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Abstract. The First Principle of continuum Thermodynamics is formulated as a vari-

ational condition in which the test fields are piecewise constant virtual temperatures.

A strict analogy is thus shown to exist with the variational condition of equilibrium in

continuum mechanics. This suggests to apply the Lagrange multipliers theorem to relax

the constraint of piecewise constant virtual temperatures, thus leading to infer the exis-

tence of a square summable vector field of cold flow through the body. The variational

statement, analogous to the theorem of virtual work in mechanics, is named the theorem

of virtual thermal-work. In boundary value problems the cold flow has a piecewise square

integrable divergence and Green’s formula, upon localization, leads to the standard dif-

ferential and jump conditions analogous to Cauchy equilibrium equations in continuum

mechanics. A similar procedure can be applied to any balace law of mathematical physics

to detect the associated vector field.
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1 Introduction

Duality is a basic concept in Mathematical physics and the master dual objects in continuum mechan-

ics are velocity fields and force systems which interplay in the axiomatic formulation of dynamical

equilibrium. The notion of a stress field in a continuous body in equilibrium was introduced in cele-

brated papers by Cauchy [1–3] but, according to Truesdell and Toupin [4], it was Piola [5] who first

applied Lagrange’s multiplier method to introduce the notion of stress field in a connected body. This

brilliant intuition was however not properly evaluated and the more easy-to-follow geometrical method

by Cauchy has been reproduced almost without exceptions in the subsequent literature, also in the

continuum mathematical physics literature. To the best of our knowledge, the supremacy of Piola’s

approach has not been fully claimed until quite recently [6,7]. The motivations for this supremacy

are twofold. On one hand, duality plays a basic role in Lagrange’s method so that naturally the play-

ers coming into the scene are properly defined and detected. On the other hand, Lagrange’s method

for continuous problems is now a theorem, since, with a precise definition of functional spaces and

operators involved, a rigorous existence proof for the field of multipliers can be given by relying on

the powerful tools of Functional Analysis [8]. More precisely, dual players are in dual Banach spaces

(or, more in general, in dual Banach vector bundles) and the linear differential operator providing

the implicit representation of the constraint are such that the image of any closed linear subspace

is closed. The result is then inferred from Banach’s closed range theorem. In continuum mechanics,

the constraint dealt with by Lagrange’s method is the requirement of infinitesimal isometry of vir-

tual displacement fields, which according to Euler [9], is expressed by a vanishing symmetric part

of the covariant derivative of virtual vector fields, equal to onehalf the Lie derivative of the metric

tensor along the virtual flow (see e.g [10]). The closure of the image by Euler’s operator of any closed

linear subspace of a suitable Sobolev space, is implied by Korn’s inequality [11,12], and Lagrange’s

method is called the theorem of virtual work [7]. A main task in Mathematical Physics is to pursue the

recognition of formal analogies between theories dealing with seemingly different physical contexts, in

order to apply to them the same mathematical methods and results. It was then natural to ask if this

powerful, modern treatment of the basics of continuum mechanics could be shared with other fields of
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continuum physics. The answer is positive, even if not completely straightforward, and requires a sim-

ple but tricky reformulation of classical statements. However, in the standard formulation of balance

laws, no constraint is explicitly involved and Lagrange’s method seems to be inapplicable, at a first

sight. The key observation is that balance laws are required to hold for any part of a given continuous

body and this fact may be equivalently formulated in variational terms by means of piecewise con-

stant scalar test-fields. They play the role of virtual displacements in mechanics, with Euler’s operator

being replaced by the gradient operator. The closure of the image, by the gradient operator, of any

closed linear subspace in a Sobolev space is a well-known result following from Poincaré inequality

(see e.g. [13]). In this way it is shown that balance laws, expressing general principles for continuous

bodies in Mathematical Physics, are susceptible of being treated by Lagrange’s method and this leads

directly to establish the existence and the basic properties of the field interplaying with the constraint.

The topic is explicitly treated here with reference to the balance law expressing the First Principle of

Thermodynamics, which is shown to be equivalent to a virtual thermal-work theorem providing the

existence and the basic properties of the cold flow through the body.

2 The First Principle of Thermodynamics

The First Principle of Thermodynamics is a balance law prescribing an energy conservation rule to be

fulfilled by any body undergoing any thermodynamical process. The principle states that given a body

B at a placement Ω = ϕ(B) the time-rate of change of the internal energy Ė(P) of any sub-body

P ⊆ Ω is equal to the mechanical power M(P) plus the heat power Q(P) supplied to the body (see

e.g. [14–16]):

Ė(P) = M(P) +Q(P) .

It is convenient to define the energy-rate gap G(P) := M(P) +Q(P)− Ė(P) and to rewrite the first

principle as G(P) = 0 . To formulate the First Principle of Thermodynamics as a variational principle,

we preliminarily provide a definition of virtual temperature fields.
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2.1 Virtual temperatures

In the sequel Pat(Ω) denotes a patchwork of Ω , that is a finite family of open connected, non-

overlapping subsets of Ω , say P ∈ Pat(Ω) called parts or elements, such that the union of their clo-

sures is a covering for Ω . The set of all patchworks of Ω is a directed set with the partial order relation

finer than; the coarsest patchwork finer than Pat1(Ω) and Pat2(Ω) is the grid : Pat1(Ω)∧Pat2(Ω)

whose elements are nonempty pairwise intersections of their elements. The Hilbert spaces of square

integrable scalar fields (functions), vector fields and tensor fields on P will be denoted by Sqif(P) ,

Sqiv(P) and Sqit(P) . The linear space Temp of virtual temperatures is composed by Green regular

scalar fields, i.e. square integrabile fields θ ∈ Sqif(Ω) whose distributional derivatives are piecewise

square integrable in Ω according to a regularity patchwork Patθ(Ω) , i.e. ∇θ ∈ Sqiv(Patθ(Ω)) .

The linear space Temp of virtual temperature fields is a pre-Hilbert space when endowed with the

inner product and norm given by:

(θ1, θ2)Temp :=
∫

Ω

θ1 θ2 µ +
∫

Patθ12 (Ω)

g(∇θ1,∇θ2) µ ,

‖θ‖2
Temp

:=
∫

Ω

θ2 µ +
∫

Patθ(Ω)

‖∇θ‖2 µ ,

where Patθ12(Ω) := Patθ1(Ω) ∧ Patθ2(Ω) is the grid of the involved patchworks, g ∈ BL (V 2 ;R)

is the euclidean metric tensor and µ ∈ BL (V 3 ;R) is the associated volume form. Sometimes we

omit the argument when P = Ω . In each element P of the regulatity patchwork, the distributional

gradient fulfills the equivalence:

‖∇θ‖
0

+ ‖θ‖
0
' ‖θ‖

1
, ∀ θ ∈ H1(P ;R) , P ∈ Pat(Ω) ,

where ‖ · ‖k is the mean square norm on P of the field and of all its derivatives up to the order k

and H1(P ;R) = W 1,2(P ;R) is a Sobolev space [17]. Indeed, the trivial norm equivalence holds:

‖θ‖2
1

:= ‖∇θ‖2
0

+ ‖θ‖2
0
≤ (‖∇θ‖0 + ‖θ‖0)

2 ≤ 2 (‖∇θ‖2
0

+ ‖θ‖2
0
) .

The fields in the pre-Hilbert space Temp will then have well-defined boundary values on each

∂P , since in the Sobolev space H1(P ;R) boundary values are well-defined. The regular part of the

distributional gradient of a virtual temperature field is the cartesian product of the distributional

gradients evaluated on the restriction of a field to the elements of a regularity patchwork.
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It is a linear bounded operator ∇ ∈ BL (Temp ;Sqiv) from Temp into the Hilbert space Sqiv

of square integrable vector fields in Ω which fulfils the equivalence: ‖∇θ‖0 + ‖θ‖0 ' ‖θ‖1 , ∀ θ ∈

Sob1
θ , where Sob1

θ is the product of the Sobolev spaces H1(P ;R) for P ∈ Patθ . We denote by

Conf ⊂ Temp the space of conforming virtual temperatures, which is a closed linear subspace of

virtual temperature fields which share a common regularity patchwork Pat and fulfil continuous

linear constraints on the boundary of the patchwork. The space Conf ⊂ Temp is a Hilbert space

for the topology inherited by Temp . The restriction ∇ ∈ BL (Conf ;Sqiv) of the regular part of

the distributional gradient ∇ ∈ BL (Temp ;Sqiv) to conforming virtual temperatures, is a bounded

linear operator between Hilbert spaces. By an equivalence Lemma [18–20] it follows that the range:

∇(Conf) ⊂ Sqiv is closed and the kernel: ker∇ ∩ Conf is finite dimensional. Denoting by an

exponent ∗ the dual topological vector spaces, Banach’s closed range theorem [21] ensures that the

adjoint operator ∇∗ ∈ BL (Sqiv∗ ;Temp∗) , defined by the identity 〈∇∗ω, θ 〉 = 〈ω,∇θ 〉 , ∀ω ∈

Sqiv∗ , ∀ θ ∈ Temp , is such that ∇∗(Sqiv∗) = (ker∇∩Conf)◦ where:

(ker∇∩Conf)◦ := { f ∈ Conf∗ : 〈f, θ 〉 = 0 , ∀ θ ∈ ker∇∩Conf } .

The fields θ ∈ ker∇ ⊂ Temp are characterized by the property that the regular part ∇θ of their

distributional gradient vanishes on each element of the regularity patchwork Patθ(Ω) . It follows that

they are piecewise constant virtual temperature fields (see e.g. [13], Proposition II.5.3).

2.2 Variational form of the First Principle

For any θ ∈ Temp , we consider the characteristic functions of the elements P of the patchwork

Patθ(Ω) :

1P(x) =


1 x ∈ P

0 x ∈ Ω\P
with P ∈ Patθ(Ω) , and define the functionals:

F Ė(1P) := Ė(P) ,

FM(1P) := M(P) ,

FQ(1P) := Q(P) ,
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which associate with the characteristic function 1P , respectively, the time-rate of change of internal

energy, the mechanical power and the heat power, evaluated on the element P . Performing an extension

by linearity, we define the linear functionals F Ė , FM and FQ on the linear subspace ker∇ ⊆

Temp of piecewise constant virtual temperature fields. By Hahn’s extension theorem these bounded

linear functionals can be extended (non-univocally) to bounded linear functionals on Temp without

increasing their norm (see e.g. [21]). The First Principle of Thermodynamics can then be reformulated

in variational terms as:

〈F Ė , θ 〉 = 〈FM, θ 〉+ 〈FQ, θ 〉 , ∀ θ ∈ ker∇ .

Recalling the definition of energy-rate gap G := M + Q − Ė , and introducing the thermal force

FG ∈ Temp∗ as the linear functional given by:

FG := FM + FQ −F Ė ,

the energy conservation law G = 0 takes the variational form

〈FG , θ 〉 = 0 , ∀ θ ∈ ker∇ ⇐⇒ FG ∈ (ker∇)◦ .

This condition, which is analogous to the axiom of dynamical equilibrium in mechanics [7], is called

the axiom of thermal equilibrium and can be stated by saying that the thermal virtual work of the

thermal force FG must vanish for any piecewise constant virtual temperature field. The restriction

of FG to conforming virtual temperatures will be called a thermal load. The closed range property of

the regular part of the distributional gradient ∇ ∈ BL (Conf ;Sqiv) leads to the following existence

result.

Theorem 1 (Virtual thermal-work). The Axiom of thermal equilibrium:

〈FG , θ 〉 = 0 , ∀ θ ∈ ker∇∩Conf ,

is equivalent to the existence of a square integrable vector field q ∈ Sqiv , the cold-flow vector field,

which performs, for the regular part of the distributional gradient of a conforming virtual temperature

field, a virtual thermal-work equal to the one that the thermal load performes for the conforming virtual

temperature field:

〈FG , θ 〉 =
∫

Pat(Ω)

g(q ,∇θ)µ , ∀ θ ∈ Conf .
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Proof. Since FG ∈ (ker∇)◦ ⊂ (ker∇ ∩ Conf)◦ = ∇∗(Sqiv∗) there exists a one-form ω ∈ Sqiv∗ ,

the cold-flow one-form, such that FG = ∇∗ω . Moreover, by Riesz-Fréchet representation theorem (see

e.g. [21,13]) we infer that there exists a cold-flow vector field q ∈ Sqiv such that

〈FG , θ 〉 = 〈∇∗ω , θ 〉 = 〈ω,∇θ 〉 =
∫

Pat(Ω)

g(q ,∇θ) µ , ∀ θ ∈ Conf .

�

3 Boundary value problems

The basic tool in boundary value problems governed by a linear partial differential operator Diff of

order n , is Green’s formula of integration by parts, which formally may be written as:∫
Pat(Ω)

〈•,Diff ◦ 〉µ =
∫

Pat(Ω)

〈AdjDiff •, ◦〉µ +
∮

∂Pat(Ω)

〈Flux •,Val ◦ 〉∂µ ,

where Pat(Ω) is a fixed patchwork, ∂Pat(Ω) is its boundary, ∂µ is the volume (n−1)-form induced

on the surfaces ∂Pat(Ω) and all the integrals are assumed to take a finite value. The differential

operator AdjDiff of order n is the formal adjoint of Diff . The boundary integral acts on the

duality pairing between the two fields Flux • and Val ◦ with the differential operators Flux and

Val being n-tuples of normal derivatives of order from 0 to n − 1 in inverse sequence, to that the

duality pairing is the sum of n terms, whose k-th term is the pairing of normal derivatives of two

fields respectively of order k and n− 1− k .

Boundary value problems are characterized by the property that the closed linear subspace Conf

of conforming test fields includes the whole linear subspace ker(Val ) of test fields in Temp with

vanishing boundary values on ∂Pat(Ω) , i.e.

ker(Val ) ⊆ Conf .

Let us assume that the heat power Q(Ω) is expressed in terms of a bulk density q ∈ Sqif(Ω) and of

a superficial density ∂q ∈ Sqif(∂Pat(Ω)) :

Q(Ω) = 〈FQ, 1Ω 〉 :=
∫

Ω

q ρt µ +
∫

∂Pat(Ω)

∂q ∂µ .



8 G. Romano et al.

At dynamical equilibrium, the mechanical power is expressed in terms of the stress tensor field T ∈

Sqit(Ω) and of the Euler operator evaluated on the velocity field v ∈ Sob1
v of the body:

M(Ω) = 〈FM, 1Ω 〉 :=
∫

Ω

〈T, sym∇v〉µ ,

where Sob1
v is the product of the Sobolev spaces H1(P ;V ) for P ∈ Patv . The bounded linear

functionals F Ė , FM and FQ may then be univocally defined on the whole space Temp by setting:

〈F Ė , θ 〉 :=
∫

Ω

ρt ε̇ θ µ ,

〈FM, θ 〉 :=
∫

Ω

〈T, sym∇v〉 θ µ ,

〈FQ, θ 〉 :=
∫

Ω

ρt q θ µ +
∫

∂Patθ(Ω)

〈∂q,Val θ 〉 ∂µ ,

for any θ ∈ Temp . Defining the bulk energy-rate gap field as

p := −ρt ε̇ + 〈T, sym∇v〉+ ρt q ,

the energy-rate gap FG ∈ Conf∗ is given by:

〈FG , θ 〉 =
∫

Ω

〈p, θ 〉µ +
∫

∂Patθ(Ω)

〈∂q,Val θ 〉 ∂µ , ∀ θ ∈ Temp .

Due to the basic property of boundary value problems: ker(Val ) ⊆ Conf , the variational condition

stated in the virtual thermal-work theorem can be localized to yield differential and jump conditions.

Although the procedure is standard, we report hereafter the statement and the proof of the basic results

for sake of completeness. Moreover a detailed presentation of these results at this level of generality is

not easily found in the literature.

Cold flow vector fields whose distributional divergence is piecewise representable by a square in-

tegrable field, i.e. such that Divq ∈ Sqif(Patq(Ω)) with regularity patchwork Patq , are said to

be Green regular and we will write q ∈ Cold . The Green regularity of cold flows and virtual

temperature fields ensures that all the terms in the relevant Green’s formula are well defined:∫
Patθq(Ω)

g(q,∇θ) µ =
∫

Patθq(Ω)

〈 −Divq, θ 〉µ

+
∫

∂Patθq(Ω)

〈g(q,n),Val (θ)〉 ∂µ ,


∀ θ ∈ Temp ,

∀q ∈ Cold .

where Patθq = Patθ ∧ Patq , Fluxq = g(q,n) , with n outward unit normal to the boundary

∂Patθq(Ω) and Val (θ) boundary value of the field θ ∈ Temp on ∂Patθq(Ω) .
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This formula may be also written in terms of jumps at the interfaces of a sufficiently fine patchwork.

Indeed a boundary ∂Pat(Ω) may be considered as the union of the boundary of Ω and of the

pairs of positive and negative faces of each interface between elements of Pat(Ω) , i.e.: ∂Pat(Ω) =

∂Ω + If(Pat) . In the sequel we shall denote by Pat∞ a patchwork sufficiently fine for the statement

at hand. Then, setting n = n+ outward normal to the + face, defining the jump:

[[g(q,n)]] := g(q+,n+) + g(q−,n−) = g(q+,n+)− g(q−,n+) ,

across the interfaces, considering the boundary ∂Ω as a + face, and taking a patchwork Pat∞ finer

than Patθq the Green’s formula may be written as:∫
Pat∞(Ω)

g(q,∇θ) µ =
∫

Pat∞(Ω)

〈 −Divq, θ 〉µ +
∮

∂Ω

〈g(q,n),Val (θ)〉 ∂µ

+
∫

If(Pat∞(Ω))

〈 [[g(q,n)]],Val (θ)〉 ∂µ ,


∀ θ ∈ Temp ,

∀q ∈ Cold .

Then we have the following result.

Theorem 2 (Localization). In a boundary value problem, a cold flow vector field q in thermal

equilibrium with a thermal load FG , i.e. fulfilling the identity in the virtual thermal-work theorem:∫
Ω

〈p, θ 〉µ +
∫

∂Pat(Ω)

〈∂q,Val θ 〉 ∂µ =
∫

Pat(Ω)

g(q,∇θ) µ , ∀ θ ∈ Conf ,

has a distributional divergence Divq whose restriction to each element P ∈ Pat∞(Ω) of the patch-

work is g-square integrable with

−Divq = p , in Pat∞(Ω) ,

and the jump [[g(q,n)]] flux across the boundary of the domain Ω and across the interfaces of the

patchwork Pat∞(Ω) fulfills the conditions:
g(q,n)∈ ∂q + Conf◦ , on ∂Ω ,

[[g(q,n)]]∈ ∂q+ + ∂q− + Conf◦ , on If(Pat∞(Ω)) ,

where the fields ∂q of surficial heat supply are taken to be zero outside their domain of definition.

Proof. By Green’s formula, the statement of the virtual thermal-work theorem may be written as:∫
Ω

〈p, θ 〉µ +
∫

∂Pat∞(Ω)

〈∂q,Val θ 〉 ∂µ =
∫

Pat∞(Ω)

〈 −Divq, θ 〉µ

+
∫

∂Pat∞(Ω)

〈g(q,n),Val (θ)〉 ∂µ ,


∀ θ ∈ Conf ,

∀q ∈ Cold .
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Due to the density of the linear space C∞0 (P) of infinitely differentiable scalar fields with compact

support in the space Sqif(P) of square integrable fields on each element P ∈ Pat∞(Ω) , and being

C∞0 (P) ⊂ kerVal (P) , it follows that kerVal (Pat∞(Ω)) is dense in Sqif(Pat∞(Ω)) . Moreover,

for boundary value problems it is: kerVal (Pat∞(Ω)) ⊂ Conf , so that:∫
Ω

〈p, θ 〉µ =
∫

Pat∞(Ω)

〈 −Divq, θ 〉µ ,


∀ θ ∈ kerVal (Pat∞(Ω)) ,

∀q ∈ Cold ,

and hence, by density: p + Divq = 0 in Pat∞(Ω) . Then∫
∂Pat∞(Ω)

〈∂q,Val θ 〉 ∂µ =
∫

∂Pat∞(Ω)

〈g(q,n),Val (θ)〉 ∂µ ,


∀ θ ∈ Conf ,

∀q ∈ Cold ,

and the result follows. �

Let us now observe that the virtual thermal-work∫
Patθ(Ω)

g(q,∇θ) µ , θ ∈ Temp ,

is well-defined for any (even nonconforming) temperature field θ ∈ Temp . Then, by Green’s formula,

we define the reactive thermal force R(∂q, p,q) ∈ Temp∗ , associated with a bulk energy-rate gap p ,

a surficial heat supply ∂q and a cold flow field q ∈ Cold , by the relation:

〈R, θ 〉 :=
∫

Pat∞(Ω)

g(q,∇θ) µ−
∫

Pat∞(Ω)

〈p, θ 〉µ−
∫

∂Pat∞(Ω)

〈∂q,Val (θ)〉 ∂µ

=
∫

Pat∞(Ω)

〈 −Divq− p, θ 〉µ +
∫

∂Pat∞(Ω)

〈g(q,n)− ∂q,Val (θ)〉 ∂µ

=
∫

∂Pat∞(Ω)

〈g(q,n)− ∂q,Val (θ)〉 ∂µ ,

for any θ ∈ Temp .

Reactive thermal forces are the ones that do not perform virtual thermal-work for conforming

virtual temperature fields:

〈R, θ 〉 = 0 , ∀ θ ∈ Conf ⇐⇒ R ∈ Conf◦ .

Defining the reactive surficial heat supply as ∂r(q, ∂q) := g(q,n) − ∂q , the virtual thermal-work

theorem ensures that ∫
∂Pat(Ω)

∂r(q, ∂q)Val (θ) ∂µ = 0 , ∀ θ ∈ Conf .

Hence, in particular, ∂r(q, ∂q) = 0 on any piece of boundary where virtual temperatures are not

prescribed to vanish.
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The bulk equation Divq = −p is known in literature as the reduced equation of conservation of

the energy. The boundary equation ∂q = g(q,n) , in absence of reactive surficial heat supply, is known

as the heat flow principle of Fourier-Stokes.

4 Conclusions

The first principle of the thermodynamics has been reformulated, by a simple but tricky reasoning,

as a variational condition in which the test fields are piecewise constant virtual temperature fields. A

specialization of the theorem of Lagrange multipliers yields the virtual thermal-work theorem which

provides the existence of a cold flow vector field in the body. In all classical treatments (e.g. [14–

16] the existence of a heat flow vector field is instead assumed as a separate axiom of continuum

thermodynamics. For boundary value problems, Green’s formula and a localization procedure lead to

differential and boundary conditions.

A similar treatment may be applied to any balance law in continuum physics. For instance, the

principle of mass conservation leads to a variational principle in which the lagrangian multipliers are

vector fields describing the mass flow through a control volume [22].
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