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a b s t r a c t

In the strain-driven model of nonlocal elasticity proposed by ERINGEN, the elastic strain is defined by a
FREDHOLM integral equation in which the stress is the output of a convolution between the local response
to an elastic strain and a smoothing kernel dependent on a nonlocal parameter. In the wake of this
proposal, size effects in nano-beams were investigated in literature by adopting a differential formulation
considered to be equivalent to the integral one. Recent improvements have however revealed that
equivalence requires also the fulfilment of constitutive boundary conditions. Moreover, this strain-driven
nonlocal elastic problem has been shown to be ill-posed, being conflicting with equilibrium re-
quirements. A stress-driven integral constitutive law provides the natural way to get well-posed nonlocal
elastic problems for application to nano-structures. The new integral constitutive law is formulated with
explicit reference to plane and straight nano-beams according to the standard BERNOULLI-EULER structural
model. The solution procedure based on the stress-driven nonlocal law is described and adopted for the
solution of a simple statically indeterminate scheme, thus showing effectiveness of the new model for
the structural design of nano-devices.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Size effects in elastic nano-beams are usually investigated by
simulating complex phenomena at the nano-scale by means of a
nonlocal elastic law. Starting data are the standard macroscopic
field of local elastic stiffness E and the inverse field of local elastic
compliance C ¼ E�1.

In the original proposal by ERINGEN [1], the 3D purely elastic
nonlocal model was defined by assuming that the elastic strain field
ε
el is solution of a FREDHOLM integral equation.

Accordingly, the stress s is output as convolution between the
local response to the elastic strain and a scalar kernel dependent on
a nonlocal parameter l>0:

s xð Þ ¼
Z
U

flðx � xÞ$E xð Þ$εel xð Þ dUx; (1)

with x; x position vectors in the actual placement U of the body.
The notation dUx indicates that integration over U is performed
abarret@unina.it (R. Barretta).
with respect to the x variable.
The stress fields s are subject to equilibrium conditions, while

the total strain fields

ε ¼ ε
th þ ε

el; (2)

sum of non-elastic (e.g. thermal) and elastic strain fields, must fulfil
kinematic compatibility.

The model in Eq. (1) is referred to as the strain-driven nonlocal
integral law, since the source field is the elastic strain ε

el.
We will deal with linearised, plane and straight BERNOULLI-EULER

beam model, with axial abscissa x , end-points a; b2< and length
L ¼ b� a.

The flexural nonlocal elastic law is then expressed, in terms of
an elastic curvature field cel2H , square integrable on ½a; b�, and of
the local elastic flexural stiffness K2H .

The bending interaction field M2H is output by the
convolution

MðxÞ ¼
Zb
a

flðx� xÞ$KðxÞ$celðxÞ dx: (3)

The scalar kernel fl : <1½0;þ∞Þ depends on a positive
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nonlocal parameter l>0 and fulfilling the properties of symmetry
and limit impulsivity:

(
flðx� xÞ ¼ flðx� xÞ � 0;
lim
l/0

fl xð Þ ¼ d xð Þ; (4)

where d is the DIRAC unit impulse at 02<, the limit being intended
in terms of distributions, according to the expression:

lim
l/0

Zþ∞

�∞

flðx� xÞ$f ðxÞ dx ¼ f ðxÞ: (5)

for any continuous map f : <1<:
The total curvature c is sum of the nonlocal elastic curvature

field cel and of all other non-elastic curvature fields, henceforth
represented by a thermal curvature field cth, so that:

c ¼ cth þ cel: (6)

In the linearised BERNOULLI-EULER beam model, the geometric
curvature field is defined by

cv :¼ v
00
; (7)

with v : ½a; b�1< transverse displacement of the beam axis, the
apex 0 denoting derivation along the x axis.

Kinematical compatibility requires that the total curvature field
be coincident with the geometric curvature.

Equilibrium is expressed by the variational condition that the
external virtual power of the loading 〈[; dv〉 is equal to the internal
virtual power of the bending interaction field:

〈[; dv〉 ¼
Zb
a

hM;cdvidx; (8)

for all virtual displacement fields dv2V which are square inte-
grable, together with dv0; dv00 , on ½a;b� and fulfil homogeneous
kinematical conditions imposed on boundary values of dv; dv0.

The bending interaction field is called to fulfil the equilibrium
condition with an imposed admissible loading [2V 0, with V 0 dual
linear space of force systems, such that

〈[; dv〉 ¼ 0; cdv2V : cdv ¼ 0: (9)

A basic difficulty with strain-driven nonlocal models is that,
denoting by S3H the affine manifold of all bending interaction
fields M2H fulfilling the equilibrium condition Eq. (8), the corre-
sponding set of solutions of the FREDHOLM integral equation Eq. (3)
can be empty.

This is indeed the case for the totality of engineering statical
schemes of simple beams with the usual end-constraints.

As a consequence, the assumption of existence of a solution for
these nonlocal elastic schemes leads unavoidably to paradoxical
results [2]. This important conclusion was first drawn in Ref. [3],
after several resolutions of paradoxes were improperly claimed
[4e6] and various proposals were advanced [7e15].

It is worth observing that, in statically determinate beam
models, the bending interaction field M is uniquely fixed by equi-
librium and independent of the nonlocal parameter l>0.

On the contrary, in statically indeterminate beam models the
bending interaction field M is defined by the full set of equilib-
rium, kinematic compatibility and constitutive laws, so that the
bending interaction solution will depend on the nonlocal
parameter.
An enlightening example is provided by a statically determinate
beam problem (a cantilever is usually adopted to model actuators)
where the bending interaction field takes an analytical expression
that cannot be reproduced by the convolution in Eq. (3), for any
choice of a square integrable curvature field cel2H .

To overcome these basic difficulties, detailedly addressed in
Refs. [3,16], an innovative nonlocal model for nano-beams was
recently introduced by the authors in Ref. [17].

In the new stress-driven model the roles of bending interaction
and curvature fields are swapped with respect to the strain-driven
model of Eq. (3) so that the resulting expression is:

celðxÞ ¼
Zb
a

flðx� xÞ$CðxÞ$MðxÞ dx: (10)

The input bending interaction field M2H must meet the
equilibrium condition Eq. (8).

The total curvature c ¼ cth þ cel sum of the thermal curvature
cth2H and the output nonlocal elastic curvature cel2H , has to
meet kinematic compatibility.

For a 3D continuum, the stress-driven model is formulated by
swapping, with respect to the strain-driven model of Eq. (1), the
roles of stress and elastic strain fields:

ε
elðxÞ ¼

Z
U

flðx � xÞ$CðxÞ$sðxÞ dUx: (11)

It is important to underline that the stress-driven and the strain-
driven elastic laws are by no means one the converse of the other
and lead to completely different structural models.

Remark 1.1. The original strain-driven nonlocal model Eq. (1) for a
3D continuumwas reformulated in Ref. [18] by assuming a uniform
local elastic compliance C ¼ E�1:

εðxÞ ¼
Z
U

flðx � xÞ$εelðxÞ dUx; (12)

with ε
elðxÞ :¼ C$sðxÞ:

In adapting to BERNOULLI-EULER beams with uniform elastic flexural
stiffness K , the nonlocal law was written in Ref. [4] as

cðxÞ ¼
Zb
a

flðx� xÞ$cðxÞ dx; (13)

with cðxÞ :¼ C$MðxÞ and C ¼ K�1.
The expressions in Eq. (12) and Eq. (13) are possibly misleading

since distinct roles of stress and strain fields are not clearly evidenced.
Inappropriate notations probably contributed to shadow the essential
drawbacks of structural models based on strain-driven constitutive
laws. For non-uniform elasticity, the nonlocal expression in Eq. (12)
and Eq. (13) differ from the original ERINGEN model Eq. (1) since
average is performed on the strain field rather than on the local elastic
response.
2. Integral vs differential formulations

In application to nano-beams for simulation of scale effects in
NEMS [19e21], the strain-driven integral elastic model Eq. (3) was
replaced with the associated differential formulation, taken from
the original treatment in [1].

By introducing the characteristic length Lc :¼ lL, the special
kernel, depicted in Fig. 1, is defined by



Fig. 1. Special kernel, l2f1=10;1=3g

Fig. 2. Bending interaction vs nonlocal parameter.

Fig. 3. Self-curvature field: l2f:0001; 0:01; 0:2;0:5;1; 10g
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flðxÞ :¼
1
2Lc

exp
�
� jxj

Lc

�
: (14)

It can be shown [3] that the convolution in Eq. (3) is equivalent
to the differential equation

MðxÞ � L2c $M
00 ðxÞ ¼ K$celðxÞ; a � x � b; (15)

with the constitutive boundary conditions8>>><
>>>:

M0ðaÞ ¼ 1
Lc

MðaÞ;

M0ðbÞ ¼ �1
Lc

MðbÞ:
(16)

As a matter of fact, these boundary conditions were completely
ignored until the mathematical discussion of FREDHOLM integral
equations with the special kernel provided in Ref. [22] was put into
evidence in Ref. [18].

There, the difficulties inherent to the strain-driven constitutive
model, evidenced by non-existence of solutions, were by-passed by
adopting a local-nonlocal mixture, as earlier suggested in
Refs. [23,24] and adopted in Refs. [25,26].

The constitutive boundary conditions Eq. (16) are clearly in
contrast with all natural boundary of engineering problems, since
they depend explicitly on the nonlocal parameter l through the
characteristic length Lc :¼ lL.

This fact reveals the impossibility to fulfil the conflicting re-
quirements imposed on the bending interaction field by equilib-
rium and by strain-driven constitutive nonlocal law.

This conclusion can also be reached by observing that the
bending interaction field M2H in the beam inherits an exponen-
tial behaviour from the adopted kernel and cannot therefore
comply with the differential properties dictated by equilibrium
under usual loading conditions in engineering problems.

The proof given in Ref. [3] of equivalence between the FREDHOLM
integral equation Eq. (3) and the differential problem expressed by
Eqs.(15) and (16), was decisive to conclude that ERINGEN strain-
driven model is ill-posed and must be abandoned.

The most natural and effective strategy to get well-posedness is
provided by the new stress-driven nonlocal model, recently pro-
posed by the authors in Ref. [17].

The new integral convolution Eq. (10), with the special kernel in
Eq. (14), is equivalent to the differential equation

cel xð Þ � L2c $
�
cel

�’’
xð Þ ¼ C$M xð Þ; a � x � b; (17)

with the constitutive boundary conditions
8>>><
>>>:

�
cel

�0ðaÞ ¼ 1
Lc
$celðaÞ;

�
cel

�0ðbÞ ¼ �1
Lc
$celðbÞ:

(18)

The signs in Eq. (16) and Eq. (18) are consequent to the fact that
the first derivative of the special kernel is an odd function.

3. Example

An interesting example of application of the new theory to
simple nano-beams is provided by the structural scheme of a
doubly-clamped beam subject to an imposed curvature due to a
zero-mean thermal gradient (i.e. butterfly shaped) along the
flexure direction, and uniformly distributed along the axis.

3.1. Clamped beam with uniform thermal curvature

It is well-known that the solution of this clamped beam prob-
lem, with the standard local elastic model, leads to an identically
vanishing displacement field due to a perfect compensation be-
tween uniform thermal and elastic curvature fields. The outcome of
the nonlocal stress-driven problem is not so trivial.

The solution can be got by considering a basis of the linear
manifold of self-equilibrated bending interaction fields (those in
equilibrium under null loading, called for brevity self-bending
fields) which by symmetry is given by a uniform non-null self-
bending field, say M02S0.

The overall geometric curvature is evaluated by superposition of
the uniform prescribed thermal curvature cth2H and of the
nonlocal elastic curvature ðcelÞ02H induced by the self-bending
solution M ¼ al$M02S0 (heretofore called self-curvature):



Fig. 4. Geometric curvature fields: l2f:0001; 0:01; 0:2;0:5;1; 10g
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c ¼ cth þ al$
�
cel

�
0
; (19)

with

�
cel

�
0
:¼

ZþL=2

�L=2

flðx� xÞ$C xð Þ$M0 xð Þ dx: (20)
Table 1
Geometric curvature fields: l2f0001;0:01; 0:02;0:05;0:2;0:5; 1;2;10g
Kinematic compatibility is imposed by the virtual work
equation:

D
dM0;c

th
E
þ al$

D
dM0;

�
cel

�
0

E
¼ 0; (21)

where dM02S0 is any non-null self-bending field.
Computation of the convolution gives

al ¼ �cth$K
M0

�
1

1þ l$ðexpð�1=lÞ � 1Þ
�
: (22)

The uniform self-bending solution Ml ¼ al$M02S0 is plotted
for L ¼ 1;cth ¼ �1;M0 ¼ 1;K ¼ 1, in Fig. 2. The values range form
1 at l ¼ 0 to e at l ¼ 1.

The nonlocal self-curvature, evaluated according to the convo-
lution in Eq. (20), is given by

�
cel

�
0
¼ M0

2$K

��
1�exp

�1þ2$x=L
2$l

�
þ
�
1�exp

�1�2$x=L
2$l

��
;

(23)

and is plotted in Fig. 3 for the nonlocal parameter ranging in the set

l2f:0001;0:01;0:2;0:5;1;10g: (24)
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These diagrams show an elastic stiffness increasing with the
nonlocal parameter l.

The overall nonlocal curvature given by Eq. (19) is plotted in
Fig. 4. We see that for l/0 the boundary values of the geometric
curvature tend to the value 0:5while the values at points internal to
the beam axis tend to vanish.

This behaviour is a consequence of the convolution law and of
the normalisation property, as can be explained by observing the
diagrams of the self-curvature ðcelÞ0 given in Fig. 3.

For l/0 the values of self-curvature at internal points tend to
unity, which is the uniform value of the self-bending field, while
boundary values at end-points tend to the value 1=2.

This halved value is due to elimination of the part of the kernel
which falls out of the domain of integration.

As l/0 the kernel tends to the DIRAC impulse and the loss at
boundary points tends to one-half of it (the DIRAC impulse is
halved!).

To better observe the evolution of the total geometric curvature
field, for increasing values of the nonlocal parameter, Table 1 dis-
plays the curvature fields for

l2f0001;0:01;0:02;0:05;0:2;0:5;1;2;10g: (25)

The progressive reduction of the maximum value of the curva-
ture field is due to normalisation of the kernel, expressed by
property Eq. (5). In fact, since the variance increases with l, the
peak value of the kernel is lowered, as shown in Fig. 1, to keep the
integral equal to unity.

4. Conclusion

Main outcomes of the present paper may be summarized as
follows.

1 The elastostatic problem of an inflected nano-beam formulated
according to ERINGEN strain-driven integral model, admits a
unique solution or no solution at all, depending on whether the
bending interaction field fulfils constitutive boundary condi-
tions or not. For structural schemes of applicative interest no
solution exists [3].

2 The new stress-driven nonlocal integral elastic model is put into
action by means of a direct solution procedure so that small-
scale effects in BERNOULLI-EULER nano-beams can be efficiently
simulated.

3 Exact solutions of a statically indeterminate nano-beam model
of engineering interest is contributed to illustrate effectiveness
of the new stress-driven nonlocal model.

4 A stiffer elastic response is got for increasing values of the
nonlocal parameter for any prescribed kinematic boundary
conditions. This effect is due to the normalisation condition Eq.
(5) on the smoothing kernel involved in the convolution
integral.

5 The boundary effect of halving the elastic nonlocal curvature
fields at the boundary in the limit l/0 is shown to be due to
cancellation of the kernel exiting from the interval of
integration.

The new stress-driven nonlocal model provides an effective
methodology for the analysis of nano-structures and eliminates the
essential difficulties exhibited by the strain-driven model.
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