strain-driven and stress-driven nonlocal

elasticity

When the overall constitutive response R : S7!F is

not invertible, two distinct constitutive models are

associated with the nonlocal law in Eq. (50), depend-

ing on which one of the following choices is made:

strain-driven :

RD : D7!R ; s ¼ e 2 D ; f ¼ r ¼ RDðeÞ ;

stress-driven :

RR : R 7!D ; s ¼ r 2 R ; f ¼ e ¼ RRðrÞ :
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Adoption of the stress-driven perspective, introduced

in [6, 7] as a paradigm for local and nonlocal elasticity,

was prompted by an epistemological argument con-

sisting in the following ansatz based on physical and

mathematical motivations.

In elastic constitutive relations, the basic role of

governing state variable is played by the stress field,

while the elastic state field is just the output of the

elastic constitutive law and therefore is not apt to play

the role of a driving variable [38].

In the approximate context of a small-displacement

theory, where all configurations are assumed to be

coincident with a given fixed one, the elastic strain can

be defined as an increment of elastic state due to an

increment of stress state. It is convenient and natural to

assume that the elastic state is vanishing when the

stress state is such.

In the general framework of large dynamical

processes, constitutive laws can only involve tensor

fields representative, on the current configuration, of

state variables and of their convective time derivatives

(Lie derivatives) along the motion [40].

In fact, the difference between tensors pertaining, at

different time instants, to the same particle along the

spacetime dynamical trajectory, are performable only

after a suitable pull-back or push forward along the

motion is carried out to bring both to have the same

base point on the trajectory.

In a dynamical process along a nonlinear trajectory

manifold, stress fields and elastic state fields are well-

defined state variables in the current configuration.

On the contrary, an elastic strain field is defined as

increment of elastic state and makes naturally refer-

ence to a pair of distinct source and target configura-

tions, with the increment evaluated after a pull back to

a common configuration along the motion is carried

out. Therefore an elastic strain field cannot be

compared with stress state field since the latter pertains

just to one configuration [39].

Elastic strains are not state variables.

The notion of elastic strain can usefully be intro-

duced just for computational purposes when the

nonlinear trajectory manifold is mapped, by means

of a diffeomorphic space-time transformation, onto a

straightened trajectory where all configurations

mapped in an interval of time are identified with a

given fixed reference manifold.

This is indeed the main tool in computational

algorithms based on the finite element method (FEM),

or similar ones, since there each element of a material

mesh drawn on the moving body is mapped onto a

fixed simplex or parallelepiped in a reference alien

manifold, with the time variable playing the role of an

evolution parameter.

The adjective alien means here that the reference

manifold is not assumed to belong to the dynamical

trajectory [40].

For all these reasons, the input of the rate elastic

relation is the stress rate field while the output is the

rate of elastic state.

In the context of a small-displacement theory, the

output can be assumed to be the elastic strain, defined

as finite increment of the elastic state.

12 Gradient models

Gradient models are based on the assumed existence

on the configuration X of a global potential U
defined by integrating a local potential, according to

the formula:

UðsÞ :¼
Z
X

Uxðsx;rxsÞ � lx : ð121Þ

The integrand is composed of the addition of two

positive definite quadratic potentials:

Uxðsx;rxsÞ ¼ U1xðsxÞ þ U2xðsÞ ; ð122Þ

whose expressions are:

U1xðsxÞ ¼ 1

2
hCx � sx; sxi ;

U2xðsxÞ ¼ 1

2
a2 hCx � rxs;rxsi :

ð123Þ

Here a
 0 is a scale parameter uniform over X , with

the physical dimension of a length.

The linear constitutive operator:

C : S7!F ; ð124Þ

is symmetric and positive definite.

Applying integration by parts, and denoting rA the

formal adjoint of r , the constitutive law writes:
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hf ; dsi ¼ hdUðsÞ; dsi

¼
Z
X

�
hC � s; dsix þ a2 hC � rs;rdsix

�
� lx

¼
Z
X

hC � s; dsix � lx

� a2

Z
X

hrAðC � rsÞ; dsix � lx

þ a2

I
oX

hC � rs � n; dsix � olx ;

ð125Þ

The linear subspace dS � L2ðX ;HÞ of test fields is

taken to be such to include the subspace C1ðX ;HÞ of

indefinitely smooth fields. The subspace

C1
0 ðX ;HÞ � C1ðX ;HÞ , of smooth fields vanishing

in a boundary layer, is dense in L2ðX ;HÞ .

Localisation of Eq. (125) is then performed by

taking ds 2 C1
0 ðX ;HÞ to infer validity of the con-

stitutive differential law:

f ¼ C � s� a2 � rAðC � rsÞ : ð126Þ

Then, taking dS ¼ C1ðX ;HÞ , from localisation of

Eq. (125) we infer the constitutive boundary

condition:

a2 � rðC � sÞ � n ¼ 0 ; ð127Þ

which, for a[ 0 , expresses vanishing of the flux

rðC � sÞ � n of the local response across the boundary.

The previous treatment may be applied to both

strain-gradient or stress-gradient models proposed in

literature.

However, as soon as the theory is applied to

elastostatic problems formulated according to one or

the other of these models, a drastic difference becomes

manifest.

12.1 Stress gradient models

Elastostatic problems based on stress-gradient consti-

tutive models are affected by drawbacks similar to

those of models based on the strain-driven Eringen’s

model.

Indeed, setting s ¼ r , f ¼ e and C ¼ E�1 in

Eqs. (125) and (127), the differential constitutive

condition Eqs. (126) becomes:

e ¼ E�1 �
�
r� a2 � rArr

�
; ð128Þ

and the constitutive boundary condition Eq. (127)

writes:

a2 � rr � n ¼ 0 : ð129Þ

This boundary condition is likely to conflict with

equilibrium requirement on the stress field, thus

leading to lack of solution.

Indeed, in statically determinate structural models,

the stress field is univocally determined by the

equilibrium condition.

In statically indeterminate models, the indetermi-

nacy of elastic strain fields is fixed by the kinematic

compatibility conditions on the geometric strain field.

Kinematic compatibility is conveniently imposed

by recalling Eq. (16)2 and Eq. (36)2 and the

definition in Eq. (35) of the datum strain d 2 D :

d :¼ g� BðwÞ : ð130Þ

The kinematic compatibility is expressed by the

following condition on the sum of the elastic and

datum strains:

eþ d 2 BL ; ð131Þ

and hence by the equivalent polarity condition:

hdr0; eþ di ¼ 0 ; 8 dr0 2 R0 ¼ ðBLÞ� : ð132Þ

Substituting Eq. (128) into Eq. (131) gives a linear

algebraic system which yields the elastic strain field at

solution.

The constitutive boundary condition Eq. (129) is

then always redundant and unlikely to be fulfilled by

equilibrated stress, which by definition belong to the

linear variety r‘ þ R0 .

This obstruction may be circumvented by taking the

test fields in the space dS ¼ C1
0 ðX ;HÞ of indefi-

nitely differentiable fields with compact support in the

open set X , so that the boundary integral in Eq. (125)

vanishes and no constitutive boundary condition will

emerge from localisation.

The adoption of this remedy leads to a simplest

scheme of nonlocality that has been widely adopted in

literature. However the elastic response based on this

stress gradient model reproduces the standard elastic

one for stress fields such that rArr ¼ 0 .
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This feature was first evidenced in [11] with

reference to simple beam problems. In the successive

literature this fact was quoted as a paradoxical result

since the governing differential relation Eq. (128) was

erroneously interpreted as stemming from the strain-

driven Eringen’s model, expressed by Eq. (167) but

ignoring the essential constitutive boundary condi-

tions Eq. (168). If these conditions are taken into

account the right conclusion is that the strain-driven

Eringen’s model for beam problems doesn’t admit

solution [16].

12.2 Strain gradient models

On the other hand, strain-gradient elastostatic prob-

lems, are formulated by setting s ¼ e, f ¼ r, and C ¼
E in Eq. (125). The differential constitutive condition

Eq. (126) becomes:

r ¼ E �
�
e� a2 � rAre

�
; ð133Þ

and the constitutive boundary condition Eq. (127)

writes:

a2 � re � n ¼ 0 : ð134Þ

Contrary to the constitutive boundary condition in

Eq. (129), the condition in Eq. (134) cannot be

neglected since it is needed to detect a unique elastic

strain field corresponding to an equilibrated stress field

by means of Eqs. (133) and (134).

As in the case of stress gradient models, in statically

indeterminate models, the indeterminacy of elastic

strain fields is fixed by the kinematic compatibility

conditions on the geometric strain field.

We note here the similarity between Eqs. (128) and

(133), respectively expressing the differential consti-

tutive conditions pertaining to stress-driven and strain-

gradient models of elasticity. However a full consti-

tutive analogy breaks down due to essential differ-

ences between the relevant constitutive boundary

conditions, respectively given by Eqs. (129) and (134).

Strain gradient elasticity models, early proposed

and investigated by Mindlin [51], have been recently

commented upon in [52, 53] by considering an energy

functional depending only on first and second gradi-

ents of the displacement field.

In all models quoted above, the strain field and its

gradients should in fact be replaced with the elastic

strain field and its gradients, since non-elastic strain

fields (i.e. thermal ones) are not to be taken into

account in modelling elasticity.

More properly, elastic state fields should be

considered in place of elastic strain fields, in full

conformity with the theory of elasticity developed in

[38, 40].

In this respect, it should be underlined that elastic

state fields do not have a their own physical definition

as state variables other than the one coming from their

appearance as output of an explicit constitutive

relation expressed in terms of stress states.

It is disappointing that the formulation of strain

gradient models exposed by Aifantis [67] is based on

the assumption that the elastic potential depends on the

elastic strain and on its image through the Laplace

operator D :

UðsÞx ¼ Uxðs;DsÞ ; with s ¼ e : ð135Þ

The differential relation Eq. (126) was thence claimed

to hold, with no clear derivation, and no statement was

contributed concerning constitutive boundary

conditions.18

13 Peridynamic models

A relative displacement-driven approach was first

envisaged by Silling [68] and named peridynamic

model, to propose a treatment of discontinuities in

displacements and cracks [69]. When inertia effects

are neglected, the ensuing models are termed peri-

static [70].

In these models, the elastic energy is assumed to be

composed of a standard contact energy depending on

the elastic strain field and of a microelastic long-range

interaction energy w : X�X 7!R assumed to depend

on the relative position and displacement of each pair

of particles x; y 2 X , as expressed by

wðy� x ; uy � uxÞ .

The density of the macroelastic energy at x 2 X is

then given by the resultant potential field:

18 This assumption was there motivated by the statement that

‘‘first gradients are suppressed as this would lead, in general, to
third order tensors that previous linear models of gradient
elasticity do not usually consider.’’ We can see from Eq. (123)

that it suffices to consider the first gradient as argument of the

potential, to get the differential condition Eq. (126).
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WxðuxÞ :¼
Z
X

wðx� y ; ux � uyÞ � ly : ð136Þ

The global macroelastic energy is evaluated by the

integral:

WðuÞ :¼
Z
X

WxðuxÞ � lx : ð137Þ

We will not pursue here a detailed presentation of

peridynamic models, but just point out a serious

difficulty inherent to the continuum model.

In fact, when adopting the expression in Eqs. (136),

(137), for bodies undergoing non-elastic processes

(e.g. those involving thermal variations), displacement

fields would improperly participate to the evaluation

of the long-range elastic energy.

Until a proper answer (if any) will be given to these

serious conceptual troubles, the peridynamic models

cannot be considered as conceived and set up in a

satisfactory manner for use in continuum mechanics.

14 Nonlocal elastic equilibrium

Let us discuss the strain-driven and the stress-driven

nonlocal elasticity problem separately since the two

models differ significantly in properties and in com-

putational approaches.

14.1 Strain-driven nonlocal elasticity

The strain-driven nonlocal elastic problem is formu-

lated, in terms of trial fields v 2 L , r 2 R , e 2 D ,

and of test fields dv 2 L , dr 2 R , de 2 D , by simply

replacing, in Eq. (36), the local elastic operator E :

D7!R with the response operator RD : D7!R .

The elastic stiffness of the external constraints is for

the moment assumed to be a linear, symmetric and

positive definite operator K : L7!L0 , as in the local

case described by Eqs. (25) and (26).

The elastostatic problem is then formulated by:

hKðvÞ; dvi þ hr;BðdvÞi ¼ h‘; dvi ;

hBðvÞ; dri � he; dri ¼ hd; dri ;

� hr; dei þ hRDðeÞ; dei ¼ 0 :

8>><
>>: ð138Þ

where d :¼ g� BðwÞ .

In terms of the conforming displacement field v 2
L the nonlocal elastostatic problem can then be

written as:

hKðvÞ; dvi þ hRDðBðvÞÞ;BðdvÞi

¼ h‘; dvi þ hRDðdÞ;BðdvÞi ;
ð139Þ

for all dv 2 L .

An essential difficulty is however sneakily hidden

therein.

Indeed, for K ¼ 0 the variational problem in

Eq. (138) admits, as a rule, no solution for pure

strain-driven nonlocal models, where RD ¼ / � .

This obstruction to existence of a solution is due to

the fact that the output fields of the constitutive law

r ¼ RDðeÞ , with e ¼ BðuÞ 2 D and u 2 wþ L
may not be able to fulfil the equilibrium condition Eq.

(138)1 with K ¼ 0 , see [16].

As discussed in Sect. 15.1 with reference to simple

beams, this obstruction may be partially overcome by

adopting a local/nonlocal mixture model as in

Eq. (101), with with m[ 0 , or a modified response

as in Eq. (96).

14.2 Stress-driven nonlocal elasticity

The stress-driven nonlocal elastic problem may be

formulated in variational terms as a two field problem,

with dv 2 L and dr 2 R :19

hKðvÞ; dvi þ hr;BðdvÞi ¼ h‘; dvi ;

hBðvÞ; dri � hRRðrÞ; dri ¼ hd; dri :

(
ð140Þ

The corresponding block-matrix expression is:

K B0

B �RR

� �
v

r

� �
¼

‘

d

� �
: ð141Þ

Note that, by symmetry of K and RR , the structural

operator at the l.h.s. of Eq. (141) is symmetric.

The problem can then be stated as stationarity

property on the product space V � R of the mixed

complete quadratic functional extension of the Hel-

linger-Prange-Reissner functional to the nonlocal

stress-driven context:

19 A three-field formulation is not feasible, unless an explicit

inverse of the nonlocal response operator is available.

123

Meccanica



Hðv ; rÞ :¼ 1
2
hKðvÞ; vi � 1

2
hRRðrÞ; ri

þ hr;BðvÞi � h‘; vi � hr; di :
ð142Þ

When K ¼ 0 , an equivalent formulation in terms of

self-equilibrated stress fields r0 2 R0 and of a

particular equilibrium stress r‘ 2 R‘ stems from

Eq. (131) and is expressed by the condition that, for

all dr0 2 R0 :

hRRðr0Þ; dr0i þ hdþRRðr‘Þ; dr0i ¼ 0 : ð143Þ

The geometric interpretation of the problem in

Eq. (143) is that the orthogonal projection on the

subspace R0 of the unknown vector RRðr0Þ 2 D
must be opposite to the one of the given vector:

dþRRðr‘Þ 2 D : ð144Þ

Note that the special choice made for r‘ 2 R‘ is

irrelevant.

When detection of a particular equilibrium stress

r‘ 2 R‘ and a parametric description of the self-stress

subspace R0 are not available, or when K 6¼ 0 , a two-

field formulation (stress and small displacement) is

compelling.

In nonlocal elasticity problems an applicable crite-

rion able to assure coerciveness of the response

operator R is presently lacking. If coerciveness

holds, a solution will be a saddle-point of the

convex-concave functional in Eq. (142).

14.3 Further considerations

Let us compare the formal structure of the elastostatic

problems associated with stress and strain driven

nonlocal models.

Preliminarily we recall from Eqs. (11) and (20) that:

R0 ¼ ðBLÞ� ;

BL ¼ �R0 :

(
ð145Þ

a. In a pure stress-driven nonlocal elastic model we

have:

e ¼ RRðrÞ ; ð146Þ

and hence the conformity condition, according to

Eq. (131), is given by:

RRðrÞ þ d 2 BL : ð147Þ

Since equilibrium requires that

r 2 r‘ þ R0 ; ð148Þ

the condition of existence of a strain solution is

expressed by:�
RRðr‘Þ þ dþRRðR0Þ

�
\ �R0 6¼ ; ; ð149Þ

also written as:�
RRðr‘Þ þ dþRRððBLÞ�Þ

�
\ BL 6¼ ; :

ð150Þ

Uniqueness of the strain solution requires that:

RRðR0Þ \ �R0 ¼ f0g ; ð151Þ

which may also be written as:

RRððBLÞ�Þ \ BL ¼ f0g : ð152Þ

b. In a pure strain-driven nonlocal elastic model, we

have:

r ¼ RDðeÞ ; ð153Þ

and the conformity condition, according to

Eq. (131), requires that:

e 2 �dþ BL : ð154Þ

the condition of existence of a stress solution,

recalling Eq. (148), is expressed by:�
�RDðdÞ þ RDðBLÞ

�
\
�
r‘ þ ðBLÞ�

�
6¼ ; :

ð155Þ

Uniqueness of the stress solution requires that:

RDðBLÞ \ ðBLÞ� ¼ f0g : ð156Þ

A full comprehension of intimate differences respon-

sible for ill-posedness of pure strain-driven nonlocal

elastic models versus the well-posedness pure stress-

driven ones, as evidenced by computations in simple

beam problems, is still lacking and certainly worth of

further investigation.
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In this context, we limit ourselves to observe that, in

1D beam theory, the subspace R0 � R of selfequi-

librated stress fields is finite dimensional. This fact

makes the condition in Eq. (155) much more stringent

than the one in Eq. (150).

15 One-dimensional beam problems

In 1-D beam bending problems with axial abscissa:

a� x� b ; ð157Þ

the integral convolution is conveniently set up by

adopting the kernel defined by the bi-exponential map:

hkðxÞ :¼
1

2 k
exp

�
� jxj

k

�
; ð158Þ

which fulfils the normalisation condition:

lim
k!0þ

Z b

a

hkðxÞ � dx ¼ 1 : ð159Þ

The map in Eq. (158) is the fundamental solution

associated with the linear differential operator:20

r
k2

�r2 : ð160Þ

The kernel of the integral convolution fulfils the

symmetry property Eq. (72) being defined for all

a� x; y� b by the Green function:

ukðx; yÞ :¼ hkðx� yÞ ¼ hkðy� xÞ : ð161Þ

The integral convolution model is then given by:

f ðxÞ ¼
Z b

a

uðx; yÞ � C � sy dy : ð162Þ

The constitutive law corresponding to local/nonlocal

mixtures of Eq. (101) is equivalent to the differential

equation:

f

k2
� f 00 ¼ Cs

k2
� mCs00 ; ð163Þ

with the boundary condition:

f 0ðaÞ � f ðaÞ
k

¼ m

�
Cs0ðaÞ � CsðaÞ

k

�
;

f 0ðbÞ þ f ðbÞ
k

¼ m

�
Cs0ðbÞ þ CsðbÞ

k

�
:

8>>><
>>>:

ð164Þ

15.1 Strain driven convolution

For a straight beam, a pure strain-driven convolution

law is got by setting:

m ¼ 0 ; s ¼ e ; f ¼ r ; C ¼ K ; ð165Þ

where r ¼ M bending interaction, e ¼ v elastic

curvature and K uniform elastic bending stiffness,

so that:

MðxÞ ¼
Z
X

ukðx; yÞ � K � vy dy : ð166Þ

Therefore the constitutive differential equation is:

M

k2
�M00 ¼ Kv

k2
; ð167Þ

and the constitutive boundary condition are:

M0ðaÞ �MðaÞ
k

¼ 0 ;

M0ðbÞ þMðbÞ
k

¼ 0 :

8>><
>>: ð168Þ

The constitutive differential law Eq. (167) with the

constitutive boundary condition (168), provide an

equivalent formulation of the convolution law

Eq. (166).

In elastostatics the kinematic compatibility condi-

tion requires that:

vþ g ¼ u00 ; ð169Þ

where g is an imposed (e.g. thermal) curvature and u

is an admissible small displacement.

The differential problem Eqs. (167) and (168)

yields the bending interaction corresponding to an

elastic curvature fulfilling the kinematic compatibility

condition:

Since bending interaction must also fulfil the

equilibrium conditions, the constitutive boundary

condition Eq. (168), which depend on the nonlocal

parameter k , are likely to conflict with the equilibrium

boundary conditions, which are independent of the

parameter k .20 The nabla r and the apex 0 both denote differentiation with

respect to x .
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Therefore an unavoidable contrast arises in prac-

tice, so that no solution exists, as a rule, to the nonlocal

elastostatic problem governed by the strain-driven

integral law Eq. (166).

This obstruction may be overcome by adopting a

local/nonlocal mixture model as in Eqs. (163) and

(164) but with m[ 0 , to get the equivalent differen-

tial equation [6, 23]:

M

k2
�M00 ¼ Kv

k2
� mKv00 ; ð170Þ

with the boundary condition:

M0ðaÞ �MðaÞ
k

¼ m
�
Kv0ðaÞ � KvðaÞ

k

�
;

M0ðbÞ þMðbÞ
k

¼ m
�
Kv0ðbÞ þ KvðbÞ

k

�
:

8>><
>>: ð171Þ

15.2 Stress driven convolution

For a straight beam, a pure stress-driven convolution

law is got by setting m ¼ 0 (no mixture), s ¼ M

bending interaction, f ¼ v elastic curvature, C ¼ K

uniform elastic bending stiffness, r ¼ M bending

interaction, so that:

vðxÞ ¼
Z
X

ukðx; yÞ � K�1 �My dy : ð172Þ

The equivalent constitutive differential equation is:

v

k2
� v00 ¼ K�1M

k2
; ð173Þ

with the constitutive boundary condition:

v0ðaÞ � vðaÞ
k

¼ 0 ;

v0ðbÞ þ vðbÞ
k

¼ 0 :

8>><
>>: ð174Þ

The differential law Eqs. (173) and (174) yields the

unique elastic curvature corresponding to a bending

interaction fulfilling the equilibrium condition.

The constitutive law Eq. (104) is equivalent to the

differential equation:

f

k2
� f 00 ¼ C

�
aþ b

ak2
ðasÞ � ðasÞ00

�
; ð175Þ

with the boundary condition:

f 0ðaÞ � f ðaÞ
k

¼ C

�
ða sÞ0ðaÞ � ða sÞðaÞ

k

�
;

f 0ðbÞ þ f ðbÞ
k

¼ C

�
ða sÞ0ðbÞ þ ða sÞðbÞ

k

�
:

8>>><
>>>:

ð176Þ

16 Nonlocal external elasticity

In some structural applications, the external elastic

law relating displacement and constraint reaction

fields can be conveniently assumed to be of a nonlocal

type.

A classical example is provided by beams and

plates resting on an elastic foundation.

A prototype local model of elastic foundation was

proposed in the second half of the nineteenth century

by Winkler [73] and by Zimmermann [74], assuming a

symmetric, positive definite and local linear relation

between continuous fields of displacements and con-

straint reactions in the domain ½a; b of the beam [81]:

rðxÞ ¼ KðxÞ � uðxÞ ; x 2 ½a; b : ð177Þ

16.1 Reaction-driven nonlocal external elasticity

A nonlocal model for an inflected straight beam

resting on an elastic foundation was first introduced by

Wieghardt [75] who criticised the presence of discon-

tinuities in the displacement of the elastic foundation

at the boundary of the support domain, due to

vanishing of the soil displacement field outside the

domain ½a; b , according to the local Winkler-Zim-

mermann model Eq. (177).

This criticiscı̀m is however improper because the

elastic behaviour model in [73, 74] was concerned just

with the beam-foundation interface in the domain

½a; b and not with the whole elastic soil foundation.

The nonlocal model proposed in [75] adopts the

kernel in Eq. (158), as suggested by Föppl in 1909

[76]. It can be named reaction-driven, being given by:

uðxÞ ¼
Z b

a

ukðx; yÞ � K�1 � ry dy : ð178Þ

However the elastostatic beam problem ensuing from

Eq. (178) is not well-posed.

Indeed the displacement field u , being common to

the beam axis and to the supporting foundation, is
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required to be the output of the reaction-driven

nonlocal law Eq. (178) and to fulfil the fourth-order

differential equation of the beam elastic equilibrium in

terms of the displacement field, under the action of the

imposed loading and of the foundation reaction.

This is an impossible task in general.

The underlying obstruction is confirmed by the fact

that when the kernel is assumed to be defined by

Eqs. (158)–(161), the equivalent constitutive differ-

ential equation is:

u

k2
� u00 ¼ K�1r

k2
; ð179Þ

with the constitutive boundary condition:

u0ðaÞ � uðaÞ
k

¼ 0 ;

u0ðbÞ þ uðbÞ
k

¼ 0 :

8>><
>>: ð180Þ

When the expression in Eq. (179) is substituted in the

beam equation of equilibrium, the differential order

remains four, but two more boundary conditions

Eq. (180) do appear.

To overcome this obstruction, fictitious concen-

trated reactions to be added at the beam ends were

proposed by Telemaco Langendonck [77] and by

Alfredo Sollazzo [78].

An extension to shear deformable foundation

beams, according to Timoshenko model, was con-

tributed by Ylinen and Mikkola [79].

A remarkable extension to 2D foundations was

contributed by Michele Capurso in the same year [80].

The presence of concentrated reactions at the

boundary of the supporting elastic foundation

remained however a questionable assumption.

16.2 Displacement-driven nonlocal external

elasticity

An alternative nonlocal model for the interaction

between an inflected beam and supporting elastic

foundation has been recently proposed by Barretta

[82].

The proposal consists in a swap akin to the one

introduced in [18] and permits to overcome the

obstructions resident in the Wieghardt [75] nonlocal

model, without advocating the presence of concen-

trated support reactions.

The scheme, dual to the one in Eq. (178), adopts a

displacement-driven nonlocal integral law:

rðxÞ ¼
Z b

a

ukðx; yÞ � K � uy dy : ð181Þ

The equivalent constitutive differential equation is:

r

k2
� r00 ¼ Ku

k2
; ð182Þ

with the constitutive boundary condition:

r0ðaÞ � rðaÞ
k

¼ 0 ;

r0ðbÞ þ rðbÞ
k

¼ 0 :

8>><
>>: ð183Þ

The expression of the displacement field u , given in

terms of the reaction r by Eq. (182), can then be

placed in the equilibrium equation of the beam to get a

six order differential equation in the unknown reaction

field, with six boundary conditions, four kinematic-

static plus two constitutive given by Eq. (183). The

resulting nonlocal problem is thus well-posed [82].

17 Comments and conclusions

By the given description of the various adopted

models for nonlocal elasticity problems, a critical

examination is made available to validate, reject or

improve various proposals in literature and to compare

merits and difficulties.

Presently, we are not aware of mathematical

statements providing effective criteria and operative

tests concerning existence and uniqueness of the

solution of nonlocal elastic problems that are not local.

Formulations of variational principles for both

strain-driven and stress-driven models of nonlocal

elasticity are therefore slightly more than formal

exercises until these basic questions are not properly

answered.

Although nonlocal formulation are especially chal-

lenging from the conceptual and the operative points

of view, it is to be said that this kind of difficulty is

common to many other engineering models of com-

plex structural problems.

This fact makes engineers confident in that, phys-

ical insight and successive modifications suggested by
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manifest obstructions, may lead to solvable problems

and to results that can be useful in applications.

In local and nonlocal elasticity problems, stress-

driven constitutive models are to be considered as

basic ones, since increments of elastic states are

properly induced by increments of stress states

[38–40].

In spite of the lack of a theoretical assessment,

numerical evidence shows that a unique solution exists

for nonlocal problems of applicative interest if the

response operator is of the stress-driven kind and also

for strain-driven models which are suitable mixtures

of local/nonlocal laws.

Analytical expressions of the solution have been

evaluated in simple cases, see e.g. [23].

Evidence of existence and uniqueness of a solution

holds both for constitutive models formulated as

integral convolution with homogeneous elasticity

moduli, and for models deduced from the quadratic

potential in Eq. (117), for non-homogeneous

elasticity.

Iterative schemes of solution were early suggested

by Polizzotto [71] and have been recently revised,

thoroughly investigated, and reformulated in [72].

Both stress-driven and (mixture) strain-driven

models were there considered, with effective applica-

tions to simple nonlocal elasticity problems, by

proving equivalence between nonlocal problems and

fixed points of suitable algorithms.

The computational tests on iterative schemes show

remarkable convergence properties and in particular

especially fast rates for stress-driven nonlocal models.

Iterative schemes of solution provide a valuable

computational tool for nonlocal problems since at each

step only standard local elasticity problems, with an

imposed distortion field, need to be considered. In this

way, standard computational tools can be resorted to.

We comment no further on currently most adopted

models of nonlocal elasticity, leaving to the readers

the task of taking a cue to perform additional

considerations and draw their own meditated

conclusions.
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