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Summary. Error estimates in mixed elastostatics is a topic of great interest in computational
mechanics. An assessment of the approximation energy error is provided in terms of a parameter
h which is the elements’ diameter in the finite element method. A sufficient condition for the
convergence in energy of the approximate solution is expressed in terms of suitable properties of
the interpolating subspaces. The result contributes an alternative form of the well known LBB
condition.

1 PRELIMINARY NOTIONS

The formal framework for the analysis of linear structural models makes reference to the
following pairs of dual Hilbert spaces: the kinematic-force pair V, F and the strain-stress
pair D, S. The kinematic operator B ∈ BL (V,D) gives the linearized strain due to a
prescribed displacement field and the dual equilibrium operator B′ ∈ BL (S,F) provides the
force system in equilibrium with a given stress field. Here BL () stands for bounded linear
map. Stress and strain spaces S, D may be identified with a pivot Hilbert space H (square-
integrable fields). The inner product in H is denoted by (( · , · )) and the duality pairing in
F×V by 〈·, ·〉. The pair of dual kinematic and equilibrium operators defines the bilinear form
b (v,σ) := (( σ , Bv )) = 〈B′σ,v〉 for any σ ∈ S and v ∈ V . Linear boundary constraints
define a linear subspace L ⊂ V of conforming displacements and a Korn type inequality
implies that the range of B ∈ BL (V,D) is closed, that is ‖Bu‖H ≥ cb ‖u‖L/KerB for
any conforming displacement field u ∈ L and any conformity space L. The internal elastic
compliance is expressed by a continuous symmetric and positive bilinear form c (σ, τ ) =
(( Cσ , τ )) on S×S , where C ∈ BL (S,D). The elements of the kernel of C are the elastically
ineffective stress fields. We assume the H-ellipticity of c , i.e. c (σ,σ) ≥ α ‖σ‖2

H/KerC
for

any σ ∈ S. The external elastic stiffness is expressed by a continuous symmetric and positive
bilinear form k (u,v) = 〈Ku,v〉 on V × V , with K ∈ BL (V,F). It is assumed to fulfil the
inequality k (u,u) ≥ ck ‖u‖2

L/(KerK∩KerB)
for any u ∈ KerB ∩ L. The elements of the

kernel of K are kinematic fields compatible with null reactions. The mixed elastostatic
problem is formulated in operator form as

M)
{
Ku + B′σ= f
Bu−Cσ = δ

or S
∣∣∣∣uσ

∣∣∣∣ =
∣∣∣∣K B′

B −C

∣∣∣∣ ∣∣∣∣uσ
∣∣∣∣ =

∣∣∣∣fδ
∣∣∣∣ ,



2 Giovanni Romano, Francesco Marotti de Sciarra, Raffaele Barretta, Annalisa Barretta

where S ∈ BL (V × S,F × D) is called the structural operator. The former equation is the
equilibrium condition, in which f ∈ F is the external load, −Ku ∈ F is the reaction of the
external elastic constraints, B′σ ∈ F is the external force in equilibrium with the stress σ.
The latter equation is the kinematic compatibility condition in which δ ∈ D is an imposed
strain, Cσ ∈ D is the elastic strain and Bu ∈ D is the strain field compatible with the
displacement u. The variational form of the mixed elastostatic problem is given by

MV)
{
k (u,v) + b (v,σ)= 〈f ,v〉 u ∈ V, ∀v ∈ V,

b (u, τ )− c (σ, τ )= 〈δ, τ 〉 σ ∈ S, ∀ τ ∈ S.

Such problems have been firstly analysed in the pioneering works [1], [2], [3], [4] and in [5],
[6]. A comprehensive presentation of the state of the art can be found in [7]. In the sequel
conforming displacement fields will be taken into account. From a mathematical point of
view the formulation of a discrete model consists in imposing that the dispacement and
stress fields belong to finite dimensional linear subspaces Lh ⊂ L and Sh ⊂ H. Active forces
` belong to the linear space Fh which is dual of Lh ⊂ L in the topology induced by L .
It is worth observing that, if L is a normed space, all the norms induced on Lh ⊂ L are
equivalent [8]. The reactive forces rh belong to the discrete space Rh = L⊥

h
. The discrete

mixed elastic problem can then be defined in the following form:

MVh)

{
k (uh,vh) + b (σh,vh) = 〈`,vh 〉 , uh ∈ Lh , ∀ vh ∈ Lh ,

b (τh,uh)− c (σh, τh) = (( δ , τh )) , σh ∈ Sh , ∀ τh ∈ Sh .

This problem is well-posedness since the involved spaces are finite dimensional.

2 ERROR ESTIMATE

Let us assume that the uniqueness and well-posedness conditions of the continuum problem
and the uniqueness condition of the displacement field of the discrete problem are fulfilled.
We will provide an estimate of the approximation error in energy, defined by ‖u − uh‖L +
‖σ − σh‖H . Following the treatment developed in [7], we employ the triangle inequality to
conclude that

‖u− uh‖L + ‖σ − σh‖H ≤‖u− uh‖L + ‖σ − σh‖H +

+ ‖uh − uh‖L + ‖σh − σh‖H ,

for any uh ∈ Lh and σh ∈ Sh. The first step consists in increasing the term ‖uh − uh‖L +
‖σh − σh‖H by means the distance ‖u− uh‖L + ‖σ − σh‖H . To this end we observe that
the problems MV) and MVh) yield the following relations:

P)

{
k (u− uh,vh) + b (σ − σh,vh)= k (uh − uh,vh) + b (σh − σh,vh) ,

b (τh,u− uh)− c (σ − σh, τh)= b (τh,uh − uh)− c (σh − σh, τh) .

The terms at r.h.s. of P) are continuous linear functionals on Lh and Sh . The solution of
the problem P) is bounded above by the following inequality:

‖u
h
− u

h
‖L + ‖σ

h
− σ

h
‖H ≤ m

h

[
‖u− u

h
‖L + ‖σ − σ

h
‖H

]
,
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where mh is a positive and bounded nonlinear function of ‖c‖, ‖k‖, cbh, ckh, αh on bounded
subsets. By triangle inequality we deduce thus that

‖u− uh‖L + ‖σ − σh‖H ≤ (1 + mh) (‖u− uh‖L + ‖σ − σh‖H) ,

for any uh ∈ Lh and σh ∈ Sh. Setting ch = 1 + mh we conclude that

‖u− uh‖L + ‖σ − σh‖H ≤ ch

[
inf

uh∈Lh

‖u− uh‖L + inf
σh∈Sh

‖σ − σh‖H
]
.

3 LBB CONDITION AND CONVERGENCE

If the constant c is independent of h , the convergence in energy of the approximate solution
to the exact one is ensured if there are sufficient properties of interpolation of the discrete
subspaces. In the literature a condition which guarantees such properties is referred to as
Ladyzhenskaya-Babuška-Brezzi’s condition (LBB condition, see [1], [2], [3], [4], [5], [7]).
An alternative form of LBB condition is provided in the next theorem.

Theorem 1. Let the mixed elastic problem MV) be well-posed with an unique solution and
the elasticity of the structure be not singular so that Ker C = {o} with the kinematic
operator a Korn’s operator. Further, let us assume that the families of the interpolating
linear subspaces Lh ⊂ L and Sh ⊂ H meet the conditions

a) BLh ∩ S
⊥
h = {o } ,

b) BLh + S⊥h uniformly closed in H .

Then an asymptotic estimate of the approximation error can be inferred from an asymptotic
estimate of the interpolation error.

Proof. Let us preliminarily observe that the condition a) is equivalent to Ker Bh = Ker B∩
Lh . The uniqueness of the displacement solution of the continuous problem, given that
Ker K∩Ker B = {o} , implies Ker Kh ∩Ker Bh = Ker K∩Ker B∩Lh = {o } . Hence the
uniqueness of solution of the discrete problem MVh) in terms of interpolating displacement
fields is met. The ellipticity condition on Ker B of the bilinear form k

k (u,u) ≥ ck ‖u‖
2
L/(KerK∩KerB)

, ∀u ∈ Ker B ,

can be rewritten as k (u,u) ≥ ck ‖u‖
2
L for any u ∈ Ker B , so that:

k (uh,uh) ≥ ck ‖uh‖
2
L ∀uh ∈ Ker Bh = Ker B ∩ Lh ,

i.e. the uniform ellipticity on Ker Bh of the bilinear form k . The condition b) is equivalent
to the uniform closure of the family of subspaces ImBh = BLh +S⊥h which is expressed by
the inequality

sup
τh∈Sh

(( τh , Buh ))
‖τh‖H

≥ cb ‖uh‖H/KerBh
∀uh ∈ Lh ,

with cb independent of h . Then the inequality above together with the problem P) allows
us to state that ‖uh − uh‖L + ‖σh − σh‖H ≤ m (‖u − uh‖L + ‖σ − σh‖H) , where m is
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a nonlinear function of ‖c‖ , ‖k‖ , cb , ck , α , and is positive and bounded on bounded
subsets [8]. By the triangle inequality we deduce that

‖u− uh‖L + ‖σ − σh‖H ≤ (1 + m)
[
‖u− uh‖L + ‖σ − σh‖H

]
,

for any uh ∈ Lh and σh ∈ Sh. Setting c = 1 + m we conclude that

‖u− uh‖L + ‖σ − σh‖H ≤ c
[

inf
uh∈Lh

‖u− uh‖L + inf
σh∈Sh

‖σ − σh‖H
]
. �

Remark 1. Observing that BLh ∩ S
⊥
h = {o } , the uniform closure condition in H of the

family BLh +S⊥h can be expressed by ‖ΠBuh‖H ≥ c ‖Buh‖H for any uh ∈ Lh , in which
Π ∈ BL (H ;H) is the orthogonal projector on Sh ⊂ H [8]. Hence this condition is an
alternative expression of the LBB condition. �

Theorem 1 shows that the approximation error is bounded above by the interpolation er-
ror. The asymptotic estimate, i.e. as h → 0 , of the decrease rate of the interpolation error
Err(h) = infuh∈Lh

‖u − uh‖L + infσh∈Sh
‖σ − σh‖H is provided by the polynomial inter-

polation theory that leads to the exponential formula: Err(h) ≤ β hk (‖u‖L + ‖σ‖H) . In a
two-logaritmic scale the exponential law with exponent k transforms to the linear law with
slope equal to k that is ln (Err(h)) ≤ ln(β (‖u‖L + ‖σ‖H)) + k ln(h) .
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