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Abstract. The calculus of variations for the action integral is formulated with a new
definition of the extremality property leading to a general treatment which includes sin-
gularities of the configuration manifold and of the extremal path. Applications to the
foundations of dynamics, geodesics and geometrical optics are illustrated, in an intrisic
differential geometric context, on the basis of new ideas and results.

1 INTRODUCTION

Classical dynamics may be conventionally considered to be born about 1687 with
Newton’s Principia and fully grown up to a well developed theory due to the contribu-
tions by Euler, Lagrange, Laplace, Legendre, Hamilton and Jacobi, during the
XVIII century and the first half of the XIX century. The first attempt to provide a vari-
ational foundation to dynamics was Maupertuis principle of least action. Hamilton’s
action principle, inspired by earlier ideas by Fermat and Huygens in optics, may be
taken as the basic axiom of dynamics. Fermat’s principle in geometrical optics is the
first variational statement of a general physical law. This principle provides a formidable
motivation for the introduction of Riemann’s idea of a metric tensor field varying from
point to point and possibly undergoing discontinuities across singularity surfaces. It is
intimately related to the concept of a geodesic and indeed may be enunciated by stating
that a light-ray is a geodesic path in the euclidean space endowed with a piecewise regular
metric tensor field, the optical tensor. A similar, singular situation occurs when geodesic
paths are drawn on the surface of a parallelepiped, as in fastening a string around a
gift-box. The calculus of variations of optical rays and dynamical trajectories may be
developed in a unitary context by introducing the notion of an action one-form and of
the induced action integral along a path. Optical rays and dynamical trajectories are
indeed paths at which the corresponding action integral is extremal, in the sense that it
has a vanishing first variation. We adopt hereafter an extended definition of extremal-
ity which is more suitable to deal with singularities and also more satisfactory from an
epistemological point of view.
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A theory based on a variational principle has on its side the pleasant flavour offered
by an extremality property, the generality of the mathematical context, the natural way
in which discontinuities may be dealt with and the direct connection with computational
methodologies. The variational approach is best developed by a recourse to concepts
and methods of calculus on manifolds, whose basic notions and results, due mainly to
the pioneering contributions of Marius Sophus Lie, Henri Poincaré and Elie Car-
tan may be found in3,4,10,12,13,15. In deriving the differential and jump conditions of
extremality, Reynolds transport theorem, Stokes’s formula, Cartan’s magic formula
and Palais’ formula for the exterior derivative of a differential form, are the playmates.
The main contribution is a new formulation of the action principle which leads to Eu-
ler’s extremality differential and jump conditions. This approach provides a general
form of the Lagrange’s law which includes Noether’s theorem as a special case. By
an affine connection in the configuration manifold, Lagrange’s law may be expressed in
terms of the covariant derivative and of the newly introduced notion of base derivative
of the Lagrangian functional. Hamilton’s point of view is illustrated and generalized
to the case in which the Lagrangian functional is convex and subdifferentiable but not
necessarily everywhere differentiable. This situation occurs in geometrical optics and in
geodesics where extremality is imposed on the lenght of the path, so that the Lagrangian
is a norm in the tangent space and the Hamiltonian is the indicator of the unit ball in the
dual space. Accordingly the conjugacy map from the tangent into the cotangent space is
univocal but not invertible. This extension provides the suitable theoretical tool to derive
the eikonal equation from the Hamilton-Jacobi partial differential equation.

2 PREMISES

We summarize hereafter concepts, results and notations of calculus on manifolds re-
ferred to in the sequel. We consider a non-finite dimensional differentiable manifold M
modeled on a linear Banach’s space E . The tangent bundle TM is the collection of the
tangent spaces at the points of M and the dual cotangent bundle T∗M is the collection
of the cotangent spaces, i.e. of the linear spaces of bounded linear forms on the tangent
spaces. Push-forward and its inverse, the pull-back, of scalar, vector and tensor fields
due to a diffeomorphism ϕ ∈ C1(M ; M) are respectively denoted by ϕ↑ and ϕ↓ . The
usual notation in differential geometry is ϕ∗ = ϕ↑ and ϕ∗ = ϕ↓ but then too many
stars appear in the geometrical sky (duality, Hodge operator). A dot · denotes lin-
ear dependence on subsequent arguments and the crochet 〈 , 〉 denotes a duality pairing.
The variational analysis performed in this paper is mainly based on the following tools
of calculus on manifolds12,13,15. The first tool is the Poincaré-Stokes’ formula which
states that the integral of a differential (k − 1)-form ωk−1 on the boundary chain ∂Σ
of a kD submanifold Σ of M is equal to the integral of its exterior derivative dωk−1 , a
differential k-form, on Σ i.e. ∫

Σ

dωk−1 =

∮
∂Σ

ωk−1 .
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The second tool is Lie’s derivative of a vector field w ∈ C1(M ; TM) along a flow ϕλ ∈
C1(M ; M) with velocity v = ∂λ=0ϕλ ∈ C1(M ; TM) :

Lvw = ∂λ=0 (ϕλ↓w) ,

which is equal to the antisymmetric Lie-bracket: Lvw = [v,w] = −[w,v] defined by:
d[v,w]f = dvdwf − dwdvf , for any f ∈ C2(M ;R) .

The Lie derivative of a differential form ωk ∈ C1(M ; Λk(TM)) is similarly defined by
Lvω

k = ∂λ=0 (ϕλ↓ωk) . The third tool is Reynolds’ transport formula:∫
ϕλ(Σ)

ωk =

∫
Σ

ϕλ↓ωk =⇒ ∂λ=0

∫
ϕλ(Σ)

ωk =

∫
Σ

Lv ω
k ,

and the fourth tool is the extrusion formula

∂λ=0

∫
ϕλ(Σ)

ωk =

∫
Σ

(dωk)v +

∫
∂Σ

ωkv ,

and the related Cartan’s magic formula (or homotopy formula): Lv ω
k = (dωk)v +

d(ωkv) where the (k− 1) -form ωkv = ωk · v is the contraction performed by taking v
as the first argument of the form ωk . The homotopy formula may be readily inverted
to get Palais formula for the exterior derivative. Indeed, by Leibniz rule for the Lie
derivative, we have that, for any two vector fields v,w ∈ C1(M ; TM) :

dω1 · v ·w = (Lv ω
1) ·w − d(ω1v) ·w = dv (ω1w)− ω1 · [v,w]− dw (ω1v) .

The expression at the r.h.s. of Palais formula fulfils the tensoriality criterion, as quoted
in11,15. The exterior derivative of a differential one-form is thus well-defined as a differ-
ential two-form, since its value at a point depends only on the values of the argument
vector fields at that point. The same algebra may be repeatedly applied to deduce Palais
formula for the exterior derivative of a k-form.

2.1 Action principle and Euler conditions

The status of a system is described by a point belonging to a piecewise differentiable
manifold M , the phase space. Piecewise regularity is an assumption dictated by episte-
mological reasons and by the modeling of many applications where either the trajectory
or the phase space or both have singularities which cannot be eliminated. Examples of
singularities are provided by geodesic paths on polyhedral surfaces, by light rays prop-
agating across interfaces between optical media with different refraction properties, and
by dynamical models subject to sharp unilateral constraints. Piecewise regular geodesics,
on a regular manifold, have been considered in the context of the calculus of variations
by Milnor2. A piecewise differentiable manifold M is a pair {M , T (M)} made of a
C0-manifold M and of a regularity patchwork T (M) which is a finite family of disjoint
C1-submanifolds of M such that the union of their closures is a covering of M .
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The closure of each submanifold is called an element of the patchwork. The disjoint
union of the boundaries of the elements, deprived of the boundary of M , is the set of
singularity interfaces I(M) associated with the patchwork T (M) . A piecewise regular
trajectory Γ ∈ C1(T (I) ; M) , with regularity patchwork { t0, . . . , tn } in the time inter-
val I = {t0 , tn} , is a path Γ ∈ C0(I ; M) such that Γi ∈ C1({t(i−1) , ti} ; M) where
{t(i−1) , ti} ∈ T (I) with i = 1, . . . , n is a regularity time interval. The evolution of the
system along a piecewise regular trajectory Γ ∈ C1(T (I) ; M) is assumed to be governed
by a variational condition on its signed-length, evaluated according to a piecewise regular
differential one-form, the action one-form ω1 ∈ C1(Tω(M) ; T∗M) , with Tω(M) regular-
ity patchwork. The test fields for the variational condition are vector fields with values in
a subbundle Vtest ⊂ TM , dubbed the test-subbundle. The action integral is the signed-
length of a path Γ ∈ C1(T (I) ; M) in the phase-space, evaluated according to the action
one-form: ∫

Γ

ω1 .

A virtual flow of Γ in M is a flow ϕλ ∈ C1(M ; M) whose velocity field at Γ belongs
to the test-subbundle Vtest ⊂ TM . The restriction of the test-subbundle to Γ will be
denoted Vtest(Γ) .

Axiom 1 (Action principle) A trajectory Γ ⊂ M of the system with action one-form
ω1 ∈ C1(Tω(M) ; T∗M) , is a piecewise regular path Γ ∈ C1(T (I) ; M) such that the action
integral is extremal in the sense that it fulfils the variational condition:

∂λ=0

∫
ϕλ(Γ)

ω1 =

∫
∂Γ

ω1 · v ,

for any virtual flow ϕλ ∈ C1(M ; M) with virtual velocity v ∈ C0(Γ ; Vtest(Γ)) .

This means that the initial rate of increase of the ω1-length of the trajectory Γ along a
test virtual flow is equal to the outward ω1-flux of the virtual velocities at the end points.
Denoting by x1 and x2 the initial and final end points of Γ , we have that ∂Γ = x2−x1

(a 0-chain) and the boundary integral may be written as∫
∂Γ

ω1 · v = (ω1 · v)(x2)− (ω1 · v)(x1) .

The extremality of the action integral is a problem of calculus of variations on a nonlinear
manifold. The necessary and sufficient differential condition for a regular path to be a
trajectory is called the Euler’s condition. The classical result of Euler deals with
regular paths and fixed end points and is formulated in coordinates. The statement
introduced in the next proposition is instead concerned with non-fixed end points and
piecewise regular paths, so that extremality is expressed in terms of differential and jump
conditions. The variational problem is discussed in coordinate-free form.
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Theorem 1 (Euler’s condition with singularities) A path Γ ⊂ M is a trajectory
if and only if the tangent vector field vΓ ∈ C1(T (Γ) ; TΓ) meets, in each element of a
regularity patchwork T (Γ) , the differential condition

dω1 · vΓ · v = 0 , ∀v ∈ C0(Γ ; Vtest(Γ)) ,

and, at the singularity interfaces I(Γ) , the jump conditions

[[ω1v]] = 0 , ∀v ∈ C0(Γ ; Vtest(Γ)) .

Remark 1 The fulfillment of the local conditions is necessary and sufficient for the ful-
filment of the action principle under various equivalent boundary conditions. Indeed the
equivalence

(dω1 · v)Γ = 0 ⇐⇒ dω1 · vΓ · v = 0 , ∀v ∈ C1(Γ ; Vtest(Γ)) ,

still holds when the space C1(Γ ; Vtest(Γ)) is substituted by any linear subspace which
contains the space C∞

0 (Γ ; Vtest(Γ)) of indefinitely differentiable test vector fields van-
ishing in a neighbourhood of the end points. However, the assumption that the field
v ∈ C1(Γ ; Vtest(Γ)) vanishes at each endpoint of Γ , usually made in stating the ab-
stract action principle on a manifold5, is too special and even unsatisfactory from the
epistemological point of view (see remark 3).

The next two corollaries of proposition 1 are due to the first author15.

Corollary 1 (A symmetry condition) The differential condition fulfilled by a trajec-
tory Γ ⊂ M may equivalently be written as

dvΓ
(ω1 · v) = dv(ω1 · vΓ) , ∀v ∈ C0(Γ ; Vtest(Γ)) ,

where v ∈ C0(M ; TM) is an extension of the virtual velocity v ∈ C0(Γ ; Vtest(Γ)) and
vΓ ∈ C0(M ; TM) is the extension of vΓ ∈ C0(Γ ; Vtest(Γ)) performed by pushing it along
the flow ϕλ ∈ C1(M ; M) generated by v ∈ C0(M ; TM) .

Proof. The result follows from proposition 1 by a direct application of Palais formula:
dω1 ·v ·vΓ = dv (ω1 ·vΓ)−dvΓ

(ω1 ·v)−ω1 · [v,vΓ] . Indeed, by tensoriality of the exterior
derivative, the r.h.s. is independent of the extensions of v and vΓ . Moreover the special
extension of vΓ implies that [v,vΓ] = 0 .

Corollary 2 (Abstract Noether’s theorem) If the functional ω1 · vΓ enjoys the ex-
tremality property: dv (ω1 · vΓ) = 0 , then the functional ω1 · v is constant along the
trajectory Γ ⊂ M .
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3 CONTINUUM VS RIGID-BODY DYNAMICS

The abstract theory concerning the action principle may be applied to continuum
mechanics by envisaging a suitable phase-space to describe motions. A continuous body
is identified with an open, connected, reference domain B ⊂ S embedded in the euclidean
space {S ,g} . A configuration ϕ ∈ C1(B; S) of a continuous body B ⊂ S is an injective
map with the property of being a diffeomorphic transformation onto its range.

The configuration-space C is assumed to be a differentiable manifold modeled on a
Banach space. The velocity phase-space is the tangent bundle TC and the momentum
phase-space is the cotangent bundle T∗C . The velocity-time phase-space TC × I is
the cartesian product of the velocity-space TC and an open time interval I , and the
momentum-time phase-space is T∗C×I . These two phase-spaces are respectively adopted
in the Lagrangian and the Hamiltonian descriptions of dynamics. Vectors tangent to the
velocity-time phase-space TC× I are in the bundle TTC×TI whose elements are pairs
{δv , δt} ∈ TvTC× TtI .

Denoting by π ∈ C1(TC ; C) the projector on the base manifold, the velocity of the
configuration π(v) ∈ C , corresponding to a tangent vector δv ∈ TvTC is found by
acting on it with the differential dπ(v) ∈ BL (TvTC ; Tπ(v)C) of the projector, to get:
dπ(v) · δv ∈ Tπ(v)C . A section X ∈ C1(TC ; TTC) of πTC ∈ C1(TTC ; TC) , is such
that πTC ◦X = idTC . The tangent map Tπ ∈ C1(TTC ; TC) , defined by (Tπ ◦X)(v) =
dπ(v) ·X(v) , maps each vector X(v) into the velocity of the configuration π(v) ∈ C .

3.1 Holonomic vs non-holonomic constraints

A dynamical system is said to be subject to ideal constraints if the admissibile velocities
are imposed to belong to a vector sub-bundle A of TC , that is, a bundle with base
manifold C and fibers which are linear subspaces of the tangent spaces to C .

The subbundle A is integrable if for any x ∈ C there exists a (local) submanifold
(the integral manifold) IA ⊂ C thru x such that TIA is A restricted to IA . If the
sub-bundle A is integrable, the ideal constraints are said to be holonomic. Frobenius
theorem states that integrability holds if and only if the sub-bundle A is involutive, in
the sense that for any pair of vector fields X,Y ∈ C1(C ;A) in the vector sub-bundle A
of TC we have that

[X,Y] = LX Y ∈ C1(C ;A) .

3.2 Rigidity constraint

Two configurations ϕ1 ∈ C1(B; S) and ϕ2 ∈ C1(B; S) are metric-equivalent if ϕ2↓g =
ϕ1↓g . Then the diffeomorphic map ϕ2 ◦ϕ−1

1 ∈ C1(ϕ1(B) ;ϕ2(B)) is a metric-preserving
(or rigid) transformation of the configuration ϕ1 ∈ C1(B; S) into the configuration ϕ2 ∈
C1(B; S) . By the metric-equivalence relation so introduced, the manifold C is partitioned
into a family of disjoint connected rigidity-classes CR which are submanifolds of C .
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The elements of the tangent space TϕCR to a rigidity-class CR at ϕ ∈ CR are the
infinitesimal isometries v ∈ Vtest , that is, the vector fields v ∈ C1(ϕ(B) ; S) fulfilling the
Euler-Killing condition15: Lvg = 2g (sym∇v) = 0 . The Lie derivative of the metric
tensor is defined by: Lvg := ∂λ=0χλ↓g where χλ ∈ C1(χ(B) ; S) is the flow generated
by v = ∂λ=0χλ and χλ↓g is the pull back along χλ ∈ C1(χ(B) ; S) of the metric tensor:
(χλ↓g)(a,b) = g(dχλ(a), dχλ(b)) for all a,b ∈ TS .

4 HAMILTON’S ACTION PRINCIPLE

For a dynamical system governed by a lagrangian functional Lt ∈ C1(TC ;R) , the
classical Hamilton’s principle is stated in terms of the lagrangian one-form L(v, t) dt ∈
T∗(TC × I) on the velocity-time phase-space and of the corresponding action integral.
Being dt · {v̇t , 1t} = dt · 1t = 1 , we have that∫

ΓI

L(vt, t) dt =

∫
I

(L(vt, t) dt · {v̇t , 1t}) dt =

∫
I

Lt(vt) dt ,

where ΓI is the time-parametrized phase-trajectory in the velocity-time phase-space and
{v̇t , 1t} is the relevant speed.

Proposition 1 (Standard Hamilton’s principle) A trajectory of a dynamical system
is a time-parametrized path γ ∈ C1(I ; C) in the configuration manifold fulfilling the
extremality condition

∂λ=0

∫
I

Lt(Tϕλ(vt)) dt = 0 ,

for any flow ϕλ ∈ C1(C ; C) in the configuration manifold whose velocity field vϕ =
∂λ=0ϕλ ∈ C1(C ; TC) is an infinitesimal isometry at each point of the path γ and vanishes
at its end points.

Remark 2 The kinetic energy of a mechanical system, and hence the Lagrangian func-
tional Lt ∈ C1(TC ;R) , is defined only on the trajectory of the body in the space. On the
other hand, to formulate Hamilton’s principle, the Lagrangian has to be evaluated on
paths which are variations of the trajectory. When dealing with continuum dynamics the
mass-form has to be dragged by the virtual flow and an explicit statement must be made
concerning this point.

Remark 3 The original definition of extremality in the calculus of variations, and hence
also of Hamilton’s principle in dynamics, is unsatisfactory from the principle-theoretic
point of view. Indeed, it is a natural requirement that a extremality property, characterizing
a special class of paths, be formulated so that any piece of a special path is special too and
the chain of two subsequent special paths is special too. The formulation of extremality in
terms of flows vanishing at the end points of a path does not fulfill this requirement.
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4.1 The Hamiltonian phase space

The lagrangian functional may be expressed in terms of a conjugate functional by means
of the Fenchel-Legendre transform1. If the Lagrangian Lt ∈ C1(TC ;R) is a convex
functional everywhere subdifferentiable in its domain, the Hamiltonian Ht ∈ C1(T∗C ;R)
is fiberwise defined as the convex functional conjugate to the Lagrangian according to the
transformation rules:

Ht(v
∗) = sup

v∈Tπ∗(v∗)C
{ 〈v∗,v〉 − Lt(v) } ⇐⇒ Lt(v) = sup

v∗∈T∗
π(v)

C
{ 〈v∗,v〉 −Ht(v

∗) } .

The fiber-subdifferentials dfLt(v) ⊂ T∗C and dfHt(v
∗) ⊂ TC are the closed convex sets

in which the suprema are attained, so that:

Lt(v) + Ht(v
∗) = 〈v∗,v〉 ,

{
v ∈ dfHt(v

∗)⊂ TC ,

v∗ ∈ dfLt(v) ⊂ T∗C .

If the convex conjugate functionals are differentiable, the conjugacy correspondence is
one to one and reduces to the classical Legendre transform. An important special case
of a multivalued conjugacy is met when the Lagrangian Lt ∈ C1(TC ;R) is a norm:
Lt(v) = ‖v‖g and the Hamiltonian Ht ∈ C1(T∗C ;R) is the convex indicator of the
unit ball B1(T∗C,g−1) . Then the subdifferential relation is expressed by the normality
rule: v ∈ NB1(T∗C,g−1)(v

∗) and, for v 6= 0 , the projection v∗ = PB1(T∗C,g−1)(v) is
well-defined8,9. This situation occurs in the study of geodesics and in geometrical optics.

Then, being dπ∗(v∗t ) · v̇∗t = vt , we may define the one-form

ω1
Ht

(v∗) := θ(v∗)−Ht(v
∗) dt ∈ T∗

(v∗,t)(T∗C× I) .

where θ(v∗) · δv∗ = 〈v∗, dπ∗(v∗) · δv∗ 〉 , ∀ δv∗ ∈ Tv∗T∗C so that∫
I

Lt(vt) dt =

∫
I

(〈v∗t ,vt 〉 −Ht(v
∗
t )) dt =

∫
I

(θ(v∗t ) · v̇∗t −Ht(v
∗
t ) dt · 1t) dt

=

∫
I

ω1
Ht

(v∗t ) · {v̇∗t , 1t} dt =

∫
Γ∗I

ω1
Ht

.

A flow ϕλ ∈ C1(C ; C) in the configuration manifold induces, in the velocity phase-
space, a lifted phase-flow Tϕλ ∈ C1(TC ; TC) whose velocity field vTϕ = ∂λ=0 Tϕλ is
the phase-velocity and a conjugate phase-flow ψλ ∈ C1(T∗C ; T∗C) with velocity field
vψ = ∂λ=0ψλ . To the trajectory γ ∈ C1(T (I) ; C) in the configuration manifold, there
correspond a lifted phase-trajectory ΓI ∈ C1(T (I) ; TC × I) in the velocity phase-space
and a conjugate phase-trajectory Γ∗I ∈ C1(T (I) ; T∗C×I) in the momentum phase-space.

8



Giovanni Romano, Marina Diaco and Raffaele Barretta

The action principle for the one-form ω1
Ht

is thus expressed by the variational condi-
tion:

∂λ=0

∫
ψλ◦Γ∗I

ω1
Ht

=

∫
∂Γ∗I

ω1
Ht
· {vψ , 0} ,

for any test flow ϕλ ∈ C1(C ; C) such that the velocity vϕ ∈ C1(C ; TC) is an infinitesimal
isometry of the trajectory γ ∈ C1(T (I) ; C) . Localizing, the differential condition reads:

dθ(v∗t ) · v̇∗t · vψ(v∗t ) = −〈dHt(v
∗
t ),vψ(v∗t )〉 ,

Being ω1
Ht
· {vψ , 0} = θ(v∗t ) · vψ = 〈v∗, dπ∗(v∗) · vψ 〉 = 〈v∗,vϕ 〉 , the boundary term

vanishes if vϕ = 0 at the end points of γ , which means that initial and final config-
urations are held fixed by the flow. This is the usual assumption made in formulating
the action principle10. It can be shown15 that, if the variational condition is formulated
for any flow in the momentum-time phase-space, then the Euler extremality condition
yields also the Legendre transformation rule: dπ∗(v∗t ) · v̇∗t = dfHt(v

∗
t ) .

The action principle may be rewritten in terms of the Lagrangian as:

∂λ=0

∫
I

Lt(Tϕλ(vt)) dt =

∫
∂I

〈dfLt(vt),vϕ(π(vt))〉 dt .

Integrating by parts on each regularity interval in T (I) , we have∫
T (I)

∂λ=0 Lt(Tϕλ(vt)) dt =

∫
T (I)

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 dt

+

∫
I(I)

〈 [[dfLt(vt)]],vϕ(π(vt))〉 dt .

Theorem 2 (The law of dynamics) A trajectory of the system is a time-parametrized
piecewise regular path γ ∈ C1(T (I) ; C) in the configuration manifold C , fulfilling the
differential condition:

∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉= dvTϕ(vt)Lt(vt) ,

at regular points and the jump conditions 〈 [[dfLt(vt)]],vϕ(π(vt))〉 = 0 , for any test flow
ϕλ ∈ C1(C ; C) whose velocity vϕ(π(vt)) at the actual configuration π(vt) ∈ C is an
infinitesimal isometry.

Remark 4 To evaluate the expression of the law of dynamics in the form derived above, it
is compelling to assign the flows ϕλ ∈ C1(C ; C) at least in a neighborhood of π(vt) ∈ γ
and not just the initial velocity vϕ(π(vt)) at the actual configuration π(vt) ∈ γ . By
tensoriality, the flows ϕλ ∈ C1(C ; C) leading to the same value of vTϕ(vt) ∈ TvtTC are
equivalent. Anyway, we shall see that this expression of the law of dynamics is equiva-
lent to one in which virtual flows enters in the analysis only thru their virtual velocity.
This fundamental result states that dynamical equilibrium depends only on the kinematical
constraints pertaining to the body-placement under consideration.
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Remark 5 In the variational expression of the law of dynamics, the test fields vϕ ∈
C1(γ ; TC) are infinitesimal isometries at the trajectory γ ∈ C1(I ; C). This rigidity
constraint reveals that the dynamical equilibrium at a given configuration is independent
of the material properties. The evaluation of the equilibrium configuration requires in
general to take into account the constitutive properties of the material and hence to get
rid of the rigidity constraint. This task can be accomplished in complete generality by
the method of Lagrange multipliers. In continuum mechanics, a field of Lagrange
multipliers in duality with the rigidity constraint is called a stress field in the body14.

Remark 6 The general expression of the law of dynamics implies, as a trivial corollary,
a statement which extends to continuum dynamics E. Noether’s theorem10,12,16. Indeed
from the law of dynamics we infer that

∂λ=0 Lt(Tϕλ(vt)) = 0 =⇒ ∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 = 0 ,

while the extension of Noether’s theorem consists in the weaker statement:

Lt(Tϕλ(vt)) = Lt(vt) =⇒ ∂τ=t 〈dfLτ (vτ ),vϕ(π(vτ ))〉 = 0 ,

for all flows ϕλ ∈ C1(C ; C) whose velocity field is an infinitesimal isometry of γ .

5 DYNAMICS IN A MANIFOLD WITH A CONNECTION

Let us assume that the configuration manifold C be endowed with an affine connection
∇ and the associated parallel transport. We denote by cτ,t⇑ the parallel transport
along a curve c ∈ C1(I ; C) from the point c(t) ∈ C to the point c(τ) ∈ C , setting
ct,τ⇓ := cτ,t⇑ . The base derivative of a functional f ∈ C1(TC ;R) at v ∈ TC along a
vector vϕ(π(v)) ∈ Tπ(v)C is defined by:

〈dbf(v),vϕ(π(v))〉 := ∂λ=0 f(ϕλ⇑v) .

The definition is well-posed15 since the r.h.s. depends linearly on vϕ(π(v)) ∈ Tπ(v)C for
any fixed v ∈ TC . The base derivative provides the rate of change of f ∈ C1(TC ;R)
when the base point π(v) ∈ C is dragged by the flow while the velocity v ∈ TC is
parallel transported along the flow. Let tors(v,u) = ∇vu−∇uv − [v,u] ∈ TC be the
evaluation of the torsion of the connection ∇ on the pair v,u ∈ TC . The next statement
provides the form taken by the differential law of dynamics in terms of a connection in
the configuration manifold15.

Proposition 2 (The law of dynamics in terms of a connection) In a configuration
manifold C with an affine connection ∇ the differential law of dynamics takes the special
form

〈∂τ=t dfLτ (vt) +∇vt(dfLt ◦ vt)− dbLt(vt),vϕ(π(vt))〉

= 〈dfLt(vt),tors(vϕ,vγ)(π(vt))〉 ,
for any virtual velocity field vϕ = ∂λ=0ϕλ ∈ C1(C ; TC) which is an infinitesimal isometry
at the configuration π(vt) .

10



Giovanni Romano, Marina Diaco and Raffaele Barretta

5.1 Hamilton’s law of dynamics

Hamilton’s law is deduced from Lagrange’s law by a translation in terms of co-
vectors v∗ ∈ T∗C by means of Legendre’s transform and of the next result15, whose
special case in linear spaces is referred to as Donkin’s theorem ( 1854 ) by Gantmacher6.

Proposition 3 (Base derivatives of Legendre transforms) In a manifold C with
an affine connection ∇ the following relation holds:

dbHt(v
∗) + dbLt(dfHt(v

∗)) = 0 .

From propositions 2 and 3 we then get:

Proposition 4 (Hamilton’s canonical equations) If the configuration manifold C is
endowed with an affine connection ∇ , the differential law of dynamics takes the form{

〈∂τ=t v
∗
τ +∇vtv

∗ + dbHt(v
∗
t ),vϕ(π∗(v∗t ))〉 = 〈v∗t ,tors(vϕ,vt)(π

∗(v∗t ))〉 ,

vt = dfHt(v
∗
t ) .

6 HAMILTON-JACOBI EQUATION

Let us assume that thru any point in a neighbourhood of the point {x , t} ∈ C × I
there is a unique trajectory starting at a fixed point {x0 , t0} ∈ C × I . Then the action
integral defines an action functional J ∈ C1(C× I ;R) according to the relation:

J(x, t) :=

∫
γ

Lt(γ̇(t)) dt =

∫
Γ∗I

ω1
Ht

,

and we have the following results10,15:

Lemma 1 (Differential of the action functional) The differential of the action func-
tional J ∈ C1(C× I ;R) is given by

dJ(x, t) = v∗t −Ht(v
∗
t )dt ∈ T∗(x,t)(C× I) ⇐⇒

{
dJt(x) = v∗t ,

∂τ=t Jτ (x) = Ht(v
∗
t ) .

Theorem 3 (Hamilton-Jacobi equation) The action functional J ∈ C1(C × I ;R)
fulfils the Hamilton-Jacobi equation:

∂τ=t Jτ + Ht ◦ dJt = 0 .

In geometrical optics and in the theory of geodesics the action integral is the lenght
of the path. Accordingly the Lagrangian is given by Lt(v) = ‖v‖g and the Hamiltonian
Ht ∈ C1(T∗C ;R) is the convex indicator of the unit ball B1(T∗C,g−1) . Then ∂τ=t Jτ = 0
and ‖dJt(x)‖g−1 = ‖v∗t ‖g−1 = 1 . The gradient ∇J(x) := g−1dJt(x) fulfils the eikonal
equation

‖∇J(x)‖g = 1 .

This is an improvement of the treatments by Choquet-Bruhat4 and John7.
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