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Summary. The paper deals with the definition and the evaluation of the tangent
stiffness of hyperelastic polar shells without drilling rotations. The ambient space for
such bodies is a nonlinear differentiable manifold. As a consequence the incremen-
tal equilibrium must be expressed as the absolute time derivative of the nonlinear
equilibrium condition expressing the balance between the elastic response and the
applied forces. In the absolute time derivative the classical directional derivative is
substituted by the covariant derivative according to a fixed connection on the mani-
fold. The evaluation of the tangent stiffness requires to perform the second covariant
derivative of the finite deformation measure and this in turn requires an extension
of the virtual displacement field in a neighborhood of the given configuration of the
shell. It is explicitly shown that different choices of this extension lead to the same
tangent stiffness which is symmetric since the choosen connection is torsionless.

1 Introduction

The evaluation of the tangent stiffness of an hyperelastic body is of a crucial
importance when dealing with finite changes of configuration. The tangent
stiffness provides the linear relationship between the rate of change of confi-
guration and the corresponding rate of change of elastic response of the body
in terms of forces. The analysis of small vibrations of a finitely deformed
elastic body, the instability of equilibrium configurations and the prediction
of the way in which an elastic body tends to move under a loading path, are
all governed by the properties of the tangent stiffness.

There are many different ways of defining a deformation measure of the
body and the choice of a special measure changes the way in which the model-
ling of the constitutive properties of the material is performed. The basic
requirements which a deformation measure has to conform with are the fol-
lowing: the measure must be independent of superimposed rigid changes of
configuration and must be a local field in the sense that its value at a point
must not be affected by a change of the placement map outside any neighbor-
hood of that point.
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The definition of a rigid change of configuration is a basic item that must
be given in describing the kinematical properties of the body in its motion
in the ambient space. In hyperelastic bodies the Green’s potential defines
the local elastic properties of the material in terms of its deformation from a
given natural state. The deformation field depends in turn on the map which
defines the placement of the body with respect to a reference configuration in
the ambient space.

Once a deformation measure has been choosen, the local elastic potential
can be expressed as the composition of the local elastic energy and the de-
formation measure. It is then a function of the configuration change from a
reference configuration in which the material is assumed to be in a natural
state. The global elastic potential is obtained by integrating the local elastic
potential over the whole body in the reference configuration.

In finite deformation analysis all the state variables defined in the actual
configuration are transformed into the corresponding ones in the reference
configuration. Accordingly, in an evolution process, the equilibrium condition
at the actual configuration is written by imposing the equality between the
directional derivative of the global elastic potential along a conforming virtual
(tangent) displacement and the corresponding virtual work of the referential
forces. The derivative of the global elastic potential is the elastic response of
the body to the change of configuration. Both the elastic response and the
referential forces are bounded linear forms on the linear space of conform-
ing virtual displacements. The condition of incremental equilibrium is then
obtained by taking the time derivative of the equilibrium condition.

In classical structural analysis the time derivative of the elastic response
is expressed, by means of the chain rule, as the directional derivative of the
elastic response along the velocity field of the body. When dealing with polar
bodies this procedure must be revisited to take into account the non-affine
geometrical structure of the physical space. In such a situation the time deriva-
tive must be substituted by the absolute differentiation with respect to time,
defined as the covariant derivative of the elastic response along the velocity
field.

To grasp the motivation of this new approach one has to consider that,
when the ambient space is a nonlinear differentiable manifold, the tangent
spaces of virtual displacements and their dual counterparts, the cotangent
spaces of force systems, change from point to point. In general there is no
way to perform a classical differentiation of a vector or of a covector field on
a differentiable manifold since this would imply to perform the difference of
unrelated vectors belonging to different linear spaces.

In structural mechanics the nonlinear differentiable manifold defining the
ambient space is usually embedded into a larger affine space with an euclidean
structure. In this cases the covariant differentiation amounts simply in taking
the component of the directional derivative on the subspace tangent to the
manifold.
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This definition of the covariant differentiation is equivalent to consider
on the manifold the Levi-Civita connection associated with the riemannian
metric induced by the euclidean metric of the larger affine space.

One more essential point remains to be fixed. The directional derivative of
a field of linear forms on a linear space meets the Leibniz rule of calculus: the
directional derivative of a linear form at a vector field, is equal to the difference
between the directional derivative of its value at the vector field and its value
in corrispondence of the directional derivative of the vector field.

By analogy the covariant differentiation of a linear form is defined by means
of a formal application of the Leibniz rule: the value of the covariant derivative
of a linear form at a vector field is equal to the difference between the covariant
derivative of its value at the vector field and its value in corrispondence of
the covariant derivative of the vector field. The definition is well posed since,
although both terms in the difference depend on the values that the vector
field takes in a neighborhood of the point, their difference is local and hence
the covariant derivative of the linear form is tensorial.

From the discussion above it follows that the tangent stiffness must be
properly defined as the covariant derivative of the elastic response. As the
covariant derivative of a linear form, the tangent stiffness is then a two times
covariant tensor. The evaluation of the tangent stiffness of polar elastic bod-
ies is then a remarkable example of application of differential geometry, and
specifically of calculus on manifolds, to issues of mechanics.

In previous treatments, dealing with models of polar beams and shells, the
geometric tangent stiffness was simply evaluated as the inner product of the
referential stress times the second directional derivative of the deformation
measure. It is apparent that such an evaluation requires to perform an exten-
sion of the virtual displacement along which the first derivative is taken, to a
vector field defined in a neighborhood of the given configuration.

In finite deformation analysis of polar shells without drilling rotations the
ambient space is the trivial fiber bundle defined by the cartesian product
of the euclidean space (the base manifold) times the unit sphere (the fiber).
The corresponding tangent stiffness, computed by taking the second covariant
derivative of the deformation measure, is local and symmetric when the space
manifold is endowed with the Levi-Civita connection induced by the larger
affine space.

Two different extensions of the virtual displacement are investigated and
it is shown that the former yields a symmetric second directional derivative
of the deformation measure while the latter leads to a nonsymmetric second
directional derivative. It is further shown, by explicit calculation, that the cor-
responding second covariant derivative of the deformation measure is however
symmetric in both cases, as required by the theory.
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2 Polar shells

The general theory of polar models developed in [12] has been applied in [13]
to the analysis of the polar model of shear deformable beams undergoing finite
configuration changes.

We shall here investigate in detail a polar model of shear deformable shells
in finite deformations which is referred to in the literature as the shell without
drilling rotations [7].

Let E3 be the euclidean space and V 3 the associated linear space of
translations.

The material shell B is a set of particles which, at each time t ∈ I , are
located at points of a differentiable submanifold of the physical space E = E3 .

The polar model of a shell without drilling rotations is a two-dimensional
structural model characterized by a middle surface B and by vectors of pre-
scribed length in V 3 attached at each of its points to simulate the constant
thickness of the transversely undeformable shell. The corresponding versors,
called directors, range on the unit sphere S2 which is a compact differentiable
manifold without boundary embedded in V 3 :

S2 := (d ∈ V 3 : ‖d‖ = 1) .

The ambient space, in which the motion of the shell takes place, is then the
differentiable manifold without boundary

S = E3 × S2 ,

a trivial fiber bundle having the euclidean space E3 as base manifold and the
unit sphere S2 as typical fiber.

The base configuration map χt : B 7→ E of the shell at time t ∈ I is an
injection of the material shell B onto the base placement Bt ⊂ E which is
the middle surface of the shell.

The polar structure st : Bt 7→ S is a map from the middle surface at time
t onto the placement Pt = st(Bt) . The map st : Bt 7→ S , defined by

st(pt) := {pt ,dt } ∈ Bt × S2 ,

is a section of the fiber bundle S on the submanifold Bt ⊂ E .
A spatial configuration of the polar shell at time t ∈ I is an injective map

ut : B 7→ S which assignes a placement Pt := ut(B) ⊂ S to the material shell
B and is given by the composition of the base configuration map with the
polar structure:

ut = st ◦ χt .

Let us consider the change of base configuration χt,s ∈ Ck(Bs ; Bt) from
χs to χt defined by

χt,s ◦ χs = χt .
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The configuration change from us to ut is the map ut,s : us(B) 7→ ut(B) ⊂ S
defined by

ut,s ◦ us = ut .

To extract the base point and the director from a pair {pt,dt } we introduce
the cartesian projectors

P1{pt,dt } := pt , P2{pt,dt } := dt .

Accordingly we define the map d̂t : Bt 7→ S2 which provides the director
associated to a base point on the middle surface:

d̂t(pt) := (P2 ◦ st)(pt) , pt ∈ Bt .

To simplify the notation we shall drop the ˆ and write simply dt for d̂t .

Let us consider the finite deformation measure for the polar shell model
without drilling rotations that was proposed and analyzed in [7]. It consists
in the triplet

A(ut,s) :=

∣∣∣∣∣∣∣∣
ε(χt,s)

δ(ut,s)

C(ut,s)

∣∣∣∣∣∣∣∣
composed by

ε(χt,s)(a,b):= g(χt,s∗a, χt,s∗b)− g(a, b) , membrane strain ,

δ(ut,s)(a):= g(dt, χt,s∗a)− g(ds, a) , shear sliding ,

C(ut,s)(a,b):= g(∂χt,s∗a
dt, χt,s∗b)− g(∂ads, b) , flexural curvature ,

where a ,b ∈ TBs
(ps) . The push forward χt,s∗ ∈ BL (TBs

; TBt
) associated

with the map χt,s ∈ Ck(Bs, Bt) is defined by ( see [1], [2], [3]):

χt,s∗(ps,a) := {χt,s(ps) , ∂aχt,s(ps)} .

The push forward maps a given tangent vector applied at a point of a manifold
into the corresponding deformed tangent vector applied to the transformed
point. The tangent space at {x ,d} ∈ S = E3 × S2 is the product manifold

TS(x ,d) = TE3(x)× TS2(d) = V 3 × TS2(d) .

The virtual displacements δu
t,s
∈ Hk(B

s
; TS) are defined by

δut,s(ps) = {t(ut,s(ps)) ,X(ut,s(ps))} with

{
t (ut,s(ps)) ∈ TE3(pt) ,

X(ut,s(ps)) ∈ TS2(dt) ,

for any ps ∈ Bs and {pt,dt } = ut,s(ps) where ut,s(ps) is a shortcut for
(ut,s ◦ ss)(ps) .
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Remark 1. We must observe that, despite their wide acceptance (see e.g.[4],
[5], [6]) the deformation measures reported above in this in section and com-
monly adopted in the literature for polar shells without drilling rotations, lead
to physically nonplausible results in case of significant membrane strains. In-
deed a simple computation reveals an unrealistic behaviour of an inflated polar
spherical baloon since an increase of flexural curvature is measured when the
radius increases. The effect is due to the amplification of the convected tangent
vectors due to the deformation.

To get rid of this shortcoming we could redefine the deformation measures
for polar shells without drilling rotations as follows:

ε(χt,s)(a,b) := g(χt,s∗a, χt,s∗b)− g(a, b) , membrane strain ,

δ(ut,s)(a) := g(dt, χt,s∗a)− g(ds, a) , shear sliding ,

C(ut,s)(a,b) := g(∂χt,s∗a
dt, Rt,sb)− g(∂ads, b) , curvature change ,

where Rt,s is the isometric transformation associated with the push forward
χt,s∗ according to the polar decomposition formula χt,s∗ = Rt,s Ut,s where
Ut,s is the right Cauchy stretch tensor. The new expression for the curvature
change correctly predicts no flexural curvature in the inflated polar spherical
baloon when the radius is changed. Indded in this problem the rotation Rt,s
reduces to the identity and dt ◦ χt,s = ds so that

(∂χt,s∗a
dt) ◦ χt,s = ∂ads .

The computation of the tangent stiffness for this new shell model will be dealt
with in a forthcoming paper.

2.1 Tangent stiffness

Let vX := {tX ,X} and vY := {tY ,Y} be referential virtual displacements
at the placement Pt . For any ps ∈ Bs the position at time t is given by
{xt,dt } = ut,s(ps) ∈ Pt , and hence the referential virtual displacements
are functions of the point ps ∈ Bs and of the configuration change ut,s ∈
Ck(Bs, S) . To simplify the notations we shall write vX or vX(ut,s) , dropping
the explicit dependence on ps ∈ Bs .

The constitutive tangent stiffness of the shell is evaluated by taking the di-
rectional derivative of the elastic potential along a virtual displacement and by
subsequently taking the absolute time derivative of the directional derivative.
As we have seen, by applying Leibniz rule the tangent stiffness is decomposed
in the sum of an elastic part and a geometric part.

The symmetric elastic tangent stiffness is the bilinear form in vX,vY
given by the formula

∂2ϕ(A(ut,s)) · (∂A(ut,s) · vY ) · (∂A(ut,s) · vX ) ,
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Fig. 1. Inflated polar spherical baloon

where the virtual displacement vX is indeed the velocity vector along the
equilibrium path, which is the unknown of the incremental elastic equilibrium
problem.

The geometric tangent stiffness is the bilinear form in vX,vY given by

∂ϕ(A(ut,s))·
[
∇2

vXvY
(A(ut,s))

]
=∂ϕ(A(ut,s))·

[
(∂vX

∂v̂Y
−∂∇vX

v̂Y
)(A(ut,s))

]
To compute the second covariant derivative of the deformation measure it
is compelling to choose a connection on the space manifold. Such a choice
determines whether symmetry of the geometric tangent stiffness is ensured
or not. Indeed a torsionless connection implies the symmetry of the second
covariant derivative of the deformation measure and hence the symmetry of
the geometric tangent stiffness. On the other hand if the connection is not
symmetric, the second covariant derivative can fail to be symmetric.

To provide a symmetric expression of the hessian of the deformation mea-
sure, let us assume that the manifold S = E3 × S2 be endowed with the
riemannian metric g ∈ BL (TS, TS ;R) induced by the usual metric in E3 .
The Levi-Civita connection ∇ on {S ,g} is uniquely defined by the require-
ments to be metric and torsionless:

i) ∂c (g (a,b)) = g (∇ca,b) + g (a,∇cb) ,

ii) T (a,b) := ∇ab−∇ba− [a,b] = o ,

where a ,b , c ∈ C1(S ; TS) are spatial vector fields.
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The covariant derivative on S2 corresponding to this natural choice of
the connection, can be easily computed as the projection of the directional
derivative in E3 on the tangent space to S2 . Alternatively recourse can be
made to the general formula due to Koszul [9]:

2g (∇a b, c) = da (g (b, c)) + db (g (c,a))− dc (g (a,b)) + g ([a,b], c)+

−g ([b, c],a) + g ([c,a],b) .

This more involved procedure, which requires the computation of the Lie
brackets appearing in the last three terms, was adopted in [8].

The evaluation of both terms at the r.h.s. in the expression of the sec-
ond covariant derivative ∇2

vX vY
(A(ut,s)) requires to perform an extension

v̂Y := {t̂Y , Ŷ} of the virtual displacement vY := {tY ,Y} along virtual
trajectories in the physical space. However, as we will show, the second co-
variant derivative does not depend on how the extension is performed. Note
that the extension of the vector tY is trivial and consists in assuming it to
be constant in the affine euclidean space E3 . On the other hand different
extensions of the virtual displacement Y tangent to S2 at dt will change
the second directional derivative whilst the second covariant derivative of the
deformation measure will be unchanged.

2.2 Extensions of the virtual displacements

We consider hereafter two extensions of the virtual displacement. The covari-
ant derivative of the virtual displacement and the second directional derivative
of the strain measure do assume different expresions in corrispondence of the
two extensions. Anyway, as is to be expected on the ground of the general
results, the same expression is obtained for the geometric tangent stiffness
which is symmetric since the relevant connection is torsionless being induced
by a riemannian metric.

First extension

Let us preliminarily recall that for any ps ∈ Bs it is {pt,dt } = ut,s(ps) ∈ Pt .
The tangent vectors X(ut,s),Y(ut,s) ∈ TS2(dt) can be expressed as

X(ut,s) = WX P2 ut,s = WX dt = ωX × dt ,

Y(u
t,s

) = WY P
2
u

t,s
= WY d

t
= ωY × d

t
.

where WX and WY are emisymmetric tensors in V 3 characterized by axial
vectors ωX and ωY which are assumed to be orthogonal to dt .

Let us now consider a virtual trajectory uτ,t ∈ Ck(Bt, Pτ ) starting at Pt

and having velocity vX(ut,s) ∈ Hk(Bs ; TS) at time t . We may choose the fol-
lowing extension for the virtual displacement vY(ut,s) = {tY(ut,s) ,Y(ut,s)} :
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Ŷ(uτ,s) := WY dτ = ωY × dτ ,

where uτ,s = uτ,t ◦ ut,s . Since the vector field t̂Y(uτ,s) has been taken
constant in V 3 along the virtual trajectory, the evaluation of the covariant
derivative of v̂Y = {t̂Y , Ŷ} at {xt ,dt} along vX = {tX ,X} amounts in
computing the covariant derivative of Ŷ(uτ,s) at ut,s along X(ut,s) . To this
end we observe that

∂X dt =
∂

∂τ

∣∣∣∣
τ=t

P2 ◦ uτ,s = P2 ◦ vX = X .

The directional derivative is then given by

(∂XŶ)(ut,s) = WYWXdt = ωY × (ωX × dt) =

= g(ωY ,dt) ωX − g(ωY ,ωX)dt =

= −g(ωY ,ωX)dt = −g(X ,Y)dt ,

since g(ωY ,dt) = 0 by assumption.
Denoting by Π the orthogonal projector in E3 on the tangent space

TS2(dt) at the point dt , the formula of the covariant derivative yields

(∇XŶ)(ut,s) = Π (∂XŶ)(ut,s) = −g(ωY ,ωX) Π dt = o , ∀X ∈ TS2(dt) ,

since Π dt = o .
As a consequence (∇v̂Y)(ut,s) = o and the second covariant derivative of the
deformation measure at ut,s coincides with the second directional derivative,
that is

∇2
vX vY

(A(ut,s))(dt) = ∂vX
∂v̂Y

(A(ut,s))(dt) .

Let us then compute the second directional derivative of the components of
the strain measure. To this end we preliminarly observe that

∂tX
χt,s = tX , χt,s∗a = ∂a χt,s ,

∂tX
∂a χt,s = ∂a ∂tX

χt,s = ∂a tX .

The second directional derivative of the membrane strain yields for a ,b ∈ TBs
the expression

∂vX
∂vY

[
ε(χt,s)(a,b)

]
= ∂vX

∂vY

[
g(χt,s∗a, χt,s∗b)− g(a, b)

]
= ∂vX

[
g(∂atY ,χ

t,s∗b) + g(χ
t,s∗a , ∂btY)

]
= g(∂atY , ∂btX) + g(∂atX , ∂btY) ,

which is apparently symmetric in X,Y .
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The second directional derivatives of the shear sliding yields for a ∈ TBs
the expression

∂vX
∂vY

[
δ(ut,s)(a)

]
= ∂vX

∂vY

[
g(dt, χt,s∗a)− g(ds, a)

]
= g(∂XŶ ,χt,s∗a) +g(Y , ∂atX) + g(X , ∂atY)

= −g(X ,Y)g(dt ,χt,s∗a) +g(Y , ∂atX) + g(X , ∂atY) .

The second directional derivative of the flexural curvature is given by

∂vX
∂vY

[
C(ut,s)(a,b)

]
= ∂vX

∂vY

[
g(∂χt,s∗a

dt, χt,s∗b)− g(∂ads, b)
]

= ∂vX

[
g(∂χt,s∗a

Y ,χt,s∗b) + g(∂χt,s∗a
dt , ∂btY) + g(∂∂atY

dt ,χt,s∗b)
]

= g(∂χt,s∗a
(∂XŶ) ,χt,s∗b) + g(∂χt,s∗a

Y , ∂btX) + g(∂χt,s∗a
X , ∂btY)

+g(∂∂atX
Y ,χt,s∗b) + g(∂∂atX

dt , ∂btY)

+g(∂∂atY
X ,χt,s∗b) + g(∂∂atY

dt , ∂btX) .

= −g(∂χt,s∗a
(g(X ,Y)dt) ,χt,s∗b) + g(∂χt,s∗a

Y, ∂btX) + g(∂χt,s∗a
X, ∂btY)

+g(∂∂atX
Y ,χt,s∗b) + g(∂∂atX

dt , ∂btY)

+g(∂∂atY
X ,χt,s∗b) + g(∂∂atY

dt , ∂btX) .

From the expressions above it is apparent that the second directional deriva-
tives of the shear sliding and of the flexural curvature are symmetric with
respect to an exchange of X and Y as was to be expected. Indeed the sec-
ond directional derivative coincides with the second covariant derivative for
the adopted extension of the virtual displacements.

The same results are obtained by considering another, perhaps simpler,
extension for the virtual displacement Y = Y(ut,s) , defined as follows

Ŷ(uτ,s) := (I− dτ ⊗ dτ )Y , dτ = P2uτ,s ,

so that
Ŷ(ut,s) = (I− dt ⊗ dt)Y = Y .

The directional derivative of Ŷ along X at ut,s is given by

(∂XŶ)(ut,s) = −(X⊗ dt + dt ⊗X)Y = −g(X ,Y)dt

and the covariant derivative by

(∇XŶ)(ut,s) = Π (∂XŶ)(ut,s) = −g(X ,Y) Π dt = o .
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Second extension

Let us now choose a different extension of the virtual displacement vY(ut,s)
by setting t̂Y(uτ,s) := tY(ut,s) ,

Ŷ(uτ,s) :=
[
1− g(dτ ,Y)

]
(ωY × dτ ) , dτ = P2uτ,s

so that, since g(dt ,Y) = 0 and ωY × dt = Y it is

Ŷ(ut,s) =
[
1− g(dt ,Y)

]
(ωY × dt) = Y .

The directional derivative of Ŷ along X at dt is given by

(∂XŶ)(ut,s) = −g(X ,Y) (ωY × dt) +
[
1− g(dt ,Y)

]
(ωY ×X)

= −g(X ,Y) (ωY × dt) + ωY × (ωX × dt)

= −g(X ,Y)Y − g(ωY ,ωX)dt = −g(X ,Y) (Y + dt) ,

and the covariant derivative by

(∇XŶ)(ut,s) = Π (∂XŶ)(ut,s) = −g(X ,Y)Y .

The second directional derivative of the shear sliding is now given by

−g(X ,Y)g(Y + dt ,χt,s∗a) + g(Y , ∂atX) + g(X , ∂atY) ,

and that of the flexural curvature by

−g(∂χt,s∗a
(g(X ,Y)(Y + dt)) ,χt,s∗b) + g(∂χt,s∗a

Y , ∂btX)

+g(∂χt,s∗a
X , ∂btY) + g(∂∂atX

Y ,χt,s∗b) + g(∂∂atX
dt , ∂btY)

+g(∂∂atY
X ,χt,s∗b) + g(∂∂atY

dt , ∂btX) .

Both these expressions are nonsymmetric due to the lack of symmetry of the
first terms.

Symmetry is however recovered by taking into account the additional term
appearing in the expression of the second covariant derivative of the deforma-
tion measure which does not vanish since (∇XŶ)(ut,s) = −g(X ,Y)Y .

In fact for the shear sliding we have

∂∇vX
v̂Y

[
δ(ut,s)(a)

]
= −g(X ,Y)g(Y ,χt,s∗a) ,

and for the flexural curvature

∂∇vX
v̂Y

[
C(ut,s)(a,b)

]
= −g(∂χt,s∗a

(g(X ,Y)Y) ,χt,s∗b) .

By subtracting the last two terms to the second directional derivatives we
get the symmetric expressions of the second covariant derivatives of the shear
sliding and of the flexural curvature, coincident with the ones found with the
first extension.
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