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Well-Posedness of Mixed Formulations in Elasticity

Mixed formulations in elasticity are analysed and existence and uniqueness of the solution are discussed in the context of
Hilbert space theory. New results, referred to in the analysis of elasticity problems, are proved. They are concerned with
the closedness of the product of two linear operators and a projection property equivalent to the closedness of the sum of
two closed subspaces. A set of two necessary and sufficient conditions for the well-posedness of an elastic problem with a
singular elastic compliance provides the most general result of this kind in linear elasticity. Sufficient criteria for the
well-posedness of elastic problems in structural mechanics including the presence of supporting elastic beds are contributed
and applications are exemplified.
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1. Introduction

Mixed formulations in elasticity, in which both the stress and the kinematic fields are taken as basic unknowns of the
problem, are motivated either by singularities of the constitutive operators or by computational requirements.

The pioneering contributions by I. Babu�ska [1] and F. Brezzi [2] have provided mixed formulations leading to
saddle-point problems with a sound mathematical foundation. A comprehensive presentation of the state of art can be
found in chapter II of [3] where existence and uniqueness results and a priori error estimates are contributed.

The present paper is devoted to the abstract analysis of elasticity problems in which the elastic compliance is
allowed to be singular so that the elastic strains are subject to a linear constraint. Problems involving such constraints
have been recently analysed in [4, 5] and critically reviewed in [6].

Our aim is to provide criteria for the assessment of the well-posedness property for these problems. Well-posed-
ness corresponds to the engineering expectation that a (possibly non-unique) solution of a problem must exist under
suitable variational conditions of admissibility on the data.

An elastic model capable to encompass all the usual engineering applications must then include a possibly singu-
lar elastic compliance and external elastic constraints characterized by a non-coercive stiffness operator.

The treatment of such general kind of models is out of the range of applicability of the results that can be found
in treatises on the foundation of elasticity [see e.g. 7, 8]. New necessary and sufficient conditions for the existence of a
solution and applicable criteria for their fulfilment are thus needed.

Banach's fundamental results in Functional Analysis and classical properties of Hilbert spaces are the essential
background for the investigation [9, 10]. A review of the essential notions and propositions can be found in [11] and
[12].

To provide a self-consistent presentation we devote an appendix to a brief exposition of classical results referred
to in the subsequent analysis. We further give simpler proofs in Hilbert spaces of some basic results of Functional
Analysis usually dealt with in the more troublesome context of Banach spaces.

The proof of some original results is also contributed in a preliminary section. They are concerned with a variant
of an inequality which characterizes the closedness of the sum of two closed subspaces and with a criterion for the
closedness of the image of the product of two operators.

An abstract treatment of linear problems governed by symmetric bilinear forms yields a reference framework for
the subsequent analysis. The characteristic properties of structural models are then illustrated and the problems of
equilibrium and of kinematic compatibility are discussed.

The mixed formulation of an elastic structural problem with a singular behaviour of the constitutive operator
and of the external elastic constraints is then discussed.

The analysis is based on the split of the stress field into its elastically effective and ineffective parts. By expres-
sing the effective part in terms of the strain field an equivalent problem in terms of the kinematic field and of the
ineffective stress field is obtained. The discussion of this problem is illuminating and reveals which condition must be
fulfilled for its equivalence to a reduced problem whose sole unknown is the kinematic field. This is a classical sym-
metric one-field problem in which trial and test fields belong to the same space. The necessary and sufficient conditions
for well-posedness of the reduced problem are discussed in detail and applicable criteria for their fulfilment are contrib-
uted.

The well-posedness of the more challenging situation in which the external elastic energy is not semielliptic is
then discussed. This extension is motivated by the analysis of elastic structures resting on elastic beds. The treatment
starts with the observation that, in the applications, the external elastic energy can be assumed to be semielliptic with
respect to rigid kinematisms and is based on an original result named the elastic bed inequality.
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It is shown that the condition ensuring the equivalence of the mixed problem to a reduced one and the well-
posedness criteria of the reduced problem are always met for simple structural models, defined to be those in which the
subspaces of rigid displacements and of self-stresses are finite dimensional. This result provides a theoretical basis to
engineers' confidence to get a solution of structural assemblies composed by one dimensional elements such as bars and
beams with possibly singular elastic compliances and resting on elastic beds.

The discussion of two- or three-dimensional structural models with singular elastic compliance is by far more difficult
and the answer to well-posedness is generally negative due to the infinite dimensionality of the subspace of self-stresses. The
condition which fails to be met is the one ensuring the equivalence between the mixed problem and the corresponding
reduced one. Actually, a singularity of the elastic compliance imposes a constraint on the strain fields. The compatibil-
ity requirement induces a corresponding constraint on the kinematic fields and hence reactive forces are originated.

The equivalence above requires the existence of elastically ineffective stresses in equilibrium with the reactive
forces. The trouble arises from the fact that only very special singularities of the elastic compliance ensure the exist-
ence of such stress fields. This difficulty explains why the discussion of mixed problems is by far more challenging than
the discussion of one-field problems.

2. Preliminary results

To provide a comprehensive presentation of the subject we report in the Appendix some basic definitions and results of
Functional Analysis which all subsequent developments will make reference to.

Further we present here some new results which have been discovered in the development of the investigation on
mixed problems.

First we quote a variant of proposition A.5 providing an inequality which plays a basic role in the analysis
carried out in section 7. The result is due to the first author.

Proposition 2.1. A projection property: Let x be a Hilbert space and a � x and b � x closed subspaces
such that their sum a�b is closed. Let us further denote by Pa and Pb the orthogonal projectors on a and b in x.
Then there exists a constant k > 0 such that

kxkx=a\b � kxkx=a � kkPaxkx=b 8x 2 x ;
kxkx=a\b � kxkx=b � kkPbxkx=a 8x 2 x :

P r o o f : The proof of proposition A.5 shows that

kxkx=a\b � kxÿ akx � cka� bkx 8a 2a ; b 2 b :
Setting a � Pax and taking the infimum with respect to b 2 b we get the first inequality. Setting b � Pbx and
taking the infimum with respect to a 2a we get the second one.

A simple geometrical sketch of the previous result is given in Fig. 2.1.

Remark 2.1: For any pair fx; yg 2 x�x we have

�kxk2 � kyk2�1=2 � kxk � kyk �
���
2
p
�kxk2 � kyk2�1=2 ;

and hence the inequalities in propositions A.5 and 2.1 can be rewritten as

kxk2
x=a\b � �c�kxk2

x=a � kxk2
x=b� 8x 2 x ;

kxk2
x=a\b � �k�kxk2

x=a � kPaxk2
x=b� 8x 2 x ;

kxk2
x=a\b � �k�kxk2

x=b � kPbxk2
x=a� 8x 2 x ;

with obvious definitions of the constants. These inequalities are the ones directly invoked in our analysis.

&
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Fig. 2.1. Geometrical interpretation of the
projection property



We derive hereafter a useful criterion for the closedness of the image of a product operator.
To this end we premise the following lemma.

Proposition 2.2. An equivalence between closedness properties: Let x be a Hilbert space and a; b
subspaces of x with b closed. Then a�b is closed in x if and only if the subspace �a�b�=b is closed in the factor
space x=b.

P r o o f : Let a�b be closed in x. Then a�b is a Hilbert space for the topology of x and hence the sub-
space �a�b�=b is closed for the topology of x=b.

Now let �a�b�=b be closed in x=b. A Cauchy sequence fan � bng with an 2a and bn 2 b will converge to
an element x 2 x and we have to show that x 2a�b. First we observe that

kan � bn ÿ xkx � inf
b2b
kan ÿ x� bkx � kan ÿ xkx=b :

Hence by the closedness of �a�b�=b the sequence fan �bg � �a�b�=b will converge to the element
x�b 2 �a�b�=b. It follows that x 2a�b which was to be proved.

We can now state the result concerning the range of a product operator.

Proposition 2.3. Product operators: Let x; y; z be Hilbert spaces and F 2 Linfx; yg and G 2 Linfy; zg
be continuous linear operators and F0 2 Linfy0; x0g and G0 2 Linfz0; y0g their duals. Let Im F be closed in y. Then
the following equivalence holds:

Im GF closed in z () Im G0 �Ker F0 closed in y0 ;

that is, the image Im GF of the product operator GF 2 Lin fx; zg is closed in z if and only if the subspace
Im G0 �Ker F0 is closed in y0.

P r o o f : Let us consider the operator Go 2 LinfIm F; zg and its dual G0o 2 Linfz0; y0=Ker F0g which are de-
fined by

Goy ::�Gy 8y 2 Im F ; G0oz
0 ::�G0z0 �Ker F0 8z0 2 z :

Proposition A.3 shows that Im Go � Im GF is closed if and only if Im G0o � �Im G0 �Ker F0�=Ker F0 is closed in
y0=Ker F0. By Proposition 2.2 this property is equivalent to the closedness of Im G0 �Ker F0 in y0.

3. Symmetric linear problems

In view of its application to the theory of linear elastic problems we discuss here an abstract symmetric linear problem
in a Hilbert space.

Let a be a continuous symmetric bilinear form on the product space x�x and A 2 Linfx; x0g the associated
symmetric continuous operator, so that

a�x; y� � a�y; x� � hAx; yi 8x; y 2 x :
Given a closed subspace l of x and a functional ` 2 x0, we consider the linear problem

P� a�x; y� � l�y� x 2l 8y 2l :

The duality between x and x0 induces a duality between l � x and the quotient space x0=l? by setting for any
�x 2 x0=l?

h�x; yi ::�hx; yi 8y 2l 8x 2 �x :

It is then convenient to provide an alternative formulation of the problem in terms of a reduced operator
Ao 2 Linfl; x0=l?g and of a reduced functional lo 2 x0=l? defined by

Aox ::�Ax�l? 8x 2l; lo ::� l�l? :
We have

a�x; y� � hAx; yi � hAox; yi 8x; y 2l
and problem P can now be rewritten as

P� Aox � lo x 2l :

Definition 3.1. Well-posedness: The symmetric problem P is said to be well-posed if it admits a solution for
any data lo 2 �Ker Ao�?.

Banach's closed range theorem, Proposition A.3, shows that the well-posedness of problem P is equivalent to the
closedness of Im Ao in x0=l?. The basic properties of well-posed symmetric linear problems are reported hereafter.

&

&
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Proposition 3.2. Existence and uniqueness properties: The solution set of a well-posed symmetric problem P

enjoys the following characteristic alternative:
i) If Ker Ao 6� fog the solution set is a non-empty linear variety parallel to Ker Ao for any admissible data

`o 2 �Ker Ao�?.
ii) If Ker Ao � fog the solution is unique for every data lo 2 x0=l?.

We notice that the range and the kernel of the reduced operator are given by

Im Ao � �Al�l?�=l? ;
Ker Ao � �Aÿ1l?� \l � �Al�? \l :

The closedness of Im Ao can be expressed by stating that the bilinear form a is closed on l�l and is equiva-
lently expressed by the conditions

i� kAoxkx0=l? � cakxkx=Ker Ao
8x 2l ;

ii� sup
y2l

a�x; y�
kykx=Ker Ao

� cakxkx=Ker Ao
8x 2l ;

iii� inf
x2l

sup
y2l

a�x; y�
kxkx=Ker Ao

kykx=Ker Ao

� ca > 0 ;

iv� Al�l? is closed in x0 :

Property iv) is a direct consequence of proposition 2.2.
It is important to provide an expression of the kernel of the reduced operator in terms of the kernel of the

symmetric bilinear form a defined by

Ker a � Ker A ::�fx 2 x j a�x; y� � 0 8y 2 xg :
Although in general we have only that

Ker Ao � �Al�? \l � Ker a \l ;

the next result provides a sufficient condition to get an equality in the expression above.

Proposition 3.3. A formula for the kernel: Let the symmetric bilinear form a be positive on the whole space x:

a�x; x� � 0 8x 2 x :
Then we have

Ker Ao � �Al�? \l � Ker a \l :

P r o o f : We first observe that

x 2 �Al�? \l () a�x; y� � hAx; yi � hAy; xi � 0 x 2l 8y 2l
) a�x; x� � 0 x 2l :

By the positivity of a the zero value is an absolute minimum of a in x so that any directional derivative will vanish at
a minimum point. Hence we have

a�x; x� � 0 x 2l) a�x; y� � 0 x 2l 8y 2 x () x 2 Ker a \l
and the proposition is proved.

The next result provides a criterion for the closedness of a on l�l.

Proposition 3.4. A sufficient closedness condition: The inequality

a�x; x� � cakxk2
x=Ker Ao

ca > 0 8x 2l
implies the closedness of a on l�l.

P r o o f : It suffices to observe that the inequality

inf
x2l

sup
y2l

a�x; y�
kxkx=Ker Ao

kykx=Ker Ao

� inf
x2l

a�x; y�
kxk2

x=Ker Ao

� ca > 0

provides the result.

By propositions 3.3 and 3.4 we get the result which will be directly referred to in the discussion of elastic prob-
lems.

&

&
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Proposition 3.5. Semi-ellipticity: Let the symmetric bilinear form a be positive on the whole space x. Then
the property of semi-ellipticity of a on l

a�x; x� � cakxk2
x=�Ker a\l� 8x 2l

is sufficient to ensure the closedness of a on l�l.

4. Linear structural problems

The formal framework for the analysis of linear structural models is provided by two pairs of dual Hilbert spaces:

� the kinematic space v and the force space f,
� the strain space d and the stress space s,

and a pair of dual operators:

� the kinematic operator B 2 Linfv; dg,
� the equilibrium operator B0 2 Linfs; fg.

Remark 4.1: In applications stresses and strains are defined to be square integrable fields. Accordingly we shall
identify the stress space s and the strain space d with a pivot Hilbert space. The inner product in d � s will be
denoted by ���; ��� and the duality pairing between v and f by h�; �i.

The kinematic and the equilibrium operators are the dual counterparts of a fundamental bilinear form b which
describes the geometry of the model:

b�v; s� ::���s; Bv�� � hB0s; vi 8s 2s; v 2v :

As we shall see, the well-posedness of the structural model requires the closedness of the fundamental form b on
s�v which is expressed by the inf-sup condition [13]

inf
s 2s

sup
v2v

b�v; s�
ksks=Ker B0 kvkv=Ker B

� inf
v2v

sup
s 2s

b�v; s�
ksks=Ker B0 kvkv=Ker B

> 0 :

This means that the kinematic and the equilibrium operator have closed ranges and can be expressed by stating any
one of the equivalent inequalities

kBvkd � cbkvkv=Ker B 8v 2v () kB0skf � cbksks=KerB0 8s 2s ;

where cb is a positive constant.

4.1 Linear constraints

Rigid bilateral constraints acting on the structure are modeled by considering a closed subspace l �v of conforming
kinematisms.

The duality between v and f induces a duality pairing between the closed subspace l and the quotient space
f=l? by setting

h�f ; vi ::�hf ; vi 8v 2l 8f 2 �f 2f=l? :
It is convenient to introduce the following pair of reduced dual operators:

� the reduced kinematic operator Bl 2 Linfl; dg, defined as the restriction of B to l,
� the reduced equilibrium operator B0l 2 Linfs; f=l?g, defined by the position B0ls :� B0s �l?.

The kernels and the images of the reduced operators are given by

Ker Bl � Ker B \l; Ker B0l � �B0�ÿ1l? � �Bl�?; Im Bl � Bl; Im B0l � �Im B0 �l?�=l? ;
and we denote by

� lR :� Ker B \l the subspace of conforming rigid kinematisms and by
� sself :� �Bl�? the subspace of self-equilibrated stresses (self-stresses).

A variational theory of structural models with linear external constraints requires that the fundamental form b
is closed on s�l. As shown below this property is in fact necessary and sufficient to express in variational form the
problems of equilibrium and of kinematic compatibility.

We recall that by Banach's closed range theorem, Proposition A.3, the closedness of b on s�l can be stated
in the equivalent forms
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� orthogonality conditions:

Im Bl � �Ker B0l�? ; Im B0l � �Ker Bl�? ;
� inequality conditions:

kBukd � cbkukv=�Ker B\l� 8u 2l cb > 0 ;

kB0lskf=l? � cbksks=�Bl�? 8s 2s cb > 0 ;

� inf-sup conditions:

inf
s 2s

sup
v2l

b�v; s�
ksks=Ker B0l

kvkv=Ker B

� inf
v2l

sup
s 2s

b�v; s�
ksks=Ker B0l

kvkv=Ker B

> 0 :

The closedness of b on s�l can be also expressed by requiring the closedness of the sum of two subspaces, as
shown hereafter.

Proposition 4.1. Equivalent closedness properties: Let l be a closed subspace of v. Then we have

Bl closed in d () Im B0 �l? closed in f :

If in addition Im B is closed in d the closedness properties above are equivalent to the closedness of Ker B�l in v.

P r o o f : The first result follows directly from the expressions of Im Bl and Im B0l by recalling propositions A.3
and 2.2. The last statement is a simple consequence of proposition A.8.

We can then state the main results.

Proposition 4.2. Equilibrium: Let l 2f be an external force and lo � l�l? 2f=l? the corresponding
load on a constrained structural model. The property that Bl is closed in d is necessary and sufficient to ensure that
the equilibrium problem

B0ls � lo s 2s () B0s � l� r s 2s; r 2l?

admits a solution for every load satisfying the consistency condition

lo 2 �Ker Bl�? () l 2 �Ker B \l�?

or in variational form hl; vi � 0 8v 2lR � Ker B \l . The degeneracy condition sself � fog is necessary and suffi-
cient for the solution to be unique.

Proposition 4.3. Compatibility: A kinematic pair fe; wg with e 2 d and w 2v is said to be compatible with
the constraints if there exists a conforming kinematic field v 2l such that

Bv � e ÿBw :

The property that Bl is closed in d is necessary and sufficient to ensure that the compatibility problem admits solu-
tion for every kinematic pair satisfying the consistency condition

e ÿBw 2 �Ker B0l�? � �sself�?

or in variational form

��s; e�� � ��s; Bw�� 8s 2sself :

The degeneracy of the subspace lR of rigid conforming kinematisms is necessary and sufficient in order that the
solution be unique.

4.2 Elastic structures

A linearly elastic structure is characterized by a symmetric elastic operator E 2 Linfd; sg which is d-elliptic:

��Ee; e�� � cekek2
d ce > 0 8e 2 d :

The elastic strain energy in terms of kinematisms is provided by one-half the quadratic form associated with the
positive symmetric bilinear form

a�u; v� ::���EBu; Bv�� 8u; v 2v
which is called the bilinear form of elastic strain energy.

The elastostatic problem for a constrained structural model consists in evaluating a conforming kinematism
u 2l such that the corresponding stress field s � EBu is in equilibrium with the prescribed load lo � l�l?
2f=l?.

&
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In terms of elastic strain energy the problem is written as

a�u; v� � l�v� u 2l 8v 2l
and is well-posed if and only if a is closed on l�l.

The elastic stiffness of the structure A � B0EB 2 Linfv; fg is the symmetric bounded linear operator asso-
ciated with a according to the formula

hAu; vi � a�u; v� 8v 2v :

A direct verification of the closure property of a on l�l is often not possible in applications and hence it is
natural to look for simpler sufficient conditions.

A key result is provided by the following

Proposition 4.4. Closedness of the elastic operator: The closedness of Bl and the d-ellipticity of the
elastic operator E are sufficient to ensure the closedness of the bilinear form a on l�l.

P r o o f : From the inequalities

hEe; ei � cekek2
d 8e 2 d ;

kBukd � cbkukv=�Ker B\l� 8u 2l
it follows that

a�u; u� � cakuk2
v=�Ker B\l� 8u 2l ;

where ca � ce c2
b. The strict positivity of E ensures that Ker a � Ker B so that the inequality above can be written as

a�u; u� � cakuk2
v=�Ker a\l� 8u 2l ;

which by proposition 3.5 implies the closedness of a on l�l.

In applications the d-ellipticity of the elastic operator E is easily checked so that the real task is to verify the
closedness of Bl.

Proposition 4.5. A closedness criterion: Let Im B be closed in d. Then the subspace Bl is closed in d if
the subspace Ker B can be written as the sum of a finite dimensional subspace and of a subspace included in l:

Ker B � N �lo dimN < �1 lo �l :

P r o o f : By proposition 4.1 we have to verify the closedness of the subspace Ker B�l in v. The assumption
ensures that Ker B�l � N�l with dim N < �1 and hence setting a �l and b � N in proposition A.7 we get
the result.

Remark 4.2: In most engineering applications the kernel of the kinematic operator B is finite dimensional so
that the condition in proposition 4.5 is trivially fulfilled. A relevant exception is provided by the models of cable or
membrane structures in which the subspace Ker B of rigid kinematic fields is not finite dimensional. The condition in
proposition 4.5 is however still met [13].

5. Mixed formulations

A more challenging problem concerns the elastic equilibrium of a structural model with a partially rigid constitutive
behaviour and subject to external elastic constraints.

Rigid bilateral constraints, which have already been analysed, will not be explicitly considered to simplify the
presentation. They can however be taken into account by substituting the kinematic operator B 2 Linfv; dg with the
reduced operator Bl 2 Linfl; dg.

The analytical properties of the general model of elastic structure under investigation are described hereafter.

� The internal elastic compliance of the structure is expressed by a continuous symmetric bilinear form c�s; t� which
is positive and closed on s�s, i.e.

i� kcksksksktks � jc�s; t�j 8s; t 2 s ;

ii� c�s; t� � c�t; s� 8s; t 2s ;

iii� c�s; s� � 0 8s 2s ;

iv� inf
t 2s

sup
s 2s

c�s; t�
ksks=Ker C ktks=Ker C

> 0 :

&

&
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The elastic compliance operator C 2 Linfs; dg is defined by

��Cs; t�� ::�c�s; t� 8s; t 2s ;

and Im C is closed in d by virtue of iv). The elements of the kernel of C are the elastically ineffective stress fields.

� The external elastic stiffness of the structure is expressed by a continuous symmetric bilinear form k�u; v� which is
positive on v�v, i.e.

i� kkkvkujvkvkv � jk�u; v�j 8u; v 2v ;

ii� k�u; v� � k�v; u� 8u; v 2v ;

iii� k�u; u� � 0 8u 2v :

The external elastic stiffness operator K 2 Linfv;fg is defined by

hKu; vi ::�k�u; v� 8u; v 2v :

The elements of the kernel of K are kinematic fields which do not involve reactions of the external elastic con-
straints.

We emphasize that the form k is not assumed to be closed on v�v. As we shall see this is important in
applications and makes the static and the kinematic equations of the mixed formulation play different roles.

The mixed elastostatic problem is formulated in operator form as

M� Ku�B0s � f
BuÿCs � d

or S
u
s

���� ���� � K B0

B ÿC

� �
u
s

���� ���� � f
d

���� ���� ;�
where S 2 Linfv�s; f�dg is called the structural operator.

Equation M1 expresses the equilibrium condition in which

� f 2f is the assigned load,
� ÿKu 2f is the reaction of the external elastic constraints,
� B0s 2f is the total external force.

Equation M2 expresses the kinematic compatibility condition in which

� d 2 d is an imposed distorsion,
� Cs 2 d is the elastic strain,
� Bu 2 d is the total strain field.

Imposed distorsions are often considered in engineering applications e.g. to simulate the effect of temperature
fields in the structures.

The variational form of the mixed elastostatic problem is given by

M� k�u; v� � b�v; s� � hf ; vi u 2v 8v 2v ;
b�u; t� ÿ c�s; t� � hd; ti s 2s 8t 2 s :

�
Problems of this kind have been longly analysed in the literature (see e.g. the references in [14, 15, 16]) following

the pioneering works by I. Babu�ska [1] and F. Brezzi [2]. A comprehensive presentation of the state of the art can be
found in the book [3] by F. Brezzi and M. Fortin on Mixed and Hybrid F.E.M. formulations.

The approach proposed here is directly related to the original existence and uniqueness theorem by Brezzi [2].
His analysis was concerned with a mixed problem M in which the form c was taken to be zero and neither the symme-
try nor the positivity of the form k were assumed.

A more general case in which a positive and symmetric form c is included has been recently addressed in [3],
theorem II.1.2, by adopting a perturbation technique. A sufficient condition for the existence of a solution of the mixed
problem is provided in [3] under a special assumption concerning the bilinear form c of elastic compliance.

However many engineering models of elastic structures fall outside the range of the existing results.
The analysis which we develop here is intended to provide a well-posedness result capable to encompass the

usual engineering models in elasticity.
We preliminarily quote a result concerning the kernel of the structural operator S.

Proposition 5.1. Representation of the kernel: Let the forms c and k be symmetric and positive. The kernel
of the structural operator S is then given by

Ker S � Ker B \Ker K
Ker B0 \Ker C

���� ���� :
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P r o o f : A pair fu; sg belongs to Ker S if and only if

k�u; v� � b�v; s� � 0 8v 2v ;
b�u; t� ÿ c�s; t� � 0 8t 2 s () Ku�B0s � 0 ;

BuÿCs � 0

��
which imply that

k�u; u� � b�u; s� � 0 ;
b�u; s� ÿ c�s; s� � 0 :

�
Subtracting we get k�u; u� � c�s; s� � 0 and the positivity of k and c implies that k�u; u� � 0 and c�s; s� � 0. Hence,
being u and s absolute minimum points of k and c, their derivatives must vanish. By the symmetry of k and c these
conditions are expressed by Ku � o and Cs � o. Substituting in the expression of the kernel we infer that Bu � o
and B0s � o.

If a solution fu; sg 2v�s to problem M exists, the data ff ; dg 2f�d must necessarily meet the following
variational conditions of admissibility:

f 2 �Ker B \Ker K�? ; d 2 �Ker B0 \Ker C�?

which express the orthogonality of ff ; dg to the kernel of the structural operator.
The engineers' confidence in finding solutions to elasticity problems is based upon the implicit assumption of

well-posedness of the problem, a condition explicitly restated hereafter by recalling definition 3.1.

Definition 5.2. Well-posedness of the mixed problem: The mixed problem M is well-posed if the structural
operator S has a closed range. The variational conditions of admissibility on the data ff ; dg 2 �Ker S�? are then also
sufficient to ensure the existence of a solution, unique to within fields of the kernel Ker S of the structural operator.

Remark 5.1: The well-posedness of the mixed problem M requires the validity of the orthogonality relations

Im B0 � Im K � �Ker B \Ker K�? ; Im B� Im C � �Ker B0 \Ker C�? :
By remark A.2 the equalities above hold if and only if the sum of the two subspaces on the left hand sides is closed.

5.1 Solution strategy

Our aim is to provide a necessary and sufficient condition for the well-posedness of the mixed problem M.
Planning the attack, we first try to transform the mixed problem M into a problem involving only kinematic

fields.
To this end we must modify condition M2 of kinematic compatibility by inverting the elastic law to get an

expression of the stress field s 2s in terms of the strain associated with the kinematic field u 2v. Since the internal
elastic compliance operator C 2 Linfs; dg is singular, we have to pick up its non-singular part.

Due to the symmetry of C and the closedness of Im C, the subspace Ker C of elastically ineffective stresses and
the subspace Im C of elastic strains fulfil the orthogonality conditions

Ker C � �Im C�? and Im C � �Ker C�? :
Recalling Remark 4.1 the spaces d and s can be identified without loss in generality. We can then perform the

direct sum decomposition of the stress-strain space into complementary orthogonal subspaces:

d � s � Im C�Ker C :

The reduced compliance operator Co 2 LinfIm C; Im Cg, defined by

Cos � C s 8s 2 Im C �s ;

is positive definite and the operator C can be partitioned as follows:

C s � Co O
O O

� �
s*

so

���� ���� with s* 2 Im C
so 2 Ker C

:

�
We also define in s � d the symmetric orthogonal projector P � P0 onto the subspace Ker C of elastically

ineffective stresses so that

Im P � Ker C ; Ker P � Im C :

The kernel of the product operator PB 2 Linfv; Ker Cg is defined by

Ker PB � fu 2v j Bu 2 Im Cg
and its elements are the kinematic fields which generate elastic strain fields.

&
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Remark 5.2: According to Remark 5.1 the closedness of Im B� Im C � Im B�Ker P is a necessary condition
for the well-posedness of the mixed problem. Further, by proposition 2.3, this assumption is also equivalent to the
closedness of Im B0P0 in f and hence, by the closed range theorem, proposition A.3, to the closedness of Im PB.

Let us then assume that Im PB is closed in d so that for any d 2 �Ker B0 \Ker C �? we can perform the decom-
position

d � do � d* with do 2 Im B and d* 2 Im C :

Choosing uo 2v such that Buo � do the compatibility equation M2 can be rewritten as

Bu* � Cos*� d* :

Denoting by E the inverse of Co we can also write

s* � E�Bu*ÿ d*� :
Substituting into the equilibrium equation M1 we get the following problem in the unknown fields u* 2 Ker PB and
so 2 Ker C:

P� �K�B0EB�u*�B0so � f ÿKuo �B0Ed* :

Let us now define the bilinear form of the elastic energy:

a�u*; v� ::��ku*; v� � ��EBu*;Bv�� 8u* 2 Ker PB 8v 2v
and the effective load:

hl ;vi ::�hf ; vi ÿ k�uo; v� � ��Ed*; Bv�� 8v 2v :

The stiffness operator A � K�B0EB is defined by the identity

hAu*; vi � a�u*; v� 8u* 2 Ker PB 8v 2v :

The discussion above is summarized in the next statement.

Proposition 5.3. First equivalence property: The closedness of Im PB ensures that for any given
d 2 �Ker B0 \Ker C�? the mixed problem

M� k�u; v� � b�v; s� � hf ; vi u 2v 8v 2v ;
b�u; t� ÿ c�s; t� � hd; ti s 2s 8t 2s

�
in the unknown fields u 2v and s 2s is equivalent to the variational problem

P� a�u*; v� � ��so; Bv�� � h`; v� 8v 2v
in the unknown fields u* 2 Ker PB and so 2 Ker C provided that the pair fuo; d*g 2v� Im C is such that
d � Buo � d*.

The discussion of problem P is based on its equivalence to a classical one-field problem which is formulated by
restricting the test fields v 2v to range in the subspace Ker PB �v.

Proposition 5.4. Second equivalence property: The closedness of Im PB ensures that the variational prob-
lem

P� a�u*; v� � ��so;Bv�� � hl; vi 8v 2v
in the unknown fields u* 2 Ker PB and so 2 Ker C is equivalent to the reduced problem

P*� a�u*; v*� � h`; v*i 8v* 2 Ker PB

in the unknown field u* 2 Ker PB.

P r o o f : Clearly if fu*; sog 2 Ker PB�Ker C is a solution of problem P then u* will be solution of problem
P*. In fact we have that ��so; Bv*�� � 0 for all v* 2 Ker PB since so 2 Ker C and Bv* 2 Ker P � Im C � �Ker C �?.

Conversely if u* 2 Ker PB is solution of problem P* the reactive force r 2f defined by

hr; vi ::� a�u*; v� ÿ hl; vi 8v 2v
will belong to �Ker PB�?. The assumption Im PB closed ensures that Im B0P0 � �Ker PB�? and hence for any
r 2 �Ker PB�? we can find a so 2 Im P0 � Ker C such that B0so � r. Then hr; vi � ��so; Bv�� for all v 2v and the
pair fu*; sog is solution of problem P. The field so is unique to within elements of the subspace Ker B0 \Ker C of
elastically ineffective self-stresses. &
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Remark 5.3: It is worth noting that the expression of the effective load l depends upon d* and the field uo
which in turn is determined by do only to within an additional rigid field.

Further the additive decomposition of admissible distorsions d into the sum do � d* is unique only to within
elements of Im B \ Im C.

Anyway it can be easily shown that the solution u � uo � u* and s � so � s* of the mixed problem M remains
unaffected by this indeterminacy of l.

Let us now discuss the well-posedness of the reduced problem P*.

5.2 The reduced structural model

Problem P* is the variational formulation of the elastostatic problem for a structural model subject to the rigid bilat-
eral constraints defined by the subspace Ker PB �v of conforming kinematic fields. It is formally equivalent to the
symmetric linear problems discussed in section 3.

Preliminarily we remark that by proposition A.2 the continuity of the elastic stiffness E � Cÿ1
o is ensured by the

continuity of C and the closedness of Im C. The continuity of E 2 LinfKer P;Ker Pg implies the continuity of
A � K�B0EB so that A 2 LinfKer PB; fg.

The bilinear form a is then continuous on Ker PB�v and hence a fortiori on Ker PB�Ker PB.
We then consider the canonical surjection P 2 Linff;f=�Ker PB�?g and define

� the reduced elastic stiffness Ao ::�PA 2 LinfKer PB; f=�Ker PB�?g,
� the reduced effective load lo ::�Pl 2f=�Ker PB�?,

or explicitly

Aou* ::�Au*� �Ker PB�? 8u* 2 Ker PB and `o ::� `� �Ker PB�? :
The following result is a direct consequence of the discussion carried out in section 3:

Proposition 5.5. Well-posedness of the reduced problem: The symmetric linear problem

P*� Aou* � `o ; u* 2 Ker PB

is well-posed if and only if Im Ao is closed in f=�Ker PB�?. This closure property is equivalent to the closedness of the
symmetric form a on Ker PB�Ker PB and is expressed by the inf-sup condition

inf
u� 2Ker PB

sup
v� 2Ker PB

a�u*; v*�
ku* kv=Ker Ao

kv*kv=Ker Ao

> 0 :

The existence of a solution is thus guaranteed if and only if lo 2 �Ker Ao�? and the solution is unique to within elements
of Ker Ao.

The positivity of the elastic compliance C in s implies that the elastic stiffness E � Cÿ1
o is positive definite on

Im C. On this basis the next result provides an important formula for Ker Ao.

Proposition 5.6. Kernel of the reduced stiffness: Let the forms c and k be symmetric and positive. The
kernel of the reduced stiffness operator Ao is then given by

Ker Ao � Ker B \Ker K :

P r o o f : By definition the elements of Ker Ao are the kinematic fields u* 2 Ker PB which meet the variational
condition

k�u*; v*� � ��EBu*; Bv*�� � 0 8v* 2 Ker PB :

Setting v* � u* 2 Ker PB we get

k�u*; u*� � ��EBu*; Bu*�� � 0 :

Both terms, being non negative, must vanish. Hence by the positive definiteness of E on Im C we have that
u* 2 Ker B.

By the positivity of k inv and the condition k�u*; u*� � 0 we infer that the field u* 2 Ker PB is an absolute mini-
mum point of k in v. Taking the directional derivative along an arbitrary direction v 2v by the symmetry of k we get

k�u*; v� � 0 8v 2v () Ku* � o () u* 2 Ker K

and the result is proved.
By the representation formula of Ker Ao provided in the previous proposition the admissibility condition on the

data of problem P* can be written

lo 2 �Ker B \Ker K�? :

&
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Now for any pair fuo; d*g 2v� Im C we have

��Ed*; Bv�� ÿ k�uo; v� � 0 8v 2 Ker B \Ker K :

The admissibility condition on `o amounts then to the orthogonality requirement

f 2 �Ker B \Ker K�? :
On the other hand, when the pair fuo; d*g ranges in v� Im C, the corresponding distorsion d � Buo � d* will range
over the whole subspace Im B� Im C and this subspace, by the assumed closedness of Im PB, coincides with
�Ker B0 \Ker C�?.

In conclusion the admissibility condition

f 2 �Ker B \Ker K�? ; fuo; d*g 2v� Im C ;

for the data of problem P* coincides with the admissibility condition

f 2 �Ker B \Ker K�? ; d 2 �Ker B0 \Ker C�? ;
for the corresponding data of the mixed problem M.

The previous results are summarized in the following theorem.

Proposition 5.7. Well-posedness conditions for the mixed problem: Let the continuous bilinear form k
be positive and symmetric on v�v and the continuous bilinear form c be positive, symmetric, and closed on s�s.
The mixed elastostatic problem M is well-posed if and only if the following two conditions are fulfilled:
a1� The image of PB is closed in d, or equivalently, Im B� Im C is closed in d, i.e.

inf
u2v

sup
s 2s

��s; PBu��
ksks=�Ker B0P0� kukv=�Ker PB�

� inf
s 2s

sup
u2v

��s; PBu��
ksks=�Ker B0P0� kukv=�Ker PB�

> 0 ;

a2� the bilinear form of the elastic energy is closed on Ker PB�Ker PB, i.e.

inf
u� 2Ker PB

sup
v� 2Ker PB

k�u*; v*� � ��EBu*; Bv*��
ku*kv=�Ker B\Ker K� kv*kv=�Ker B\Ker K�

> 0 :

In other terms conditions a1� and a2� are equivalent to state that the structural operator S 2 Lin fv�s; f�dg has
a closed range so that the orthogonality condition Im S � �Ker S�? holds.

Applicable sufficient criteria for the fulfilment of the conditions a1� and a2� will be discussed in the next section.

6. Sufficient criteria

Proposition 5.7 provides a set of two necessary and sufficient conditions for the well-posedness of a general elastic
problem.

More precisely condition a1� states the equivalence of the mixed problem

M� k�u; v� � b�v; s� � hf ; vi u 2v 8v 2v ;
b�u; t� ÿ c�s; t� � hd; ti s 2s 8t 2 s

�
to the reduced problem P* and condition a2� provides the well-posedness of problem P*.

Let us now discuss these two conditions in detail.

6.1 Discussion of condition a1)

By remark 5.2 the condition a1� can be stated in the equivalent forms

� the subspace Im PB is closed in d,
� the subspace Im B0P0 is closed in f,
� the sum Ker P� Im B � Im C � Im B is closed in d.

Condition a1� is trivially fulfilled by the structural models belonging to one of the two extreme categories:

i) the elastic compliance is not singular, so that Ker C � fog and P � O,
ii) the elastic compliance is null, so that Ker C �s and P � I.

Case i) corresponds to classical elasticity problems in which every stress field is elastically effective.
Case ii) corresponds to the opposite situation in which every stress field is elastically ineffective. The statics of a

rigid structure resting on elastic supports is described by an elastic problem of this kind whose mixed formulation is

F� k�u; v� � b�v; s� � hf ; vi u 2v 8v 2v ;
b�u; t� � hd; ti s 2s 8t 2s :

�
This is exactly the saddle point problem first analysed by Brezzi in [2].

446 ZAMM � Z. Angew. Math. Mech. 79 (1999) 7



The existence and uniqueness proof contributed in [2] addressed the more general case in which the bilinear form k
in problem F was neither positive nor symmetric.

A discussion of the general mixed problem

G� k�u; v� � h�v; s� � hf ; vi u 2 u 8v 2v ;
b�u; t� ÿ c�s; t� � hd; ti s 2s 8t 2s

�
in which the bilinear forms k and c are neither positive nor symmetric, is carried out by Romano et al. in [17]. The
results contributed in [17] include as special cases the existence and uniqueness theorem by Brezzi and its extensions
due to Nicolaides [18] and Bernardi et al. [19] in which the bilinear form c was absent.

Remark 6.1: The analysis performed in the previous section addressed the general case of an elastic mixed
problem M with a possibly non-degenerate kernel of the structural operators S. Structural problems in which the
kernel of S in non-degenerate are usually dealt with in the engineering applications. An example is provided by elastic
problems in which rigid kinematic fields not involving reactions of the elastic supports are admitted by the constraints.

To deal with the presence of a non-degenerate kernel, the symmetry of the governing operator S and the positiv-
ity of the elastic operators K and C seem however to be unavoidable assumptions. They play in fact an essential role
in deriving the representation formulas for the kernels provided in propositions 5.1 and 5.6.

Remark 6.2: It is worth noting that, for two- or three-dimensional non rigid structural models with a singular
elastic compliance, condition a1� is difficult to be checked and is far from being verified as a rule.

A relevant exception is provided by the incompressibility constraint of Stokes problem ([20], [21]). We emphasize
that a singularity of the elastic compliance C is equivalent to the imposition of constraints on the strain fields. Strain
constraints in continua have been recently discussed by Antman and Marlow in [4, 5] and critically reviewed by
Romano et al. in [6].

6.2 Discussion of condition a2)

Under the assumption that the bilinear form k is Ker PB-semielliptic, and hence closed on Ker PB�Ker PB, the next
result yields a sufficient criterion for the fulfilment of condition a2�.

Proposition 6.1: Condition a2� is satisfied if the following properties hold:

i) k�u; u� � ckkuk2
v=Ker K ck > 0 8u 2 Ker PB ;

ii) ��EBu; Bu�� � ckuk2
v=Ker B c > 0 8u 2 Ker PB ;

iii) Ker B�Ker K closed .

P r o o f : By proposition A.5 finite angle and remark 2.1 property (iii) is equivalent to

kuk2
v=Ker K � kuk2

v=Ker B � akuk2
v=�Ker K\Ker B� 8u 2v

so that, summing up (i) and (ii) and suitably defining a positive constant ca we get

k�u; u� � ��EBu; Bu�� � cakuk2
v=�Ker K\Ker B� 8u 2 Ker PB

which implies the closedness condition a2�.
Remark 6.3:

� Condition (i) is fulfilled in structural problems with discrete external elastic constraints. In fact when only a finite
number of external elastic constraints are imposed, the subspace Im K is finite dimensional and the constant ck is
provided by the smallest positive eigenvalue of the symmetric positive matrix associated with the restriction of the
bilinear form k to v=Ker K�v=Ker K. An example is provided by an elastic plate resting on a finite number of
elastic supports, as shown in Fig. 6.1.

&
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� Condition (ii) follows from a standard ellipticity property of internal elasticity

��Cs; s�� � csksk2
s=Ker C 8s 2s ;

equivalent to

��Ee; e�� � cekek2
d 8e 2 Ker P � Im C ;

and from the closedness of the fundamental form b�u; s�
kBukd � cbkukv=Ker B 8u 2v :

The positive constant in (ii) is given by c � cec2
b.

� Condition (iii) is a consequence of the finite dimensionality of Ker B in most structural models. More generally it
follows from the closedness condition in proposition 4.5.

7. Elastic beds

Let us finally consider the general problem of the elastic equilibrium of a structural model in which

� the constitutive behaviour is partially rigid,
� the external elastic constraints include the presence of elastic beds so that Im K is not finite dimensional in f.

An example is provided by an elastic plate resting on an elastic bed, as in Fig. 7.1. Such a model is commonly
adopted in engineering applications to simulate a foundation interacting with a supporting soil.

The difficulty connected with this kind as problems lies in the fact that the bilinear form of the external elastic
energy is not semi-elliptic on v�v as required by condition i) of proposition 6.1.

To enlight the problem let us consider the model of an elastic beam resting on an elastic bed of springs
(Winkler soil model). The flexural elastic energy of the beam is provided by one-half the integral of the squared second
derivative of the transverse displacement. On the other hand, the elastic energy stored into the elastic springs is equal
to one-half the integral of the squared transverse displacement. The kinematic space v is defined to be the Sobolev
space h2 to ensure a finite value of the elastic energy. Considering a rapidly varying elastic curve of the beam, as
depicted in 7.2, we get an extremely high value of the elastic energy in the beam and a negligible energy in the elastic
bed.

The discussion above leads to the conclusion that the semi-ellipticity condition on the bilinear form k of elastic
constraints energy must be relaxed.

A by far less stringent requirement is the property that k is positive semi-definite on Ker PB�Ker PB and
semi-elliptic only on Ker B�Ker B, that is with respect to rigid kinematic fields, according to the inequalities

i) k�u; u� � 0 8u 2 Ker PB ;

ii) k�u; u� � ckkuk2
v=Ker K ck > 0 8u 2 Ker B :

We remark that rigid kinematic fields cannot undergo very sauvage oscillations. In the case of the simple beam
of 7.2 they are in fact affine functions. In general, when Ker B is finite dimensional, property ii) above is a consequence
of property i) since ck > 0 is the smallest positive eigenvalue of a non-null symmetric and positive matrix. We have
now to prove that these less stringent assumptions on k are sufficient to ensure the fulfilment of condition a2).

To this end we provide a preliminary result.
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Proposition 7.1. The elastic bed inequality: The assumptions

i) k�u; u� � 0 8u 2 Ker PB ;

ii) k�u; u� � ckkuk2
v=Ker K 8u 2 Ker B ;

iii) ��EBu; Bu�� � cec2
bkuk2

v=Ker B 8u 2 Ker PB

ensure the validity of the inequality

k�u; u� � ��EBu; Bu�� � cpkPuk2
v=Ker K cp > 0 8u 2 Ker PB

where P denotes the orthogonal projector on Ker B in v.

P r o o f : We proceed per absurdum by assuming that the inequality is false. Then, prescribing that
kPukv=Ker K � 1, the infimum of the first member would be zero. By taking a minimizing sequence fung we have

lim
n!1 k�un; un� � ��EBun; Bun�� � 0 :

By i) both terms of the sum are non-negative and then vanish at the limit. Hence from iii) we get

lim
n!1 ��EBun; Bun�� � 0) lim

n!1kun ÿPunkv � 0

and by the continuity of k and assumption ii)

lim
n!1 k�un; un� � 0) lim

n!1 k�Pun; Pun� � 0) lim
n!1kPunkv=Ker K � 0

contrary to the assumption that kPunkv=Ker K � 1.
An applicable criterion for the validity of condition a2� is now at hand.

Proposition 7.2: Condition a2� is satisfied if the following properties hold:

i) k�u; u� � 0 8u 2 Ker PB ;

ii) k�u; u� � ckkuk2
v=Ker K 8u 2 Ker B ;

iii) ��EBu; Bu�� � cec2
bkuk2

v=Ker B 8u 2 Ker PB ;

iv) Ker B�Ker K closed :

P r o o f : Proposition 2.1 and Remark 2.1 ensure that property iv) implies the existence of a constant a > 0 such
that

kPuk2
v=Ker K � kuk2

v=Ker B � akuk2
v=�Ker K\Ker B� 8u 2v :

Condition a2� then follows by adding inequality iii) and the one proved in proposition 7.1.

7.1 A well-posedness criterion

Conditions i), ii), iii) of proposition 7.2 are always fulfilled by elastic structural models. Further, by remark A.2, the
closedness of Im B ensures that condition a1� can be equivalently stated by requiring the closedness of Ker C �Ker B0.
Then, to get a well posed mixed problem, what we really have to check is the fulfilment of the two properties concern-
ing the kernels of the elastic operators, as stated in the next proposition.

Proposition 7.3. Well-posedness criterion: Let Im B be closed in d and conditions i), ii), iii) of proposition
7.2 be fulfilled. Then the closedness properties
a1� Ker B0 �Ker C is closed in s,
b� Ker B�Ker K is closed in v
ensure that the mixed elastostatic problem M is well posed.

By virtue of proposition A.7 a relevant situation in which condition a1� and b) are fulfilled is provided by the
following family of structural models.

Definition 7.4. Simple structures: A structural model is said to be simple if the subspaces Ker B of rigid
kinematisms and Ker B0 of self-equilibrated stress fields are finite dimensional.

All one-dimensional engineering structural models composed by beam and bar elements belong to this class and
hence the related elastic problems are always well-posed. A simple frame composed of two beams which are axially
undeformable and flexurally elastic is depicted hereafter. The stress fields are pairs of diagrams of bending moments
and axial forces.

&
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Fig. 7.3a shows the diagram of axial forces in the vertical beam which corresponds to a self-equilibrated and
elastically ineffective stress field. It cannot be evaluated by solving the elastic problem. Since this stress field generates
the whole subspace Ker B0 \Ker C the imposed distorsions d must satisfy the related orthogonality condition which
requires that the mean elongation of the vertical beam must vanish. Fig. 7.3b shows a diagram of axial forces and
bending moments which is self-equilibrated but elastically effective.

A beam on elastic supports is sketched in Figs. 7.4 and 7.5 to show examples of kinematic fields which respec-
tively belong to Ker K and to Ker B \Ker K.

8. Conclusions

The analytical properties of mixed formulations in elasticity have been investigated with an approach which provides a
clear mechanical interpretation of the properties of the model and of the conditions for its well-posedness.

Necessary and sufficient conditions for the existence of a solution have been proved and effective criteria for their
application have been contributed. In particular we have shown that all familiar one-dimensional engineering models of
structural assemblies composed of bars and beams fulfil the well-posedness property in the presence of any singularity
of the elastic compliance.

The case of two- or three-dimensional structural models drastically changes the scenary due to the infinite dimen-
sionality of the subspace of self-stresses so that well-posedness of the mixed problem will be almost never fulfilled when
the elastic compliance is singular. As relevant exceptions we quote structural models with either fully elastic or per-
fectly rigid behaviour.

The problem is strictly connected with the discussion of constrained structural models in which a linear con-
straint is imposed on the strain fields.

By means of simple counterexamples [5, 6] it can be shown that there is little hope to get well-posedness of a
mixed problem when the elastic compliance is singular. In this respect Stokes' problem concerning the incompressible
viscous flow of fluids, for which well-posedness is fulfilled, must be considered as an exception.

Although the analysis has been carried out with explicit reference to elastostatic problems, we observe that the
results can as well be applied to the discussion of a number of interesting problems in mathematical physics modeled
by analogous mixed formulations.

A variant of the proposed approach can also be applied to the discussion of problems in which linear constraints
are imposed on the stress field, as shown in [22].

Appendix

To make the paper reasonably self-consistent and to provide a direct reference to known results of Functional Analysis, we collect
here the most important theorems which are referred to in the paper.
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The proofs of some results are explicitly reported in the simplest context of Hilbert space theory since they are usually formu-
lated and proved in the more complex setting of Banach spaces.

First we recall the statement of Banach's open mapping theorem and closed range theorem (see [9] for a general proof in
Frech�et spaces. A much simpler proof of the closed range theorem in Hilbert spaces is provided in [13]). We also report some impor-
tant consequences of the open mapping theorem and their specialization to Hilbert spaces where the projection theorem and the Riesz
representation theorem provide fundamental analytical tools.

A linear operator A: x 7!y between two Hilbert spaces is continuous if the counter-images under A of open sets in y are
open sets in x. Continuity of linear operators is equivalent to boundedness which means that there exists a constant C > 0 such that

Ckxkx � kAxky 8x 2 x :
On the basis of Baire-Hausdorff lemma (see [10] theorem II.1) the Polish mathematician S. Banach proved a number of

celebrated results which provide the foundation of modern Functional Analysis.
Most deep results of Functional Analysis rely upon the following theorem (see [10] theorem II.5).

Proposition A.1. The open mapping theorem: Let x and y be Banach spaces and A 2 Linfx; yg a continuous linear
operator which is surjective. Then there exists a constant c > 0 such that

kyky < c) 9x 2 x : kxkx < 1 ; Ax � y :

As a consequence the operator A will map every open set of x onto an open set of y.

As a corollary it can be proved (see [10] corollary II.6) that the inverse of a continuous one-to-one linear map between two
Hilbert spaces also enjoys the continuity property.

Proposition A.2. The continuous inverse theorem: If a continuous linear operator A 2 Linfx;yg establishes a one-to-
one map between x and y then the inverse operator is linear and continuous.

In the sequel the symbol h�; �i will denote the duality pairing between dual Hilbert spaces.
We recall that, given a closed subspace a of a Banach space x, the factor space x=a is a Banach space when endowed with

the norm

kxakx=a ::� inffkxÿ �xkx j �x 2ag ;
where xa denotes the equivalence class x�a. Let x be a Hilbert space and Pa be the orthogonal projector on the closed subspace
a � x. The factor space x=a is a Hilbert space for the inner product

�xa; ya�x=a ::��xÿPax; yÿPay�x 8xa; ya 2 x=a ; x 2 xa; y 2 ya

and the associated norm can be written as

kxakx=a � minfkxÿ �xkx j �x 2ag � kxÿPaxkx :
For every element x 2 xa we shall set kxkx=a ::�kxakx=a.

Given a pair of Hilbert spaces fx; yg a bilinear form a�x; y� on x�y is bounded if for a positive constant C the following
inequality holds

Ckxkx kyky � ja�x; y�j 8x 2 x; y 2 y :
Denoting by fx0; y0g the spaces in duality with fx; yg, a pair of bounded linear operators A 2 Linfx; y0g and A0 2 Linfy; x0g
can be associated with a by the identity

a�x; y� � hAx; yi � hA0y; xi 8x 2 x; y 2 y :
The discussion of the well-posedness of variational formulations is founded upon the following fundamental result due to

Banach. A proof in Banach spaces can found in [9], [10] and a simpler proof in Hilbert spaces in [13].

Proposition A.3. The closed range theorem: Let fx; yg be a pair of Hilbert spaces, a�x; y� a bounded bilinear form on
x�y, and A 2 Linfx; y0g and A0 2 Linfy; x0g the bounded linear operators associated with a. Then the following properties are
equivalent:

i) Im A is closed in y0 () Im A � �Ker A0�? ;
ii) Im A0 is closed in x0 () Im A0 � �Ker A�? ;
iii) kAxky0 � ckxkx=Ker A 8x 2 x ;
iv) kA0ykx0 � ckyky=Ker A0 8y 2 y ;

where c > 0 is a positive constant.

Remark A.1: We recall that, by definition

kAxky0 ::� sup
y2y

a�x; y�
kyky

; kA0ykx0 ::� sup
x2x

a�x; y�
kxkx

:

These expressions can be modified by observing that being

a�x; y� � hA0y; xi � 0 8x 2 x 8y 2 Ker A0 ;

a�x; y� � hAx; yi � 0 8y 2 y 8x 2 Ker A
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we have

kAxky0 � sup
y2y

a�x; y�
kyky

� sup
y2y

sup
yo 2Ker A0

a�x; y�
ky� yoky

� sup
y2y

a�x; y�
kyky=Ker A0

and

kA0ykx0 � sup
x2x

a�x; y�
kxkx

� sup
x2x

sup
xo 2Ker A

a�x; y�
kx� xokx

� sup
x2x

a�x; y�
kxkx=Ker A

:

Since the same constant c > 0 appears in iii) and iv) of proposition A.3, these inequalities are easily shown [13] to be equivalent to

inf
x2x

sup
y2y

a�x; y�
kxkx=Ker A kyky=Ker A0

� inf
y2y

sup
x2x

a�x; y�
kxkx=Ker A kyky=Ker A0

> 0 ;

which will be referred to as the inf-sup conditions.

When the properties in proposition A.3 hold true, we shall say that the bilinear form a is closed on x�y.
Proposition A.1 implies the following result concerning the sum of two closed subspaces of a Banach space (see [10] theorem

II.8):

Proposition A.4. A representation lemma: Let x be a Banach space and a � x and b � x closed subspaces such that
their sum a�b is closed. Then there exists a constant c > 0 such that every x 2a�b admits a decomposition of the kind
x � a� b with a 2a; b 2 b; kakx � ckxkx and kbkx � ckxkx.

P r o o f : By endowing the product space x�x with the norm kfx; ygkx�x ::�kxkx � kykx the linear operator
A 2 Linfx�x; xg defined by Afx; yg ::�x� y is continuous and surjective. Then by proposition A.1 there exists a constant c > 0
such that every x 2a�b with kxkx < c can be written as x � a� b with a 2a; b 2 b, and kakx � kbkx < 1. Hence by homo-
geneity we get that x 2a�b admits the decomposition x � a� b with a 2a; b 2 b, and kakx � kbkx � cÿ1kxkx.

From lemma A.4 we get a useful characterization of the closedness of the sum of two closed subspaces (see [10] corollary II.9
for a proof in Banach spaces).

Proposition A.5. The finite angle property: Let x be a Hilbert space and a � x and b � x closed subspaces such that
their sum a�b is closed. Then there exists a constant c > 0 such that

kxkx=a\b � c�kxkx=a � kxkx=b� 8x 2 x :

P r o o f : Let a 2a and b 2 b. Then by proposition A.4 there exist �a 2a, �b 2 b, and a constant k > 0 such that

a� b � �a� �b and k�akx � kka� bkx ; k�bkx � kka� bkx :
By observing that aÿ �a � �bÿ b 2a \b we have that 8a 2a and 8b 2 b

kxkx=a\b � kxÿ �aÿ�a�kx � kxÿ akx � k�akx � kxÿ akx � kka� bkx :
We get the result by a further application of the triangle inequality

ka� bkx � kxÿ akx � kxÿ bkx ;
taking the infimum with respect to a 2a and b 2 b and setting c � k� 1.

Fig. 9.1 provides a geometrical interpretation of proposition A.5.

The following lemma provides two basic orthogonality relations.

Lemma A.6. Orthogonality relations: Let a and b be two subspaces of an Hilbert space x, and a? and b? their orthogo-
nal complements in the dual Hilbert space x0. Then

i) �a�b�? �a? \ b? :
If a and b are closed subspaces we have also that

ii) �a? �b?�? �a \ b .

&

&
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kxÿPaxkx � kxÿPbxkx
� cÿ1kxÿPa\bxkx 8x 2 x

Fig. 9.1. Geometrical interpretation of the fi-
nite angle property



P r o o f : The equality i) is evident. To prove ii) we observe that a \ b � �a? �b?�? since x 2a \ b and f 2 �a? �b?�
implies hf ; xi � 0. The converse inclusion follows from a? �a? �b? so that �a? �b?�? �a?? �a. Analogously
�a? �b?�? � b and hence �a? �b?�? �a \ b.

Remark A.2: We recall that in a Hilbert space we have a?? � �a where �a denotes the closure of a. Given any pair of
subspaces a; b � x we have the inclusion �a \ b�? �a? �b?. If a and b are closed, we get an equality if and only if a? �b?
is a closed subspace of x0. In fact from property ii� of lemma A.6 we infer that �a \ b�? � �a? �b?�??.

Further, by virtue of property i� of lemma A.6, any pair of subspaces a; b � x will meet the relation �a�b�??
� �a? \ b?�?. Hence the equality a�b � �a? \ b?�? holds if and only if a�b is closed in x.

A useful criterion for the closedness of the sum of two closed subspaces is provided by the next result [13].

Proposition A.7. Closedness of the sum of two closed subspaces: Let a and b be closed subspaces of a Hilbert space x
with one of them finite dimensional. Then the subspace a�b is closed.

We can now prove a deep result which has been referred to in the paper (see [10] theorem II.15 for a proof valid in Banachs
spaces).

Proposition A.8. Closedness of the sum of orthogonal complements: Let us consider two closed subspaces a and b of
an Hilbert space x, and their orthogonal complements a? and b? in the dual Hilbert space x0.

Then a�b is closed in x if and only if a? �b? is closed in x0.

P r o o f : By virtue of lemma A.6 the following equivalences hold true:

i) a�b closed () ii� a�b � �a�b�?? � �a? \ b?�? ;
iii) a? �b? closed () iv� a? �b? � �a? �b?�?? � �a \ b�? :

Let us now show that i� ) iv�.
Being �a \ b�? � �a? �b?�?? �a? �b? it suffices to prove the converse inclusion �a \ b�? �a? �b?.
Since a�b is closed, proposition A.4 ensures that there exists a constant c > 0 such that any x 2a�b admits a decom-

position of the kind

x � a� b with a 2a ; b 2 b ; kakx � ckxkx ; kbkx � ckxkx :
Now let f 2 �a \ b�?. Then we can define the linear functional f on a�b:

hf; xi ::�hf ; ai 8x 2a�b
since the definition does not depend on the decomposition of x. Further f is continuous since

jhf; xij � jhf ; aij � kfkx0 kakx � ckfkx0 kxkx 8x 2a�b :
Let P be the orthogonal projector on a�b in x. The continuous linear functional j 2 x0 defined by

hj; xi ::�hf; Pxi 8x 2 x
is such that

j 2 b? ; f ÿ j 2a? :
The implication iii)) ii) is proved in an analogous way.
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